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ABSTRACT

The presented work offers an introduction to the theory of regular tree graphs
and the associated Schrodinger Operators.

We will start with a brief introduction, which recalls the required facts about
Sturm-Liouville Operators and what the spectral theorem tells us about this
operators. If you are not so comfortable with this terms, you should take a
closer look at [12], which presents an more detailed introduction to these terms.

The second chapter generalizes a result from Barry Simon [J] on the con-
nection between the absolutely continuous spectrum and boundedness of eigen-
functions to arbitrary Sturm-Liouville operators.

In the third chapter, we will investigate regular trees and Laplace operators
on these trees. We introduce special subspaces, which reduce the Laplacian.
Then, we will say how we can describe the spectrum with the help of these
reducing subspaces. Finally, we will characterize the trees in relation to spectral
characteristics with the help of the result derived in Chapter 2.

In the last chapter, we will show how the results of the previous chapters
can be used to investigate the spectra of regular trees with constant branching
number and constant edge length.
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Chapter 1

Introduction

The following two sections present a brief introduction in Sturm—Liouville oper-
ators and the spectral theorem for these operators. The facts are mainly taken
from [12].

1.1 Sturm-Liouville-Operator
The Sturm-Liouville operator is defined as follows:

0@ =5 (45 (M) 0] 4 Vil ). € ACuclD)
(1.1)

in the Hilbert space

L2((0,b),r(x)dx), (u,v) ::/O u(z)v(x)r(z)de, (1.2)

where I = (0,b) € R is an arbitrary open interval.
We require the following:

e p~te Ll (I), positive

loc

e ge L} (I), real-valued

loc
e r € L} (I), positive

loc

The maximal domain of definition for 7 in L?(I,r(z)dx) is given by
D(r) = {ue L*(I,r(z)dz) : u,pu’ € ACioc(I),7u € L*(I,r(z)dz)}. (1.3)

First of all we search for a space, where 7 is symmetric. The modified
Wronskian associated with this problem is defined by:

W (u,0) = (plur! — u'v)) (x). (L4)

It is straightforward to check, that the Wronskian of two solutions of Tu = zu
is constant
W (u1,u2) = Wiug, ug) for Tuq o = zuq 2



and nonzero if and only if u; and wuo are linearly independent. If we have
u,v € D(7), we get the following equation

(v, 7u) = Wy (T, u) — Wy (T, u) + (Tv,u) . (1.5)

So we need, that the Wronskian of two such functions vanishes to render the
operator 7 symmetric. Therefore we set Agu = 7u and D(A4y) = D(7)NACH(I),
where ACy(I) are the functions in AC(I) with compact support. Then we get
the following result:

Theorem 1.1. The closure of Ag is given by
Aou=T1u, D(Ag) ={ueD(r) : Wy(u,v) = Wy(u,v) =0, Yo € D(1)}.
Its adjoint is given by
Aju = Tu, D(Af) =D(7).
Proof. [12, Thm.9.4.] O

To get 7 self-adjoint, we need to work a little bit harder. Therefore, we use
the terms limit circle and limit point:
We call 7 limit circle at 0, if there is a f € ®(7), such that Wy(f, f) = 0 with
Wo(f,u) = 0 for at least one u € D(7), otherwise 7 is called limit point at 0.
Similarly for b.
We see, 7 is limit point at 0 if and only if Wy(u,v) =0, Yu,v € D(7).

Finally, we have:

Theorem 1.2. If T is limit circle at 0, then we can find, as above, a f € D(7)
with Wo(f, f) =0 and Wo(f,u) =0 for some u € D(7). Similarly, if T is limit
circle at b, let g be the analogous function there. Then, the operator

A D(r) — L*I,rdx)
u o~ TU (1.6)
with
D(A) = {ueD(r) | Wo(f,u) =0 if 7 is limit circle at 0
Wi(g,w) =0 if 7 is limit circle at b} (1.7)
is self-adjoint.

Proof. [12, Thm.9.6.] O

1.2 The spectral theorem for Sturm-Liouville-
operators

We start with the following theorem:

Theorem 1.3. Supposerv € Llloc(]), then there exists a unique solution u, pu’ €

AC(I) of the differential equation
(tr—2)f=g, z€C,

satisfying the initial condition u(c) = a, (pu’)(c) =0 for o, € C and c € I.



This clearly tells us, that also the solution space of the equation 7u = zu,
for z € C is two dimensional, so we can find two linear independent solutions
u1(z, x) and uz(z, x) of the differential equation, where u; satisfies the boundary
conditions at ¢ € RT, and uy is chosen, such that W(uj,us) = 1. They are
therefore given by the following conditions

ui(z,¢) =0, uz(z,¢) =1 and
ple)uy(z,¢) =0, p(c)uy(z,c) = 1. (1.8)

All other solutions of T7u = zu are linear combinations of these two solutions. Be
aware, that the fact, that u; satisfies the boundary conditions, does not mean
coercive that u; is an eigenfunction, because u; must not lie in L(I,r(x)dx).
Furthermore, we need the following result:

Theorem 1.4. Suppose z € p(A), then there exists a solution uy(z,x), which
is square integrable near b and which can be chosen holomorphic with respect to
z, such that

up(z, )" = up(2*, ).

Proof. [12, Thm.9.7.] O

Our gaol is the calculation of the spectrum of our operator A. Therefore, we
use a result, which is given by the spectral theorem, which implies, that there is
an unitary operator U, which maps our self adjoint operator A to multiplication
by A:

U+ L2(I,r(z)dz) — L2(R,dp), (UF)() = /O wh2) f(z)de.  (1.9)

So the object of desire is the measure p, because it contains all the spectral
information of the operator A. There is an essentially fact, which will help us to
calculate it. Our solution space is two dimensional, see above, so it is spanned
by our two solutions u; and us, now we can represent the solution u, in the
following form:

up(z, ) = uz(z, ) + mp(2)ui (2, ). (1.10)

This function my is known as the Weyl-Titchmarsh m-function. It is holomor-
phic in p(A) and satisfies
mp(2)* = mp(2z").

We call a holomorphic function F' a Herglotz function if it satisfies F' : C;. — C,..
Now, we have the following results

Theorem 1.5. The Weyl m-function is a Herglotz function and satisfies

b
Im(my(z)) = Im(2) ; luy (2, z)|*r(z)dz (1.11)
1 A
my(z) = d—l—/]R ()\z — 1+>\2) du(X), where (1.12)
d = Re(my(i)), and /R <1_:/\2> dp(A) = Im(my(2)) (1.13)



Moreover, p is given via the Stieltjes inversion formula
A+4d
u(A) = l(sifg leilrg = Im(mp (X + de))dA. (1.14)
Proof. [12], Thm.9.14) O
So, all the spectral information is hidden in the Weyl m-function.

We require above all the following result:

Theorem 1.6. The set {A € R : Im(my(N)) > 0} is a support for u, the set
{AeR : Im(myp(N)) = oo} is a support for the singularly part and the set
{AeR : 0<Im(my(N) < oo} is a support for the absolutely continuous part
of the measure p.

Proof. [12], Thm.3.16] O



Chapter 2

The connection of bounded

Eigenfunctions and
AC-Spectrum

This chapter presents a generalization of [9]. The result in [J], a connection
between bounded eigenfunctions and the absolutely continuous spectrum is
shown there for Schrodinger operators of the following form: (Hu) := —(u)"” +
V(z)u(x), u(0) = 0. We generalize this result here for a large class of Sturm-
Liouville operators. Finally, we will show Weidmann’s theorem for Schrédinger
operators.

2.1 The main result

We start by considering Sturm-Liouville operators on a half line, which are given
in (1.1),

(ro)(@) = o5 (- ) @) + V() (2.1)

with the boundary condition
u(0) =0, (2.2)

on the space L?((0,00);r(z)dz).
We require the following properties for our functions V, p and r:

x+1
. F(%) = sup <f$+1
xT

e The function r has to be "nice” everywhere, which means in our case
locally bounded, further it may not change to much, which means v :=

v(r) =sup  sup :Ezg < oco. We also need, that r(0) = 1, which can
T y€le+1l,z—1]

be achieved easily by normalizing.

V()
r(y)

2
dy) < 00.




e Finally, it is not allowed, that % goes faster to zero, in an averaged sense,
than r(z) goes to infinity, which means:

L . . 1/2 1
L ) 28]

For any z € C, we find, as I mentioned in the previous section, two solutions of
the formal differential equation Hu = Eu satisfying the boundary conditions:

ui(2;0) =0,  p0)ui(z;0) =1
up(0) =1, p(0)uh(2:0) =0,
We want to show the following theorem:

Theorem 2.1. On S = {E € R | u;\/7 and ua+/r are bounded on [ 0,00 )} the

spectral measure p for H is purely absolutely continuous.

This theorem means that p(T") > 0 for any T C S with |T'| > 0, where |- | is
the Lebesgue measure.

Remark 2.2. The corresponding result for Schrodinger operators H with p =
r =1 was first given in [9]. For more informations about similar results in the
Schrédinger case, see also [, [, [3] and [8].

The steps, we will take to proof Theorem 2.1, are analogue to that one in [J].

The proof for the required result uses the theory of Weyl m-functions. The-
orem 1.4. tells us, that we can find a unique solution u, € L? of the differential
equation for each z € C4, which we normalize according to

u4(z;0) = 1. (2.3)
We now use the representation given in (1.10),
ug(2;0) = ua(2;2) + my (E)us (z;2),

where m is again the Weyl m-function. If we differentiate this equation, mul-
tiply it with p(z) and set © = 0, we see

m(2) = p(0)edy (2:0). (2.4)
By Theorem 1.6., we know, that pu,. is supported on

{E ER|0< liﬂ)llm(mﬁE—l—ie)) < oo} .

Hence, Theorem 2.1. is an immediate consequence of

Theorem 2.3. Let E € S. Then

t.
liminf Imm (E 4 i) > P cons (2.5)
=l0 2+ & + 8L (|V/r — E))
24+ 997 4 82T (V/r — E
limsup |m4 (E +ie)] < p(O)Q( w? v/ |)) (2.6)
€l0 const.

To proof Theorem 2.3., we begin with:



Lemma 2.4. If u obeys —u" + Vu = Fu then

" 2 z+1
|(pu) ()] g[ 16 +722p(|‘:_3|)}/$ u(y)Priy)dy.  (2.7)

7(y) v2w? 4

Proof. To verify this, we abbreviate

Then, we calculate

/Ox(pf’)’(y)(P(x) — P(y)dy = (pf") W) (P(x) = Py))ly

o Loy = —f x x) —
+/0 (pf)(y)p(y)dy— (pf)(0)P(x) + f(x) — £(0)
and

0
/_ (pf") (W) (P(=z) = P(y))dy = (pf')(y)(P(—z) = Pw))[",,

/_(pf)() (1y) dy = (pf)(O)P(~x) + £(0) — f(~x),

to get
(pf)(0) = Plz) = P(—z) */0 (Pf/)/(y)mdy

0 —P(—z
S B

Now, use that F('(”S) P((f/)) <1 for 0 <y < x and integrate from = to1l. We

obtain
of)( |<2/ 'fj d+2// pf) (3| dydz

Yo 1/2/ i [ oy @

Multiply the last mequahty on both sites with inf,c;_; 1 ﬁ and use, that
T\

there exists the constant ~, such that ﬁ <infuei_1 \/%7 to have

7(0)y

(.
001 <2y [t

T / 167 (@)

Now, set f(x) = u(x) and use, that (pu') (z) + (V(z) — Er(x)) = 0, to get

L ’U/ 1 1 1 V(I’) — u\xr r\xr)ar
1e01< [ (oo e+ v - B @i

7




u(a)|v/r(z)dz

1
S\/
-1

1 1 Vix) B
2”<Pamw—m—umm§?umw>*”¢mm 4

gf[”+ﬂv@—Emewﬁmm

|l w r(z)

Next, set u(z) = u(z+y), p(x) = plx+y), r(x) =r(z+y) and V(z) = V(z+y)
and square both sites of the last inequality, this implies

2 y+1
£ >/21Lﬂ@2NxMx

y+1
e =B [ irwPres

-1

V(@)
r(z)

y+1 2
\(pf')(y)IQT(y)S/ <§72+272

y—1

<

1672
2

Remark 2.5. The proof of the Lemma in the Schrédinger case is easier in
the sense, that you can omit all the estimates, which concerns p and r. Fur-
thermore, the terms v and w are equal to one. We have to start there with
Taylor’s theorem for the functions f(x) and f(—x). The comparison of both
equations gives again an estimate for f'(0) and then the steps are analogue to
that one given here. The final inequality in the Schrédinger case is |u'(x)|? <
(16 + 3T(IV — E|)) [ [u(y)[?dy.

This lemma tells us, if £ € S, #pu’ is bounded as well. The general transfer
matrix T'(E;x,0) for solutions of 7u = u is defined by

ooy [ P@u(Esr)  pla)uy(Esx)
T(E;2,0) = < ui(E; x) uz(E; x)
Next, set
T(E;z,y) = T(E;2,0)T(E;y,0)"".
Then, it is easy to check that

NELw<m%$w><mw%m>. 29)

But this transfer matrix must not be bounded in our case, because, neither u
nor pu’ have to be bounded. So we require a special transfer matrix, where we
know that it will be bounded then. Set

T(E;z,0) = ( r(@) )T(E;x,o). (2.9)

Then set as before

T(B;x,y) = T(E;2,0)T(B;y,0) ",



to get

T(E;2,y) ( x/:<7>p(y)u’(y) > = < wlﬁp(x)ul(x) ) (2.10)
. r(y)uly) r@u@) ) '

For F € S, this transfer matrix is bounded, so we can define the following value

C(E) = 5515 HT(E,x,y) (2.11)

which is finite.

Proof of theorem 2.2. Suppose the function ¢ satisfies —(p¢') /r + (V/r — E —
i€)¢ = 0. Next, we rewrite this equation as —(p¢’)'/r + (V/r — E)¢ = ie¢ and
use variation (l)f constants.

Let ¢ = < pj ),then

1 0 1,41

. : . ~ po
Multiply both sites with r(z) and set ¢ = ( v ), to have

( 0 Vr(z) - Vo

3(z) = <Exmwm+k[fﬂEmwwwmy

Observe, that %(O) = ¢(0), because r(0) = 1. The last equation implies

oo < e o]+ o |

Because of the Gronwall Lemma, we get

o

Hé(w)H < C(E)eC (Bl

50)|

and therefore B
HT(E n ie,x,O)H < C(E)e<C(®B)lal, (2.12)

Next, we use our square integrable solution u4 (F + i€, ) and Lemma 2.4. to
obtain

x+1
o < [ 2L - i) [l )Proas

Now, integrate this from 1 to oo to have

> 1 ! 2 32°
_ <
| era < |2

Next set =1/ (1 + %—}2 +49°T(|V — E — ze|)> to have

v%ﬂv—E—ww}Amhu@n%@My

[l wlar = [ @ @F + s @ o



_ 5/100 HT(EH‘e;x,O)g(O)Hde

ﬁ . 2 oo (e _ ﬁef2eC(E) 1 )
ZiC(E)Q "&(0)“/1 e 2 0BTy = 5C(EVe 1+|p(0)m+(E+ze)|2 :

We obtain the second inequality in the last equation from (2.11) and from the
constancy of the Wronskian. To see this, suppose there is a solution v, which
decrease faster than any other solution u can increase. We know, that the
Wronskian of two solutions is constant. If we value the Wronskian at oo, we
see, that W(v,u) = 0, but we can choose the function uw arbitrarily and in
particular linearly independent of ¥, which implies w = 0, a contradiction.
Multiply both sides with Im(E + i€) to get

o e—QeC(E)
tmm (E-+i6)) = ¢ | |u+<y>|2r<y>dyzﬁgcw)3 (1+|p(10)m+<E+z'e>|2).

And therefore

. Im(my (E + i€)) Ié]
tip ot | o) | © 20@E)P

Because of (1 + |ﬁm+(E + ie)\Q) > 1, we immediately see, that

lim inf Im(m 4 (E + i€)) > b

€l0 2C(E)3’ (213)

|5ty me?)

which is (2.5) Now, to obtain (2.6) use T (mo)

easily be verified, to have

> p(é)2 |m.|, which can

> lim sup ! |y (E+ie)|
. > — €)l.
clo Im(m (E + i€)) co p(0)2F

2C(E)®

-1 1+ |=my (E + ie)|?
( A > > lim sup ( p(0) )

(2.14)
O

Remark 2.6. The inequalities for the Schrédinger operator H are given by
hnll%nf Im(m (E+ie)) > Lconst./ (33 + T(|V — E|)) and limsup |m. (E+ie)| <
€ €l0

[Leomst./ (33 +T(|V — E))] .

2.2 Weidmann’s Theorem
In this section, we want to establish Weidmann’s Theorem by showing how we

can find the asymptotics of the eigenfunctions in the Schrodinger case, which
means for the operator H. The facts here are from [9].

10



Theorem 2.7. Let V(z) = Vi(z) + Va(x), where Vi € L' and Vo € C with
Vi € L' and Va(z) “=° 0. Neat, fir E = k> > 0 with k > 0. Then every
solution of

d2
<—dl'2 + V(l‘)) u= Fu (2.15)
is bounded. Indeed, there exists a and b so that
lu(z) — aus(z) — bu_(x)] — 0 (2.16)
|/ (z) — dakuy (z) + ibku_(x)| — 0, (2.17)

where "
us(T) = exp <:|:Z/ Vk? — Vz(a:)dx> (2.18)
Zo
and xq is chosen so large that Vo(x) < k? for x > xq.

Proof. First of all notice, that

- ui(z)+ (V(z) - B)us(z) =

_ _.ku(x)(iivﬁﬂ-—vé@ﬂ)2+"“(x)<;i;\/kﬁﬁié@ﬂ>]

+ (V(z) = B)us(x)

= ux(z) [(kQ—‘@(x))i;m+V($) E
:1&@ﬂmmi;wuw w—%@ﬁl}

We now define

ﬂ@y:%@iéﬂmw mf%@gA. (2.19)

From the conditions, it follows, that this term is L'.

For the Wronskian Wy (uy,u_) of uy and u_, we have:
Wy = Wy(uyg,u_) = 2iy/k?2 — Va(z).
So, because of the continuity of V5 and the condition V5 — 0, it follows:
W, = 2ki + o(1). (2.20)
Next, define a(z) and b(z) through the equations

w(@) = al@)uy(z)+b(z)u(z)
a(z)u!, (z) + b(z)u’_(z).

g\
=
I

(2.21)
If we differentiate the first one, and compare this with the second, we see

a'u () + a(@)u, (2) + V (@)u_ (@) + ba) (2) = a(@)uy (@) + bla)u_(2)

11



and therefore
d(z) = =V (z)u? (z) 13p. b'(2) = —a'u? ().

Because (fdd—z + V(z)) u = Fu, it also follows

0=—(a'(2)u)y (x) + V' (2)u’(2) + a(2)u] (x) + b(z)u” (z))
+(V(z) - E) (a(x)uy (z) + b(x)u(z))
=V (x) [u2 (2)u)y () — u’_(2)]

ta(e) (—u] + V(x)uy (@) - Buy(2)) +b(x) (~u” +V(2)u_(z) — Bu_(x))
= V(@) (@) [20V/F? = Va(@)| +al@) Py (@)u (2) + b(z) F- (2)u-(2)

and altogether

respectively )
a'(z) = W (Fi(z)a(z) + F_(z)u® (z)b(z)) .

x

We will write this in matrix form

(i) ) =@ (5)). o
o M(z) =W, 1( —Fﬁ:gi)ﬁ(x) h xf)f?x)( > (2.23)

The Wronskian W, is bounded, Fy € L' and |us(z)| = 1, so |M(z)|| € L*
follows. It further follows, that:
x)
2 —

(50)

Now, let c(x H ( ) H, then it follows by Gronwall, that

() < elz0) exp(/ M) ds) < clan) p(/ M) a) < o0

for x > xg.

< ||M(z

a(x)
b(x)
follow that the limit lim a(z) = %) exists. To see that a(z) is
indeed a Cauchy sequence consider the following inequality:

(e )= (o )| = cteorese ([ paroas)eso ([~ iascoas).

O

Next, we want to show that is a Cauchy sequence, then it would

12



Chapter 3

The Laplacian on a regular
tree

The following chapter gives the full description of regular trees, of the Laplacian
on it and finally, of the spectral properties of the Laplacian on a regular tree.
The main facts are taken from [10] and [7].

3.1 The regular rooted tree

I now want to establish the idea of a rooted metric tree I'. Our tree consists
of the root o and infinitely many edges E = E(T") and Vertices V = V(I"). For
any two points z,y € T, there exists an unique shortest path (x,y) from z to y.
We write z <y, if © € (0,y) and x # y. Next, for a vertex v € V, we define its
generation gen(v), by

gen(v) =g{pe V(@) p=<v}.

This in particular means, v = o is the only vertex such that gen(v) = 0.

For any edge ¢ = (v, ), for v,u € V and v < pu, we set gen(e) = gen(v). In
our tree, all edges of the same generation have the same length. This means,
that the distance to the root is equal for all vertices of the same generation.
Therefore, we can describe the distance of the vertices from the root of the tree

in an easy sequence:
|V| = tgen(z/) Yv e V(F), (31)

where |v| means the distance of the vertex v to the root.

Finally, we have to define the branching number b(v) on each vertex v € V.
Here, we look at trees, where the branching number has to be equal for vertices
of the same generation. This clearly means:

b(l/) = bgen(l,) Yv € V(F) (3.2)
Altogether, our trees are fully determined by the two sequences:

{on} = {0n (D)} and {tn} = {tn(I)} .

13



We consider only trees, where by = 1 and by, > 2 for k > 1. So, a tree is said to
be regular, if it satisfies all these properties.
From the definition of the value tg, it is clear, that t; = 0 and the sequence
{tx} is strictly increasing. Now define
hpr = lim t,. (3.3)
n—oo
It is natural to refer to hr as the high of the tree. Next, we establish the so
called branching function gr(¢)

gr(t) =t{z el : |z|=t}. (3.4)
It is clear, that gr is of the form

_ bl--~bn7 tn<t§tn+1a
gf(t)_{ 1, 0<t<t.

We want to define the branching function for subtrees T' C T too, but there are
two types of subtrees, which are associated with vertices on the one hand and
with edges on the other hand, so let € = (v, u) € E(T"), with v,u € V(T') and
v < [, set

T,={zel : z>ptu{p}, Tc=eUT,. (3.5)

Up to this point, it is clear, that T, = T., = I'. Now let T' = T, and gen(e) =
gen(v) = k, then we will get gr(t) = gr(t), where

0, 0§t<tk,
gr(t) = 1, te <1t <1lky1, (3.6)
bk-‘,—l-'-bn; tn<t§tn+1

Therefore, we get the simple connections: gi(t) = (bo---bg) " gr(t) for t > t;
and g7, = brgr(t), if gen(v) = k.

3.2 Decomposition of the space M (I)

We start with the definition of the required spaces: We denote by M(I") the
linear space of all measurable functions that are finite almost everywhere. Let
M.(T") be the space of all functions in M(I") supported by only finely many
edges.

Two functions u,v € M(T') are said to be level wise orthogonal, if they
satisfy
Z w(z)v(z) = 0 for almost all ¢ > 0. (3.7

zel:|z|=t

Two subspaces F, G C M (T') are level wise orthogonal if the above relation holds
for any u € F and v € G. For a subtree T' C T', a function v € M(T") belongs to
the class M if

u(z) =0, ifx ¢ T, ulx)=u(y)ifz,yeT and |z| = |y| (3.8)

This clearly means, we can identify any such function v € 9 with the corre-
sponding function f = Jpru € M(|or|, hr), where Jr is a natural embedding of
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Figure 3.1: Regular tree graph with constant edge length and branching number
b, =2, for n > 1.

the classes M to the spaces M(|or|, hr), such that u(x) = f(|z|) for x € T
almost everywhere. M (I) stands for the space of measurable functions, that
are finite almost everywhere. This implies, that the subspace 9 consists of all
symmetric functions on I'. We now want to find an operator, which acts as a
projection from the space M (T") onto M7. This operator is given by:

(ruy )= { 47007 Der D r 2 €T (3

We can say, that Pr defines a level wise orthogonal projection onto M.

We, also need the subspaces 9 associated with our subtrees T, and T..
We start with gen(v) = k, for simplicity we write 90, instead of 9z, and 9,
instead of DJ?TJ., Jj=1...,bp. T stands for the j-th edge starting at v. So

for a given u GVM(F), we define the functions f,,., f7, € M(ty, hr) as follows:
fu,u = JTL,PT,,ua
g’u = JTjPTjU7 forj = 1,...,bk.

It can be immediately proved, that the spaces M/ for j = 1,..., b are level
wise orthogonal, so we take a closer look at their linear sum ﬁy = Z?’; LM
which contains the whole space 901,,.

Any function u = {uy, ..., u, } € M, can be identified with a vector-valued
function f= J,u € (M (ty,, hr))"* realized by

f:{f17~-~7fbk}7 where fj:JTE_juj’ j:17--~7bk- (310)

For the further analysis, we need to extend f with an other basis. We will use
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the discrete Fourier transform. So, we write w = e(?™)/b% and set

1
h = {ws o wsle) 1} s=1,... by (3.11)
\/E ) ) b ) b b

It is straightforward to check, that these vectors form an orthogonal basis in
CP. Next, to any s and any function f € M (t, hr), we assign the vector valued
function

£ = W f € (M(ty, hr))" .
By the Fourier Transform, it follows that

Hf<s> (t)H = |£(£)], almost everywhere on (ty, hr). (3.12)
—1 —
Now, choose a s, then the set of functions J, £ is a proper subspace of 9,,.

Set )

J, £ =i
By the construction, the spaces 9)T£S> do not only span the space %, but also,
they are level wise orthogonal.

The level wise orthogonal projections of M (T") onto the subspaces DJTS,‘9> are
given by

bk
1 . .
J P u =0 ) where £ = — Y f1 w0 3.13
7o 2P (3:43)
If we set in the last equation s = by, it follows from the construction, that
ht) = \/%Tk {1,...,1}, so it is obvious, with the help of equation (3.13) that

M coincides with m,.
Next, we will introduce the following space

M, =duech, : Z u(z) = 0 for almost all £t >0 » . (3.14)

z€T,:|x|=t

Clearly the subspaces 9, and 9., are level wise orthogonal. Because 9, and
9315,5), for s =1,...,(by — 1), are level wise orthogonal and all together span the
whole space 91, it follows, that

Now, we are able to summarize all the information, we have collected up to this
point in a theorem

Theorem 3.1. We have the following statements

e The subspaces E)JTf,S), veV\{o}, s=1,...,b(v) —1 and the subspace My
are mutually level wise orthogonal.
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e One has
brp—1

cimp@@ b pm (3.15)

k=1gen(v)=k s=1
and for an arbitrary u € M.(T"), one has

br—1

Yo lu@)? = Ife(t \2+Z Z PRIA0 (3.16)

zel:|z|=t k=1gen(v)=k s=1

almost everywhere on (0, hr), where fr(t) = fou(t) and the functions
£ (t) are given in (3.13). Let me remark that the sum on the right site
of (3.16) is finite, since there is an k, such that allv € V with gen(v) > k,

such that f,ss> (t) =0, for t > k, because u is supported on only finitely
many edges.

Proof. Instead of proofing, that the subspaces iy and im,<,5>, v € V\ {o},
s =1,...,b(v) — 1 are level wise orthogonal, we show, that 9 and M/, for
v € V \ {o} are level wise orthogonal, but this follows from (3.8), for T =T
and (3.14). Next let p,v € V' \ {o} and let neither y < v nor v < pu, but
then, the corresponding subtrees 7, and T, are disjoint, which implies level
wise orthogonality for the subspaces DJ?L and 9. Further, let v < p and
u €M, and v € sm;, then, we know that u is symmetric on each subtree Teju- ,
for j = 1,...,b(v), while, the function v vanishes outside the subtree T},, but
this subtree is completely contained in some subtree T;. Therefore, we obtain

Z u(z)v(x) = Z u(z)v(x) = const(t) Z v(z) =0

z€T,:|z|=t x€T),:|z|=t z€T,,:|z|=t

Finally, the fact, that the subspaces ED?ff> for different values s are level wise
orthogonal is already known.
The proof of the second part of the theorem can be seen in [7, Thm.2.2.] O

Now, we take the Hilbert space L?(I"), where

gen(e )+1

(@) 122 ) / (o) da = Z/ WFd (317)
ecFE ye'”-( )
is finite, for every u € L*(T). Set
Lr = Mp N LA(T) and L = m$ 0 LA(I)

forveV\{o} and s=1,...,b(v) — L. (3.18)

This spaces are mutually orthogonal subspaces of L?(T).

Theorem 3.2. The subspaces, given in (3.18) are mutually orthogonal in the
space L*(T') and define an orthogonal decomposition of this space. For any
function w € L*(T), on has

br—1

/F|u<x>|2dx=/0 ROPr®d Y Y Z/ 15 ()2 gr ()t

k=1gen(v)=k s=1 th
(3.19)
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The functions fr(t) and f,§5> (t) are given as above. In particular,

br—1

Lr@@ P P (3.20)

k=1gen(v)=k s=1

Proof. The Theorem is an immediate consequence of Theorem 3.1. O

3.3 Reduction of the Laplacian

We start with the definition of two required spaces

e uc H=H(),if u(o) =0, ulc € H'(¢), Ve € E and

|, = / ' [2d < oo (3.21)
T
and

e uc HY(T), if u(0) =0
lul2 = / (@) + fu(2) 2) da. (3.22)

The space H can be introduced, by the function, which allow the following
representation:

u(zr) = / v(y)dy, for v e L*(T) (3.23)
(0,2)

In this representation, it is clear, that one has v = %’ and that the mapping
u — v defines a natural isometry of H onto L?(T). But, let me remark, that a
function u € H, need not belong to L*(T")

Next, we define the following closed subspaces of H

Hr=MNH, HY=m&nH, veV\{o}, s=1,...,br)—1. (3.24)

The operator Pr acts on H and defines there an orthogonal projection onto
Hr. The similar assertion holds for the operators P, ) for s = 1,...,b(v) — 1,
indeed for any function u € H, the function v = P,ﬁ )u has a derlvative v
and fﬁs>(tk+) = 0, and therefore it is continuous on all of T'. Therefore, this
ensures the relation v = Plfs>u € H. Furthermore differentiation preserves the
classes 9)T,<,S>u. This finally leads to the fact, that the operator Pu<s>u defines an
orthogonal projection from H onto H;®. Let me mention, that the same facts
for the operators Pr do not hold, because of the discontinuity at Op.
We can now formulate the following result:

Theorem 3.3. Let hy = oo, then the subtrees defined in (3.24) are mutually
orthogonal in H and define its orthogonal decomposition. For any function
u € H, we have the following equation

br—1

hr hr
/F|u’(ac)|2dx:/0 |dfF dt+z > Z/ dfz g (t)dt.

k=1gen(v)=k s=1 Y *

(3.25)
A similar statement holds for the space HV°(T').
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Proof. The result follows from Theorem 3.2. O

The next goal is to understand the nature of the operator A|o,., respectively
of each operator Ay () for s =1,...,(b(v) — 1).

We start with the weighted Hilbert space $; := L?((tx,00);gx) and the
following quadratic form in it:

amﬂ:/wwvw%m&, 6 € H((t1. 00); g0)- (3.26)

tr

The quadratic form is non-negative and closed in $);. Let Uy be the correspond-
ing self adjoint operator, then, we have

Theorem 3.4. The part of the operator A in the reducing space Mr is unitarily
equivalent to the operator Uy. Let gen(v) > 0 and 1 < s < b(v), then, the part of

the operator A in the reducing space £m£8> s unitarily equivalent to the operator

U.

Proof. [10, Thm.3.3.] Set JE = j]:|m<s>. The result follows from the fact,

that the operator J5* maps the set M NHY°(T') onto HY°((ty, hr); gi), where
k = gen(v) and because f € M NH(T') implies Jo I (@))Pde = ap[F9]. O

Theorem 3.5. A function u lies in Dom(Uy) if and only if the following con-
ditions are satisfied:

€ H2((tj—1,t;)) for all j > k and

Z/t‘j (lu” (#)[2 + [/ (£)[% + [u(t)]?) gr (t)dt < oo.

>kt

* u'(tj—htj)

e u and u'gy are continuos on [ty, hr) and u(ty) = 0.
o If|T|:= [1dt = Ohr gr(t)dt < oo, and hence hr < oo, then
. ’ _
tl_l)r}rllr u'(t)gr(t) = 0.
If IT'| = oo, then
lim u(t) =0.

t—hrp

On this domain, the operator acts as

(Uea)(t) = = (ol (1) (3.27)

which clearly means
(Upu)(t) = —u"(t), t#tg,trst,--- (3.28)
Proof. [10, Thm.3.4.] O

The equality hr,? u(t) = 0 for the case |I'| = oo can also be derived from
t—hrp

the analysis of deficiency indices, carried out in [I].
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3.4 The spectrum of A

Below Ul") stands for the orthogonal sum of 7 copies of the self adjoint operator
U, and ~ means unitary equivalent.

Theorem 3.6. LetT" be a metric tree generated by the sequences {t,,} and {b,},
then

A~Ug@y U1l (3.29)
k=1

By the variational principle, this implies, that the spectral properties of all
the operators Uy and of the whole operator A are determined by the single
operator Uy, which we can see from the following results:

Theorem 3.7. Let Uy, be the above defined operators. Then

o If Uy is positive definite, then the same is true for any operator Uy, k € N,
and
min o(Up) < min o(U;) < --- <min o(U) < ...

o If the spectrum of Uy is discrete, then the same is true for any operator
Uk, k € N.

o [f the spectrum of Uy is discrete, then

min o(Uy) — o0 as k — oo.

Proof. [10, Thm.3.6.] O

Generally, because of Theorem 3.2., the spectrum of A is given by

o(A) =) oU); (D) =] op(U). (3.30)

k=0 k=0
This two results together lead to
Corollary 3.8. On a regular metric tree:

e The Laplacian A is positive definite if and only if the operator Uy is pos-
itive definite. Moreover,

min ¢(A) = min o(Up).

o The spectrum of A is discrete if and only if the spectrum of Uy is discrete.

We, now want to characterize, whether the spectrum is discrete or not, so
we start with the assumption Ar < co. In this case we have the following result

Theorem 3.9. Let I' be a regular metric tree and hr < oo, then the spectrum
of A is discrete.

Proof. [10, Thm.4.1.] O
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For more information in the case of the discreteness of the spectrum, for
example, for the Weyl asymptotic formula for the eigenvalue counting function,
see [2], [6], [I0] and [I1].

So in this case everything is clear, so we can analyze the case, where hy = co.
In this case the situation is more delicate. We start by introducing the term Lp

he gt
L= /0 oL (3.31)

If sup |e|] < oo,sett= sup |e|, it follows that L < oo, because
c€E(T) ceE(T)

Tt g I |
because b, > 2 for n > 0. So, the question is, what happens if sup |e| = oo,
in this case, we have the following theorem: e€E(D)

Theorem 3.10. Let T’ be a regular metric tree and sup |e| = oo, where |e| is
ecE()
the length of the edge €, then o(A) = [0,00).

Proof. Here, 1 present the proof of [I0, Thm.5.1.]. We will show this result
with the help of Weyl sequences, so let » > 0 and A = 72, we will proof, that
this point belongs to the spectrum. To do this, we fix a non-negative function
¢ € C§°(—1,1) such that {(t) = 1 on (=3, 1), next, we choose an edge € € E(I").
e can be identified with the interval (—I,1), where [ = % Look at the following
function on I'

f(t)=C((t/l)sin(rt) one, f(t)=0 otherwise.
This function belongs to the domain of A. Now we calculate

¢"(t/1) sin(rt)

1
2 —_ =
||Af77’fH*l i

+ 1 (t/1) cos(rt) H < %const.

but the last term goes to zero as [ goes to infinitely. So, we can choose a sequence
of edges such that |e] — oo, to obtain a Weyl sequence for the operator A and
the point A\ = 72, which implies A € o(A) O

Because of the last theorem, we restrict ourselves in the following consider-

ations to the cases were sup |e| < oo, where clearly, see above Lr < oo. Next,
ecE(T")

we continue with a result of positive definiteness of the Laplacian and then with

a criterion of discreteness of o(A)

Theorem 3.11. Let I' be a regular tree and hr = oo. Then the Laplacian is
positive definite if and only if

5(r) = Blor) == ([ et [ o) LR CES

Moreover, (4B(gr))~! < min o(A) < B(gr)~!.
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Proof. [10, Thm.5.2.] O

It is not hard to give some sequences to satisfy the conditions from above,
for example, take b, = 2 for n > 1 bounded and t,, — t,,_1 = 2 for n > 1 will do
it.

Theorem 3.12. Let I' be a regular tree and hr = co. Then the Laplacian on
T" has a discrete spectrum if and only if

e B(I) < 0.

. n dr
o Jim (fo gr(r)dr [~ gr(T)) =0

Proof. [10, Thm.5.3.] O

So, we have now all tools to characterize nearly all trees. We start our calcu-
lations by considering the behaviour of the spectrum by varying the sequence b,,.
First of all, we make some definitions to simplify the calculations: Set ag := t;
and a,_1 :=t, — tn_1, then clearly Z;L;()l a; =t,

Theorem 3.13. Let lim b, = co and ian an = a > 0 then the spectrum of A
ne

n—oo
is not discrete.

Proof. Set G(t) := fot gr(r)dr [~ gfl(TT) > 0 let ¢ € [tn,tnt1], then it follows,
that there is an s < a,, such that ¢, + s = ¢, A straightforward computation

shows that

G(t) = ZaiHb.b'ij.bn-l-s i a; il—‘r—an—s

i=0  j=0 i=n+1 j=n+1 J
We define
n—1 [ b
) j
A, = Z i H o
1=0 7=0
and
o0 1 1
pom ol
i=n+1 j=n+1 7
Since lim b, = oo and supa, < oo, it follows that lim A, = lim B, = 0.
n—oo n n—oo n—oo

Next, we calculate the first derivate, % of G on (t,,tn+1). It is given by
G'(tp+s8) = —2s+a, + B, — A,.

Now, we compute the local extremum of G(t, + s) in (¢,,tn41). If there is a
local extremum, it is a maximum, because G(t,, + s) is a concave function on
(tn,tn+1). The same reason implies, that there are no other. It is given by

Bn_An+an
Sp = 7

2
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as long as s, < a,. Since lim A, = lim B, = 0, there is an ng, such that

n—oo n—oo

Vn > ng Sn < an. Next, we compute

. . A, + B, +a 22
B W G e b
Therefore tlim G(t) > 0 or do not exist. O

—00

The following corollary is an easy consequence of the last theorem

Corollary 3.14. Let lim b, = co and lim a, = 0 then the spectrum of A is

n—oo n—oo

discrete.
We, finally show

Theorem 3.15. Let supb, < oo, therefore, we can set mal%(bn = b and let
neN ne

inlf\I an > 0 then the spectrum is not discrete.

ne

Proof. We start to define a := ing an > 0.We show that
ne

t e}
" 1
lim gF(T)dT/ ——d7r >0,
n—oc Jo t, 9r(7)

which implies, that lim fot gr(r)dr [~ grl(T) dr > 0 or do not exist.

tn oo dr n [ [e%) i 1
lim T dT/ ): lim a; b; a; —
o ([ oo [ 555) = g oD ) | 20 T,

1=0 7=0 i=n+1 7

n—1 n

. 1 1
:nILH;O an—|—z;ai H E Z a; H b,

= j=i+1 i=n+1 j=n+1
n—1 00
1 1 1
> 1 21 — - —
= e ( +;bl> <b;bz>
1I-(H"\1/ 1 21
:hma2<1<b1)>b<1 1):‘2 12>0,
e b b (1-3)
because of b; < b and a < a; for j € N. O

3.5 AC-Spectrum on a regular tree

In this section, we would like to find the connection between the result of chapter
2 and chapter 3. In chapter 3, we have seen, that

o0
A ~ UO @ Z 69(]]£l70“'l’k—1(bkfl)]7
k=1
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where A is the Laplace operator on the regular tree and Uy, k = 0,1, ... are the
operators associated with the quadratic form

axlg] = /too ¢ ()| g (t)dt.

Furthermore, we have seen, that the operators U, acts as

gl d dy_1( 4 a
b Gk da:gkd:r Cgr d:z:ngz ’

on the space L?((tx, 00); gr(z)dz). So, we will show the following result

Theorem 3.16. Let I' be a regular metric tree and A be the Laplace operator
defined on T'. Furthermore, let Uy, k = 0,1, ... be the corresponding operators on
the spaces L?((tg,o0); gr(x)dx). Then, the essential spectrum of all operators
Ui, k=0,1,... is the same

Uess(UO) = O'ess(Uk)v fork>1 (333)

Moreover, if supb, < oo and ianan > 0, we can use here Theorem 2.1. Let
neN ne

ug,i(z;2), i = 1,2 be two solutions of Uguk,; = zuk,, @ = 1,2, such that

ug,1 (2 tk) = gr(te)uy o(25tk) = 0 and ug 2(2;tx) = gr(te)uy 1 (25t) = 1, k>0,
to =0 and go(t) = gr(t), than on

S ={E € R | ug1/9gr and ug2/gr are bounded on [0,00 )},

the spectrum of Uy and therefore the spectrum of A is absolutely continuous.

Proof. First of all remark that the operators U, k > 0 are Sturm Liouville
operators, where V' = 0 and p = r = gi. To see, that the essential spectrum of
the operators Uy is equal, remark, that Uy is nearly the same as Uy, only the
Interval (0,t) is "cut off”. By [12] Thm 9.11], we have the following result

Uess(UO) = Jess(U0|(0’tk)) U O—ess(UO‘(tk’oo))~

Here Up| ; has the be understood as the restriction of Uy to the interval I with a
Dirichlet boundary condition at every finite endpoint. Clearly oegs( U0|(tk,oo)) =
Oess(Ug). But on (0,1), Uy is a regular Sturm-Liouville operator, which imme-
diately implies, that oess(Uol(g ) is empty, by [12, Thm 3.10] and therefore

Uess(UO) = Uess(Uk)a k Z 1.
Now let us turn to the second statement. Let b := supb, < co and a :=

neN
inIfN an > 0. From the construction of gx(t), k > 0, it is clear, that
ne

g(t) <est, k>0.

The function on the right hand site is locally bounded and hence gx(t), kK > 0
are it too. It is easy to see, that both v(gr(t)) < oo and w(gr(t),gr(t)) <
oo and therefore v(gr(t)) < oo and w(gk(t),gr(t)) < oo, because gp(t) =
(b -+ b)) Lgr(t), for t > t; and we are done. O

24



Chapter 4

Examples

Here, we want to consider some examples of the Laplace operator on a regular
metric tree I'.

We have not answered the question, whether the spectrum of all operators
Uy, given in equation (3.27), is equal, but the answer is no, which can be shown
in the following example:

Let ¢t,, = Z;L;Ol 27 which clearly means, that ¢, — t,—1 = 2"~ !, and b, = b.
We restrict our view to the eigenvalues. For Upy, it is easy to see that the
eigenvalues are given by (71)? for [ € N, take therefore the eigenfunctions:

sin(wit) 0<t <t
(a(t) = { sin(nlt) t <t <ty

Now we look at Uy, but there we see for example, that the point (5)* is also
in the spectrum. To be exactly, the eigenvalues of the operator Uy are given by

(54)% for I € N.
Next we want to consider the tree, given by the following sequences:
t, :=n and b, :=b. (4.1)

Because of theorem 3.15, we see that this causes no discrete spectrum, but how
can we calculate it. First of all is our tree very regular, all subtrees of the type
T, for v € V are clearly the same as the whole tree I'. This is the reason, why
all operators are equal und therefore:

A~ U (4.2)

where U(goo] stands for the orthogonal sum of infinitely many copies of the self
adjoint operator Uy. So this ensures us that the whole spectral information of
A is given by the operator Uy, which is defined as in chapter 3, without the
perturbation V' (z), thanks to theorem 3.16 there, we have to find the regions in
R, where the solutions of Upu = Fu, E € R are "bounded”, in the sense that
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u/gr is bounded. We start with rewriting the function gr. In our tree gr is

given by
" n<t<n+1
gr(t) = { - (4.3)

1 t=20

Next, we know that, both u(t) and gr(¢)u’(t) have to be continuous on R,
which means in our example

u(n—) = u(n+) and ' (n—) = bu'(n+), VneN (4.4)

So, we have to search two solutions u; and us of Ugu = Au, which we get by
taking the solutions of Au = Au and keep in mind the conditions, given in
the last equation. This functions should keep u1(0) = u5(0) = 0 and ) (0) =
u2(0) = 1. They are easy to find and given by

1 B
uy(z) = 7 sin(vVAz) and uy(z) = cos(VAz). (4.5)

So, if we set x := n + y, our transfer matrix is given by

o B cos(vVAy) Vsin(v/Ay)
T(X\;2,0) = ( %sin(\&y) cos( \Fy )
Yo 0 [ eosVAD  —vAsn(AD

( ) 1) Lsin(VAD  cos f A)

B cos(VAy)  —VAsin(vVAy) bcos(\fm) \?Sl (VAz)
- %sin(ﬁy) cos(vVAy) 51n(\fx) cos(VAz)

We want to see, what happens if we go from n to n + 1, so let

_ L cos(vA) _A sin(ﬁ)
AR = ( %sin(ﬁ) (l:)os(\/x) ) ’

then it follows for any solution w, from Uyw = Aw, that
w'(n) \ _ w'(n —1)
( v ) A ( A (4.6)
To proof this, use the last equations and some addition theorems. To know,
whether our functions w are bounded, we have to compute the eigenvalues of
A(X). Because we have done a discretization there, we have to regard, when the

eigenvalues of A are greater or lesser than one. If the eigenvalues are equal to
one for some A € R, we have AC-spectrum there. The Eigenvalues of A(\) are

given by
\/1=6b-+62+(14D)? cos (2v/X)
(1 +b) cos (\f)\) + =
2b '

To visualize this, we chose, for example b = 3 and get the picture on the next
site, where the absolute value of both eigenvalues are marked. The line segments
are of the high - N in the example % The picture would show us, that there are

(4.7)
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Figure 4.1: Absolute value of both eigenvalues

only eigenvalues, because the Eigenfunctions are exponentially decreasing, but
we should remember, that we do not need the eigenfunctions w to be bounded,
but wgr, so we have to multiply the matrix A(\) with v/b, so we shift the whole
spectrum by the factor v/b. Then, the line segments are in the high of one and
therefore, in this regions, the Eigenfunctions are bounded and hence we have
there AC-Spectrum. To compute the starts and the ends of the gaps, we have
to solve

1= 6b-+ b+ (1+5) cos (2V) = 0. (4.8)

The solution is given by

9 2
— _. p2
A= (arccos <b1/2+b1/2>) =: 6.

Because of the arccos, the bands are given by
[(r(l—=1)+6)* (1 —6)*] 1€eN (4.9)

We see, if we let grow b, the bands of the AC-spectrum are going to shrink
more and more, besides, if we define =,, as the spectrum of the Laplacian for
b = n, it is clear that

=1 D02 DE3D.... (410)

Up to this, we already have not said anything about the Eigenvalues. But

they can easily be shown. Let \; = (7l)? for [ € N and set

sin(wlt) 0<t<1
Gi(t) = { psin(alt) 1<t <2

Next we define C' := fol sin(mlt)?dt < co. The function 9;(t) keeps all conditions
and is square integrable, because

o) e bj 1 1
2 = —_— 1 2 = —
/0 Pi(t)“gr(t)dt = JE:O oF /0 sin(nlt)“dt T l/bC < 0.
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So, we have found the Eigenvalues \; = ()2 for [ € N.

We can generalize the last example; we take the length of the edges arbitrary
but equal, realized by the sequences

b, =band t, =tn

where ¢t € RT is arbitrary. The results are analogue:
The matrix A()) is changing to

() =ao (i)

A = < 3 cos(tV/A) —% sin(tv/\) )

where

% sin(tv/\) cos(tv/\)

So, we have to find again the eigenvalues of this matrix, but they can easily be
found and the AC-spectrum-bands are in this case given by

[(”(l_t1)+9)2,<“lt_9>2] leN (4.11)

and theta is defined as above. The eigenvalues and the eigenfunctions are given
by

l sin(T2) 0<az <t
(F)? 1eN, and ¢i(a) = Fsin(T) t<a <2t (4.12)

So, we see, that the length of the edges shifts and jolts or stretches the spectrum.
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Appendix A

Notation

L2
Lioe(1)

AC)c(1)

the space of all integrable functions

the space of all square integrable functions
the set of all functions I — C,

which are locally integrable

the set of all functions I — C,

which are locally absolutely continuous
the Wronskian evaluated on z

the Sturm-Liouville operator

the Schrédinger operator

the domain

the complex numbers

the real numbers

the room of continuously differentiable functions
a rooted metric tree

the set of edges on I'

the set of vertices on I'

the branching function on I’

the linear space of measurable functions on T,
that are finite almost everywhere

the space of all functions in M (T"),
supported by only finitely many edges

the subspace of M (T),

consisting of all symmetric functions on I’
the spectrum

the point spectrum

the complex conjugate of z
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