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CHAPTER 0

Introduction

We call an operator of the form:

τ =
1
r

(
− d

dx
p
d

dx
+ q

)
(1)

for functions r, p, q a Sturm–Liouville operator. Sturm–Liouville operators arise
for example when considering the radial part of the Laplacian of a rotation
symmetric problem in any dimension. Sturm–Liouville equations of the type
−f ′′(x) + q(x)f(x) = λf(x) arise in quantum mechanics and are called one-
dimensional Schrödinger equations. Periodic Sturm–Liouville equations are
for example used as one dimensional crystal models (e.g. the Kronig-Penney
model).

The aim of oscillation theory is to relate the number of zeros of solutions
of differential equations to spectral parameters of the associated self-adjoint
operators. The research into oscillation theory started with Sturm’s celebrated
memoir [21] in the 19th century, and has continuously been extended since then.
To name a result from it, the following holds. If we order the eigenvalues of a self-
adjoint operator H associated with τ with separated boundary conditions as an
increasing sequence: λ0 < λ1 < λ2 < . . . , then the eigenfunction corresponding
to λn has exactly n zeros. We will state this result in Lemma 1.13.

The aim of my master thesis is to develop a form of oscillation theory for
Wronskians. This development was already started by Fritz Gesztesy, Barry Si-
mon, and my advisor Gerald Teschl in [4]. The main difference of the approach
taken here is to use solutions to different operators, instead of to different eigen-
values as is done in [4]. With the results given here Gerald Teschl and I were able
to extend the known oscillation results for periodic Sturm–Liouville operators
from [16].

The content of this thesis is composed as follows.
Chapter 1 summarizes some ideas from classical theory of Sturm–Liouville

operators. Section 1.4 states some results of classical oscillation theory.
In Chapter 2, we mainly discuss properties of trace class operators. We will

need this to obtain the convergence of approximating problems.
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Chapter 0. Introduction

Chapter 3 gives an introduction to Krein’s Spectral Shift function and its
properties. Lemma 3.10 is at our best knowledge not found in literature.

Chapter 4 derives the main properties of the Wronskian. Most results of this
chapter are new. They have been already investigated in [4] and [23] in the case
of different eigenvalues. However, adapting these results to different potentials
required new ideas. We wish to emphasise here that the results on Sturm-type
theorems for Wronskians in Section 4.2 are of interest. Most other parts of this
chapter are technical, and mainly used to proof our results.

The main new concept of the thesis will be presented in Chapter 5. Again
at our best knowledge, all results are new. Also the method to obtain the result
by the convergence of approximating potentials with compact support used in
the proof of Theorem 5.7 has not been found in literature. The name of relative
oscillation theory comes from the works of Karl-Michael Schmidt (e.g. [16]).

The applications in Chapter 6 are at best knowledge new in the generality.
Most of the work described in this thesis will be presented as joint work

with Gerald Teschl in [11]. For simplicity I will restrict attention in my thesis
to the case of relatively bounded perturbations and only treat the case using the
spectral shift function. I further wish to point out that Remark 4.6 and Section
5.3 might be the starting point for further research in the field.

Thanks

I wish to thank my advisor Gerald Teschl for all the support I had, when writing
this, and my colleague and friend Johanna Michor for proof reading. Finally, I
thank my girlfriend Thérèse Tomiska for legal advice and being the person she
is. Last but not least, I wish to thank my family.

This work was supported by the Austrian Science Fond (FWF) under grants
P-17762 and Y-330 and the Faculty of Mathematics of the University of Vienna,
which provided me with excellent working conditions.

I also have the pleasure to thank Dimitri Yafaev for helpful discussions on
Lemma 3.10.

Errata

This version differs a bit from the one, I submitted as my master thesis, since I
have corrected small mistakes in calculations. Furthermore, I wish to point out
that the application of relative oscillation theory to periodic Sturm-Liouville
operators in Section 6.2 has a mistake, since it assumes that |D|′ is one signed.
A corrected version will appear in [11].

iii



CHAPTER 1

A brief overview of Sturm–Liouville Operators

In this chapter, we review the classical theory of Sturm–Liouville operators.

1.1 Basic facts

For some interval I = (a, b) ⊆ R finite or infinite, let p, q, r be real valued
functions with p−1, q, r ∈ L1

loc(I) and p, r > 0. A Sturm–Liouville expression is
a differential expression of the form:

τ =
1

r(x)

(
− d

dx
p(x)

d

dx
+ q(x)

)
. (1.1)

We call f a solution of τf = zf , if f and pf ′ are absolutely continuous and
satisfy the equation:

d

dx

(
f
pf ′

)
=
(

0 1/p
q − z 0

)(
f
pf ′

)
. (1.2)

From the point of view of differential equations, the second chapter in [27]
offers quite a few interesting results, as for example bounds and dependence
results on parameters. We formulate the main results of interest to us in the
following theorem:

Theorem 1.1. If one gives an initial point (y0, py′0) and x0 ∈ I, then the
problem τy = 0 and y(x0) = y0, py′(x0) = py′0 has an unique solution defined
almost everywhere. Furthermore, if q depends analytically (or continuously) on
a parameter, the solution also does, in the sense that y(x) ∈ H(C) (or yn → y
in L1

loc(I)). If the initial conditions are real, y is real.

Let ACloc be the space of all locally absolutely continuous functions. Then
the domain of the maximal operator associated with τ is:

D(τ) = {f ∈ L2(I, rdx), f, pf ′ ∈ ACloc(I), τf ∈ L2(I, rdx)}. (1.3)

The Wronskian W is given by

Wx(f, g) = f(x)(pg′)(x)− (pf ′)(x)g(x). (1.4)

1



Chapter 1. A brief overview of Sturm–Liouville Operators

We call an endpoint regular, if it is finite and q, p−1 are integrable in a neigh-
borhood of it. If both endpoints are regular, τ is called regular. We call the
endpoint a (resp. b) limit circle, if there exists f, g ∈ D(τ), which are linearly
independent and satisfy limx→aWx(f, g) 6= 0 (resp. limx→bWx(f, g) 6= 0). If
an endpoint is not limit circle, it is called limit point. We note that a regular
implies a limit circle. We have the following theorem characterizing self-adjoint
extensions of τ .

Theorem 1.2. H is a self-adjoint extension of τ if we impose boundary con-
ditions at limit circle endpoints. One has then that the domain of H is given
by:

D(H) = {f ∈ D(τ)|Wa(f, ψ+) = 0 iff τ is l.c. at a,
Wb(f, ψ−) = 0 iff τ is l.c. at b}

(1.5)

for some real functions ψ± ∈ D(τ) with Wx±(ψ±, f) 6= 0 for some f and x+ = a,
x− = b.

Proof. [22, Thm.9.6.].

These are not all self-adjoint extensions, since there exist coupled boundary
conditions.

For the next theorem, we need the following notation. We call a function
f : (a, b) → C square integrable near a (or b), if for all c ∈ (a, b) we have
f ∈ L2((a, c)) (or f ∈ L2((c, b))).

Theorem 1.3 (Weyl alternative). τ is limit circle at a (resp. b) if and only if
for one z0 ∈ C all solutions of (τ − z0)f = 0 are square integrable near a (resp.
b).

Proof. [22, Thm.9.9.].

We will denote by ψ±(z) the solutions of τψ±(z) = zψ±(z), where ψ− (resp
ψ+) is square integrable near a (resp. b) if a (resp. b) is limit point or satisfies
the appropriate boundary condition. By Theorem 1.1 and the choice of our
boundary conditions, we have that ψ±(z) are real-valued for z ∈ R. We note
that we have an explicit formula for the resolvent:

Lemma 1.4. For the resolvent of H, RH(z) = (H − z)−1, we have that:

RH(z)g(x) =
∫ b

a

G(z, x, y)g(y)r(y)dy (1.6)

with the Green function G given by

G(z, x, y) =
1

W (ψ+(z), ψ−(z))

{
ψ+(z, x)ψ−(z, y) x ≥ y

ψ−(z, x)ψ+(z, y) x ≤ y.
(1.7)

Proof. [22, Lem.9.7.].

For (a, b) a bounded subset of R, we can estimate the L2 of G(z, x, y), since
it is a bounded function. Then we get that ‖G(z, ., .)‖L2((a,b)2) < ∞, and by
this that the resolvent is Hilbert-Schmidt. Since RH(z) is self-adjoint for real
z, we obtain that RH(z) has purely discrete spectrum, and thus also H. This
gives us the following result:

2



Chapter 1. A brief overview of Sturm–Liouville Operators

Theorem 1.5. The spectrum of a Sturm–Liouville operator on a compact in-
terval is purely discrete.

1.2 Prüfer angles

Since we have that every non-zero real solution of τu = λu has (u, pu′) 6= (0, 0)
everywhere by the uniqueness of solutions, we can define Prüfer variables by:

u(x) = ρ(x) sinϑ(x), (pu′)(x) = ρ(x) cosϑ(x). (1.8)

The Prüfer angle ϑ is unique, if one fixes ϑ(x0) ∈ [0, 2π) for some x0 ∈ (a, b)
and the requirement ϑ ∈ C((a, b)). It obeys the following differential equation

ϑ′(x) =
1

p(x)
cos2(ϑ(x))− (q(x)− λ) sin2(ϑ(x)), (1.9)

which is independent of the Prüfer radius ρ.

Lemma 1.6. We have that:

Wx(ψ−(λ), ∂λψ−(λ)) = −
∫ x

a

ψ2
−(λ, t)r(t)dt (1.10)

Wx(ψ+(λ), ∂λψ+(λ)) =
∫ b

x

ψ2
+(λ, t)r(t)dt. (1.11)

Proof. We consider without restriction the case ψ−. Differentiating (1.4), and
integrating again, one finds:

Wx(ψ−(λ), ψ−(λ̃)) = −(λ̃− λ)
∫ x

a

ψ−(λ, t)ψ−(λ̃, t)r(t)dt. (1.12)

Now using this to evaluate the limit:

lim
λ̃→λ

Wx

(
ψ−(λ),

ψ−(λ̃, x)− ψ−(λ, x)
λ̃− λ

)
, (1.13)

we obtain the result.

Lemma 1.7. We have, that at a fixed point the Prüfer angle of ψ− (of ψ+) is
a strictly decreasing (increasing) function of λ.

Proof. The derivative being increasing follows from:

∂λϑ = −W (u, ∂λu)
ρ2

(1.14)

and Lemma 1.6.

Lemma 1.8. At a zero of u the Prüfer angle ϑ is strictly increasing in x. We
thus have, that the integer part of ϑ/π is an increasing function of x.

3



Chapter 1. A brief overview of Sturm–Liouville Operators

Proof. Let x0 be a zero of u, and assume without restriction, that ϑ(x0) = 0.
It then follows

lim
x→x0

ρ(x) sinϑ(x)
x− x0

=
ρ(x0) cosϑ(x0)

p(x0)
⇒ lim

x→x0

sinϑ(x)
x− x0

=
1

p(x0)
, (1.15)

where we used that limx→x0 u(x)/(x− x0) = u′(x0). Now use this to obtain

lim
x→x0

ϑ(x)− ϑ(x0)
x− x0

=
1

p(x0)
, (1.16)

which implies the result since p > 0.

Let in the following denote by #(u) the number of sign changes of u in I.
Since u(x0) ⇒ pu′(x0) 6= 0, we have that #(u) is equal to the number of zeros
of u. A further description is given by the next lemma.

Lemma 1.9. We have that:

#(u) = lim
x↑b

dϑu(x)/πe − lim
x↓a

bϑu(x)/πc − 1, (1.17)

where bxc = sup{n ∈ Z, n ≤ x}, dxe = inf{n ∈ Z, n ≥ x}. We can drop the
limit if a (resp. b) is regular.

Proof. The proof follows from the fact that the integer part of ϑ/π is an in-
creasing function of x.

1.3 Spectral theory

In this section, we recall a few facts about spectral theory. Let in the following
H denote a Hilbert space and L(H) the bounded linear operators from it into
it. First in the general setting of A : H → H a self-adjoint operator, one defines
the resolvent set as:

ρ(A) = {z ∈ C|(A− z)−1 ∈ L(H)}. (1.18)

Then the resolvent is defined asRA : ρ(A) → L(H), z 7→ (A−z)−1. The resolvent
turns then out to be a homomorphic function in ρ(A). The complement of the
resolvent set is called the spectrum σ(A):

σ(A) = C \ ρ(A). (1.19)

For A self-adjoint we have that σ(A) ⊆ R. To recall the notion, λ is an eigen-
value, if:

∃ψ : Aψ = λψ. (1.20)

For our purposes, we will split the spectrum into two parts, the discrete spectrum

σd(A) = {λ ∈ σ(A),∃ε > 0 : dim RanP(λ−ε,λ+ε)(A) <∞}, (1.21)

and the essential spectrum σess(A) = σ(A) \ σd(A). Since our focus will be on
the discrete spectrum, we give the following stability property of the essential
spectrum:

4



Chapter 1. A brief overview of Sturm–Liouville Operators

Theorem 1.10 (Weyl). For A,B self-adjoint and:

RA(a)−RB(a) ∈ C(H), (1.22)

where C(H) are the compact operators, for one a ∈ ρ(A) ∩ ρ(B), we have that:

σess(A) = σess(B). (1.23)

Proof. [22, Thm.6.18], [14, Thm.XIII.14].

1.4 Oscillation theory

We first note Sturm’s comparison theorem and a generalization making use of
Wronskians.

Theorem 1.11 (Sturm [21]). For u, v with (pu′)′ = qu and (p̃v′)′ = q̃v and
q̃ ≥ q, 0 < p ≤ p̃, we have that between any two zeros of u, there is a zero of v.

Proof. [27, Thm.2.6.3].

Theorem 1.12. Suppose that u, v satisfy (pu′)′ = qu and (pv′)′ = q̃v and q̃ ≥ q,
Wc(u, v) = Wd(u, v) = 0 for c, d ∈ [a, b] possibly infinite. Then v has at least a
zero in (c, d).

Proof. [4, Cor.2.3.].

The next lemma relates the number of zeros of a solution to the correspond-
ing eigenvalue. Unfortunately it only works below the essential spectrum. To
find a similar result working inside gaps of the essential spectrum was the key
idea behind my master thesis.

Lemma 1.13. For λ0 < λ1 < ... < λn < ... the eigenvalues below the essential
spectrum of H, and ψn the eigenfunction corresponding to λn we have that
#(ψn) = n.

Proof. The proof is done showing two inequalities. The first follows from
Sturm’s comparison Theorem 1.11, so we have #(ψn) ≥ n (since we have
#(ψn) > #(ψn−1)). The other inequality is obtained by using test functions
defined by:

ηj(x) =

{
ψn(x) xj < x < xj+1

0 else
, j = 1, . . . n. (1.24)

Here x0 = a, x1, . . . , xn are the zeros of ψn and xn+1 = b. Now since 〈ηj ,Hηj〉 =
λn‖ηj‖, and the ηj being linearly independent, we get the result using [22,
Thm.4.11.].

We call an endpoint of the interval (a, b) oscillatory, if a solution to τf = 0
has infinitely many zeros in every neighborhood of it. If this holds for one
solution, then it holds for all solutions by Sturm’s comparison theorem. Fur-
thermore, we call an endpoint nonoscillatory if it only has finitely many zeros
in some neighborhood of it.
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Chapter 1. A brief overview of Sturm–Liouville Operators

Theorem 1.14 (Kneser [9]). The operator on (1,∞):

τ = − d2

dx2
+ q(x) (1.25)

is oscillatory if:
lim inf
x→∞

x2q(x) > 1/4 (1.26)

and nonoscillatory if
lim sup

x→∞
x2q(x) < 1/4. (1.27)

Proof. Proving this theorem is done in two steps. First note that for

τ0 = − d2

dx2
+

κ

x2
(1.28)

τ0u = 0 is explicitly solvable with the solution

u(x) = x
1
2+
√

1
4+κ. (1.29)

Then u has infinitely many zeros in (1,∞) if κ < −1/4 and finitely many if
κ > 1/4.

The result now follows using Sturm’s Comparison Theorem.

This result has been generalized in [5], which yields a whole hierarchy of
oscillation criteria. We note that here we leave plenty of room in the middle,
since for example q(x) = sin(x)/x2, would yield lim sup(q(x) · x2) = 1 and
lim inf(q(x) · x2) = −1.

6



CHAPTER 2

Ideals in the bounded linear operators

This chapter will give a brief tour of two-sided ideals in the algebra of bounded
linear operators of a Hilbert space L(H). For this, we first recall the following
general lemma about ideals in L(H).

Lemma 2.1 (Calkin [1]). F(H) and C(H) are two sided ideals in L(H), and we
have that the closure of the finite rank operators F in the topology of L is C. For
every non trivial two-sided ideal I in L we have that:

F ⊆ I ⊆ C (2.1)

This implies, that C is the only ‖.‖-closed ideal, and that the closure of every
other ideal is C.

This lemma shows that in order to understand these ideals, one should un-
derstand compact operators. We can represent a compact operator K ∈ C as
its Schmidt expansion being:

K =
∞∑

n=0

sn(K)〈ϕn, . 〉ψn, (2.2)

where sn(K) ∈ [0,∞) are called the singular values of K and ϕn, ψn are or-
thonormal bases. The proof can be sketched as K∗K being compact, positive
and self-adjoint. Then, we apply the spectral theorem for compact operators.
We thus have that the eigenvalues of K∗K can be ordered by decreasing mod-
ulus:

λ0 ≥ λ1 ≥ . . . (2.3)

and converge to zero. Denote by φn the eigenfunction of K∗K corresponding
to λn. We get that sn(K)2 = λn(K∗K) and ψn = Kϕn.

Now, we come to the ideals, we will be interested in the Schatten p-Classes.
First we recall the norms:

‖A‖J p =

( ∞∑
n=0

sn(A)p

)1/p

. (2.4)

7



Chapter 2. Ideals in the bounded linear operators

The Schatten p-Classes is then defined by:

J p(H) = {A ∈ C(H) | ‖A‖J p <∞} . (2.5)

Since s0(A) = ‖A‖, we have that ‖A‖ ≤ ‖A‖J p . Also note that J 1 are called
trace class operators and J 2 Hilbert-Schmidt operators. Further note that:

Lemma 2.2. For A ∈ J p and B some bounded operator, one has that:

‖BA‖J p ≤ ‖B‖‖A‖J p and ‖AB‖J p ≤ ‖B‖‖A‖J p . (2.6)

For 1/p+ 1/q = 1 and A ∈ J p, B ∈ J q, we have that:

‖AB‖J 1 ≤ ‖A‖J p‖B‖J q . (2.7)

Lemma 2.3. For 1 ≤ p <∞, J p are two-sided ∗-ideals in L, and (J p, ‖.‖J p)
are Banach spaces. The finite rank operators F are ‖.‖J p dense in J p.

Proof. [6, Thm.11.1.]

We have the following characterization of Hilbert-Schmidt operators.

Lemma 2.4. For H = L2(M), we have that J 2 ∼= L2(M ×M). To be more
explicit, we can represent K ∈ J 2 as the following integral operator:

Kf =
∫

M

K̂(x, y)f(y)dµ(y). (2.8)

Then the isomorphism is simply mapping the operator to its kernel. Further
note, that the norm ‖K‖J 2 is exactly the L2-norm ‖K̂‖L2(M×M) of the kernel.

Proof. [7, III.9.1.]

2.1 Convergence in the Schatten-p-Norm

Lemma 2.5 (Grümm’s Convergence Theorem). For 0 < p <∞, we have that
if An → A, A∗n → A∗ strongly and ‖An‖J p → ‖A‖J p then ‖An −A‖J p → 0.

Proof. [19, Thm.2.19.]

Lemma 2.6. For 1 ≤ p < ∞, we have that if An → A weakly and ‖An‖J p →
‖A‖J p then ‖An −A‖J p → 0.

Proof. [19, Thm.2.21.]

Lemma 2.7 ([6, Thm.IV.11.3.]). Let p > 0, A ∈ J p, Tn
s−→ T , Sn

s−→ S
sequences of strongly convergent bounded linear operators, then:

‖TnAS
∗
n − TAS∗‖J p → 0. (2.9)

Proof. First assume that A = 〈ϕ, .〉ψ is a rank one operators. Then we have
that

‖A‖J p = ‖〈ϕ, .〉ψ‖J p = ‖ϕ‖‖ψ‖.

Now a bit of computation shows the result for rank one operators, which extends
to finite rank operators.

8



Chapter 2. Ideals in the bounded linear operators

Next note that the uniform boundedness principle implies, that ∃γ > 0 such
that ‖Tn‖ ≤ γ and ‖Sn‖ ≤ γ. Next we note that for a finite rank operator F
we obtain:

‖TnAS
∗
n − TAS∗‖J p ≤ ‖Tn‖‖A− F‖J p‖S∗n‖

+ ‖TnFS
∗
n − TFS∗‖J p

+ ‖T‖‖A− F‖J p‖S∗‖,

where all terms can be made arbitrarily small, which shows the lemma.

Taking the adjoint here is important as the example from [19], Tn = T = 1,
A = 〈ϕ0, .〉ϕ0 and Sn = 〈ϕn, .〉ϕ0 shows.

2.2 The Trace and the Determinant

An important property of trace class operators is that one can extend the well-
known functionals trace and determinant from linear algebra to them. To define
them, let ψn be an orthonormal basis. We can define the continuous linear
functional tr : J 1 → C called the trace by

tr(A) =
∞∑

n=0

〈ψn, Aψn〉. (2.10)

Lemma 2.8 (Properties of the trace). We have that:

• tr is independent of the choice of orthonormal basis.

• tr(AB) = tr(BA) for A,B ∈ L such that AB,BA ∈ J 1.

• For U unitary and A ∈ J 1, we have that tr(A) = tr(UAU∗).

Proof. [25, Prop.1.7.1.]

Lemma 2.9. If P is an orthonormal projection, we have that:

dim Ran(P ) = tr(P ) (2.11)

where one sets tr(P ) = ∞ if P is not trace class.

And we can also define the following functional:

det : 1 + J 1 → C (2.12)

det(1 +A) =
∞∏

n=0

(1 + 〈ψn, Aψn〉), (2.13)

which is called the determinant.

Lemma 2.10 (Properties of the determinant). We have that:

• det is independent of the choice of orthonormal basis.

• det(1 +AB) = det(1 +BA) for A,B ∈ L such that AB,BA ∈ J 1.

9



Chapter 2. Ideals in the bounded linear operators

• For U unitary and U ∈ J 1: det(1 +A) = det(1 + UAU∗).

• det((1 +A)(1 +B)) = det(1 +A) det(1 +B) for A,B ∈ J 1.

Proof. [7, Chap.IV.1.5-7.], [25, (1.7.11)].

Note that the ‖.‖J 1-continuity of these two functionals and F ⊆ J 1 im-
plies, that these functionals can be obtained as limits from the ones we know
from linear algebra. Further note the following theorem relating the trace and
determinant to the eigenvalues of the operator.

Lemma 2.11 (Lidskii Trace Theorem [12]). For A a trace class operator and
λ1, λ2, . . . the sequence of non-zero eigenvalues with multiplicity of A, we have
that:

tr(A) =
∑

j

λj and det(1 +A) =
∏
j

(1 + λj). (2.14)

Proof. [6, Thm.IV.6.1.]

10



CHAPTER 3

Krein’s spectral shift function

In this chapter, we will discuss some aspects of Krein’s spectral shift function
(SSF). For a discussion on this in the literature see [17] for the case of rank
one perturbations (and also for trace class in a remark), and [25] for the more
general case. For historical purposes also see the paper by Krein [10].
For self-adjoint operators H1,H0, we call ξ(λ) = ξ(λ,H1,H0) a spectral shift
function, if it satisfies:

tr(f(H1)− f(H0)) =
∫ ∞

−∞
ξ(λ,H1,H0)f ′(λ)dλ (3.1)

for all smooth functions with comptact support f ∈ C∞0 (R).
Assume that H0, H1 are bounded from below and λ < inf σess(Hj), j = 0, 1,

then using a function for f with compact support in (−∞, λ) and which is 1 on
(σ(H1) ∪ σ(H0)) ∩ (−∞, λ), we find that

dim RanP(−∞,λ)(H1)− dim RanP(−∞,λ)(H0) = ξ(λ)− lim
λ→−∞

ξ(λ). (3.2)

This formula justifies the name spectral shift function. Especially note that,
if the two operators are bounded from below, one can choose ξ such that the
last term disappears.

A lot of texts on the SSF make the assumption H1 − H0 ∈ J 1. Since in
our case, H1 −H0 will be a multiplication operator (and hence cannot be trace
class), we need the version for resolvent comparable operators. We will first
introduce these, quote the existence result, and then derive some properties.

3.1 Construction of the SSF

We call two operators H1 and H0 resolvent comparable, if

RH1(z)−RH0(z) ∈ J 1. (3.3)

Theorem 3.1 (Krein [10]). Let H1 and H0 be two resolvent comparable self-
adjoint operators, then there exists ξ ∈ L1(R, (λ2 + 1)−1) such that (3.1) is
satisfied.

11



Chapter 3. Krein’s spectral shift function

Proof. [25, Thm.8.7.1.]

As already noted, equation (3.1) only fixes ξ up to an arbitrary constant.
The next lemma will give a condition on how to fix the unknown constant.

Lemma 3.2. Suppose [0, 1] 3 ε 7→ H(ε) a family of operators, which is contin-
uous in the norm:

ρ(A,B) = 2|Im a|‖RA(a)−RB(a)‖J 1 . (3.4)

Furthermore abbreviate ξε = ξ(H(ε),H(0)) and fix ξ0 = 0. Then there exists an
unique choice of ξε such that s 7→ ξs is continuous [0, 1] → L1((λ2 + 1)−1).

Proof. [25, Lem.8.7.5.]

We further note the following result on how to construct Krein’s spectral
shift function. For a ∈ C+ fixed, denote by D̃a : ρ(H0) → C the generalized
perturbation determinant given by:

D̃a(z) = det(1 + (z − a∗)RH1(a
∗)V RH0(z)). (3.5)

We then have that a spectral shift function ξa is given by:

ξa(λ) =
1
2π

(
lim
ε→0

arg D̃a(λ+ iε)− lim
ε→0

arg D̃a(λ− iε)
)
. (3.6)

The multivaluedness arises here, by choosing the branch of the argument. We
have only required the trace formula to hold for f ∈ C∞0 (R). There is a larger
known class, given by the next lemma:

Lemma 3.3. For f : R → R with two locally bounded derivatives satisfying:

∃ε > 0 : (λ2f ′(λ))′ = O(|λ|−1−ε), |λ| → ∞, (3.7)

and:
lim

λ→−∞
f(λ) = lim

λ→+∞
f(λ), lim

λ→−∞
λ2f ′(λ) = lim

λ→+∞
λ2f ′(λ), (3.8)

the trace formula holds.

Proof. [25, Thm.8.7.1.]

We remark that this lemma coverts resolvents, since the function f(λ) =
(λ−z)−1 satisfies these assumptions for Im z 6= 0. This lemma does not capture
all possible f yet, see the remark after Theorem I.10 in [17].

Remark 3.4. At least Theorem 3.1 also holds under the weaker condition
Rn

H1
(z)−Rn

H0
(z) ∈ J 1 ([26]).

3.2 Properties of the SSF

In this section, we assume, that we have a function ξ satisfying the trace formula,
and then derive properties of it.

Lemma 3.5. For ξ a SSF also ξ + c for a fixed c ∈ R is a SSF.

12



Chapter 3. Krein’s spectral shift function

Proof. For the proof just note, that for f ∈ C∞0 (R), we have that:
∫∞
−∞ f ′(λ)dλ =

0, so the +c doesn’t change anything in the trace formula.

One has to note here that 1 ∈ L1((λ2 + 1)−1) and thus we cannot fix ξ by
this requirement.

Lemma 3.6. Let λ0, λ1 /∈ σ(H0) ∪ σ(H1), Ω = (λ0, λ1) an open interval, and
dim RanPΩ(H0) <∞, dim RanPΩ(H1) <∞. Then we have that:

dim RanPΩ(H1)− dim RanPΩ(H0) = ξ(λ1)− ξ(λ0). (3.9)

Proof. Use the trace formula for a function f with compact support in Ω and
which is 1 on the points in the spectra.

Lemma 3.7. For Hi, i = 1, 2, 3, all resolvent comparable, we have that:

ξ(H1,H3) = ξ(H1,H2) + ξ(H2,H3). (3.10)

Proof. This follows from the linearity of the trace and integral.

Lemma 3.8. We have that:

ξ(A1 ⊕A2, B1 ⊕B2) = ξ(A1, B1) + ξ(A2, B2). (3.11)

Proof. For f ∈ C∞0 (R), we have that:

tr(f(A1 ⊕A2)− f(B1 ⊕B2))
= tr(f(A1)− f(B1)) + tr(f(A2)− f(B2))

=
∫ ∞

−∞
ξ(λ,A1, B1)f ′(λ)dλ+

∫ ∞

−∞
ξ(λ,A2, B2)f ′(λ)dλ, (3.12)

which shows the result.

For the next lemma, we will need the following result from perturbation
theory. First we call a family of operators A(s) an analytic family in the sense
of Kato if and only if:

• A is defined on a domain G ⊆ C.

• For all s ∈ G, A(s) is a closed operator with nonempty resolvent set.

• For every s0 ∈ G, there is a z0 ∈ ρ(A(s0)) so that z0 ∈ ρ(A(s)) for s near
s0 and (A(s)− z0)−1 is an analytic operator-valued function of s near s0.

hold.

Theorem 3.9. Let A(s) be an analytic family in the sense of Kato for s near
0 that is self-adjoint for s real. Let λ be a discrete eigenvalue of multiplicity
n. Then, there are n not necessarily distinct single-valued functions, analytic
near s = 0, λ1(s), . . . , λn(s), with λk(0) = λ, such that λ1(s), . . . , λn(s) are
eigenvalues of A(s) for s near 0. Further these are the only eigenvalues near λ.

Proof. [14, Thm XII.13]

13



Chapter 3. Krein’s spectral shift function

Lemma 3.10. Let V ≥ 0 be relatively bounded with respect to H0 such that
H±

1 = H0 ± V and H0 are resolvent comparable. Set H±
ε = H0 ± εV . Then

ξ(λ,H±
1 ,H0) = ∓

∑
ε∈[0,1]

dim ker(H±
ε − λ), (3.13)

for all λ ∈ ρ(H0) ∩ ρ(H±
1 ) ∩ R.

Proof. We just do the proof in the + case. First of all observe that H+
ε is an

analytic family in the sense of Kato and satisfies the assumptions of Lemma 3.2.
Furthermore, by Weyl’s theorem there is a δ > 0 such that σess(H+

ε )∩ (λ−
δ, λ+ δ) = ∅. Hence, by Theorem 3.9, for every ε there is a neighborhood such
that Hε has precisely n eigenvalues (counting multiplicities) inside (λ−δ, λ+δ).
Moreover, by compactness of [0, 1] we can find n analytic functions λj(ε), 1 ≤
j ≤ n, which describe the eigenvalues (counting multiplicity).

These functions will not be defined for all ε ∈ [0, 1] since the eigenvalues
will enter at λ − δ for some ε and could leave at λ + δ for some ε (they are
nondecreasing by our assumption V ≥ 0). However, we can define them for all
ε ∈ [0, 1] by setting them equal to λ ± δ in these cases. Furthermore, we can
assume that λj(ε) crosses λ for precisely one ε (get rid of those which stay below
λ by decreasing δ).

Now within (λ − δ, λ + δ) the spectral shift function ξε is a step function
which decreases by one at every λj(ε). Hence the result follows since ξ0 = 0
and ξ1 = −n, for at ε = 1 all λj(ε) have crossed λ.

3.3 An Example of the SSF

In this section, we give a basic example of the SSF. Let (a, b) be a finite interval,
q ∈ L1((a, b)), then τ given by

τ = − d2

dx2
+ q(x) (3.14)

is a regular Strum-Liouville operator. We define for α ∈ [0, π) and β ∈ (0, π]
the self-adjoint extensions with separated boundary conditions Aαβ of τ given
by the domain:

D(Aαβ) = {f ∈ L2(a, b)|f, f ′ ∈ ACloc(a, b), τf ∈ L2(a, b)
cos(α)f(a)− sin(α)f ′(a) = 0
cos(β)f(b)− sin(β)f ′(b) = 0}. (3.15)

Choose, α, α0, β, β0 such that:

0 ≤ α0 ≤ α < π and 0 < β ≤ β0 ≤ π

where either α0 < α or β0 > β. Since the monotonicity of the Prüfer angle, we
have then that λ0

n > λn, where λn denotes the n-th eigenvalue of Aαβ (and we
assume, they are ordered such that λn < λn+1).

With this we can explicitly compute Krein’s spectral shift function ξ with
Lemma 3.6 to be:

ξ(λ,Aαβ , Aα0β0) =

{
1 λn ≤ λ < λ0

n

0 else.
(3.16)
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Chapter 3. Krein’s spectral shift function

All this also works, if one endpoint is limit point. For a detailed discussion
see [3, Sec.2.].
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CHAPTER 4

Wronskians

We have already encountered the Wronskian, when specifying boundary condi-
tions. In this chapter, we investigate properties of the Wronskian of solutions to
different Sturm–Liouville equations. Except for Section 4.2, the results in this
chapter are technical and will be used to proof other results.

To begin the investigation, let (a, b) be a possibly infinite interval. For
p−1, r, q0, q1 ∈ L1

loc((a, b)), real-valued, p, r > 0, define the differential expres-
sions:

τ0 =
1

r(x)

(
− d

dx
p(x)

d

dx
+ q0(x)

)
, (4.1)

τ1 =
1

r(x)

(
− d

dx
p(x)

d

dx
+ q1(x)

)
. (4.2)

We will often take the point of viewing τ1 = τ0 + (q1 − q0) as a perturbation
of τ0. In this section, we will furthermore assume that all solutions are real
valued. This is necessary, since we will heavily rely on Prüfer variables, and
wish to speak about the zeros of the Wronskian. The Wronskian is defined as

W (u, v) = u(pv′)− (pu′)v = det
(
u pu′

v pv′

)
. (4.3)

Recall the Prüfer variables from Section 1.2

u = ρu sinϑu, pu
′ = ρu cosϑu, v = ρv sinϑv, pv

′ = ρv cosϑv. (4.4)

With this, we obtain the identity:

W (u, v) = ρuρv sin(ϑu − ϑv) = ρuρv sinΘu,v, (4.5)

where we used Θu,v = ϑu − ϑv. From this we have that Θu,v ∈ ACloc(I). For
τjuj = 0, j = 0, 1, we have that Wx(u0, u1) is absolutely continuous and satisfies

W ′
x(u0, u1) = (q1(x)− q0(x))u0(x)u1(x). (4.6)

Denote by ϑj the Prüfer angle of uj , j = 0, 1, and Θ0,1 = ϑ0 − ϑ1.

16



Chapter 4. Wronskians

Lemma 4.1. Let q0 ≥ q1, then Θ0,1(x0) = 0 (mod π) implies that (Θ0,1(x) −
Θ0,1(x0))/(x − x0) ≥ 0 for |x − x0| > 0. In other words this means, that the
integer part of Θ0,1/π is increasing.

If we have q0 − q1 ≥ ε > 0, we even have (Θ0,1(x)−Θ0,1(x0))/(x− x0) > 0
for |x− x0| > 0.

Proof. By (4.6) we have

Wx(u0, u1) = ρ0(x)ρ1(x) sin(Θ0,1(x))

=
∫ x

x0

(q1(t)− q0(t))u0(t)u1(t)dt (4.7)

and there are two cases to distinguish: Either u0(x0), u1(x0) are both different
from zero or both equal to zero. If both are equal to zero, they must change
sign at x0 and hence in both cases the integrand is of one sign near x0. Thus
the result follows.

For technical reasons, we will denote by #(u0, u1) the number of sign flips of
W (u0, u1) in the interval I. The previous lemma asserts that this is equivalent
to the number of zeros of W (u0, u1) as long as q0 > q1. If q0 = q1 the case of
W (u0, u1) = 0 on some open set can arise.

Lemma 4.2. For q0 ≥ q1, τjuj = 0, j = 0, 1, we have that:

#(u0, u1) = lim
x↑b

dΘ0,1(x)/πe − lim
x↓a

bΘ0,1(x)/πc − 1, (4.8)

where bxc = sup{n ∈ Z, n ≤ x}, dxe = inf{n ∈ Z, n ≥ x}. We can drop the
limit if a (resp. b) is regular.

Proof. Without loss of generality, we can assume that we have an x0 ∈ (a, b)
with Wx0(u0, u1) 6= 0 and

bΘ0,1(x0)/πc = dΘ0,1(x0)/πe − 1.

Now let [x1, x2] a maximal interval on which Wx(u0, u1) = 0. Then we have for
all sufficiently small ε, that:

dΘ0,1(x2 + ε)/πe = dΘ0,1(x)/πe+ 1,∀x ∈ [x1 − ε, x2]

and
bΘ0,1(x1 − ε)/πc = bΘ0,1(x)/πc+ 1,∀x ∈ [x1, x2 + ε].

Thus we obtain the result.

We will now look at the interpolating differential expressions τε = τ0+ε(τ1−
τ0). We will denote by uε any solution of τεuε = 0, and by ψε,± the solutions
satisfying the appropriate conditions at a for − and b for +. This is meant in
the sense that the appropriate conditions are the boundary conditions of self-
adjoint extensions, where we assume that all self-adjoint extensions have the
same boundary conditions.
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Lemma 4.3. For a < c < d < b we have that:

Wd(uε, vε̃)−Wc(uε, vε̃) =
∫ d

c

(ε− ε̃)(q0(t)− q1(t))uε(t)vε̃(t)dt. (4.9)

Proof. Integrate 4.6.

Lemma 4.4. For w with w, pw′ ∈ ACloc and Wx(w,ψε,±) = 0, we have that:

∂εWx(w,ψε,+) = κ

∫ b

x

ψ2
ε,+(t)(q1(t)− q0(t))dt (4.10)

∂εWx(w,ψε,−) = −κ
∫ x

a

ψ2
ε,−(t)(q1(t)− q0(t))dt, (4.11)

where κ satisfies ψε,±(x) = κw(x).

Proof. We just prove the result in the “ψε,−” case. The other case works simi-
larly. Note that Wx(w,ψ−) = 0 implies that w(x) = κ · ψ−(x) and w′(x) = κ ·
ψ′−(x). The derivate in x implies: For the second one, using Wa(ψε,−, ψε̃,−) = 0
(since, they have the same boundary condition at a):

∂εWx(w,ψε,−) = lim
ε̃→ε

Wx(w,ψε,−)−Wx(w,ψε,−)
ε̃− ε

= lim
ε̃→ε

Wx(κ · ψε,−, ψε̃,−)
ε̃− ε

= lim
ε̃→ε

−(ε̃− ε) ·
∫ x

a
κ · ψε,−(t)ψε̃,−(t)(q1(t)− q0(t))dt

ε̃− ε

= −κ
∫ x

a

ψ2
ε,−(t)(q1(t)− q0(t))dt. (4.12)

The next lemma is similar to Lemma 1.8.

Lemma 4.5. We have for the Prüfer angle ϑε,± of ψ± that:

∂

∂ε
ϑε,+(x) =

∫ b

x
(q1(t)− q0(t))ψε,+(t)2dt

ρε,+(x)2
≤ 0, (4.13)

∂

∂ε
ϑε,−(x) = −

∫ x

a
(q1(t)− q0(t))ψε,−(t)2dt

ρε,−(x)2
≥ 0. (4.14)

Proof. First note that: ∂εϑu = −W (u, ∂εu)/ρ2
u and then use the last lemma.

Remark 4.6. Suppose vj satisfy (pjv
′
j)
′(x) = q(x)vj(x), j = 0, 1. Define the

again modified Wronskian by:

Wx(v0, v1) = v0(x)p1(x)v′1(x)− p0(x)v′0(x)v1(x), (4.15)

Then one finds in exactly the same way:

W ′
x(v0, v1) = −(p0(x)− p1(x))v′0(x)v

′
1(x). (4.16)

Thus we can also apply the results in the case of different p.
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4.1 Derivatives and Zeros

Now assume q0 − q1 > 0, so we can talk about the zeros of the Wronskians.
This will allow us to state results on how the zeros of the Wronskian behave as
curves in the (x, ε)-plane.

Lemma 4.7. The zeros in ε of W (ϕ,ψε,−) with τε0ϕ = 0 satisfy the differential:

ε′(x) = − W ′(ϕ,ψε,−)
∂εW (ϕ,ψε,−)

=
(ε0 − ε(x))(q1(x)− q0(x))ψ2

ε(x),−(x)∫ b

x
ψ2

ε(x),−(t)(q1(t)− q0(t))dt
. (4.17)

For W (ϕ,ψε,+), we have that:

ε′(x) = − W ′(ϕ,ψε,+)
∂εW (ϕ,ψε,+)

= −
(ε0 − ε(x))(q1(x)− q0(x))ψ2

ε(x),−(x)∫ x

a
ψ2

ε(x),−(t)(q1(t)− q0(t))dt
. (4.18)

Proof. The proof consists of applying the implicit function theorem.

It follows from Lemma 4.7, that in our case the zeros of W (ϕ,ψε,−) (resp.
W (ϕ,ψε,+)) move to the right (resp. left) as ε increases.

Lemma 4.8. Different zeros of Wx(ϕ,ψε,±) don’t collide.

Proof. This follows from the right hand sides of (4.17) and (4.18) being locally
Lipschitz, and the uniqueness theorem of solutions.

4.2 Sturm-type theorems

In this section, we give analog results to Sturm’s comparison theorem, Theo-
rem 1.11, for Wronskians.

Theorem 4.9 (Comparison theorem for Wronskians). Suppose uj satisfies
τjuj = 0, j = 0, 1, 2.

Then, if q0 ≥ q1 ≥ q2, between two zeros of Wx(u0, u1) there is at least one
zero of Wx(u0, u2) and between two zeros of Wx(u1, u2) there is at least one zero
of Wx(u0, u2).

Proof. Let c, d be two consecutive zeros of Wx(u0, u1). We first assume, that
Wc(u0, u2) = 0 and consider τε = (2 − ε)τ1 + (ε − 1)τ2, ε ∈ [1, 2], restricted to
(c, d) with boundary condition generated by the Prüfer angle of u0 at c. Set
uε = ψε,−, then we have Θuε,u0(c) = 0 for all ε and Θuε,u(d) is increasing,
implying that Wx(u, uε) has at least one zero in (c, d) for ε > 1.

To finish our proof, let ũ2 be a second linearly independent solution. Then,
since W (u2, ũ2) is constant, we can assume 0 < Θu2,ũ2(x) < π. This implies
Θu0,ũ2(c) = Θu2,ũ2(c) < π and Θu0,ũ2(d) = Θu0,u2(d) + Θu2,ũ2(d) > π. Conse-
quently Wx(u0, ũ2) also has at least one zero in (c, d).

The second claim is proven analogous.

We note that by Remark 4.6 the theorem also holds, if we have that −(pju
′
j)
′+

qjuj = λjuj , j = 0, 1, 2 and q0 ≥ q1 ≥ q2, p2 ≥ p1 ≥ p0.
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Corollary 4.10. Suppose uj satisfies τjuj = 0, j = 0, 1, 2.
Then, if q0 ≥ q1 ≥ q2, we have that:

#(u0, u1) ≤ #(u0, u2) + 1, #(u1, u2) ≤ #(u0, u2) + 1. (4.19)

As a further consequence we obtain the following generalization of the results
[4, Thm.7.1,7.2.].

Corollary 4.11. Suppose uj, vj satisfy τju = 0, j = 0, 1, with q0 ≥ q1.
Then the zeros of Wx(u0, u1) interlace the zeros of Wx(u0, v1) and vice versa

(in the sense that there is exactly one zero of one function in between two zeros
of the other). In particular,

|#(u0, u1)−#(u0, v1)| ≤ 1, |#(u0, u1)−#(v0, u1)| ≤ 1, (4.20)

and
|#(u0, u1)−#(v0, v1)| ≤ 2. (4.21)

Lemma 4.12. Let τjuj = 0, j = 0, 1 and q1 ≥ q0. Further suppose that h is a
function with h, ph′ absolutely continuous and (h(x), p(x)h′(x)) 6= (0, 0) for all
x. Now let c, d be distinct sign flips of Wx(u0, u1). Furthermore assume that at
no x ∈ [c, d], there is a sign flip of Wx(u0, h), then W (u1, h) has a sign flip in
(c, d). If either c (or d) is a sign flip of Wx(u0, h), then c (or d) is also a sign
flip of Wx(u1, h).

Proof. The second assertion follows from the Wronskian being a determinant,
so we restrict ourself to the first case.

Without loss of generality Θ1,0(a) = 0, Θ1,0(b) = π, and Θh,0 ∈ (δ, π − δ),
for some δ > 0. Now:

Θ1,0(a)−Θh,0(a) < 0 and Θ1,0(b)−Θh,0(b) > 0. (4.22)

Thus there exists x ∈ (a, b) such that 0 = Θ1,0(x)−Θh,0(x) = ϑ1(x)− ϑh(x) =
Θ1,h(x), which is equivalent to Wx(u1, h) = 0.

The condition (h(x), p(x)h′(x)) 6= (0, 0) for all x is important, since then ϑh

and Θh,0 are continuous functions.

Theorem 4.13 (Triangle inequality for Wronskians). For τjuj = λjuj, j = 0, 1,
and q0 ≥ q1 (or q0 ≤ q1) in some interval (c, d), we have for any function h
with h, ph′ absolutely continuous and (h(x), p(x)h′(x)) 6= (0, 0) for all x, that:

#(u0, u1) ≤ #(u0, h) + #(h, u1) + 1. (4.23)

Proof. We first prove the case q0 ≥ q1. Assume that N = #(u0, u1) is finite,
if not, the following works for arbitrary large N . Denote by x1, . . . , xN points
inside the sign flips ofW (u0, u1). IfWxi(u0, h) = 0, we have thatWxi(u1, h) = 0.
Thus it is sufficient to show that the formula stays valid on (c, xi) and (xi, d) to
show the result. So we assume without loss of generality that Wxi(u0, h) 6= 0.
Then the theorem follows by the last lemma, since there is either a sign flip of
W (u0, h) or W (u1, h) in any interval (xi, xi+1).

The case q0 ≤ q1 follows by interchanging the role of u0 and u1.
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Take p(x) = 1, q0(x) = 0, and q1(x) = −1 on I = (0, π). Then the simple
example u0(x) = 1, u1(x) = sin(x), and h(x) = cos(x) shows that our inequality
is optimal.

Lemma 4.14. Let p, u, v : (c, d) → R, be functions with p > 0, u, v, pu′, pv′ ∈
AC((c, d)) such that Wx(u, v) 6= 0, x ∈ (c, d), then the zeros of u and v alternate
in (c, d).

Proof. First note, that Wx(u, v) 6= 0 implies (u(x), p(x)u′(x)) 6= (0, 0) and
(v(x), p(x)v′(x)) 6= (0, 0) for all x ∈ (c, d). Furthermore, it implies that u
and v have no common zero. Next assume the contrary, namely that we have
e, f ∈ (c, d) such that u(e) = u(f) = 0, and u(x) > 0, v(x) > 0, x ∈ (e, f). It
follows, that p(e)u′(e) > 0, p(f)u′(f) < 0, implying We(u, v) = 0 · p(e)v′(e) −
p(e)u′(e)v(e) > 0 and Wf (u, v) = 0 ·p(f)v′(f)−p(f)u′(f)v(f) < 0, which would
imply that the Wronskian had a zero in (e, f) by the mean value theorem: A
contradiction.

4.3 Higher Derivates and Differential equations

In this section, we will make the assumption ∆q = q1− q0 ∈ C2 and take a look
at higher derivates of the Wronskian and possible differential equations for it.
Let τ0u = 0, τ1v = 0, we can compute the following higher derivates:

W ′(u, v) = ∆quv (4.24)
W ′′(u, v) = ∆q′uv + ∆q (uv′ + u′v) (4.25)

W ′′′(u, v) =
(

∆q′′ +
∆q(2q0 + ∆q)

p

)
uv + 2∆qu′v′ + 2∆q′ (uv′ + u′v) . (4.26)

For shortness, we will use the notation W = W (u, v). Using these derivates, we
can obtain an alternative proof for Lemma 4.1.

Lemma 4.15. Let q0 > q1, ∆q ∈ C2(I) and τ0u = 0, τ1v = 0, then the
Wronskian changes sign at each of its zeros. If we denote by x0 a zero of Wx,
we either have W ′

x0
6= 0 or u(x0) = v(x0) = 0, Wx0 = W ′

x0
= W ′′

x0
= 0 and

W ′′′
x0
6= 0.

Proof. If W ′
x0

= 0, (4.24) implies that u(x0) = 0 or v(x0) = 0. Then by
Wx0 = 0, we have that both are zero and by this W ′′

x0
= 0. From u, v being

nonzero, we have that u′(x0) 6= 0 6= v′(x0) and thus W ′′′
x0
6= 0. Integrating W ′′′

shows C1(x − x0) ≤ W ′′(x0) ≤ C2(x − x0) where C1C2 > 0 in a neighborhood
of x0. This shows that W changes sign, so we obtain the result.

The Wronskian obeys the following third order non-linear differential equa-
tion: (

W ′′ − ∆q′

∆q
W ′
)2

−∆q2W 2

= 2W ′
[
W ′′′ − 2∆q′

∆q
W ′′ +

(
∆q′ −∆q′′

∆q
+

2 · q0 + ∆q
p

)
W ′
]
.

(4.27)
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Chapter 4. Wronskians

However, we don’t see any way of drawing useful conclusions from this differen-
tial equation. In the case of ∆q constant, we find:

(W ′′)2 −∆q2W 2 = 2W ′
[
W ′′′ +

(
2 · q0 + ∆q

p

)
W ′
]
. (4.28)

Even though this already looks simpler, it is still non-linear. The last equation,
was first found in [23].

Assuming we know a lot about τ0, it might be a good idea to try to eliminate
v from the equation. Doing this one finds:

− u∆qW ′′ + (u∆q′ + 2u′∆q)W ′ +
u∆q2

p
W = 0. (4.29)

This equation gives us the hope to be able to transform it to standard Sturm–
Liouville form. This would give us an equation, we can say a lot about. Unfor-
tunately, we find:

−
(

1
u2|∆q|

W ′
)′

+
sgn(∆q)
u2p

W = 0 (4.30)

This differential equation leads to problems, since near any zero of u the
potential term is not locally integrable.

If Equation (4.30) was well posed, one could use classical oscillation theory
to determine if the Wronskian has finitely or infinitely many zeros. However,
since we are mainly interested in this question in the case of u having infinitely
many zeros, this hope fails.
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CHAPTER 5

Relative Oscillation Theory

In this chapter, we give an overview of relative oscillation theory using the
spectral shift function. Further note, that an extension of this theory using
approximation by regular problems will appear in [11].

We will again look at some finite or infinite interval (a, b), r, p−1, q0, q1 ∈
L1

loc((a, b)), r, p > 0, and the two differential expressions:

τ0 =
1

r(x)

(
− d

dx
p(x)

d

dx
+ q0(x)

)
(5.1)

τ1 =
1

r(x)

(
− d

dx
p(x)

d

dx
+ q1(x)

)
. (5.2)

Then denote by H0 a self-adjoint extension of τ0 and by H1 a self-adjoint exten-
sion of τ1 with the same boundary conditions as H0 at limit-circle endpoints.
In order to extend the notion of oscillation theory to comparing different differ-
ential expression, we define:

Definition 5.1. Suppose q1 ≤ q0 (or q1 ≥ q0) and let uj be solutions of τjuj =
0, j =0,1.

We call τ1 relatively oscillatory with respect to τ0 if #(u0, u1) is infinite and
relatively nonoscillatory if #(u0, u1) is finite.

Our requirement in this definition of q1 ≤ q0 might seem too strong. How-
ever, the next example will show us that it is needed. Take p = r = 1 and
(a, b) = R. Furthermore define the functions q0 and q1 by the following:

q0(x) =

{
0 bxc even
−4π2 bxc odd

, q1(x) = q0(x+ 1). (5.3)

Since τ1 is just a shifted version of τ0, it is obvious that H0 and H1 are unitairly
equivalent and thus have the same spectrum. However, for τjuj = 0, j = 0, 1,
given by:

u0(x) =

{
1 bxc even
cos(2πx) bxc odd

, u1(x) =

{
cos(2πx) bxc even
1 bxc odd

, (5.4)
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Chapter 5. Relative Oscillation Theory

we find that the Wronskian is given by Wx(u0, u1) = (−1)bxc sin(2πx) and has
infinitely many zeros in R.

By Corollary 4.11, Definition 5.1 is independent of the chosen solutions.
To demonstrate its usefulness, we establish its connection with the spectra of
self-adjoint operators associated with τj .

Lemma 5.2. Suppose q1 ≤ q0, λ0 ≤ λ1 and let Hj be self-adjoint operators
associated with τj, j = 1, 2. Then the following holds

1. τ0 − λ0 is relatively nonoscillatory with respect to τ0 − λ1 if and only if
dim RanP(λ0,λ1)(H0) <∞.

2. Suppose dim RanP(λ0,λ1)(Hj) < ∞, j = 0, 1. If τ1 − λ is relatively
nonoscillatory with respect to τ0−λ for one λ ∈ (λ0, λ1) then it is relatively
nonoscillatory for all λ ∈ (λ0, λ1).

Proof. The first claim follows from Theorem 5.4 below. For the second claim,
fix λ, λ̃ ∈ (λ0, λ1), and (τj − λ)uj = 0, (τj − λ̃)ũj = 0, j = 0, 1. Then apply our
triangle inequality twice to find

#(u, v) ≤ #(u, ũ) + #(v, ṽ) + #(ũ, ṽ) + 2.

The result now follows using again Theorem 5.4 below.

Furthermore,

Theorem 5.3. Suppose q1 ≤ q0 and let Hj be self-adjoint operators associated
with τj, j = 1, 2.

Suppose dim RanP(λ0,λ1)(H0) < ∞ and τ1 − λ0 is relatively nonoscillatory
with respect to τ0 − λ0. Then dim RanP(λ0,λ1)(H1) < ∞ if and only if τ1 − λ1

is relatively nonoscillatory with respect to τ0 − λ1.

Proof. Again a simple consequence of Theorem 5.4 and our triangle inequality.

Theorem 5.4 (Gesztesy, Simon, Teschl [4]). Suppose H0 be a self-adjoint op-
erator associated with τ0. Then for λ0 < λ1 and (τ0 − λj)uj = 0, j = 0, 1, we
have that:

#(u0, u1) <∞⇔ dim RanP(λ0,λ1)(H0) <∞. (5.5)

We will now first give, the regular case of a result on how to connect the
spectra of two different operators to the number of zeros of the Wronskian.
Then we will present the singular case. The advantage of the regular case is
that we do not have to use Krein’s Spectral Shift Function.

5.1 The regular case

In this section, we will assume (a, b) to be a finite interval and r, p−1, q0, q1 ∈
L1((a, b)). This means that τ0 and τ1 will be regular Sturm–Liouville operators.

Theorem 5.5. For H0, H1 self-adjoint extensions of τ0 and τ1 with the same
boundary conditions at a and b, we have that

dim RanP(−∞,λ)(H1)− dim RanP(−∞,λ](H0) = #(ψ1,∓(λ), ψ0,±(λ)). (5.6)
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Proof. Without restriction, we only proof the #(ψ1,−(λ), ψ0,+(λ)) case. As in
Chapter 4, we will look at the interpolating operator Hε being a self-adjoint
extension of τε with the same boundary conditions. Denote by Θε,0 the Prüfer
angle of W (ψ1,−(λ), ψ0,+(λ)). By Lemma 4.2, we have that

#(ψ1,−(λ), ψ0,+(λ)) = lim
x↑b

dΘ1,0(x)/πe − lim
x↓a

bΘ1,0(x)/πc − 1. (5.7)

Since ψε,− has a boundary condtion at a and ψ0,+ is constant, bΘε,0(a)c is
constant and can without restriction be assumed to be equal 0. Therefore
#(ψ1,−(λ), ψ0,+(λ)) corresponds to the number of times Θε,0(b) hits a multiple
of π and thus to #{ε ∈ (0, 1)|λ ∈ σ(Hε)}. Since as in the proof of Lemma 3.10
the eigenvalues are decreasing functions in ε, we obtain the result.

Note here, that we have (−∞, λ] at the projector connected to H0, since if
λ is an eigenvalue of H0 the Wronskian has already lost a zero.

5.2 The singular case

In order to show the singular case, we will require the following hypothesis:

Hypothesis 5.6. Suppose H0 and H1 are self-adjoint operators associated with
τ0 and τ1 and separated boundary conditions such that:

(i) r−1(q0 − q1) is relatively bounded with respect to H0 with H0-bound less
then one.

(ii)
√
r−1|q0 − q1|RH0(z) is Hilbert-Schmidt for one (and hence for all) z ∈

ρ(H0).

Next we proof the following theorem:

Theorem 5.7. Let H0, H1 satisfy Hypothesis 5.6 and q0 − q1 ≥ 0. Then for
every λ ∈ ρ(H0) ∩ ρ(H1) ∩ R we have

ξ(λ,H1,H0) = #(ψ0,±(λ), ψ1,∓(λ)). (5.8)

To proof this, we will first derive consequences of Hypothesis 5.6 and then
derive the theorem using an approximation argument by compactly supported
functions.

We will now look at what Theorem 5.7 tells us about the operators asso-
ciated with the differential expression. First note that Hypothesis 5.6 implies,
that by Weyl’s theorem our operators have the same essential spectrum. Sup-
pose that (λ0, λ1) ∩ σess(H0) = ∅. Then we know that the eigenvalues inside
(λ0, λ1) can only accumulate at λ0 and λ1. So we obtain from Theorem 5.7
that #(ψ1,−(λ), ψ0,+(λ)) <∞ for all λ ∈ (λ0, λ1) and thus: τ1 − λ is relatively
nonoscillatory with respect to τ0 − λ. We further note that Theorem 5.7 also
implies that λj j = 0, 1 is an accumulation point of eigenvalues of H1 in (λ0, λ1)
if and only if τ1 − λj is relatively oscillatory with respect to τ0 − λj .

These considerations show that the notion of relative oscillation is the correct
generalization of oscillation theory to the case inside spectral gaps.

25
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5.2.1 Consequences of Hypothesis 5.6

In this section, we draw consequences from Hypothesis 5.6 showing how to derive
convergence in the norm:

ρ(A,B) = 2|Im z|‖RA(z)−RB(z)‖J 1 (5.9)

from it. To do this, we derive some properties of relatively bounded operators
multiplied by strongly continuous families of operators in Lemma 5.9. The key
example for these operators will be multiplication operators by characteristic
functions strongly converging to unity.

For convenience, we rewrite Hypothesis 5.6 in form of operators. Here we
use V 2 = r−1(q0 − q1).

Hypothesis 5.8. Suppose H0 is self-adjoint and V symmetric such that:

(i) V 2 is relatively bounded with respect to H0 with H0 bound less then one.

(ii) V RH0(z) is Hilbert-Schmidt for one (and hence for all) z ∈ ρ(H0).

We recall that (i) means that: D(V 2) ⊇ D(H0) and that there exists 0 ≤
a < 1, 0 ≤ b such that:

‖V 2ψ‖ ≤ a‖H0ψ‖+ b‖ψ‖, ∀ψ ∈ D(H0). (5.10)

(i) implies, that we have an analytic family of type (A). This implies having
an analytic family in the sense of Kato, which we use in the proof of Lemma 3.10.

If we think of RH0(z)V as the adjoint of V RH0(z
∗), it is Hilbert-Schmidt.

It is clear that this operator will be equal to the product of RH0(z) and V on a
core of V .

Lemma 5.9. Assume Hypothesis 5.8 (i) and let K : [0, 1] → L be a strongly
continuous family of self-adjoint bounded operators which commute with V and
‖K(ε)‖ ≤ 1. Then also the following are true:

1. K(ε)V 2 relatively bounded with respect to H0 with H0 bound less then one.

2. H(ε) = H0 +K(ε)V 2 are self-adjoint operators on D(H0).

3. V 2RH(ε)(z) is uniformly bounded.

Proof. For 1.: For fixed ψ ∈ D(H0), we have

‖K(ε)V 2ψ‖ ≤ ‖K(ε)‖‖V 2ψ‖ ≤ ‖V 2ψ‖. (5.11)

Thus K(ε)V 2 is relatively bounded.
For 2.: Kato-Rellich Theorem, [13, Thm.X.12].
For 3.: A calculation using (5.10) shows for ψ ∈ H, that:

‖V 2RH(ε)(z)ψ‖ ≤
1

1− a

(
a+

b+ a|z|
|Im z|

)
‖ψ‖ (5.12)

and thus V 2RH(ε)(z) is bounded.
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Lemma 5.10. Suppose H0 and V satisfy Hypothesis 5.8 (i), (ii). Let K :
[0, 1] → L be a strongly continuous family of self-adjoint bounded operators which
commute with V abd ‖K(ε)‖ ≤ 1. Then we have that H(ε) = H0 + K(ε)V 2,
and where H0 satisfies the assumptions of Lemma 3.2.

Proof. Without loss of generality, we will only show continuity at 1. Then
it is sufficient by the second resolvent equation to show RH(0)(z0)V K(ε) →
RH(0)(z0)V K(1) and V RH(ε)(z0) → V RH(1)(z0) in the Hilbert-Schmidt topol-
ogy. The first statement follows from Lemma 2.7.

For the second statement first note that by the second resolvent equality and
Lemma 5.9,

V RH(1)(z0) = V RH0(z0)(1− V 2RH(1)(z0)) (5.13)

is Hilbert-Schmidt and

V RH(ε)(z0) = V RH(1)(z0)(1 + (K(1)−K(ε)))V 2RH(ε)(z0)). (5.14)

By Lemma 2.7, it is sufficient to show (K(1)−K(ε))V 2RH(ε)(z0) → 0 strongly
and V 2RH(ε)(z0)) is uniformly bounded in ε. Now since K(ε) → K(1) strongly
and Lemma 5.9, 3, we are done.

5.2.2 Proof of Theorem 5.7

Now we begin with our first step towards singular operators by proving the case
where q1 − q0 has compact support.

Lemma 5.11. Let Hj, j = 0, 1, be Sturm–Liouville operators on (a, b) asso-
ciated with τj and suppose that r−1(q1 − q0) has support in a compact interval
[c, d] ⊆ (a, b), where a < c if a is singular and d < b if b is singular. Moreover,
suppose theorem H0 and H1 have the same boundary conditions (if any).

Suppose λ0 < inf σess(H0). Then

dim RanP(−∞,λ0)(H1)− dim RanP(−∞,λ0](H0) = #(ψ1,∓(λ0), ψ0,±(λ0)).
(5.15)

Suppose σess(H0) ∩ [λ0, λ1] = ∅. Then

dim RanP[λ0,λ1)(H1)− dim RanP(λ0,λ1](H0)
= #(ψ1,∓(λ1), ψ0,±(λ1))−#(ψ1,∓(λ0), ψ0,±(λ0)).

(5.16)

Proof. Define Hε = εH1 + (1 − ε)H0 as usual and observe that ψε,−(z, x) =
ψ0,−(z, x) for x ≤ c respectively ψε,+(z, x) = ψ0,+(z, x) for x ≥ d. Further-
more, ψε,±(z, x) is analytic with respect to ε and λ ∈ σd(Hε) if and only if
Wd(ψ0,+(λ), ψε,−(λ)) = 0. Now the proof can be done as in the regular case,
Theorem 5.5 .

Lemma 5.12. Suppose H0, H1 satisfy the same assumptions as in the previous
lemma and set Hε = εH1 + (1− ε)H0. Then

‖
√
r−1(q1 − q0)RHε(z)‖J2 ≤ C(z), ε ∈ [0, 1]. (5.17)

In particular, H0 and H1 are resolvent comparable and

ξ(λ,H1,H0) = #(ψ1,∓(λ), ψ0,±(λ)) (5.18)
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for every λ ∈ R\(σ(H0) ∪ σ(H1)). Here ξ = ξ1 is assumed to be constructed
such that ε 7→ ξ(Hε,H0) is a continuous mapping [0, 1] → L1((λ2 + 1)−1).

Proof. Denote by Gε(z, x, y) the Green function of Hε. A simple estimate shows∫ b

a

∫ b

a

|Gε(z, x, y)|2|r(y)−1(q1(y)− q0(y))|r(x)dx r(y)dy ≤ C(z)

for ε ∈ [0, 1], which establishes the first claim.
Furthermore, a straightforward calculation (using (4.6)) shows

Gε′(z, x, y) = Gε(z, x, y) + (ε− ε′)
∫ b

a

Gε′(z, x, t)(q1(t)− q0(t))Gε(z, t, y)dt.

(Note that this does not follow from the second resolvent identity unless r−1(q1−
q0) is relatively bounded with respect to H0.) Hence

‖RHε′ (z)−RHε(z)‖J1 ≤ |ε′ − ε|C(z)2 (5.19)

and thus ε 7→ ξ(Hε,H0) is continuous. The rest follows from (3.9).

Using the variational characterization for the SSF from Lemma 3.10, we can
directly prove the result for the SSF:

Lemma 5.13. Let Hj, j = 0, 1, be Sturm–Liouville operators on (a, b) asso-
ciated with τj and suppose that V 2 = r−1(q1 − q0) has support in a compact
interval [c, d] ⊆ (a, b), where a < c if a is singular and d < b if b is singular,
q0 − q1 ≥ 0 and V satisfies Hypothesis 5.8. Then

ξ(λ,H1,H0) = #(ψ1,∓(λ), ψ0,±(λ)) (5.20)

for almost every λ ∈ R\σess(H0). Here ξ = ξ1 is assumed to be constructed
such that ε 7→ ξ(H0−εV 2,H0) is a continuous mapping [0, 1] → L1((λ2 +1)−1),
where V 2 = H1 −H0.

Proof. By Lemma 3.10, it is sufficient to show that for λ ∈ Ker(H0 − εV 2)
that the number of zeros of the Wronskian increases by one. Without loss of
generality, we will only show the formula for ψ1,+ and ψ0,−.

Since both functions solve the same differential equation for x ∈ (c, b), we
have that Wx(ψε,+(λ), ψ0,−(λ)) is constant for x ∈ (c, b). Furthermore since
the Wronskian being zero would imply that the solutions are linearly dependent
and thus ψ0,+ being in L2 near b and λ thus an eigenvalue, we can assume it to
be non-zero, and so no zero can escape to b. Denoting by ϑi,± the Prüfer angle
of ψi,±, we now have that λ ∈ Ker(H0 − εV 2) is equivalent to

Wa(ψε,+, ψ0,−) = 0 ⇔ (ϑε,+(a)− ϑ0,−(a)) (mod π) = 0. (5.21)

Now since ϑε,+(a) is strictly monotonic in ε and Lemma 4.2, the result follows.

Proof. (of Theorem 5.7) We first assume that we have compact support near
one endpoint, say a.

Define by Kε the multiplication operator by χ(a,bε] with bε ↑ b. Then Kε

satisfies the assumptions of Lemma 5.10. Denote by Hε = H0 −KεV
2, and by
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ψε,− the corresponding solutions satisfying the boundary condition at a. By
Lemma 5.10 we have that ξ(Hε,H0) → ξ(H1,H0) locally in L1 and it remains
to control the Wronskians.

We first show the (ψ1,−(λ), ψ0,+(λ)) case. Observe that

Wx(ψε,−(λ), ψ0,+(λ)) = Wx(ψ1,−(λ), ψ0,+(λ)) (5.22)

for x ≤ bε and Wx(ψε,−(λ), ψ0,+(λ)) is constant for x ≥ bε. Hence the value
#(ψε,−(λ), ψ0,+(λ)) is increasing to #(ψ1,−(λ), ψ0,+(λ)) and constant for large
ε. By monotone convergence, we have that #(ψε,−(λ), ψ0,+(λ)) → #(ψ1,−(λ), ψ0,+(λ))
locally in L1.

Since Hypothesis 5.8 is satisfied with V 2, it is clear that it is also satisfied for
χ(a,bε]V

2 and we can apply Lemma 5.11. Thus we have that #(ψε,−(λ), ψ0,+(λ)) =
ξ(λ,Hε,H0), which converges to ξ(H1,H0) locally in L1. We thus have that
#(ψ1,−(λ), ψ0,+(λ)) = ξ(λ,H1,H0) for almost every λ ∈ R\σess(H0). For the
#(ψ1,+(λ), ψ0,−(λ)) case simply exchange the roles of H0 and H1.

Hence the result holds if we have compact support near one endpoint. Now
repeat the argument to remove the compact support assumption near the other
endpoint as well.

5.3 Remarks

One might ask oneself, why we need the condition q0 − q1 ≥ 0 in Theorem 5.7.
the value #(u, v) is always positive, so choosing q0 − q1 < 0 and assuming
Theorem 5.7 would lead to a contradiction. Therefore, we cannot completely
drop the condition q0 − q1 ≥ 0 in our setting.

However, one should note that limx→∞(#(−x,x)(u) − #(−x,x)(v)) would be
a signed analog for #(u, v), so an investigation might be possible ... Here
#(−x,x)(u) denotes the number of zeros of u in (−x, x). So it might be interesting
to investigate generalizations of Hartman’s Theorem [8], [4, Thm.1.2.], in our
setting.

In [11], we give a further extension to describe changes in the number of
eigenvalues in spectral gaps. The proof of these results doesn’t use Krein’s
spectral shift function, but an approximation technique developed by Günther
Stolz and Joachim Weidmann in [20]. This method also allows us to obtain the
results from [4] using relative oscillation theory. Furthermore we also treat the
case of H0 bounded from below and V 2 relatively form bounded with respect
to H0 in [11].

We also believe that the results can be extended to the case of Sturm–
Liouville operators with different p.
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Applications

In this chapter we first recall basic properties of periodic Sturm–Liouville oper-
ators. After these preparations, we state our extensions of the oscillation results
of those in spectral gaps.

6.1 Periodic Sturm–Liouville operators

For this section, let (a, b) = R, r = 1, α > 0 and p, q α-periodic functions. The
last conditions mean:

p(x+ α) = p(x), q(x+ α) = q(x). (6.1)

For u a solution to τ also ũ(x) = u(x + α) will be a solution to τ . We will
now be interested in the relation between u and ũ. Let (c, s) be a fundamental
system for τ , that is c(0) = 1, pc′(0) = 0, s(0) = 0 and ps′(0) = 1. We then
have the principal solution matrix given by:

Π(x) =
(
c(x) s(x)
pc′(x) ps′(x)

)
. (6.2)

The matrix M :

M =
(
c(α) s(α)
pc′(α) ps′(α)

)
(6.3)

is called the monodromy matrix. Now a calculation shows that:

Π(x+ lα) = Π(α)Π(x+ (l − 1)α) = MΠ(x+ (l − 1)α) = · · · = M lΠ(x). (6.4)

From this, we see that investigating M , will answer our questions about the
relation between a solution and the solution shifted by α. We call the trace of
M the discriminant D = tr(M). Since detM = 1, we find the the eigenvalues
of M are given by:

µ± = D/2±
√
D2/4− 1. (6.5)

Then one defines the floquet exponents as:

γ± =
1
α

lnµ±. (6.6)
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We note that detM = 1 implies that µ+µ− = 1, and thus γ+ + γ− = 0. Now
since Π(x)Mx/α will be periodic in x, there exists α-periodic functions p± such
that:

u±(x) = p±(x) · eγ±x (6.7)

or
u−(x) = (p−(x) + xp+(x)) · eγ±x (6.8)

are a basis of the solution space. (6.8) can arise, if γ+ = γ− = 0.
Now, we will look at the self-adjoint extension H of τ and its spectrum. To

do this, we will let all quantities depend on the eigenvalue parameter λ. We
can determine the spectrum using D. For |D| > 2 the square root is positive,
and we get two solutions, where one is square integrable near +∞ and one near
−∞. This implies that we are in the resolvent set. For |D| ≤ 2, we find that
our solutions are bounded, but nowhere decaying, we are thus in the essential
spectrum. So we have, that:

σ(H) = σess(H) = {λ | |D(λ)| ≤ 2} . (6.9)

We call the maximal intervals (λ, λ̃) with |∆(λ̂)| > 1, λ̂ ∈ (λ, λ̃), spectral gap.
By [2, Thm.2.3.1], we can order the spectral gaps (−∞, λ0), (µ0, µ1), (λ1, λ2), . . .
as an increasing sequence, with λn corresponding to the n-th periodic eigenvalue
and µn to the n-th anti-periodic eigenvalue. Denote by ψn the eigenfunction to
λn and by ϕn the eigenfunction to µn, then we have:

Theorem 6.1. 1. ψ0 has no zero in [0, α].

2. ψ2m+1 and ψ2m+2 have exactly 2m+ 2 zeros in [0, α ).

3. ϕ2m and ϕ2m+1 have exactly 2m+ 1 zeros in [0, α ).

Proof. [2, Thm.3.1.2].

Lemma 6.2. For the derivate in λ of the discriminant we have:

d

dλ
D(λ) = tr

((
u(α) v(α)
pu′(α) pv′(α)

)
·
( ∫

uv
∫
v2

−
∫
u2 −

∫
uv

))
. (6.10)

Here all integrals are evaluated over one period α and (u, v) forms a fundamental
system for τ − λ.

Proof. [16, After prop. 3], [24, Lem.16.5:(†)].

One can note, that for u with period α and u(0) = 1, u′(0) = 0, and v such
that W (u, v) = 1, that:

d

dλ
D(λ) = v(α) ·

α∫
0

u2(t)dt. (6.11)

Note that we have for u the endpoint of the n-th spectral gap:

D(λ) =
(

(−1)n v(α)
0 (−1)n

)
. (6.12)
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This gives us the following formula to calculate |D|′:

d

dλ
|D|(λ) = (−1)nv(α)

α∫
0

u2(t)dt. (6.13)

We will now turn our attention to the self-adjoint extension of the periodic
Sturm–Liouville operator H0. For z ∈ ρ(H0), we find by (6.7) for ψ±(z, x) the
following estimate

|ψ±(z, x)| ≤ C(z) exp(γ±x) (6.14)

with ±<γ± < 0 and γ+ + γ− = 0. Here C(z) is some constant, which can
depend on z. We thus note the following estimate on the Green function:

|G(z, x, y)| ≤ |C(z)|2
{

exp(γ+x+ γ−y) x ≥ y

exp(γ−x+ γ+y) x ≤ y.
(6.15)

Now integrating |
√
|q̃(x)|G(z, x, y)|2 over R2, one sees that:∫

R2
|
√
|q̃(x)|G(z, x, y)|2d(x, y) ≤ const. ·

∫
R
|q̃(x)|dx. (6.16)

One thus finds, that Hypothesis 5.6 is satisfied for q̃ ∈ L1(R) ∩ L2(R), q̃ ≤ 0.
We need to require q̃ ∈ L2(R) to have that the multiplication operator by q̃ is
relatively bounded.

6.2 An oscillation criteria for periodic Sturm–
Liouville operators

The following theorem extends the results from [16].

Theorem 6.3. For p, q0 α-periodic, D the discriminant of the periodic differ-
ential equation, and q1 a perturbed potential, such that q0 − q1 ∈ L1((1,∞)) ∩
L2((1,∞)) and q0− q1 has one sign near infinity. We define differential expres-
sions by:

τ0 = − d

dx
p(x)

d

dx
+ q0(x), τ1 = − d

dx
p(x)

d

dx
+ q1(x) (6.17)

and let H0, H1 be self-adjoint extensions of τ0, τ1 on (1,∞). Furthermore, let
λ0 be an endpoint of a gap in the essential spectrum of H0. Then λ0 is an
accumulation point of eigenvalues of H1 if

lim inf
x→∞

x2(q1(x)− q0(x)) >
α2

4|D|′(λ0)
(6.18)

and λ0 is not an accumulation point of eigenvalues if

lim sup
x→∞

x2(q1(x)− q0(x)) <
α2

4|D|′(λ0)
. (6.19)
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Proof. First note that by standard arguments, we can restrict our attention to
interval near infinity, where q0 − q1 is one signed. Then the result was shown
in [16, Thm.1] in the case, where the limit exists. The result now follows using
Theorem 4.9.

We note that even the second order term was also computed in [16]. So we
obtain:

Theorem 6.4. Under the same assumptions as the last theorem, and:

lim
x→∞

(q1(x)− q0(x))x2 =
α2

4|D|′(λ0)
. (6.20)

λ0 is an accumulation point of eigenvalues, if

lim inf
x→∞

((
(q1(x)− q0(x))x2 − α2

4|D|′(λ0)

)
(log x)2

)
>

α2

4|D|′(λ0)
. (6.21)

And λ0 is not an accumulation point of eigenvalues, if

lim sup
x→∞

((
(q1(x)− q0(x))x2 − α2

4|D|′(λ0)

)
(log x)2

)
<

α2

4|D|′(λ0)
. (6.22)

Proof. As the last theorem, but use [16, Thm.2.].

The main argument in [16] is a perturbation argument for the difference of
Prüfer angles for the solution to the unperturbed equation and to the perturbed
equation. Since this exactly corresponds to calculating the asymptotic of the
Prüfer angle of the Wronskian. The name of relative oscillation theory also
already arises in this paper
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APPENDIX A

Notation

L1 the space of all integrable functions
L2 the space of all square integrable functions
C the compact operators
F the finite rank operators
L the bounded linear operators
J p the Schatten-p-class
J 2 the Hilbert-Schmidt operators
J 1 the trace class operators
An

s−→ A An converges strongly to A
RA(z) the resolvent of A at z
σ(A) the spectrum of A
σd(A) the discrete spectrum of A
σess(A) the essential spectrum of A
ρ(A) the resolvent set of A
C the complex numbers
R the real numbers
L1

loc(I) the set of all functions I → C,
which are locally integrable

ACloc(I) the set of all functions I → C,
which are locally absolutely continuous

W (u, v) the Wronskian
f ′ the derivative of f in x
tr the trace
det the determinant
z∗ the complex conjugate of z
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