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Please see the lecture notes for further details.

1. Show Leibniz’ rule

∂α(f · g) =
∑
β≤α

(
α

β

)
(∂βf)(∂α−βg), |α| ≤ k.

2. Verify the Gauss–Green theorem (by computing both integrals) in the case
u(x) = x and U = B1(0) ⊂ Rn.

3. Let U is a bounded C1 domain in Rn and set ∂g
∂ν := ν · ∂g. Verify Green’s

first identity ∫
U

(f∆g + ∂f · ∂g)dnx =

∫
∂U

f
∂g

∂ν
dS

for f ∈ C1(U), g ∈ C2(U) and Green’s second identity∫
U

(f∆g − g∆f)dnx =

∫
∂U

(
f
∂g

∂ν
− g ∂f

∂ν

)
dS

for f, g ∈ C2(U).
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4. Find the general solution of the differential equation

x1ux1
+ · · ·+ xnuxn

= c u

5. Show that for a conservation law with bounded initial conditions, the gra-
dient of the solution remains bounded on bounded positive time intervals
(as long as the solution exists) if F is convex and g is increasing. (Hint:
Use implicit differentiation to find a formula for ut).

6. Solve the Laplace equation with initial conditions u(0, y) = 0, ux(0, y) = y.

7. Use the Cauchy–Kovalevskaya theorem to solve the wave equation

utt = uxx

with initial conditions u(0, x) = g(x), ut(0, x) = h(x) and establish d’Alembert’s
formula

u(t, x) =
g(x+ t) + g(x− t)

2
+

1

2

∫ x+t

x−t
h(y)dy.

(Hint: Introduce v := ux, w := ut and compute the t derivatives of w.)
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8. A function f is in the Gevrey class of order θ if for every r > 0, there are
some constants M,a such that

|f (m)(t)| ≤Mam(m!)θ, |t| < r.

Note that θ = 1 gives the class of real analytic functions, while for θ > 1
the function f will no longer be real analytic in general.

Show that if θ < 2, then

u(t, x) =

∞∑
m=0

f (m)(t)

(2m)!
x2m

converges for all x ∈ R and defines a solution of the heat equation.

9. Consider the Fourier sine

f(x) =

∞∑
n=1

sn(f) sin(nπx), sn(f) = 2

∫ 1

0

sin(nπx)f(x)dx,

and Fourier cosine series

f(x) =
c0
2

+

∞∑
n=1

cn(f) cos(nπx), cn(f) = 2

∫ 1

0

cos(nπx)f(x)dx.

For given k ∈ N0, show that

∞∑
n=1

nk|cn(f)| <∞,
∞∑
n=1

nk|sn(f)| <∞

if f ∈ Ck+1([0, 1],C) with f (2j)(0) = f (2j)(1) = 0 for 0 ≤ j ≤ k/2 for the
case of sn(f) and f (2j+1)(0) = f (2j+1)(1) = 0 for 0 ≤ j < k/2 for the case
of cn(f). (Hint: Use integration by parts to show

cn(f ′) = 2((−1)nf(1)− f(0)) + nπsn(f)

and
sn(f ′) = −nπcn(f).

Now use that for g ∈ C([0, 1],C), both sn(g) and cn(g) are square summable
(this is known as Parseval’s theorem and you can take it for granted).
Moreover, the sequence n−1 is also square summable and the product of
two square summable is (absolutely) summable by the Cauchy–Schwarz
inequality.)

10. Show that for u ∈ C1[0, 1] with u(0) = u(1) = 0 we have the Poincaré
inequality ∫ 1

0

u(x)2dx ≤ C
∫ 1

0

u′(x)2dx

for some C > 0. (Hint: Insert u(x) =
∫ x

0
u′(y)dy one the left. This gives

the inequality with C = 1
2 .)

11. Solve the heat equation with Neumann boundary conditions ux(t, 0) =
ux(t, 1) = 0. Show that the solution converges to the average temperature
at an exponential rate. Show that the solution is unique.
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12. Show that

ϕ(t) :=

{
e−1/t2 , t > 0,

0, t ≤ 0,

is in the Gevrey class of order θ = 3
2 . (Hint: Use the Cauchy integral

formula

ϕ(m)(t) =
m!

2πi

∮
γ

e−z
−2

(z − t)m+1
dz

with γ = {t + t
2eiϑ|0 ≤ ϑ ≤ 2π}. You will need to find the minimum of

Re(z−2) on this circle. You can either argue why this minimum is positive
or compute it explicitly. In the latter case a CAS might be helpful. Also
you can use that nn ≤ enn!.)

13. Show uniqueness for the heat equation with Robin boundary conditions
provided a0, a1 ≥ 0.

14. Find transformations which reduce

• ut = uxx + cu

• ut = uxx − aux

to the heat equation. (Hint: For the first multiply u by a suitable function.
For the second equation switch to a moving frame y = x− at.)

15. Let u ∈ C(UT ) ∩ C1;2(UT ) solve

ut = uxx + f,

{
u(0, x) = g(x), x ∈ (0, 1),

u(t, 0) = a0(t), u(t, 1) = a1(t), t ∈ [0, T ].

Show
|u| ≤ max

[0,1]
|g|+ max

[0,T ]
|a0|+ max

[0,T ]
|a1|+ T max

[0,T ]×[0,1]
|f |.

(Hint: Apply the maximum principle to v := u− tF , where F is a suitably
chosen constant.)
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16. Let

L := − d2

dx2
+ q(x), x ∈ (a, b),

defined for f, g ∈ C2(a, b) satisfying the boundary conditions

cos(α)y(a) = sin(α)y′(a), cos(β)y(b) = sin(β)y′(b).

Show that for twice differentiable functions f, g satisfying the boundary
conditions we have

〈f, Lg〉 = 〈Lf, g〉.

Use this to show that all eigenvalues En of L are real and eigenvectors
corresponding to different eigenvalues are orthogonal.

17. Show that solutions of

1

c2
utt(t, x)− uxx(t, x) + q(x)u(t, x) = 0,

u(0, x) = g(x), ut(0, x) = h(x),

u(t, 0) = u(t, 1) = 0.

preserve the energy

E(t) =
1

2

∫ 1

0

(
c−2ut(t, x)2 + ux(t, x)2 + q(x)u(t, x)2

)
dx.

Conclude that solutions are unique if q(x) ≥ 0.

18. Prove Lemma 2.10 from the lecture notes.

19. Solve the wave equation with damping

utt(t, x) + 2ηut = c2uxx, 0 < η < c,

and Dirichlet boundary conditions on [0, 1]. Show that the solutions con-
verge to 0. Show that the energy is non-increasing and conclude that
solutions are unique.
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20. Solve the conservation law in R2 with velocity field v(t, x) := x.

21. Let Γ = {x ∈ R2|x1 = 0} and solve

ux1ux2 = 4u, u(0, x2) = x2
2.

22. Solve the Laplace equation with initial conditions u(0, y) = y2, ux(0, y) =
0.

23. Solve

ut(t, x) = uxx(t, x), u(t, 0) = u(t, 1) = 0, u(0, x) = 2 sin(πx) cos(πx)
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24. Explain how d’Alembert’s formula can be used to obtain solutions which
satisfy Neumann boundary conditions ux(t, 0) = ux(t, 1) = 0. Discuss
what happens to a small bump traveling to the right.

25. Let ρ1, ρ2 be two solutions of

ρ′′ +
1

r
ρ′ − n2

r2
ρ = −λρ

corresponding to λ1, λ2, respectively. Show that

d

dr
r
(
ρ1(r)ρ′2(r)− ρ′1(r)ρ2(r)

)
= (λ1 − λ2)r ρ1(r)ρ2(r).

Conclude ∫ 1

0

Jn(jn,kr)Jn(jn,lr)r dr =

{
1
2J
′
n(jn,k)2, l = k,

0, l 6= k.

Note that J ′n(jn,k) 6= 0 since if for a solution of a second order linear
equation both the function and its derivative would vanish, it would be
the zero solution.

26. Consider the vibrations of a chain of length 1 suspended at x = 1. Denote
the displacement by u(t, x). Then the motion is described by the equation

utt(t, x) = g
∂

∂x
x
∂

∂x
u(t, x), x ∈ [0, 1],

with boundary conditions u(t, 1) = 0, where g > 0 is a constant. Apply
separation of variables to find the eigenvalues and eigenfunctions.

27. Find the solution of the Laplace equation on the unit disc which satisfies
u(x, y) = x2 for x2 + y2 = 1. Give the solution in Cartesian coordinates.
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28. Compute the Fourier transform of the following functions f : R→ C:

(i) f(x) = χ(−1,1)(x). (ii) f(x) = e−a|x|

a , Re(a) > 0.

29. Show that

ψn(x) = Hn(x)e−
x2

2 ,

where Hn(x) is the Hermite polynomial of degree n given by

Hn(x) := e
x2

2

(
x− d

dx

)n
e−

x2

2 ,

are eigenfunctions of the Fourier transform: ψ̂n(k) = (−i)nψn(k).

30. Find the solution of the heat equation on (0,∞) with a Dirichlet bound-
ary condition at 0. What about Neumann boundary conditions? (Hint:
Reflection.)

31. Compute the energy of the fundamental solution Φ of the heat equation.
Show that it does not decay exponentially, and conclude that there is no
Poincaré inequality on R.

32. Establish Huygens’ principle: Suppose g, h are supported in [a, b] ⊂ R.
Then the solution of the wave equation has support in {(t, x)|x ∈ [a −
ct, b+ ct]}. If

∫ b
a
h(x)dx = 0 the support is in {(t, x)|x ∈ [a− ct, b− ct] ∪

[a+ ct, b+ ct]}.
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33. Find the solution of the wave equation on (0,∞) with a Dirichlet bound-
ary condition at 0. What about Neumann boundary conditions? (Hint:
Reflection.)

34. Verify that

u(t, x) =
1

2

∫ t

0

∫ x+(t−s)

x−(t−s)
f(s, y)dy ds

is in C2 and solves the inhomogeneous wave equation provided f ∈ C0;1(R2).

35. Let φ ∈ C3 with φ′(k0) = 0 and φ′′(k0) 6= 0. Show that there is a local
change of coordinates κ ∈ C2 such that φ(k) − φ(k0) = σ

2κ(k − k0)2,
σ := sign(φ′′(k0)), holds in a neighborhood of k0. In particular, κ(0) = 0,
κ′(0) =

√
|φ′′(k0)|, and κ′′(0) = σ

3
√
|φ′′(k0)|

φ′′′(k0). Moreover, if φ ∈ C4,

then κ ∈ C3.

36. Use the integral representation for the Bessel function

Jn(x) =
1

2π

∫ π

−π
ei(nt−sin(t)x)dt, n ∈ N0,

to establish the asymptotics

Jn(x) =

√
2

πx

(
cos
(
x− π

2
n− π

4

)
+O(x−1/2)

)
.
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37. Show that a positive harmonic function on Rn is constant. Moreover, a
harmonic function on Rn is constant if it is bounded from above or from
below. (Hint: Fix two points x, y and note that Br(x) ⊂ Br+d(y) for
d := |x− y|.)

38. Find all harmonic functions u in R2 such that ux(x, y) < uy(x, y).

39. Show that if u is harmonic, then ϕ(u) is subharmonic for every convex
function ϕ ∈ C(R).

40. Suppose f is integrable with compact support and n ≥ 3. Then the
Newton potential satisfies

u(x) = CΦ(x) +O(|x|−n+1)

as |x| → ∞, where C :=
∫
Rn f(y)dny. (Hint: The inverse triangle inequal-

ity ||x| − |y|| ≤ |x− y| might be useful.)
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41. Let U be a bounded C1 domain and let a partition of its boundary
∂U = V1 ∪ V2 be given. Show that solutions u ∈ C2(U) of the mixed
Dirichlet/Neumann problem

−∆u = f, u|V1 = g1,
∂u

∂ν

∣∣∣
V2

= g2,

differ by at most a constant. Moreover, this constant is zero if V1 is
nonempty. (Hint: Green’s first identity with both functions equal.)

42. Let G be the Green function of the unit ball. Compute
∫
B1(0)

G(x, y)dny.

(Hint: There is no need to do the integral.)

43. Prove the following Theorem:

Let U be a bounded domain and suppose L is uniformly elliptic with c ≥ 0.
Then the problem

Lu = f, u|∂U = g.

has at most one solution u ∈ C2(U)∩C(U) for given g ∈ C(∂U), f ∈ C(U).
Moreover, there is a constant C depending only on U and L such that a
solution satisfies

max
U
|u| ≤ max

∂U
|g|+ C sup

U
|f |.

(Hint: Assume that U is within a strip 0 < x1 < r and construct a
supersolution using eλx1 .)

44. Derive a Dirichlet principle for the elliptic operator L̃ in divergence form
with A ∈ C1 and b = 0.
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45. Compute the Fourier transform of

|x|2e−|x|
2/2

in Rn. (Hint: There is no need to compute integrals.)

46. Find a function f such that
∫
R f(y)f(x− y)dy = e−x

2

.

47. Compute the Fourier transform of

ϕt(x) =

√
π

2

χ[0,t](|x|)
|x|

, t ≥ 0,

in R3. (Hint: Spherical coordinates.)

48. Suppose g is integrable. Show that solutions of the heat equation satisfy∫
Rn

|u(t, x)|dnx ≤
∫
Rn

|g(x)|dnx

with the inequality being strict unless g is of one sign.
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49. Let ρn(t) :=
√

2nt log( r
2

4πt ). Show

1

2rn

∫ t

t−r2/4π

ρn(t− s)
t− s

∫
|y−x|=ρn(t−s)

dS(y)ds = 1.

(Hint: The final integral can be evaluated in terms of the Gamma function
— Problem A.5 in the text.)

50. Let L be elliptic and suppose c(x) ≥ −c0 with c0 ≥ 0. Show that if u
solves ut + Lu ≤ 0, then

u(t, x) ≤ ec0t max
(t,x)∈ΓT

u(t, x), 0 ≤ t ≤ T.

(Hint: Find a transformation to reduce it to the case c(x) ≥ 0. Then
apply the results from the text.)

51. Find the solution of the wave equation with initial condition g(x) = 0,
h(x) = |x|2 in R3.

52. Derive a formula for the Fourier transform û(t, k) of a solution of the
Klein–Gordon equation

utt = ∆u−m2u, u(0) = g, ut(0) = h,

with m > 0.

53. Maxwell’s equations in vacuum for the electric field E(t, x) and the mag-
netic field B(t, x) are given by

Bt = − curlE, µ0ε0Et = curlB, divE = 0, divB = 0,

where µ0 > 0 and ε0 > 0 are the permeability and the permittivity of the
vacuum, respectively. Show that both E and B satisfy the wave equation
with c = (µ0ε0)−1/2. Here curl f := ∇× f is the infinitesimal circulation
(also known as rotation) of a vector field f in R3.

54. Suppose g and h are supported in a ball of radius r. Use Kirchhoff’s
formula to show

|u(t, x)| ≤ Cr2

|t|
(

sup
R3

|g|+ sup
R3

|∇g|+ sup
R3

|h|
)

for t ≥ 1. (Hint: What is the area of ∂B|t|(x) ∩Br(0)?)


