Proseminar Partielle Differentialgleichungen
Iryna Karpenko, Gwenael Mercier, Gerald Teschl
WS2020/21

Please see the lecture notes for further details.

1. Show Leibniz’ rule

0= 3 (5) @000 s0) ol <.

Bl h

2. Verify the Gauss—Green theorem (by computing both integrals) in the case
u(x) =2 and U = B;1(0) C R™.

3. Let U is a bounded C'' domain in R” and set % := v-0dg. Verify Green’s
first identity

dg
A . nl‘: —_—
/U(f g+ 0f-dg)d AUfayds

for f € C1(U), g € C*(U) and Green’s second identity

o 99 _ Of
/U(ngngf)d l/ew( 3 gau>d5

for f,g € C?(U).
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4. Find the general solution of the differential equation

LUy, + -+ TplUy, =CU

5. Show that for a conservation law with bounded initial conditions, the gra-
dient of the solution remains bounded on bounded positive time intervals
(as long as the solution exists) if F' is convex and g is increasing. (Hint:
Use implicit differentiation to find a formula for wu;).

6. Solve the Laplace equation with initial conditions u(0,y) = 0, u,(0,y) = y.
7. Use the Cauchy—Kovalevskaya theorem to solve the wave equation
Utt = Uz
with initial conditions u(0, z) = g(z), u:(0, z) = h(z) and establish d’Alembert’s

formula ot
t 1) 1
ta) = L2EDHIEZD 2 f
2 2/,

(Hint: Introduce v := u,, w := u; and compute the t derivatives of w.)
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8.

10.

11.

A function f is in the Gevrey class of order 6 if for every r > 0, there are
some constants M, a such that

|FO@)] < Ma™(m))’, Jt] <

Note that 8 = 1 gives the class of real analytic functions, while for § > 1
the function f will no longer be real analytic in general.

Show that if § < 2, then

u(t, x) :mzz:o Gm)! x

converges for all z € R and defines a solution of the heat equation.

Consider the Fourier sine
f) = i sa(Psin(ome). s,(n) =2 [ *sin(rma) (e,
and Fourier Cos;nc series
fa)=2+ i ol fcostuma),  eulf) =2 [ *cos(nm) f(z)de.

For given k € Ny, show that
donflea(f)l <oo, D nFlsa(f) < oo
n=1 n=1

if f e C*1(]0,1],C) with fZ)(0) = f@9)(1) =0 for 0 < j < k/2 for the
case of s,(f) and fZITD(0) = £+ (1) = 0 for 0 < j < k/2 for the case
of ¢, (f). (Hint: Use integration by parts to show

() =2((=1)"f(1) = £(0)) + n7sn(f)

and
Sn(f/) = _nﬂ-cn(f)'

Now use that for g € C(]0, 1], C), both s,,(g) and ¢, (g) are square summable
(this is known as Parseval’s theorem and you can take it for granted).
Moreover, the sequence n~! is also square summable and the product of
two square summable is (absolutely) summable by the Cauchy—Schwarz
inequality.)

Show that for u € C*[0,1] with u(0) = u(1) = 0 we have the Poincaré
inequality

/01 u(z)?dr < C’/O1 u'(x)?dx

for some C' > 0. (Hint: Insert u(z) = [

o W (y)dy one the left. This gives
the inequality with C' = %)

Solve the heat equation with Neumann boundary conditions u,(¢,0) =
ug(t, 1) = 0. Show that the solution converges to the average temperature
at an exponential rate. Show that the solution is unique.
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12.

13.

14.

15.

Show that
eV >0,
t) =
e(t) 0 <0,
is in the Gevrey class of order 6 = % (Hint: Use the Cauchy integral
formula

-2

| —z
mygpy = M ¢~
0 = o0 f{ G

with v = {t + £e'?|0 < ¢ < 27}. You will need to find the minimum of
Re(272) on this circle. You can either argue why this minimum is positive
or compute it explicitly. In the latter case a CAS might be helpful. Also
you can use that n” < e"nl.)

Show uniqueness for the heat equation with Robin boundary conditions
provided ag,a; > 0.

Find transformations which reduce
® U = Uyy + CU
& U = Upy — AUy

to the heat equation. (Hint: For the first multiply « by a suitable function.
For the second equation switch to a moving frame y = = — at.)

Let u € C(Ur) N CY2(Ur) solve

—u u(0,z) = g(z), z € (0,1),
Ut = Ugy + f? {u(LO) = aO(t), U(t, ].) = al(t), te [O,T]

Show
< T .
i < bl + gl + gl + 7 e
(Hint: Apply the maximum principle to v := u—¢tF, where F' is a suitably
chosen constant.)



PS PDE- KARPENKO/MERCIER/TESCHL — WS20/21 5

16.

17.

18.
19.

Let
d2

da?

defined for f,g € C?(a,b) satisfying the boundary conditions

cos(a)y(a) = sin(a)y'(a), cos(B)y(b) = sin(B)y' (b).

Show that for twice differentiable functions f, g satisfying the boundary
conditions we have

L:= + Q(‘T)5 LS (a7b)7

(f,Lg) = (Lf,g).

Use this to show that all eigenvalues F,, of L are real and eigenvectors
corresponding to different eigenvalues are orthogonal.
Show that solutions of
1
?utt(ta 1’) - urx(ta {E) + q((E)’LL(t, {E) = 07
u(0,2) = g(x), ut (0, z) = h(x),
u(t,0) =wu(t,1) =0.

preserve the energy

1
E(t) = %/0 (cfzut(t,x)2 + uq:(t,x)2 + q(m)u(t,x)z)dx.

Conclude that solutions are unique if ¢(x) > 0.
Prove Lemma 2.10 from the lecture notes.

Solve the wave equation with damping
g (t, ) 4 20Uy = Py, 0<n<ec,

and Dirichlet boundary conditions on [0, 1]. Show that the solutions con-
verge to 0. Show that the energy is non-increasing and conclude that
solutions are unique.
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20.
21.

22.

23.

Solve the conservation law in R? with velocity field v(t,z) := .

Let I = {z € R?|z; = 0} and solve

Ugy Ugy = 4, u(0, 29) = 3.

Solve the Laplace equation with initial conditions u(0,y) = 32, u.(0,y) =

0.

Solve

up(t, ) = uge(t, ),

u(t,0) = u(t, 1) =0,

u(0,x) = 2sin(nz) cos(mx)
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24.

25.

26.

27.

Explain how d’Alembert’s formula can be used to obtain solutions which
satisfy Neumann boundary conditions u,(¢,0) = wu,(¢,1) = 0. Discuss
what happens to a small bump traveling to the right.

Let p1, p2 be two solutions of
1 n?
Pl =p ——p=-Xp
r r
corresponding to A1, Ag, respectively. Show that

%Mm(r)pé(r) = P1(r)pa(r)) = (A = Xo)r pr(r)pa(r).

Conclude

{éJ;un,k)?, I =k,

1
/ Jn(jn,kr)t]n(jn,lr)rd’r: 0, l;’é k.

0

Note that J/ (jnk) # 0 since if for a solution of a second order linear
equation both the function and its derivative would vanish, it would be
the zero solution.

Consider the vibrations of a chain of length 1 suspended at x = 1. Denote
the displacement by wu(t, ). Then the motion is described by the equation

utt(tv'x) t,l‘), UAS [07 1]7

= g%x%u(

with boundary conditions u(¢,1) = 0, where g > 0 is a constant. Apply
separation of variables to find the eigenvalues and eigenfunctions.

Find the solution of the Laplace equation on the unit disc which satisfies
u(z,y) = 22 for 22 + y? = 1. Give the solution in Cartesian coordinates.
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28.

29.

30.

31.

32.

Compute the Fourier transform of the following functions f : R — C:

—al|z|

(1) f(z) = x(-11)(@). (ii) f(z) = *-—, Re(a) > 0.
Show that

N

x

Yn(x) = Hp(x)e™ 7|

where H,(z) is the Hermite polynomial of degree n given by

H,(z):=e7 <x - d) e 7,
x

are eigenfunctions of the Fourier transform: t, (k) = (—i)", (k).

Find the solution of the heat equation on (0,00) with a Dirichlet bound-
ary condition at 0. What about Neumann boundary conditions? (Hint:
Reflection.)

Compute the energy of the fundamental solution ® of the heat equation.
Show that it does not decay exponentially, and conclude that there is no
Poincaré inequality on R.

Establish Huygens’ principle: Suppose g, h are supported in [a,b] C R.
Then the solution of the wave equation has support in {(¢,z)|z € [a —
ct,b+ ct]}. If f; h(z)dz = 0 the support is in {(¢,z)|x € [a — ct,b — ct] U
[a+ ct, b+ ct]}.
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33.

34.

35.

36.

Find the solution of the wave equation on (0, c0) with a Dirichlet bound-
ary condition at 0. What about Neumann boundary conditions? (Hint:
Reflection.)

Verify that
1 t pz+(t—s)
ut) =5 [ [ fswdyds
2 0 Jax—(t—s)

is in O and solves the inhomogeneous wave equation provided f € C%!(R?).

Let ¢ € C? with ¢/(ko) = 0 and ¢ (ko) # 0. Show that there is a local
change of coordinates x € C? such that ¢(k) — ¢(ko) = Gr(k — ko)?,
o = sign(¢” (ko)), holds in a neighborhood of kg. In particular, x(0) = 0,
K'(0) = v/|¢"(ko)|, and " (0) = m(b”’(ko). Moreover, if ¢ € C*,

then x € C3.

Use the integral representation for the Bessel function

1 . .
Jn(.’E) _ %/ el(ntfsm(t);v)dt, ne NO;

—T

to establish the asymptotics
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37.

38.
39.

40.

Show that a positive harmonic function on R"™ is constant. Moreover, a
harmonic function on R™ is constant if it is bounded from above or from
below. (Hint: Fix two points z,y and note that B,(z) C B,44(y) for
d:=|z—yl)

Find all harmonic functions u in R? such that u,(z,y) < uy(x,y).

Show that if u is harmonic, then ¢(u) is subharmonic for every convex
function ¢ € C(R).

Suppose f is integrable with compact support and n > 3. Then the
Newton potential satisfies

u(x) = CO(x) + O(|z| ")

as |z| — oo, where C' := fRn f(y)d™y. (Hint: The inverse triangle inequal-
ity ||z| — |y|] < |z — y| might be useful.)
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41.

42.

43.

44.

Let U be a bounded C' domain and let a partition of its boundary
OU = V1 UV, be given. Show that solutions u € C%(U) of the mixed
Dirichlet/Neumann problem

ou

—Au = ) u = ) 7‘ = )
f ‘V1 9 o v, g2

differ by at most a constant. Moreover, this constant is zero if V is
nonempty. (Hint: Green’s first identity with both functions equal.)

Let G be the Green function of the unit ball. Compute [ G(z,y)d"y.
B1(0)
(Hint: There is no need to do the integral.)

Prove the following Theorem:
Let U be a bounded domain and suppose L is uniformly elliptic with ¢ > 0.
Then the problem

Lu = f7 U|8U =4g.
has at most one solution u € C?(U)NC(U) for given g € C(U), f € C(U).
Moreover, there is a constant C' depending only on U and L such that a

solution satisfies
max |u| < max |g| + C sup |f].
U ou U

(Hint: Assume that U is within a strip 0 < z; < r and construct a
supersolution using e** )

Derive a Dirichlet principle for the elliptic operator L in divergence form
with A € C! and b = 0.
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45.

46.
47.

48.

Compute the Fourier transform of
|| 2e~l=I*/2

in R™. (Hint: There is no need to compute integrals.)

Find a function f such that fR fy) flx —y)dy = e~

Compute the Fourier transform of

™ X[o,1](|])

in R3. (Hint: Spherical coordinates.)

Suppose g is integrable. Show that solutions of the heat equation satisfy

/n lu(t, 2)|d"s < / (@) d"a

with the inequality being strict unless g is of one sign.
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49.

50.

51.

52.

53.

54.

Let p,(t) := 1/2nt log(%;). Show

I n(t —
— M/ dS(y)ds = 1.
2r t—r2 /4w t—s ly—z|=pn (t—s)

(Hint: The final integral can be evaluated in terms of the Gamma function
— Problem A.5 in the text.)

Let L be elliptic and suppose c(x) > —cg with ¢y > 0. Show that if u
solves uys + Lu < 0, then

u(t,z) <e®' max wu(t,z), 0<t<T.
(t,z)elr

(Hint: Find a transformation to reduce it to the case ¢(z) > 0. Then
apply the results from the text.)

Find the solution of the wave equation with initial condition g(x) = 0,
h(x) = |z|* in R3.

Derive a formula for the Fourier transform (¢, k) of a solution of the
Klein—Gordon equation

uy = Au —m?u, u(0) =g, u(0)=nh,

with m > 0.

Maxwell’s equations in vacuum for the electric field E(¢,z) and the mag-
netic field B(t, z) are given by

B, =—cwlE, pogoby=curlB, divE =0, divB =0,

where pp > 0 and €9 > 0 are the permeability and the permittivity of the
vacuum, respectively. Show that both E and B satisfy the wave equation
with ¢ = (uogo) ~Y/2. Here curl f := V x f is the infinitesimal circulation
(also known as rotation) of a vector field f in R3.

Suppose g and h are supported in a ball of radius r. Use Kirchhoff’s
formula to show

Cr?
ult )] < S (suplg] + sup V] + sup| 1)

[t] * gs R

for ¢ > 1. (Hint: What is the area of 0By (z) N B,(0)?)



