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Preface

Overview

The present text was written for my course Schréodinger Operators held
at the University of Vienna in winter 1999, summer 2002, summer 2005,
and winter 2007. It gives a brief but rather self-contained introduction
to the mathematical methods of quantum mechanics with a view towards
applications to Schrodinger operators. The applications presented are highly
selective; as a result, many important and interesting items are not touched
upon.

Part 1 is a stripped-down introduction to spectral theory of unbounded
operators where I try to introduce only those topics which are needed for
the applications later on. This has the advantage that you will (hopefully)
not get drowned in results which are never used again before you get to
the applications. In particular, I am not trying to present an encyclopedic
reference. Nevertheless I still feel that the first part should provide a solid
background covering many important results which are usually taken for
granted in more advanced books and research papers.

My approach is built around the spectral theorem as the central object.
Hence I try to get to it as quickly as possible. Moreover, I do not take the
detour over bounded operators but I go straight for the unbounded case. In
addition, existence of spectral measures is established via the Herglotz rather
than the Riesz representation theorem since this approach paves the way for
an investigation of spectral types via boundary values of the resolvent as the
spectral parameter approaches the real line.

X1
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Part 2 starts with the free Schréodinger equation and computes the free
resolvent and time evolution. In addition, I discuss position, momentum,
and angular momentum operators via algebraic methods. This is usu-
ally found in any physics textbook on quantum mechanics, with the only
difference being that I include some technical details which are typically
not found there. Then there is an introduction to one-dimensional mod-
els (Sturm-Liouville operators) including generalized eigenfunction expan-
sions (Weyl-Titchmarsh theory) and subordinacy theory from Gilbert and
Pearson. These results are applied to compute the spectrum of the hy-
drogen atom, where again I try to provide some mathematical details not
found in physics textbooks. Further topics are nondegeneracy of the ground
state, spectra of atoms (the HVZ theorem), and scattering theory (the Enf3
method).

Prerequisites

I assume some previous experience with Hilbert spaces and bounded
linear operators which should be covered in any basic course on functional
analysis. However, while this assumption is reasonable for mathematics
students, it might not always be for physics students. For this reason there
is a preliminary chapter reviewing all necessary results (including proofs).
In addition, there is an appendix (again with proofs) providing all necessary
results from measure theory.

Literature

The present book is highly influenced by the four volumes of Reed and
Simon [49]-[52] (see also [16]) and by the book by Weidmann [70] (an ex-
tended version of which has recently appeared in two volumes [72], [73],
however, only in German). Other books with a similar scope are, for ex-
ample, [16], [17], [21], [26], [28], [30], [48], [57], [63], and [65]. For those
who want to know more about the physical aspects, I can recommend the
classical book by Thirring [68] and the visual guides by Thaller [66], [67].
Further information can be found in the bibliographical notes at the end.

Reader’s guide

There is some intentional overlap among Chapter 0, Chapter 1, and
Chapter 2. Hence, provided you have the necessary background, you can
start reading in Chapter 1 or even Chapter 2. Chapters 2 and 3 are key
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chapters, and you should study them in detail (except for Section 2.6 which
can be skipped on first reading). Chapter 4 should give you an idea of how
the spectral theorem is used. You should have a look at (e.g.) the first
section, and you can come back to the remaining ones as needed. Chapter 5
contains two key results from quantum dynamics: Stone’s theorem and the
RAGE theorem. In particular, the RAGE theorem shows the connections
between long-time behavior and spectral types. Finally, Chapter 6 is again
of central importance and should be studied in detail.

The chapters in the second part are mostly independent of each other
except for Chapter 7, which is a prerequisite for all others except for Chap-
ter 9.

If you are interested in one-dimensional models (Sturm-Liouville equa-
tions), Chapter 9 is all you need.

If you are interested in atoms, read Chapter 7, Chapter 10, and Chap-
ter 11. In particular, you can skip the separation of variables (Sections 10.3
and 10.4, which require Chapter 9) method for computing the eigenvalues of
the hydrogen atom, if you are happy with the fact that there are countably
many which accumulate at the bottom of the continuous spectrum.

If you are interested in scattering theory, read Chapter 7, the first two
sections of Chapter 10, and Chapter 12. Chapter 5 is one of the key prereg-
uisites in this case.

Ind edition

Several people have sent me valuable feedback and pointed out misprints
since the appearance of the first edition. All of these comments are of course
taken into account. Moreover, numerous small improvements were made
throughout. Chapter 3 has been reworked, and I hope that it is now more
accessible to beginners. Also some proofs in Section 9.4 have been simplified
(giving slightly better results at the same time). Finally, the appendix on
measure theory has also grown a bit: I have added several examples and
some material around the change of variables formula and integration of
radial functions.

Updates

The AMS is hosting a web page for this book at

http://www.ams.org/bookpages/gsm-157/


http://www.ams.org/bookpages/gsm-157/
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where updates, corrections, and other material may be found, including a
link to material on my own web site:

http://www.mat.univie.ac.at/~gerald/ftp/book-schroe/
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Chapter 0

A first look at Banach
and Hilbert spaces

I assume that the reader has some basic familiarity with measure theory and func-
tional analysis. For convenience, some facts needed from Banach and LP spaces
are reviewed in this chapter. A crash course in measure theory can be found in
Appendix A. If you feel comfortable with terms like Lebesque LP spaces, Banach
space, or bounded linear operator, you can skip this entire chapter. However, you
might want to at least browse through it to refresh your memory.

0.1. Warm up: Metric and topological spaces

Before we begin, I want to recall some basic facts from metric and topological
spaces. I presume that you are familiar with these topics from your calculus
course. As a general reference I can warmly recommend Kelly’s classical
book [33].

A metric space is a space X together with a distance function d :
X x X — R such that

(i) d(z,y) =0,
(ii) d(z,y) =0 if and only if x =y,
(ii) d(z,y) = d(y, z),
(iv) d(z, z) < d(x,y) + d(y, 2) (triangle inequality).

If (ii) does not hold, d is called a pseudometric. Moreover, it is straight-
forward to see the inverse triangle inequality (Problem 0.1)

dlx.y) — d(z.y)| < d(z, 2). (0.1)
BE
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Example. Euclidean space R” together with d(z,y) = (37—, (v —yx)?)/?
is a metric space and so is C" together with d(z,y) = (37—, [zx—yx|?) /2. ©

The set

Br(z) = {y € Xld(z,y) <r} (0.2)
is called an open ball around x with radius » > 0. A point 2 of some set
U is called an interior point of U if U contains some ball around x. If x
is an interior point of U, then U is also called a neighborhood of z. A
point z is called a limit point of U (also accumulation or cluster point)
if (Br(x)\{z})NU # 0 for every ball around z. Note that a limit point
x need not lie in U, but U must contain points arbitrarily close to z. A
point z is called an isolated point of U if there exists a neighborhood of z
not containing any other points of U. A set which consists only of isolated
points is called a discrete set. If any neighborhood of x contains at least
one point in U and at least one point not in U, then x is called a boundary
point of U. The set of all boundary points of U is called the boundary of
U and denoted by OU.

Example. Consider R with the usual metric and let U = (—1,1). Then
every point € U is an interior point of U. The points [—1, 1] are limit
points of U, and the points {—1,+1} are boundary points of U. o

A set consisting only of interior points is called open. The family of
open sets O satisfies the properties

(i) 0,X € O,
(ii) 01,02 € O implies O;1 N O3 € O,
(ili) {Oq} C O implies |, Oq € O.
That is, O is closed under finite intersections and arbitrary unions.

In general, a space X together with a family of sets O, the open sets,
satisfying (i)—(iii), is called a topological space. The notions of interior
point, limit point, and neighborhood carry over to topological spaces if we
replace open ball by open set.

There are usually different choices for the topology. Two not too inter-
esting examples are the trivial topology O = {0, X} and the discrete
topology O = B(X) (the powerset of X). Given two topologies O1 and Oy
on X, Oy is called weaker (or coarser) than O if and only if O; C Os.

Example. Note that different metrics can give rise to the same topology.
For example, we can equip R"” (or C") with the Euclidean distance d(z,y)
as before or we could also use

d(z,y) = |k — yxl- (0.3)
k=1
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Then

n

1 n n
. 2
= Do lwnl < ([ w2 <Y Ja (0-4)
k k=1 k=1
shows B,/ m(x) C B,(z) C B,(z), where B, B are balls computed using d,

d, respectively. o

Example. We can always replace a metric d by the bounded metric

7 d(l‘,y)
dlz,y) = —————— 0.5
@9 = T gy (05)
without changing the topology (since the family of open balls does not
change: Bs(z) = Bj/(144)(7)). o

Every subspace Y of a topological space X becomes a topological space
of its own if we call O C Y open if there is some open set O C X such
that O = O N'Y. This natural topology O® NY is known as the relative
topology (also subspace, trace or induced topology).

Example. The set (0,1] C R is not open in the topology of X = R, but it is
open in the relative topology when considered as a subset of Y = [—1,1]. ©

A family of open sets B C O is called a base for the topology if for each
x and each neighborhood U (), there is some set O € B with x € O C U(x).
Since an open set O is a neighborhood of every one of its points, it can be
written as O = Up5aei O and we have

Lemma 0.1. If B C O is a base for the topology, then every open set can
be written as a union of elements from B.

If there exists a countable base, then X is called second countable.

Example. By construction, the open balls By /n(x) are a base for the topol-
ogy in a metric space. In the case of R" (or C") it even suffices to take balls
with rational center, and hence R™ (as well as C") is second countable. ¢

A topological space is called a Hausdorff space if for two different
points there are always two disjoint neighborhoods.

Example. Any metric space is a Hausdorff space: Given two different
points z and y, the balls By (z) and Bg/s(y), where d = d(z,y) > 0, are
disjoint neighborhoods (a pseudometric space will not be Hausdorff). o

The complement of an open set is called a closed set. It follows from
de Morgan’s rules that the family of closed sets C satisfies
(i) 0, X ecC,
(ii) C1,C5 € C implies C; U (5 € C,
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(iii) {Ca} C C implies [, Cq € C.
That is, closed sets are closed under finite unions and arbitrary intersections.
The smallest closed set containing a given set U is called the closure
= (] ¢ (0.6)
cec,ucc
and the largest open set contained in a given set U is called the interior
vv= J o (0.7)
0e0,0CU

It is not hard to see that the closure satisfies the following axioms (Kura-
towski closure axioms):

(1) 0 =0,
(i) U c U,
(i) U =T,

(iv) UUV =UUYV.
In fact, one can show that they can equivalently be used to define the topol-
ogy by observing that the closed sets are precisely those which satisfy A = A.
We can define interior and limit points as before by replacing the word

ball by open set. Then it is straightforward to check

Lemma 0.2. Let X be a topological space. Then the interior of U is the set
of all interior points of U, and the closure of U is the union of U with all
limit points of U.

Example. The closed ball
B,(z) = {y € X|d(z,y) <r} (0.8)

is a closed set (check that its complement is open). But in general we have
only

B.(z) C B,(z) (0.9)
since an isolated point y with d(z,y) = r will not be a limit point. In R"
(or C™) we have of course equality. o

A sequence (z,,)2%; C X is said to converge to some point z € X if
d(xz,z,) — 0. We write lim,,_,o, , = = as usual in this case. Clearly the
limit is unique if it exists (this is not true for a pseudometric).

Every convergent sequence is a Cauchy sequence; that is, for every
€ > 0 there is some N € N such that

d(Tp, Tm) < €, n,m > N. (0.10)
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If the converse is also true, that is, if every Cauchy sequence has a limit,
then X is called complete.

Example. Both R™ and C™ are complete metric spaces. o

Note that in a metric space z is a limit point of U if and only if there
exists a sequence (x,)0%; C U\{z} with lim,_,~ 2, = . Hence U is closed
if and only if for every convergent sequence the limit is in U. In particular,

Lemma 0.3. A closed subset of a complete metric space is again a complete
metric space.

Note that convergence can also be equivalently formulated in topological
terms: A sequence x, converges to x if and only if for every neighborhood
U of x there is some N € N such that z,, € U for n > N. In a Hausdorff
space the limit is unique.

A set U is called dense if its closure is all of X, that is, if U = X. A
metric space is called separable if it contains a countable dense set.

Lemma 0.4. A metric space is separable if and only if it is second countable
as a topological space.

Proof. From every dense set we get a countable base by considering open
balls with rational radii and centers in the dense set. Conversely, from every
countable base we obtain a dense set by choosing an element from each
element of the base. O

Lemma 0.5. Let X be a separable metric space. Every subset Y of X is
again separable.

Proof. Let A = {x,}nen be a dense set in X. The only problem is that
ANY might contain no elements at all. However, some elements of A must
be at least arbitrarily close: Let J C N? be the set of all pairs (n,m) for
which B/, (2,) NY # 0 and choose some ynm € Bi/p(zn) NY for all
(n,m) € J. Then B = {Ynm}mnmyes S Y is countable. To see that B is
dense, choose y € Y. Then there is some sequence z,, with d(z,,,y) < 1/k.
Hence (ng, k) € J and d(Yn, k,y) < d(Yny ks Tny) + d(@n,,,y) <2/k— 0. O

Next, we come to functions f : X — Y, z — f(z). We use the usual
conventions f(U) = {f(x)|lz € U} for U C X and f~1(V) = {z|f(z) € V}
for V.C Y. The set Ran(f) = f(X) is called the range of f, and X is called
the domain of f. A function f is called injective if for each y € Y there
is at most one z € X with f(x) = y (i.e., f~*({y}) contains at most one
point) and surjective or onto if Ran(f) =Y. A function f which is both
injective and surjective is called bijective.
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A function f between metric spaces X and Y is called continuous at a
point x € X if for every € > 0 we can find a § > 0 such that

dy (f(z), f(y)) <e if  dx(z,y) <é. (0.11)

If f is continuous at every point, it is called continuous.

Lemma 0.6. Let X be a metric space. The following are equivalent:

(i) f is continuous at x (i.e., (0.11) holds).
(ii) f(zn) — f(x) whenever z, — x.
(iii) For every neighborhood V of f(x), f~1(V) is a neighborhood of x.

Proof. (i) = (ii) is obvious. (ii) = (iii): If (iii) does not hold, there is
a neighborhood V' of f(z) such that Bs(z) € f~1(V) for every §. Hence
we can choose a sequence x,, € Byj,(z) such that f(z,) & f~1(V). Thus
Ty — x but f(x,) 4 f(z). (ili) = (i): Choose V = B.(f(x)) and observe
that by (iii), Bs(z) C f~1(V) for some 4. O

The last item implies that f is continuous if and only if the inverse
image of every open set is again open (equivalently, the inverse image of
every closed set is closed). If the image of every open set is open, then f
is called open. A bijection f is called a homeomorphism if both f and
its inverse f~! are continuous. Note that if f is a bijection, then f~! is
continuous if and only if f is open.

In a topological space, (iii) is used as the definition for continuity. How-
ever, in general (ii) and (iii) will no longer be equivalent unless one uses
generalized sequences, so-called nets, where the index set N is replaced by
arbitrary directed sets.

The support of a function f : X — C” is the closure of all points x for
which f(z) does not vanish; that is,

supp(f) = {z € X|f(x) # 0}. (0.12)
If X and Y are metric spaces, then X x Y together with
d((z1,91), (z2,y2)) = dx (21, 22) + dy (y1,92) (0.13)

is a metric space. A sequence (z,,y,) converges to (z,y) if and only if
xn — x and y, — y. In particular, the projections onto the first (z,y) — =z,
respectively, onto the second (z,y) — vy, coordinate are continuous. More-
over, if X and Y are complete, so is X x Y.

In particular, by the inverse triangle inequality (0.1),

|d(2n, yn) — d(z,y)| < d(zn, ) + d(Yn, ), (0.14)

we see that d : X x X — R is continuous.
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Example. If we consider R x R, we do not get the Euclidean distance of
R? unless we modify (0.13) as follows:

d((x1,11), (2, 92)) = Vdx (w1, 22)% + dy (y1,2)*- (0.15)
As noted in our previous example, the topology (and thus also conver-
gence/continuity) is independent of this choice. o

If X and Y are just topological spaces, the product topology is defined
by calling O C X x Y open if for every point (x,y) € O there are open
neighborhoods U of x and V of y such that U x V' C O. In other words, the
products of open sets form a basis of the product topology. In the case of
metric spaces this clearly agrees with the topology defined via the product
metric (0.13).

A cover of a set Y C X is a family of sets {U,} such that Y C |, Ua.
A cover is called open if all U, are open. Any subset of {U,} which still
covers Y is called a subcover.

Lemma 0.7 (Lindelof). If X is second countable, then every open cover
has a countable subcover.

Proof. Let {U,} be an open cover for Y, and let B be a countable base.
Since every U, can be written as a union of elements from B, the set of all
B € B which satisfy B C U, for some « form a countable open cover for Y.
Moreover, for every B,, in this set we can find an «,, such that B,, C U,,,.
By construction, {U,, } is a countable subcover. O

A subset K C X is called compact if every open cover has a finite
subcover. A set is called relatively compact if its closure is compact.

Lemma 0.8. A topological space is compact if and only if it has the finite
intersection property: The intersection of a family of closed sets is empty
if and only if the intersection of some finite subfamily is empty.

Proof. By taking complements, to every family of open sets there is a cor-
responding family of closed sets and vice versa. Moreover, the open sets
are a cover if and only if the corresponding closed sets have empty intersec-
tion. ([l

Lemma 0.9. Let X be a topological space.

(i) The continuous image of a compact set is compact.

(ii) Ewvery closed subset of a compact set is compact.

(iv) The product of finitely many compact sets is compact.

(v

)

(iii) If X is Hausdorff, every compact set is closed.
)
)

The finite union of compact sets is again compact.
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(vi) If X is Hausdorff, any intersection of compact sets is again com-
pact.

Proof. (i) Observe that if {O,} is an open cover for f(Y), then {f~1(0,)}
is one for Y.

(ii) Let {On} be an open cover for the closed subset Y (in the induced
topology). Then there are open sets O, with O, = O,NY and {0, }U{X\Y}
is an open cover for X which has a finite subcover. This subcover induces a
finite subcover for Y.

(iii) Let Y € X be compact. We show that X\Y is open. Fix z € X\Y
(if Y = X, there is nothing to do). By the definition of Hausdorff, for
every y € Y there are disjoint neighborhoods V (y) of y and Uy (z) of z. By
compactness of Y, there are yi,...,y, such that the V(y;) cover Y. But
then U(z) = (;_; Uy,(x) is a neighborhood of = which does not intersect
Y.

(iv) Let {O4} be an open cover for X x Y. For every (z,y) € X xY
there is some a(z,y) such that (z,y) € Oy(y,y)- By definition of the product
topology there is some open rectangle U(z,y) x V(z,y) € Oy(y,y)- Hence for
fixed z, {V(x,y)}yey is an open cover of Y. Hence there are finitely many
points y(x) such that the V(z,y(x)) cover Y. Set U(x) =, U(x, yr(x)).
Since finite intersections of open sets are open, {U(z)}zcx is an open cover
and there are finitely many points x; such that the U(z;) cover X. By
construction, the U(z;) X V(2j, yk(25)) € Oq(a; yp(x;)) cOVer X X Y.

(v) Note that a cover of the union is a cover for each individual set and
the union of the individual subcovers is the subcover we are looking for.

(vi) Follows from (ii) and (iii) since an intersection of closed sets is
closed. 0

As a consequence we obtain a simple criterion when a continuous func-
tion is a homeomorphism.

Corollary 0.10. Let X and Y be topological spaces with X compact and
Y Hausdorff. Then every continuous bijection f : X — Y is a homeomor-
phism.

Proof. It suffices to show that f maps closed sets to closed sets. By (ii)
every closed set is compact, by (i) its image is also compact, and by (iii) it
is also closed. U

A subset K C X is called sequentially compact if every sequence
from K has a convergent subsequence. In a metric space, compact and
sequentially compact are equivalent.
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Lemma 0.11. Let X be a metric space. Then a subset is compact if and
only if it is sequentially compact.

Proof. Suppose X is compact and let x,, be a sequence which has no conver-
gent subsequence. Then K = {z,} has no limit points and is hence compact
by Lemma 0.9 (ii). For every n there is a ball B, (z,,) which contains only
finitely many elements of K. However, finitely many suffice to cover K, a
contradiction.

Conversely, suppose X is sequentially compact and let {O,} be some
open cover which has no finite subcover. For every x € X we can choose
some «a(z) such that if B,.(x) is the largest ball contained in O(,), then
either » > 1 or there is no  with Bo,(x) C Og (show that this is possible).
Now choose a sequence z, such that z, € (J,,., Oa(s,,)- Note that by
construction the distance d = d(x,, x,) to every successor of x,, is either
larger than 1 or the ball Byy(z,,) will not fit into any of the O,,.

Now let y be the limit of some convergent subsequence and fix some r €
(0,1) such that B,.(y) € Oyy)- Then this subsequence must eventually be in
B, 5(y), but this is impossible since if d = d(zn,, zn,) is the distance between
two consecutive elements of this subsequence, then Bayg(x,,) cannot fit into
Oq(y) by construction whereas on the other hand Bag(zn,) € Byys(a) C

a(y): O

In a metric space, a set is called bounded if it is contained inside some
ball. Note that compact sets are always bounded since Cauchy sequences
are bounded (show this!). In R™ (or C") the converse also holds.

Theorem 0.12 (Heine-Borel). In R™ (or C") a set is compact if and only
if it is bounded and closed.

Proof. By Lemma 0.9 (ii) and (iii) it suffices to show that a closed interval
in I C R is compact. Moreover, by Lemma 0.11, it suffices to show that
every sequence in I = [a,b] has a convergent subsequence. Let z, be our
sequence and divide I = [a, 2%] U [%F2,b]. Then at least one of these two
intervals, call it I;, contains infinitely many elements of our sequence. Let
Y1 = Zp, be the first one. Subdivide I; and pick y2 = z,,, with ng > n; as
before. Proceeding like this, we obtain a Cauchy sequence y,, (note that by
construction I,4+1 C I, and hence |y, — ym| < bfTa for m > n). O

By Lemma 0.11 this is equivalent to
Theorem 0.13 (Bolzano—Weierstral). Every bounded infinite subset of R™

(or C™) has at least one limit point.

Combining Theorem 0.12 with Lemma 0.9 (i) we also obtain the ex-
treme value theorem.



12 0. A first look at Banach and Hilbert spaces

Theorem 0.14 (Weierstral). Let X be compact. Every continuous function
f: X — R attains its mazimum and minimum.

A metric space for which the Heine-Borel theorem holds is called proper.
Lemma 0.9 (ii) shows that X is proper if and only if every closed ball is com-
pact. Note that a proper metric space must be complete (since every Cauchy
sequence is bounded). A topological space is called locally compact if ev-
ery point has a compact neighborhood. Clearly a proper metric space is
locally compact.

The distance between a point € X and a subset Y C X is
dist(z,Y) = inf d(z,vy). (0.16)
yey

Note that z is a limit point of Y if and only if dist(x,Y’) = 0.

Lemma 0.15. Let X be a metric space. Then
| dist(z,Y) — dist(2,Y)] < d(z, 2). (0.17)

In particular, x — dist(x,Y") is continuous.

Proof. Taking the infimum in the triangle inequality d(x,y) < d(z,z) +
d(z,y) shows dist(z,Y") < d(z, z)+dist(z,Y). Hence dist(z,Y)—dist(z,Y) <
d(x, z). Interchanging = and z shows dist(z,Y) — dist(z,Y) < d(z,z). O

Lemma 0.16 (Urysohn). Suppose C1 and Cs are disjoint closed subsets of
a metric space X. Then there is a continuous function f : X — [0,1] such
that f is zero on Co and one on Cf.

If X is locally compact and C is compact, one can choose f with compact
support.

Proof. To prove the first claim, set f(x) = dist(mcgslt)(fgst)(m - For the

second claim, observe that there is an open set O such that O is compact
and C; C O C O C X\Cy. In fact, for every x € Oy, there is a ball B.(x)
such that B.(z) is compact and Be(x) C X\Cs. Since C is compact, finitely
many of them cover C'; and we can choose the union of those balls to be O.
Now replace Cy by X\O. O

Note that Urysohn’s lemma implies that a metric space is normal; that
is, for any two disjoint closed sets C and Cy, there are disjoint open sets
O1 and O such that C; C Oj, j = 1,2. In fact, choose f as in Urysohn’s
lemma and set O; = f71([0,1/2)), respectively, Oy = f~1((1/2,1]).

Lemma 0.17. Let X be a locally compact metric space. Suppose K is a
compact set and {Oj}?:1 s an open cover. Then there is a partition of
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unity for K subordinate to this cover; that is, there are continuous functions
hj : X —[0,1] such that h; has compact support contained in O; and

zn: hi(z) < 1 (0.18)
j=1

with equality for r € K.

Proof. For every x € K there is some € and some j such that B.(z) C O;.
By compactness of K, finitely many of these balls cover K. Let K; be the
union of those balls which lie inside O;. By Urysohn’s lemma there are
continuous functions g; : X — [0,1] such that g; = 1 on K; and g; = 0 on
X\Oj. Now set

7—1
hi =g; [T(1 - a0).
k1

Then hj; : X — [0,1] has compact support contained in O; and

> hj(a) =1-T]0 - gj(x))
=1 j=1

shows that the sum is one for x € K, since x € Kj for some j implies
gj(z) =1 and causes the product to vanish. O

Problem 0.1. Show that |d(x,y) — d(z,y)| < d(z, z).

Problem 0.2. Show the quadrangle inequality |d(z,y) — d(2/,y)] <
d(z,2") + d(y, y).-

Problem 0.3. Show that the closure satisfies the Kuratowski closure axioms.

Problem 0.4. Show that the closure and interior operators are dual in the
sense that

X\A = (X\A)° and  X\A° = (X\A).
(Hint: De Morgan’s laws.)

Problem 0.5. Let U C V be subsets of a metric space X. Show that if U
is dense in 'V and V is dense in X, then U is dense in X.

Problem 0.6. Show that every open set O C R can be written as a countable
union of disjoint intervals. (Hint: Let {I,} be the set of all mazimal open
subintervals of O; that is, I, € O and there is no other subinterval of O
which contains I,. Then this is a cover of disjoint open intervals which has
a countable subcover.)

Problem 0.7. Show that the boundary of A is given by 0A = A\ A°.
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0.2. The Banach space of continuous functions

Now let us have a first look at Banach spaces by investigating the set of
continuous functions C(I) on a compact interval I = [a,b] C R. Since we
want to handle complex models, we will always consider complex-valued
functions!

One way of declaring a distance, well-known from calculus, is the max-
imum norm:

Il = max| ()] (0.19)

It is not hard to see that with this definition C'(I) becomes a normed vector
space:

A normed vector space X is a vector space X over C (or R) with a
nonnegative function (the norm) ||.|| such that

e |[f]| > 0 for f # 0 (positive definiteness),

o |[af]l = |al|f] for all &« € C, f € X (positive homogeneity),
and

o |lf+gll <|fIl+ llg| for all f,g € X (triangle inequality).

If positive definiteness is dropped from the requirements, one calls ||.|| a
seminorm.

From the triangle inequality we also get the inverse triangle inequal-
ity (Problem 0.8)

WA= llglll < [1f = gll- (0.20)

Once we have a norm, we have a distance d(f,g) = ||f — ¢|| and hence
we know when a sequence of vectors f, converges to a vector f. We
will write f, — f or lim,_~ fn = f, as usual, in this case. Moreover, a
mapping F': X — Y between two normed spaces is called continuous if
fn — f implies F(f,) — F(f). In fact, the norm, vector addition, and
multiplication by scalars are continuous (Problem 0.9).

In addition to the concept of convergence we have also the concept of
a Cauchy sequence and hence the concept of completeness: A normed
space is called complete if every Cauchy sequence has a limit. A complete
normed space is called a Banach space.

Example. The space /!(N) of all complex-valued sequences a = (a;)52, for
which the norm

o0
lally = lay] (0.21)
j=1

is finite is a Banach space.
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To show this, we need to verify three things: (i) ¢!(N) is a vector space
that is closed under addition and scalar multiplication, (ii) ||.||; satisfies the
three requirements for a norm, and (iii) ¢*(N) is complete.

First of all, observe
k k k

D lag+bi1 <D lagl+ D 161 < llall + [lb]l (0.22)

J=1 J=1 Jj=1
for every finite k. Letting k — 0o, we conclude that £}(N) is closed under
addition and that the triangle inequality holds. That ¢!(N) is closed under
scalar multiplication together with homogeneity as well as definiteness are
straightforward. It remains to show that £*(N) is complete. Let a™ = (a})524
be a Cauchy sequence; that is, for given £ > 0 we can find an N, such that
|la™ —a"|[x < e for m,n > N.. This implies in particular |a]* — a}| < & for
every fixed j. Thus af is a Cauchy sequence for fixed j and, by completeness

. PR n .
of C, it has a limit: lim,_, aj = aj. Now consider

k
Dl —af|<e (0.23)
j=1
and take m — oo:
k
> laj—aj| <e. (0.24)
j=1

Since this holds for all finite k, we even have ||a—a"||; < e. Hence (a—a"

)
(*(N) and since a" € ¢}(N), we finally conclude a = a” + (a — a™) € ¢}(N
By our estimate ||a — a™||; < ¢, our candidate a is indeed the limit of a”. ©

S
).

Example. The previous example can be generalized by considering the
space (?(N) of all complex-valued sequences a = (a;)372; for which the norm

1/p

o0
lally = > _la” | . pel o) (0.25)
j=1

is finite. By |a; +b;[P < 2P max(|a;l, |b;]) = 2P max(|a;|?, |b;|P) < 2P(|a;|P +
|b;|P) it is a vector space, but the triangle inequality is only easy to see in
the case p = 1. (It is also not hard to see that it fails for p < 1, which
explains our requirement p > 1. See also Problem 0.17.)

To prove it we need the elementary inequality (Problem 0.12)
1 1 1 1
alPplli < a4+ 28 4 >=1, a,2>0, (0.26)
p q p q
which implies Holder’s inequality

labllx < llallpllbllq (0.27)
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for x € P(N), y € ¢9(N). In fact, by homogeneity of the norm it suffices to
prove the case ||al|, = ||b]| = 1. But this case follows by choosing o = |a;|?
and = |b;|? in (0.26) and summing over all j.

Now using |a; +bj[P < |a;| |aj + b;[P~ +|b;| |aj + b;|P~L, we obtain from
Holder’s inequality (note (p — 1)g = p)

lla + b5 < llallpli(a + 0)P I + l1Bll,ll(a + )"~ g
= (lall + 1Bllp)lI(a + b) 5~

Hence /P is a normed space. That it is complete can be shown as in the case
p =1 (Problem 0.13). o

Example. The space ¢>°(N) of all complex-valued bounded sequences a =
(a;)72; together with the norm
lafloo = sup aj] (0.28)

JE€

is a Banach space (Problem 0.14). Note that with this definition, Hélder’s
inequality (0.27) remains true for the cases p =1, ¢ = oo and p = 00, ¢ = 1.
The reason for the notation is explained in Problem 0.16. o

Example. Every closed subspace of a Banach space is again a Banach space.
For example, the space ¢o(N) C ¢°°(N) of all sequences converging to zero is
a closed subspace. In fact, if a € £°°(N)\ ¢p(N), then liminf; , |a;| > e >0
and thus ||a — b||s > € for every b € ¢p(N). o

Now what about convergence in the space C'(I)? A sequence of functions
fn(x) converges to f if and only if

Jim I = fulloe = lim sup | fu(x) — £(z)] = 0. (0.29)

That is, in the language of real analysis, f,, converges uniformly to f. Now
let us look at the case where f, is only a Cauchy sequence. Then f,(z)
is clearly a Cauchy sequence of real numbers for every fixed x € I. In
particular, by completeness of C, there is a limit f(z) for each x. Thus we
get a limiting function f(xz). Moreover, letting m — oo in

|[fm(z) — fa(x)| <€ VYm,n > N,, z € I, (0.30)

we see
|f(x) — fu(x)] <e VYn > N, z €I (0.31)

that is, f,(z) converges uniformly to f(z). However, up to this point we do
not know whether it is in our vector space C(I), that is, whether it is con-
tinuous. Fortunately, there is a well-known result from real analysis which
tells us that the uniform limit of continuous functions is again continuous:
Fix x € I and € > 0. To show that f is continuous we need to find a § such



0.2. The Banach space of continuous functions 17

that |z — y| < § implies |f(x) — f(y)| < e. Pick n so that || f,, — fl|lcc < £/3
and ¢ so that |z — y| < 0 implies |fn(z) — fu(y)| < /3. Then |z —y| < o

implies
€ € €
7@~ FO] < 1 @)= Fa@) 1)~ ) al)~ F )] < 4545 =
as required. Hence f(x) € C(I) and thus every Cauchy sequence in C(I)
converges. Or, in other words,

Theorem 0.18. C(I) with the mazimum norm is a Banach space.

Next we want to look at countable bases. To this end we introduce a few
definitions first.

The set of all finite linear combinations of a set of vectors {u,} C X is
called the span of {u,, } and denoted by span{u, }. A set of vectors {u,} C X
is called linearly independent if every finite subset is. If {u,}_; C X,
N € NU {oo}, is countable, we can throw away all elements which can be
expressed as linear combinations of the previous ones to obtain a subset of
linearly independent vectors which have the same span.

We will call a countable set of vectors {u,})_; C X a Schauder ba-
sis if every element f € X can be uniquely written as a countable linear
combination of the basis elements:

N
f = Z CpUn, Cp = Cn(f) e C, (0.32)
n=1

where the sum has to be understood as a limit if N = oo (the sum is not
required to converge unconditionally). Since we have assumed the coeffi-
cients ¢, (f) to be uniquely determined, the vectors are necessarily linearly
independent.

Example. The set of vectors ", with 4 = 1 and 6], = 0, n # m, is a
Schauder basis for the Banach space ¢*(N).

Let a = (a;)52, € ¢*(N) be given and set a™ = > =1 a;0’. Then

[ee]
la—ali= )" lajl =0

j=n+1

since a} = a; for 1 < j < n and a}l =0 for j > n. Hence

J
oo
— Bvi
a= E a;o
=1

and {0"}7°, is a Schauder basis (linear independence is left as an exer-
cise). o
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A set whose span is dense is called total, and if we have a countable total
set, we also have a countable dense set (consider only linear combinations
with rational coefficients — show this). A normed vector space containing
a countable dense set is called separable.

Example. Every Schauder basis is total and thus every Banach space with
a Schauder basis is separable (the converse is not true). In particular, the
Banach space /!(N) is separable. o

While we will not give a Schauder basis for C'(I), we will at least show
that it is separable. In order to prove this, we need a lemma, first.

Lemma 0.19 (Smoothing). Let u,(z) be a sequence of nonnegative contin-
uous functions on [—1, 1] such that

/ up(x)de =1 and / Up(z)de — 0, 0 >0. (0.33)
lz|<1 d< |z <1

(In other words, uy, has mass one and concentrates near x =0 as n — 00.)

Then for every f € C’[—%, %] which vanishes at the endpoints, f(—%) —
f(%) =0, we have that

1/2
fu@) = [ e = sy (034)
converges uniformly to f(x).

Proof. Since f is uniformly continuous, for given ¢ we can find a § <
1/2 (independent of x) such that |f(z) — f(y)| < & whenever |z — y| < 4.
Moreover, we can choose n such that | s<lyl<1 un(y)dy < e. Now abbreviate

M = maxge(_1/2,1/211,|f(z)|} and note

1/2 1/2
) - / un(z — ) f(2)dy| = | ()| |1 — / |yt ] < A=

—~1/2

In fact, either the distance of x to one of the boundary points :l:% is smaller
than § and hence |f(z)| < e or otherwise [—4, ] C [x —1/2, 2+ 1/2] and the
difference between one and the integral is smaller than e.
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Using this, we have

1/2
fula) — f(2)] < / e ) fldy + Mo
_ / un( — 9)|f () — F(2)|dy
ly|<1/2,|z—y|<6

+f unle = )1 ) — Sy + M
ly|<1/2,|z—y|>6

<e+2Me + Me = (1+3M)e, (0.35)

which proves the claim. [l

Note that f, will be as smooth as u,, hence the title smoothing lemma.
Moreover, f, will be a polynomial if u,, is. The same idea is used to approx-
imate noncontinuous functions by smooth ones (of course the convergence
will no longer be uniform in this case).

Now we are ready to show:

Theorem 0.20 (Weierstral). Let I be a compact interval. Then the set of
polynomials is dense in C(I).

Proof. Let f(x) € C(I) be given. By considering f(x)— f(a) —M(Q:—

b—a
a) it is no loss to assume that f vanishes at the boundary points. Moreover,
without restriction, we only consider I = [—3, 1] (why?).
Now the claim follows from Lemma 0.19 using
1
un(w) = —(1—a*)",
I,
where
! 2 n ! 1 +1
L= (1-2*"dz = 1—a)" 11+ 2)"d
n /_1( ) "dx n+1/_1( )" (1+2) x
N SRR (1) s S B
(n+1)---2n+1) @n+1)! IR +1)---(3+n)

Indeed, the first part of (0.33) holds by construction, and the second part
follows from the elementary estimate

<I,<?2.
n+1 - "

Corollary 0.21. C(I) is separable.

However, (*°(N) is not separable (Problem 0.15)!
Problem 0.8. Show that ||| f]| — |lglll < II.f — gll-
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Problem 0.9. Let X be a Banach space. Show that the norm, vector ad-
dition, and multiplication by scalars are continuous. That is, if fn, — f,
gn — g, and o, — «, then ||an — ||f”; o+ g0 — f+g, and angn — ag.

Problem 0.10. Let X be a Banach space. Show that Z?il I1f5ll < oo

implies that
o0 n
D fi=Jim > f
j=1 J=1

exists. The series is called absolutely convergent in this case.

Problem 0.11. While (1(N) is separable, it still has room for an uncount-
able set of linearly independent vectors. Show this by considering vectors of
the form

a® = (1,a,0?,...), a e (0,1).
(Hint: Take n such vectors and cut them off after n + 1 terms. If the cut-

off vectors are linearly independent, so are the original ones. Recall the
Vandermonde determinant.)

Problem 0.12. Prove (0.26). (Hint: Take logarithms on both sides.)
Problem 0.13. Show that (P(N) is a separable Banach space.
Problem 0.14. Show that ¢*°(N) is a Banach space.

Problem 0.15. Show that ¢*°(N) is not separable. (Hint: Consider se-
quences which take only the value one and zero. How many are there? What
is the distance between two such sequences?)

Problem 0.16. Show that if a € ¢P°(N) for some py € [1,00), then a € (P(N)
for p > po and

Tim ally = fla].

Problem 0.17. Formally extend the definition of P(N) to p € (0,1). Show
that ||.||, does not satisfy the triangle inequality. However, show that it is
a quasinormed space; that is, it satisfies all requirements for a normed
space except for the triangle inequality which is replaced by

la+ bl < K([|all + [|b]])
with some constant K > 1. Show, in fact,
la +bll, < 227 (lallp + [bll,),  p € (0,1).

Moreover, show that ||.||b satisfies the triangle inequality in this case, but
of course it is no longer homogeneous (but at least you can get an honest
metric d(a,b) = ||a—0b|[5 which gives rise to the same topology). (Hint: Show
a4 B < (af +pP)r <2Vl (q 4 B) for0<p <1 anda,3>0.)
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0.3. The geometry of Hilbert spaces

So it looks like C(I) has all the properties we want. However, there is
still one thing missing: How should we define orthogonality in C'(I)? In
Euclidean space, two vectors are called orthogonal if their scalar product
vanishes, so we would need a scalar product:

Suppose §) is a vector space. A map (.,..) : H x H — C is called a
sesquilinear form if it is conjugate linear in the first argument and linear
in the second; that is,

(arfi+azfa,g) = ai(f1,9) +a5(f2,9),
(f,ong1 +azg2) = ai(f,g1) + a2(f, 92),

where ‘*’ denotes complex conjugation. A sesquilinear form satisfying the
requirements

(i) (f,f)y>0for f#0 (positive definite),
(i) (f,9) = (9, /) (symmetry)

is called an inner product or scalar product. Associated with every
scalar product is a norm

ai,an € C, (0.36)

LIV = /{F, £)- (0.37)

Only the triangle inequality is nontrivial. It will follow from the Cauchy—
Schwarz inequality below. Until then, just regard (0.37) as a convenient
short hand notation.

The pair (9, (.,..)) is called an inner product space. If §) is complete
(with respect to the norm (0.37)), it is called a Hilbert space.

Example. Clearly C" with the usual scalar product
(a,b) = > a’b; (0.38)
j=1

is a (finite dimensional) Hilbert space. o

Example. A somewhat more interesting example is the Hilbert space ¢2(N),
that is, the set of all complex-valued sequences

{(@)51| > Iyl < oo} (0.39)
j=1
with scalar product
(a,b) = alb;. (0.40)
j=1

(Show that this is in fact a separable Hilbert space — Problem 0.13.) o
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A vector f € $) is called normalized or a unit vector if ||f|| = 1.
Two vectors f,g € §) are called orthogonal or perpendicular (f L g) if
(f,g9) = 0 and parallel if one is a multiple of the other.

If f and g are orthogonal, we have the Pythagorean theorem:
If+gl> =171+ 1gll”,  fLg, (0.41)

which is one line of computation (do it!).

Suppose u is a unit vector. Then the projection of f in the direction of
u is given by
fi = (u, flu, (0.42)
and f, defined via
fr=17—(u, flu (0.43)

is perpendicular to u since (u, f|) = (u, f — (u, f)u) = (u, f) — (u, f){u,u) =
0.

f fJ_

fi

Taking any other vector parallel to u, we obtain from (0.41)

1f = aull® = 1 fe + (f) —aw)|? = [l + [, /) —af>  (0.44)

and hence f| = (u, f)u is the unique vector parallel to u which is closest to

As a first consequence we obtain the Cauchy—Schwarz—Bunjakowski
inequality:

Theorem 0.22 (Cauchy—Schwarz-Bunjakowski). Let $¢ be an inner prod-
uct space. Then for every f,g € $Hy we have

[l < [IfIHgll (0.45)
with equality if and only if f and g are parallel.

Proof. It suffices to prove the case ||g|| = 1. But then the claim follows
from || /1> = [{g, /)1 + lf*. .

Note that the Cauchy—Schwarz inequality implies that the scalar product
is continuous in both variables; that is, if f,, — f and g, — g, we have

<fnagn> — <f7.g>-
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As another consequence we infer that the map ||.|| is indeed a norm. In
fact,

1f +gl* = IF17 + (f,9) + (9. £ + gll® < (1F1 + Nlglh?>. (0.46)

But let us return to C'(I). Can we find a scalar product which has the
maximum norm as associated norm? Unfortunately the answer is no! The
reason is that the maximum norm does not satisfy the parallelogram law
(Problem 0.20).

Theorem 0.23 (Jordan-von Neumann). A norm is associated with a scalar
product if and only if the parallelogram law

I+ gl +11f = glI> =2l £1I” + 2llg]? (0.47)
holds.

In this case the scalar product can be recovered from its norm by virtue
of the polarization identity

(F.) =7 (1F + gl —11f = gl 3l gl ~ill7 +3gl?) . (0.48)

Proof. If an inner product space is given, verification of the parallelogram
law and the polarization identity is straightforward (Problem 0.22).

To show the converse, we define

s(0) = 5 (IF 9l IF — gl +i0f — gl ~ il +igl?).

Then s(f, f) = ||f||?> and s(f,g) = s(g, f)* are straightforward to check.
Moreover, another straightforward computation using the parallelogram law

shows
+h
s(F.9) + s(f,h) = 2s(£, 15=).
Now choosing h = 0 (and using s(f,0) = 0) shows s(f,g) = 2s(f, %) and
thus s(f,g) + s(f,h) = s(f,g + h). Furthermore, by induction we infer
5w5(f,9) = s(f, 5w 9); that is, a s(f,g) = s(f, ag) for every positive rational
a. By continuity (which follows from the triangle inequality for ||.||) this
holds for all @ > 0 and s(f, —g) = —s(f, g), respectively, s(f,ig) =1is(f,g),
finishes the proof. O

Note that the parallelogram law and the polarization identity even hold
for sesquilinear forms (Problem 0.22).

But how do we define a scalar product on C'(I)? One possibility is

b
@m—/fww@m. (0.49)
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The corresponding inner product space is denoted by £2,,(I). Note that

cont

1< V16— alll flloo (0.50)

and hence the maximum norm is stronger than the £2,, norm.

we have

Suppose we have two norms ||.||; and ||.||]2 on a vector space X. Then
||.]|2 is said to be stronger than |.||; if there is a constant m > 0 such that

1f1lx < mlf]l2. (0.51)

It is straightforward to check the following.

Lemma 0.24. If||.||2 is stronger than ||.||1, then every ||.||2 Cauchy sequence
is also a ||.][1 Cauchy sequence.

Hence if a function F' : X — Y is continuous in (X, ||.||1), it is also
continuous in (X, ||.[2), and if a set is dense in (X, ||.]|2), it is also dense in
(X, [I-[]1)-

In particular, £2,,, is separable. But is it also complete? Unfortunately
the answer is no:

Example. Take I = [0,2] and define

0, 0<z<1-1
fa@)=<14+n(z-1), 1-1<a<1, (0.52)
1, 1<z<2.

Then f,(z) is a Cauchy sequence in £2,,, but there is no limit in £2,,,!

Clearly the limit should be the step function which is 0 for 0 <z < 1 and 1
for 1 < x < 2, but this step function is discontinuous (Problem 0.25)! o

This shows that in infinite dimensional vector spaces, different norms
will give rise to different convergent sequences! In fact, the key to solving
problems in infinite dimensional spaces is often finding the right norm! This
is something which cannot happen in the finite dimensional case.

Theorem 0.25. If X is a finite dimensional vector space, then all norms
are equivalent. That is, for any two given norms ||.|1 and ||.||2, there are
positive constants mq1 and meo such that

£l < 1l < a7 (0.53)

Proof. Since equivalence of norms is an equivalence relation (check this!) we
can assume that [|.||2 is the usual Euclidean norm. Moreover, we can choose
an orthogonal basis uj, 1 < j < n, such that [| 3, aju;l3 = 2 loj|?. Let
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f=> ; ajuj. Then by the triangle and Cauchy—Schwarz inequalities,
<D lagllluglh < ) gl 1£ 112
J J

and we can choose mo = /> [|u;1-

In particular, if f,, is convergent with respect to ||.||2, it is also convergent
with respect to ||.|[1. Thus [|.||1 is continuous with respect to ||.||2 and attains
its minimum m > 0 on the unit sphere (which is compact by the Heine—Borel
theorem, Theorem 0.12). Now choose m; = 1/m. O

Problem 0.18. Show that the norm in a Hilbert space satisfies ||f + g|| =
I+ llgll if and only if f = ag, & =0, or g =0.

Problem 0.19 (Generalized parallelogram law). Show that, in a Hilbert

space,
oo llmi—mlP 1D wlP=n Y )™

1<j<k<n 1<j<n 1<j<n
The case n =2 is (0.47).

Problem 0.20. Show that the mazimum norm on C[0,1] does not satisfy
the parallelogram law.

Problem 0.21. In a Banach space, the unit ball is convex by the triangle
inequality. A Banach space X is called uniformly convex if for every
e > 0 there is some § such that ||z|| <1, ||y|| <1, and ||%|| >1—0 imply
lz =yl <e.

Geometrically this implies that if the average of two vectors inside the
closed unit ball is close to the boundary, then they must be close to each
other.

Show that a Hilbert space is uniformly convex and that one can choose

de) =1 —4/1— %. Draw the unit ball for R? for the norms |z|1 =
1] + |22, [Jzll2 = V]z1* + |22, and ||2]o = max(|z1], |x2]). Which of

these norms makes R? uniformly convex?

(Hint: For the first part, use the parallelogram law.)

Problem 0.22. Suppose Q is a vector space. Let s(f,g) be a sesquilinear
form on Q and q(f) = s(f, f) the associated quadratic form. Prove the
parallelogram law

q(f +9)+aq(f —g) =24(f) +2q(9) (0.54)

and the polarization identity

5(,0) = 1 (a(f +9) — a7 —9) +ia(7 —ig) ~iq(f +ig).  (0.59)
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Show that s(f,g) is symmetric if and only if q(f) is real-valued.
Problem 0.23. A sesquilinear form is called bounded if
sl = sup [s(f,9)l
If1I=llgll=1

is finite. Similarly, the associated quadratic form q is bounded if

lqll = Sup. lq(f)]

=
is finite. Show
lall < llsll < 2{lqll-

(Hint: Use the parallelogram law and the polarization identity from the pre-
vious problem.)

Problem 0.24. Suppose Q is a vector space. Let s(f,qg) be a sesquilinear
form on Q and q(f) = s(f, f) the associated quadratic form. Show that the
Cauchy—Schwarz inequality

[s(f,9)| < a(f)?a(9)"/ (0.56)
holds if q(f) > 0.

(Hint: Consider 0 < q(f + ag) = q(f) + 2Re(as(f,9)) + |a?q(g) and
choose o =t s(f,9)"/|s(f,g)| witht € R.)

Problem 0.25. Prove the claims made about f,, defined in (0.52), in the
last example.

0.4. Completeness

Since L2, is not complete, how can we obtain a Hilbert space from it?

Well, the answer is simple: take the completion.

If X is an (incomplete) normed space, consider the set of all Cauchy
sequences X. Call two Cauchy sequences equivalent if their difference con-
verges to zero and denote by X the set of all equivalence classes. It is easy
to see that X (and X ) inherit the vector space structure from X. Moreover,

Lemma 0.26. If x,, is a Cauchy sequence, then ||x,|| converges.

Consequently, the norm of a Cauchy sequence (z,,)52; can be defined
by ||(zn)o2 |l = limp—eo ||n|| and is independent of the equivalence class
(show this!). Thus X is a normed space (X is not! Why?).

Theorem 0.27. X is a Banach space containing X as a dense subspace if
we identify x € X with the equivalence class of all sequences converging to
x.
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oo
1 521]
be a Cauchy sequence in X. Then it is not hard to see that § = [(z;,;)72,]
is its limit. U

Proof. (Outline) It remains to show that X is complete. Let &, = [(2,;)

Let me remark that the completion X is unique. More precisely, every
other complete space which contains X as a dense subset is isomorphic to
X. This can for example be seen by showing that the identity map on X
has a unique extension to X (compare Theorem 0.29 below).

In particular, it is no restriction to assume that a normed vector space
or an inner product space is complete. However, in the important case

of £2,, it is somewhat inconvenient to work with equivalence classes of

Cauchy sequences and hence we will give a different characterization using
the Lebesgue integral later.

Problem 0.26. Provide a detailed proof of Theorem 0.27.

0.5. Bounded operators

A linear map A between two normed spaces X and Y will be called a (lin-
ear) operator

A:D(A)CX =Y. (0.57)
The linear subspace D(A) on which A is defined is called the domain of A
and is usually required to be dense. The kernel (also null space)
Ker(A)={fe®(A)|Af =0} C X (0.58)
and range
Ran(A) = {Af|f € D(A)} = AD(A)CY (0.59)

are defined as usual. The operator A is called bounded if the operator
norm

IAll=" sup  [|Af]ly (0.60)
FeD(A)IfIx=1

is finite.

By construction, a bounded operator is Lipschitz continuous,
[Aflly < Al fllx, €D, (0.61)
and hence continuous. The converse is also true:

Theorem 0.28. An operator A is bounded if and only if it is continuous.

Proof. Suppose A is continuous but not bounded. Then there is a sequence

of unit vectors uy, such that ||Au,| > n. Then f,, = Lu, converges to 0 but

|Afn|l > 1 does not converge to 0. O
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In particular, if X is finite dimensional, then every operator is bounded.
Note that in general one and the same operation might be bounded (i.e.
continuous) or unbounded, depending on the norm chosen.

Example. Consider the vector space of differentiable functions X = C1[0, 1]
and equip it with the norm (cf. Problem 0.29)

Il = mace | ()| + max. |f'(2)]

z€]0,1]

)

Let Y = C[0,1] and observe that the differential operator A = 4 : X Y
is bounded since

Aflloo = "(z)] < "(@)] = || flloo1-
14Flloe = mase |/(2)] < mave [£(@)]+ mmax /@) = | e

However, if we consider A = % :D(A) €Y — Y defined on D(A4) =
C10,1], then we have an unbounded operator. Indeed, choose

up(z) = sin(nrz)
which is normalized, ||uy|/c = 1, and observe that
Aup(z) = ul(z) = nw cos(nmz)

is unbounded, ||Auy|lcc = nm. Note that D(A) contains the set of polyno-
mials and thus is dense by the Weierstral approximation theorem (Theo-
rem 0.20). o

If A is bounded and densely defined, it is no restriction to assume that
it is defined on all of X.

Theorem 0.29 (B.L.T. theorem). Let A: ®(A) C X — Y be a bounded
linear operator and let Y be a Banach space. If ©(A) is dense, there is a
unique (continuous) extension of A to X which has the same operator norm.

Proof. Since a bounded operator maps Cauchy sequences to Cauchy se-
quences, this extension can only be given by

Zf = Jgn;oAfna In € Q(A)7 fex.

To show that this definition is independent of the sequence f,, — f, let
gn — f be a second sequence and observe

[Afn = Agnll = [A(fn = gn)l| < [[Allllfn = gnll = 0.

Since for f € D(A) we can choose f, = f, we see that Af = Af in this case;
that is, A is indeed an extension. From continuity of vector addition and
scalar multiplication it follows that A is linear. Finally, from continuity of
the norm we conclude that the operator norm does not increase. [l
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The set of all bounded linear operators from X to Y is denoted by
L(X)Y). If X =Y, we write £(X,X) = £(X). An operator in £(X,C)
is called a bounded linear functional, and the space X* = £(X,C) is
called the dual space of X.

Example. Consider X = C(I). Then for every to € I the point evaluation
Ui, (x) = z(to) is a bounded linear functional. o

Theorem 0.30. The space £(X,Y) together with the operator norm (0.60)
is a normed space. It is a Banach space if Y 1is.

Proof. That (0.60) is indeed a norm is straightforward. If Y is complete and
A, is a Cauchy sequence of operators, then A, f converges to an element
g for every f. Define a new operator A via Af = ¢g. By continuity of
the vector operations, A is linear and by continuity of the norm ||Af| =
limy, o0 [[Anfl] < (limp—oo ||[An]])][f]l, it is bounded. Furthermore, given
e > 0, there is some N such that ||A, — Ap|| < € for n,m > N and thus
|Anf—Amfll <ellf]]. Taking the limit m — oo, we see ||A,f—Af| < el fl|;
that is, 4, — A. O

The Banach space of bounded linear operators £(X) even has a multi-
plication given by composition. Clearly this multiplication satisfies

(A+B)C =AC+BC, AB+C)=AB+BC, A B,Cec£(X) (0.62)
and
(AB)C = A(BC), a(AB) = (aA)B = A(aB), a«aeC. (0.63)
Moreover, it is easy to see that we have
1AB| < Al B (0.64)

In other words, £(X) is a so-called Banach algebra. However, note that
our multiplication is not commutative (unless X is one-dimensional). We
even have an identity, the identity operator I satisfying ||I|| = 1.

Problem 0.27. Consider X = C" and let A : X — X be a matriz. Equip
X with the norm (show that this is a norm)

|zllo0 = max ||

and compute the operator norm ||A|| with respect to this matrixz in terms of
the matrixz entries. Do the same with respect to the norm

=D lal.

1<j<n
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Problem 0.28. Show that the integral operator

1
(K f)(x) = /0 K(z,9)f (y)dy,

where K(z,y) € C([0,1] x [0,1]), defined on D(K) = C[0,1], is a bounded
operator both in X = C[0,1] (maz norm) and X = £2,,,(0,1).

cont

Problem 0.29. Let I be a compact interval. Show that the set of dif-
ferentiable functions C*(I) becomes a Banach space if we set ||flloo1 =

maxger | f(z)| + maxzer | f/(z)].

Problem 0.30. Show that ||AB|| < ||Al|||B|| for every A, B € £(X). Con-
clude that the multiplication is continuous: A, — A and B, — B imply
A,B, — AB.

Problem 0.31. Let A € £(X) be a bijection. Show

A7 = inf Afll.
A7 = nt S

Problem 0.32. Let
fz)=>_f7, |zl <R,
=0

be a convergent power series with convergence radius R > 0. Suppose A is
a bounded operator with ||Al| < R. Show that

FA) =>4
§=0
exists and defines a bounded linear operator (cf. Problem 0.10).

0.6. Lebesgue LP spaces

For this section, some basic facts about the Lebesgue integral are required.
The necessary background can be found in Appendix A. To begin with,
Sections A.1, A.3, and A.5 will be sufficient.

We fix some o-finite measure space (X, X, u) and denote by LP(X,dpu),
1 < p, the set of all complex-valued measurable functions for which

1= (/. Iflpdu>1/p (0.65)

is finite. First of all, note that £P(X,du) is a vector space, since |f + g[P <
2P max(|f1,]g])P = 2P max([f|?,[g|P) < 2P(|f[P + |g|"). Of course our hope
is that £P(X,du) is a Banach space. However, there is a small technical
problem (recall that a property is said to hold almost everywhere if the set
where it fails to hold is contained in a set of measure zero):
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Lemma 0.31. Let f be measurable. Then

J AP au=o (0.66)
X
if and only if f(x) =0 almost everywhere with respect to p.

Proof. Observe that we have A = {z|f(z) # 0} = U,, An, where A4, =
{z||f(z)| > L}. If [ |f|Pdp = 0, we must have p(A,) = 0 for every n and
hence p(A) = limy, 00 p(4,) = 0.

Conversely, we have [y [f[Pdp = [, |f|Pdp = 0 since pu(A) = 0 implies
J4sdp = 0 for every simple function and thus for any integrable function
by definition of the integral. O

Note that the proof also shows that if f is not 0 almost everywhere,
there is an € > 0 such that p({x||f(z)| > €}) > 0.

Example. Let A be the Lebesgue measure on R. Then the characteristic
function of the rationals xq is zero a.e. (with respect to \).

Let © be the Dirac measure centered at 0. Then f(z) = 0 a.e. (with
respect to ©) if and only if f(0) = 0. o

Thus || f|l, = 0 only implies f(z) = 0 for almost every x, but not for all!
Hence ||.||, is not a norm on LP(X,du). The way out of this misery is to
identify functions which are equal almost everywhere: Let

N(X,du) = {f|f(z) = 0 p-almost everywhere}. (0.67)

Then N (X,du) is a linear subspace of £P(X,du) and we can consider the
quotient space

LP(X, dp) = LP(X, dp) JN(X, dp). (0.68)

If du is the Lebesgue measure on X C R™, we simply write LP(X). Observe
that || f]|, is well-defined on LP(X,dpu).

Even though the elements of LP(X,du) are, strictly speaking, equiva-
lence classes of functions, we will still call them functions for notational
convenience. However, note that for f € LP(X,du) the value f(z) is not
well-defined (unless there is a continuous representative and different con-
tinuous functions are in different equivalence classes, e.g., in the case of
Lebesgue measure).

With this modification we are back in business since LP(X,du) turns
out to be a Banach space. We will show this in the following sections.

But before that, let us also define L (X, du). It should be the set of
bounded measurable functions B(X) together with the sup norm. The only
problem is that if we want to identify functions equal almost everywhere, the
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supremum is no longer independent of the representative in the equivalence
class. The solution is the essential supremum

[flloc = mf{C'[ p({z[|f(x)] > C}) = 0}. (0.69)
That is, C' is an essential bound if |f(z)| < C almost everywhere and the
essential supremum is the infimum over all essential bounds.

Example. If A is the Lebesgue measure, then the essential sup of xg with
respect to A is 0. If © is the Dirac measure centered at 0, then the essential
sup of xg with respect to © is 1 (since xg(0) = 1, and = = 0 is the only
point which counts for ©). o

As before, we set
L>®(X,dp) = B(X)/N (X, dp) (0.70)

and observe that || f||~ is independent of the equivalence class.
If you wonder where the oo comes from, have a look at Problem 0.33.

As a preparation for proving that LP is a Banach space, we will need
Holder’s inequality, which plays a central role in the theory of LP spaces.
In particular, it will imply Minkowski’s inequality, which is just the triangle
inequality for LP.

Theorem 0.32 (Holder’s inequality). Let p and q be dual indices; that is,
1 1
-+-=1 (0.71)
P q

with 1 < p < oo. If f € LP(X,du) and g € LY(X,du), then fg € L' (X, du)

and

1 gl < (£ llpllgllg- (0.72)

Proof. The case p =1, ¢ = 0o (respectively p = 0o, ¢ = 1) follows directly
from the properties of the integral and hence it remains to consider 1 <
P, q < 0.

First of all, it is no restriction to assume | f||, = ||g|[; = 1. Then, using
(0.26) with a = |f|P and 5 = |g|? and integrating over X gives

1 1
[ vroldn < [ ifrane [ lglran =1
X pPJx q9.Jx
and finishes the proof. O

As a consequence we also get
Theorem 0.33 (Minkowski’s inequality). Let f,g € LP(X,dp). Then
1+ glly < 11fllp + [lgllp- (0.73)
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Proof. Since the cases p = 1, o0 are straightforward, we only consider 1 <
p < co. Using |f + g[P < |fIIf +glP~" + |g||f + gP~!, we obtain from
Holder’s inequality (note (p — 1)g = p)

1F + gll5 < A + 9P g + allpll(F + )P g

= (I£llp + lgllp) I (F + )~
O

This shows that LP(X, du) is a normed vector space. Finally, it remains
to show that LP(X,du) is complete.

Theorem 0.34. The space LP(X,du), 1 < p < oo, is a Banach space.

Proof. We begin with the case 1 < p < oo. Suppose f, is a Cauchy
sequence. It suffices to show that some subsequence converges (show this).
Hence we can drop some terms such that
1
an+1 - anP < 27

Now consider g, = f,, — fn—1 (set fo =0). Then

o
G(x) =) |g(x)|
k=1
is in LP. This follows from

n n
> 198l || =3 ligullp < A1l +1
k=1 k=1

using the monotone convergence theorem. In particular, G(z) < oo almost
everywhere and the sum

oo

S gula) = lim fu(a)

n=1
is absolutely convergent for those x. Now let f(z) be this limit. Since
|f(z) — fn(x)|P converges to zero almost everywhere and |f(z) — fn(2)|P <
(2G(x))?P € L', dominated convergence shows ||f — full, — 0.

In the case p = oo, note that the Cauchy sequence property |f,(z) —
fm(z)| < e for n,m > N holds except for sets A;,, of measure zero. Since
A= Unm Ay, m is again of measure zero, we see that f,(x) is a Cauchy
sequence for x € X\ A. The pointwise limit f(x) = lim, 0 fn(x), z € X\A,
is the required limit in L*°(X, du) (show this). O

In particular, in the proof of the last theorem we have seen:

Corollary 0.35. If ||f,, — fll, — O, then there is a subsequence (of repre-
sentatives) which converges pointwise almost everywhere.



34 0. A first look at Banach and Hilbert spaces

Note that the statement is not true in general without passing to a
subsequence (Problem 0.38).

Using Holder’s inequality, we can also identify a class of bounded oper-
ators in LP.

Lemma 0.36 (Schur criterion). Consider LP(X,du) and LP(Y,dv) and let
% + % = 1. Suppose that K(x,y) is measurable and there are measurable
functions Ki(x,y), Ko(x,y) such that |K(x,y)| < Ki(z,y)K2(x,y) and

1K1 (2, )l pagyan) < Ch, 12 ) oo (xap) < Ca (0.74)

for p-almost every x, respectively, for v-almost every y. Then the operator
K : LP(Y,dv) — LP(X,du) defined by

- [ K@niwi) (075)
for p-almost every x is bounded with || K| < C1Cs.

Proof. We assume 1 < p < oo for simplicity and leave the cases p = 1, 0o to
the reader. Choose f € LP(Y, dv). By Fubini’s theorem, [\|K (z,y)f(y)|dv(y)
is measurable and by Holder’s inequality, we have

/\Kw u) £ () ldv(y) /K ry) Ko, )| £ () d ()

<(/ K1<x,y>Qdu<y>)l/q (/ 1K2<x,y>f<y>rpdu<y>)l/p

< </Y !KQ(m,y)f(y)\pdV(w)l/p

(if Ko(x,.)f(.) € LP(X,dv), the inequality is trivially true). Now take this
inequality to the p’th power and integrate with respect to x using Fubini:

p
/ ( [ G flanty >) n) < [ [ 1Ka(o) S avlu)auta)
e / / |Ka(a,y) () Pdpu()du(y) < CECE| FIE.
YJX

Hence [y |K(z,y)f(y)|dv(y) € LP(X,dp) and in particular it is finite for
- almost every x. Thus K(z,.)f(.) is v integrable for u-almost every x and
Iy K (y)dv(y) is measurable. O

It even turns out that LP is separable.

Lemma 0.37. Suppose X is a second countable topological space (i.e., it has
a countable basis) and p is an outer reqular Borel measure. Then LP(X, du),
1 < p < oo, is separable. In particular, for every countable basis which is
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closed under finite unions, the set of characteristic functions xo(x) with O
in this basis is total.

Proof. The set of all characteristic functions y4(x) with A € ¥ and p(4) <
oo is total by construction of the integral. Now our strategy is as follows:
Using outer regularity, we can restrict A to open sets, and using the existence
of a countable base, we can restrict A to open sets from this base.

Fix A. By outer regularity, there is a decreasing sequence of open sets
Oy, such that ;(O,,) — u(A). Since p(A) < oo, it is no restriction to assume
w(Oy) < o0, and thus p(O,\A) = w(O,) — u(A) — 0. Now dominated
convergence implies x4 — X0, ||[p — 0. Thus the set of all characteristic
functions xo(z) with O open and p(O) < oo is total. Finally, let B be a
countable basis for the topology. Then, every open set O can be written as
O = Uj‘;l Oj with Oj € B. Moreover, by considering the set of all finite
unions of elements from B, it is no restriction to assume U?Zl Oj € B. Hence

there is an increasing sequence O,, * O with O, € B. By monotone con-
vergence, ||xo — xg, |lp — 0 and hence the set of all characteristic functions

Xg with O € B is total. O

To finish this chapter, let us show that continuous functions are dense
in LP.

Theorem 0.38. Let X be a locally compact metric space and let u be a
o-finite reqular Borel measure. Then the set C.(X) of continuous functions
with compact support is dense in LP(X,du), 1 < p < oo.

Proof. Asin the previous proof, the set of all characteristic functions x i (x)
with K compact is total (using inner regularity). Hence it suffices to show
that yx(x) can be approximated by continuous functions. By outer regu-
larity there is an open set O D K such that u(O\K) < e. By Urysohn’s
lemma (Lemma 0.16) there is a continuous function f; which is 1 on K and
0 outside O. Since

/ XK — felPdp = / |flPdp < p(O\K) <,
X O\K
we have ||f: — xk|| = 0 and we are done. 0

If X is some subset of R™, we can do even better. A nonnegative function
u € C°(R") is called a mollifier if

/ w(w)dz = 1. (0.76)

The standard mollifier is u(x) = exp(w%l) for || < 1 and u(z) = 0
otherwise.
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If we scale a mollifier according to ug(z) = k™u(k ) such that its mass is
preserved (Jjug|l1 = 1) and it concentrates more and more around the origin,

A

Uk,

we have the following result (Problem 0.39):

Lemma 0.39. Let u be a mollifier in R™ and set ug(x) = k"u(kz). Then
for every (uniformly) continuous function f : R™ — C we have that

few) = [ e~ ) 1wy (0.77)
is in C°(R™) and converges to f (uniformly).

Now we are ready to prove

Theorem 0.40. If X CR" is open and u is a reqular Borel measure, then
the set C°(X) of all smooth functions with compact support is dense in
Lp(Xa d:U’); 1< p < <.

Proof. By our previous result it suffices to show that every continuous
function f(x) with compact support can be approximated by smooth ones.
By setting f(x) = 0 for ¢ X, it is no restriction to assume X = R".
Now choose a mollifier u and observe that fi has compact support (since
f has). Moreover, since f has compact support, it is uniformly continuous
and fr — f uniformly. But this implies f — f in LP. (]

We say that f € LY (X)if f € LP(K) for every compact subset K C X.

loc

Lemma 0.41. Suppose f € L} (R™). Then

loc
[ e@ i@z =0,  vpecz@) (0.78)
if and only if f(z) =0 (a.e.).

Proof. First of all, we claim that for every bounded function g with compact
support K, there is a sequence of functions ¢, € C2°(R") with support in
K which converges pointwise to g such that ||¢n]lec < ||9]|co-
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To see this, take a sequence of continuous functions ¢, with support in
K which converges to g in L!. To make sure that ||o, s < [|9lco, just set
it equal to sign(¢n)||lgllec Whenever |@,| > ||gllcc (show that the resulting
sequence still converges). Finally, use (0.77) to make ¢,, smooth (note that
this operation does not change the sup) and extract a pointwise convergent
subsequence.

Now let K be some compact set and choose g = sign(f)*xx. Then

[ ittde = [ 1 sen(ryde =t [ feudo=o.

which shows f = 0 for a.e. x € K. Since K is arbitrary, we are done. O

Problem 0.33. Suppose u(X) < oo. Show that L>®(X,du) C LP(X,du)
and

T [ fllp = e € L¥(X,dp).

Problem 0.34. Show the following generalization of Hélder’s inequality:

1 1 1
< , -4+ -=-. 0.79
1f glle < [1f1pllgllq P i (0.79)
Problem 0.35. Show the iterated Holder’s inequality:
N 1 1
Ifree flle < LIS, b == (0.80)
j=1 b1 Pm r
Problem 0.36. Show that
11
[ullpy < p(X)ro #llully, 1 <po<p.

(Hint: Holder’s inequality.)

Problem 0.37 (Lyapunov inequality). Let 0 < 6 < 1. Show that if f €
LPr N LP2 ) then f € LP and

£ 1l < 1115, 115 (0.81)

1_ 6 , 1-6
where,p—pl-i- oy

Problem 0.38. Find a sequence f, which converges to 0 in LP([0,1],dx),
1 < p < oo, but for which fn(x) — 0 for a.e. x € [0,1] does not hold.
(Hint: Every n € N can be uniquely written as n = 2™ + k with 0 < m
and 0 < k < 2™. Now consider the characteristic functions of the intervals
L =[k27™, (k+1)27™].)

Problem 0.39. Prove Lemma 0.39. (Hint: To show that fy is smooth, use
Problems A.19 and A.20.)
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Problem 0.40. Construct a function f € LP(0,1) which has a singularity at
every rational number in [0,1] (such that the essential supremum is infinite
on every open subinterval). (Hint: Start with the function fo(x) = |x|=¢
which has a single singularity at 0, then f;j(z) = fo(x —x;) has a singularity
at xj.)

Problem 0.41. Let p; be o-finite reqular Borel measures on some second
countable topological spaces X, j = 1,2. Show that the set of characteristic
functions x a,xa, with Aj Borel sets is total in LP(X; x Xo,d(p1 ® p2)) for
1 <p < oo. (Hint: Problem A.21 and Lemma 0.37.)

0.7. Appendix: The uniform boundedness principle

Recall that the interior of a set is the largest open subset (that is, the union
of all open subsets). A set is called nowhere dense if its closure has empty
interior. The key to several important theorems about Banach spaces is the
observation that a Banach space cannot be the countable union of nowhere
dense sets.

Theorem 0.42 (Baire category theorem). Let X be a complete metric space.
Then X cannot be the countable union of nowhere dense sets.

Proof. Suppose X = ;- ; X,,. We can assume that the sets X,, are closed
and none of them contains a ball; that is, X\ X, is open and nonempty for
every n. We will construct a Cauchy sequence z,, which stays away from all
X,.

Since X\ X is open and nonempty, there is a closed ball B, (z1) C
X\X1. Reducing r; a little, we can even assume B, (z1) € X\X;. More-
over, since Xy cannot contain By, (z1), there is some zo € B, (x1) that is
not in Xs. Since By, (x1) N (X \X2) is open, there is a closed ball By, (z2) C
By, (z1) N (X\X2). Proceeding by induction, we obtain a sequence of balls
such that

By, (zn) C By, (xn—1) N (X\X,).
Now observe that in every step we can choose r,, as small as we please; hence
without loss of generality r, — 0. Since by construction z,, € B, (zn) for
n > N, we conclude that x, is Cauchy and converges to some point z € X.
But =z € B, (z,) C X\X, for every n, contradicting our assumption that

the X, cover X. O

(Sets which can be written as the countable union of nowhere dense sets
are said to be of first category. All other sets are second category. Hence
we have the name category theorem.)

In other words, if X,, C X is a sequence of closed subsets which cover
X, at least one X,, contains a ball of radius € > 0.
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Since a closed set is nowhere dense if and only if its complement is open
and dense (cf. Problem 0.4), there is a reformulation which is also worthwhile
noting:

Corollary 0.43. Let X be a complete metric space. Then any countable
intersection of open dense sets is again dense.

Proof. Let O,, be open dense sets whose intersection is not dense. Then
this intersection must be missing some ball B.. The closure of this ball will
lie in |J,, Xy, where X,, = X\O,, are closed and nowhere dense. But B. is a
complete metric space, a contradiction. O

Now we come to the following important consequence, the uniform
boundedness principle.

Theorem 0.44 (Banach-Steinhaus). Let X be a Banach space and'Y some
normed vector space. Let {Ay} C £(X,Y) be a family of bounded operators.
Suppose |Aqz|| < C(x) is bounded for fited x € X. Then {Ans} is uniformly
bounded, |Aq.| < C.

Proof. Let
Xp = {z|||Aaz| < n for all a} = m{:p| |Aaz|| < n}.

Then (J,, X, = X by assumption. Moreover, by continuity of A, and the
norm, each X, is an intersection of closed sets and hence closed. By Baire’s
theorem, at least one contains a ball of positive radius: B (z¢) C X,. Now
observe

[Aayll < [[Aa(y + o)l + [[Aazoll < n + C(0)
for ||ly|| < e. Setting y = Eﬁ, we obtain

n+ C(xo)
€

[Aaz]| < ]

for every x. O






Part 1

Mathematical
Foundations of
Quantum Mechanics






Chapter 1

Hilbert spaces

The phase space in classical mechanics is the Euclidean space R*" (for the n
position and n momentum coordinates). In quantum mechanics the phase
space is always a Hilbert space $). Hence the geometry of Hilbert spaces
stands at the outset of our investigations.

1.1. Hilbert spaces

Suppose $) is a vector space. A map (.,..) : Hx$H — C is called a sesquilinear
form if it is conjugate linear in the first argument and linear in the second.
A positive definite sesquilinear form is called an inner product or scalar
product. Associated with every scalar product is a norm

[l = v, ). (1.1)

The triangle inequality follows from the Cauchy—Schwarz—Bunjakowski
inequality:

[, o) < 191l el (1.2)
with equality if and only if ¢» and ¢ are parallel.

If $ is complete with respect to the above norm, it is called a Hilbert
space. It is no restriction to assume that §) is complete since one can easily
replace it by its completion.

Example. The space L%(M, du) is a Hilbert space with scalar product given
by

(f.9) = /M f (@) g(@)du(z). (1.3)
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Similarly, the set of all square summable sequences ¢?(N) is a Hilbert space
with scalar product

(f.9)=>_fig; (1.4)

JeN
(Note that the second example is a special case of the first one; take M = R
and p a sum of Dirac measures.) o
A vector ¢ € $ is called normalized or a unit vector if ||| = 1.

Two vectors 1, ¢ € §) are called orthogonal or perpendicular (i) L ) if
(1, p) = 0 and parallel if one is a multiple of the other.

If ¢ and ¢ are orthogonal, we have the Pythagorean theorem:

I+l = 9l” +llel?, v L, (1.5)

which is one line of computation.

Suppose ¢ is a unit vector. Then the projection of 1 in the direction of
 is given by

Y = (@, ), (1.6)
and 1, defined via
Y =9 —(pY)p (1.7)
is perpendicular to .

These results can also be generalized to more than one vector. A set of
vectors {¢;} is called an orthonormal set (ONS) if (p;, i) =0 for j # k
and (p;,¢;) = 1. Note that every orthonormal set is linearly independent
(show this).

Lemma 1.1. Suppose {cpj}?zo 1s an orthonormal set. Then every iy € $
can be written as

n

=P+, Y= (58 (1.8)

j=0

where | and v are orthogonal. Moreover, (pj;¥1) =0 forall1 < j <n.
In particular,

1112 = > 1 )P + [l (1.9)
j=0

Moreover, every 1) in the span of {gpj}?zo satisfies

1 — &l > [l (1.10)

with equality holding if and only if zﬂ = 1. In other words, | is uniquely
characterized as the vector in the span of {goj};?:o closest to 1.
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Proof. A straightforward calculation shows (p;,1 — wH) = 0 and hence 9
and ¢, = 9 — ¢ are orthogonal. The formula for the norm follows by
applying (1.5) iteratively.

Now, fix a vector

v=)> ajp;
j=0

in the span of {y; }?:0. Then one computes
Il = DI = Iy + oo =17 = Ll® + vy — )7
= oL ?+ D loy = (e )
§=0

from which the last claim follows. O

From (1.9) we obtain Bessel’s inequality
n
> Wei ) < llvll® (1.11)
j=0

with equality holding if and only if ¢ lies in the span of {¢;}7]_g.
Recall that a scalar product can be recovered from its norm by virtue of
the polarization identity

(o) = i (le + 91 = o = ¢l* +ille — iwl* —ilo +iwl?) . (1.12)

A bijective linear operator U € £($1, $2) is called unitary if U preserves
scalar products:

<U907 U¢>2 = <()0777/)>17 4Pa¢ € f)l- (113)

By the polarization identity, this is the case if and only if U preserves norms:
U2 = ||¥]|1 for all ¢ € $1. The two Hilbert spaces $; and $)2 are called

unitarily equivalent in this case.
Problem 1.1. The operator
S : %(N) — (*(N), (a1,a2,as3,...)— (0,a1,az,...)

satisfies ||Sal| = ||a||. Is it unitary?

1.2. Orthonormal bases

Of course, since we cannot assume $) to be a finite dimensional vector space,
we need to generalize Lemma 1.1 to arbitrary orthonormal sets {¢;};e..
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We start by assuming that J is countable. Then Bessel’s inequality (1.11)
shows that

S lfes, )2 (1.14)
JjeJ
converges absolutely. Moreover, for every finite subset K C J we have
1Y {ei el =Y Kes ) (1.15)
jEK jEK
by the Pythagorean theorem and thus ) je s{@s,9)p; is Cauchy if and only
if > ey |(p;,¥)]? is. Now let J be arbitrary. Again, Bessel’s inequality
shows that for every given € > 0 there are at most finitely many j for
which |(¢;,1)| > . Hence there are at most countably many j for which
|{(¢j,%)| > 0. Thus it follows that

> s ) (1.16)
JjeJ
is well-defined and so is

PRI (1.17)
JjEJ
In particular, by continuity of the scalar product we see that Lemma 1.1
can be generalized to arbitrary orthonormal sets.

Theorem 1.2. Suppose {p;};cs is an orthonormal set. Then every 1 € 9
can be written as

Y=+, Y= > {25 V)5, (1.18)
jeJ
where ¥ and ¥ are orthogonal. Moreover, (pj; 1) =0 forallj € J. In
particular,

19112 =" [z, ) + ] (1.19)

jeJ
Furthermore, every v in span{y;}jes satisfies

I =l > o (1.20)

with equality holding if and only if 1,!3 = 4. In other words, ¢ is uniquely
characterized as the vector in span{¢;}je; closest to 1.

Proof. The first part follows as in Lemma 1.1 using continuity of the scalar
product. The same is true for the last part except for the fact that every ¢ €
span{y; }jcs can be written as ¢ = ZjeJ ajp; (i.e., ¥ =1). To see this, let
Yn € span{p;}jes converge to 1. Then ||t =1y || = [[oo —tnl>+ ¢ L||* — 0
implies ¢, — ¢ and ¢ = 0. U
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Note that from Bessel’s inequality (which of course still holds), it follows
that the map ¢ — 9| is continuous.

An orthonormal set which is not a proper subset of any other orthonor-
mal set is called an orthonormal basis (ONB) due to the following result:

Theorem 1.3. For an orthonormal set {¢;}jes, the following conditions
are equivalent:

(i) {¥j}jes is a mazimal orthonormal set.

(ii) For every vector 1) € $) we have

P = (o V)p;. (1.21)

JeJ
(ili) For every vector ¢ € $) we have Parseval’s relation

1I? = s ). (1.22)

JjeJ
(iv) (pj,¥) =0 for all j € J implies yp = 0.

Proof. We will use the notation from Theorem 1.2.

(i) = (ii): If ¢, # 0, then we can normalize | to obtain a unit vector ¥,
which is orthogonal to all vectors ¢;. But then {¢;};es U {41 } would be a
larger orthonormal set, contradicting the maximality of {¢;};e..

(ii) = (iii): This follows since (ii) implies ¢, = 0.

(iii) = (iv): If (¢, ;) = 0 for all j € J, we conclude ||¢)[|> = 0 and hence
1 =0.

(iv) = (i): If {¢;}jes were not maximal, there would be a unit vector ¢
such that {¢;}jes U {p} is a larger orthonormal set. But (p;, p) = 0 for all
j € J implies ¢ = 0 by (iv), a contradiction. O

Since 9 — 1)) is continuous, it suffices to check conditions (ii) and (iii)
on a dense set.

Example. The set of functions

1 .
on(z) = memx, n € 7, (1.23)

forms an orthonormal basis for § = L2(0,27). The corresponding orthogo-
nal expansion is just the ordinary Fourier series (Problem 1.21). o

A Hilbert space is separable if and only if there is a countable orthonor-
mal basis. In fact, if §) is separable, then there exists a countable total set
{9; };V: o- Here N € Nif §) is finite dimensional and N = co otherwise. After
throwing away some vectors, we can assume that ¢, 11 cannot be expressed
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as a linear combination of the vectors g, ..., 1¥,. Now we can construct an
orthonormal basis as follows: We begin by normalizing v,
Yo
2= ol (1.24)

Next we take 11 and remove the component parallel to ¢y and normalize
again:
oy = Y1 — (o, ¥1)¢0 _ (1.25)
11 — {0, ¥1)oll

Proceeding like this, we define recursively

-1
i wn - Z?:O <90j7 %)@j
= — :
[on = 22520 (5> Ynd i

This procedure is known as Gram—Schmidt orthogonalization. Hence
we obtain an orthonormal set {¢; };VZO such that span{;}7_, = span{t;}7_
for every finite n and thus also for N' (if N = co). Since {wj}j-vzo is total, so
is {goj}é-v:o. Now suppose there is some 1) = | + ¢ € $ for which ¢, # 0.
Since {«pj}é\f:l is total, we can find a ¢ in its span such that || — || < ||¢L]],
contradicting (1.20). Hence we infer that {¢; }é\le is an orthonormal basis.

(1.26)

Pn

Theorem 1.4. FEvery separable Hilbert space has a countable orthonormal
basis.

Example. In L?(—1,1), we can orthogonalize the polynomial f,,(z) = a™.
The resulting polynomials are up to a normalization equal to the Legendre
polynomials

_ 322 -1

Py(z)=1, Pi(z)=z, P(z)= —g (1.27)

(which are normalized such that P,(1) = 1). o

In fact, if there is one countable basis, then it follows that every other
basis is countable as well.

Theorem 1.5. If §) is separable, then every orthonormal basis is countable.

Proof. We know that there is at least one countable orthonormal basis
{¢j}tjes. Now let {¢r}rex be a second basis and consider the set K; =
{k € K|{¢r,j) # 0}. Since these are the expansion coefficients of ¢; with
respect to {¢x}rek, this set is countable. Hence the set K = UjEJ K; is

countable as well. But k € K \f( implies ¢, = 0 and hence K = K. O

We will assume all Hilbert spaces to be separable.
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In particular, it can be shown that L?(M,du) is separable. Moreover, it
turns out that, up to unitary equivalence, there is only one (separable)
infinite dimensional Hilbert space:

Let $ be an infinite dimensional Hilbert space and let {¢;};en be any
orthogonal basis. Then the map U : § — (2(N), ¢ — ({¢;,¥))jen is unitary
(by Theorem 1.3 (iii)). In particular,

Theorem 1.6. Any separable infinite dimensional Hilbert space is unitarily
equivalent to (*(N).

Let me remark that if § is not separable, there still exists an orthonor-
mal basis. However, the proof requires Zorn’s lemma: The collection of all
orthonormal sets in $) can be partially ordered by inclusion. Moreover, ev-
ery linearly ordered chain has an upper bound (the union of all sets in the
chain). Hence Zorn’s lemma implies the existence of a maximal element,
that is, an orthonormal basis.

Problem 1.2. Let {¢;} be some orthonormal basis. Show that a bounded
linear operator A is uniquely determined by its matriz elements Aj, =
(@), Apy) with respect to this basis.

Problem 1.3. Show that £()) is not separable if § is infinite dimensional.

1.3. The projection theorem and the Riesz lemma

Let M C $ be a subset. Then M+ = {3|{p,¥) = 0,V € M} is called
the orthogonal complement of M. By continuity of the scalar prod-
uct it follows that M is a closed linear subspace and by linearity that
(span(M))t = M*L. For example, we have 5~ = {0} since every vector
in $ must be in particular orthogonal to all vectors in some orthonormal
basis.

Theorem 1.7 (Projection theorem). Let M be a closed linear subspace of a
Hilbert space ). Then every ¢ € $) can be uniquely written as ¢ = +

with ¢ € M and ¢, € M. One writes
Mae M =5 (1.28)

i this situation.

Proof. Since M is closed, it is a Hilbert space and has an orthonormal
basis {¢;};cs. Hence the existence part follows from Theorem 1.2. To see
uniqueness, suppose there is another decomposition 1 = 1/)H 4+ . Then

P — Yy =L —¥L € MN M+ ={0}. O
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This also shows that every orthogonal set {¢;};e.; can be extended to an
orthogonal basis, since we can just add an orthogonal basis for ({p;};es)*

Moreover, Theorem 1.7 implies that to every ¥ € $ we can assign a
unique vector ¢ which is the vector in M closest to o). The rest, ¢ — 1,
lies in M. The operator Pyt = 1) is called the orthogonal projection
corresponding to M. Note that we have

P{ =Py  and (Pr, p) = (Y, Pup) (1.29)

since (Prp),0) = (Y, ) = (¥, Puyp). Clearly we have Pyt = ¢ —
Pyrip = 1. Furthermore, (1.29) uniquely characterizes orthogonal projec-

tions (Problem 1.6).

Moreover, if M is a closed subspace, we have P11 = 1 — Py =
I — (I — Py) = Py; that is, M+ = M. If M is an arbitrary subset, we
have at least

M+ = span(M). (1.30)

Note that by $+ = {0} we see that M+ = {0} if and only if M is total.

Finally we turn to linear functionals, that is, to operators £ : § —
C. By the Cauchy-Schwarz inequality we know that £, : 1 — (p,9) is a

bounded linear functional (with norm |¢l|). It turns out that, in a Hilbert
space, every bounded linear functional can be written in this way.

Theorem 1.8 (Riesz lemma). Suppose £ is a bounded linear functional on a
Hilbert space $. Then there is a unique vector ¢ € §) such that £(1)) = (¢, 1)
for ally € 9.

In other words, a Hilbert space is equivalent to its own dual space H* = §
via the map ¢ — (@, .) which is a conjugate linear isometric bijection between

$ and H*.

Proof. If { = 0, we can choose ¢ = 0. Otherwise Ker(¢) = {¢[{(y) = 0}
is a proper subspace and we can find a unit vector ¢ € Ker(¢)*. For every
P € $ we have £(y)p — £(p)y € Ker(£) and hence

0= (&, L() — U@)) = £(v) — (@) (,)-
In other words, we can choose ¢ = £(@)*¢. To see uniqueness, let p1, @o be

two such vectors. Then (p1 — ¢2,v) = (@1,v) — (p2,¢) = L(Y) — L(yp) =0
for every 1 € $, which shows ¢; — 9 € H+ = {0}. O

The following easy consequence is left as an exercise.

Corollary 1.9. Suppose s is a bounded sesquilinear form; that is,

(¥, o) < Cll]l [lell- (1.31)
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Then there is a unique bounded operator A such that

s(1h, ) = (AP, @). (1.32)
Moreover, the norm of A is given by
[Al = sup  [(Ap,p)| < C. (1.33)
lll=lell=1

Note that by the polarization identity (Problem 0.22), A is already
uniquely determined by its quadratic form g () = (¢, AY).

Problem 1.4. Suppose U : $ — $ is unitary and M C $. Show that
UM+ = (UM)*.

Problem 1.5. Show that an orthogonal projection Py; # 0 has norm one.
Problem 1.6. Suppose P € £($)) satisfies

P*=P and  (Py,p)= (¥, Py)
and set M = Ran(P). Show

o Py =1 forp € M and M is closed,
o o € M* implies Po € M+ and thus Po = 0,

and conclude P = Pyy.

Problem 1.7. Let Py, P5 be two orthogonal projections. Show that Py < Py
(that is, (¢, Piyp) < (¢, Pa)) if and only if Ran(Py) C Ran(P2). Show in
this case that the two projections commute (that is, Py Py = PoP)) and that
Py — Py is also a projection. (Hints: ||Pj| = ||¢| if and only if Py =1
and Ran(P;) C Ran(P) if and only if PP = P;.)

Problem 1.8. Show P : L*(R) — L*(R), f(z) = i(f(z) + f(-x)) is a
projection. Compute its range and kernel.

Problem 1.9. Prove Corollary 1.9.

Problem 1.10. Consider the sesquilinear form

siro)= [ ([ sera) ([ owa)a

in L?(0,1). Show that it is bounded and find the corresponding operator A.
(Hint: Integration by parts.)



52 1. Hilbert spaces

1.4. Orthogonal sums and tensor products

Given two Hilbert spaces $1 and $)2, we define their orthogonal sum
1@ H2 to be the set of all pairs (¢1,12) € H1 x H2 together with the scalar
product

((p1,02), (1, 92)) = (p1,¥1)1 + (P2, P2)2. (1.34)

It is left as an exercise to verify that £ ® o is again a Hilbert space.
Moreover, $; can be identified with {(¢1,0)[¢1 € 1}, and we can regard
1 as a subspace of $1 P H, and similarly for $o. It is also customary to
write 11 + 19 instead of (¢1,12).

More generally, let $;, j € N, be a countable collection of Hilbert spaces
and define

D 9;=_wilvs €9 > luslj < oo, (1.35)
j=1 j=1 j=1
which becomes a Hilbert space with the scalar product
O @i Y i) = (05,155 (1.36)
j=1  j=1 j=1
Example. B2, C = /2(N). o

Similarly, if $ and § are two Hilbert spaces, we define their tensor
product as follows: The elements should be products ¢®”Lﬁ of elements ¢ € §
and ¢ € §. Hence we start with the set of all finite linear combinations of
elements of $ x .‘r:J:

F($,9) = > aj(w;, ¥))|(5,4;) € 5 x H, a; € C}. (1.37)
j=1

Since we want (¢1+¢2)(8~)1; = Y QY+ R, 1?@(1/;1-1-1&2) = b @1+ Da,
and (o) @ 1 =19 @ (o)), we consider F(9,9)/N($,$), where

N($,9) =span{ Y a;Be(thj, ) — Oy, > Betn)}  (1.38)
Gk=1 Jj=1 k=1
and write ¢ ® v for the equivalence class of (¢, 1/;)
Next, we define
(W@, ¢®0) = (1, 0)(,9) (1.39)

which extends to a sesquilinear form on F (8, 9)/N($,$). To show that we
obtain a scalar product, we need to ensure positivity. Let ¢ = ), a;1);®@1; #
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0 and pick orthonormal bases ¢;, ¢, for span{t;}, span{zﬁi}, respectively.
Then

= Zajkcpj ® P, Qjk = Z ;i (@, Vi) (Br, Vi) (1.40)
j?k /L
and we compute

(W, 0) = lazl* > 0. (1.41)
7.k

The completion of F (.6,5:3) /N (S’JJS;J) with respect to the induced norm is
called the tensor product $ ® $ of H and $.

Lemma 1.10. If p;, ¢ are orthonormal bases for ), S;J, respectively, then
©j @ @r, is an orthonormal basis for H X 5.

Proof. That ¢; ® ¢y, is an orthonormal set is immediate from (1.39). More-
over, since span{y;}, span{@y} are dense in §, ), respectively, it is easy to
see that ¢; ® @ is dense in F(,9)/N($,$). But the latter is dense in
H® 9. O

Example. We have $H @ C* = H™. o

Example. Let (M, du) and (M, dj1) be two measure spaces. Then we have
L*(M,dp) @ L32(M,dp) = L*(M x M,du x dfi).

Clearly we have L2(M,dp) ® L*(M,dj) € L*(M x M,dp x dfi). Now
take an orthonormal basis ¢; ® @ for L*(M,du) ® L?(M,dji) as in our
previous lemma. Then

| [ i@t s i) <o (142)
M JM
implies
/¢j<x>*fk<x>du<x>:o, folz) = / Sel) e y)dily)  (1.43)
M M

and hence f(x) = 0 p-a.e. z. But this implies f(z,y) = 0 for p-a.e. x and
fi-a.e. y and thus f = 0. Hence p; ® @y, is a basis for L2(M x M,dp x dfi)
and equality follows. o

It is straightforward to extend the tensor product to any finite number
of Hilbert spaces. We even note

P o) en=P®; o) (1.44)
j=1 j=1
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where equality has to be understood in the sense that both spaces are uni-
tarily equivalent by virtue of the identification

O vy =>Y ¢y (1.45)
j=1 =1

Problem 1.11. Show that ¥ ® ¢ = 0 if and only if v = 0 or ¢ = 0.

Problem 1.12. We have 1 ® 1) =9¢® ) # 0 if and only if there is some
a € C\{0} such that ¢ = a¢ and ¢ = a~'¢.

Problem 1.13. Show (1.44).

1.5. The C* algebra of bounded linear operators

We start by introducing a conjugation for operators on a Hilbert space $).
Let A € £(9). Then the adjoint operator is defined via

(0, A") = (A, ) (1.46)
(compare Corollary 1.9).
Example. If § = C" and A = (ajk)1<j,k<n, then A* = (a};)1<jk<n- o

Lemma 1.11. Let A, B € £($)) and o € C. Then
O 40y =445, @A) =k
(ii) A™ =
(iii) (AB)* B*A*
(iv) |4 = Al and ||A]]? = |A*A|| = || AA%].
Proof. (i) is obvious. (ii) follows from (p, A**) = (A*p, ) = (fe, Ap).

(iii) follows from (p, (AB)y) = (A*p, BY) = (B*A*p, ). (iv) follows using
(1.33) from

A" = sup  [(,A"p)| = sup  [{A, )]
lell=ll]|=1 llell=lv]=1
= sup [(p, AP)| = [|A]
llell=llvl=1

and

|A*All = sup  [(p, A"AY)[ = sup  [(Ap, AY)]|
llell=ll¥l=1 llell=ll¥l=1
= s | Ag|* = ||A|?,
llell=

where we have used |[|¢|| = SUpP | y|j=1 (%, ). O
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As a consequence of ||A*|| = ||Al|, observe that taking the adjoint is
continuous.

In general, a Banach algebra A together with an involution

(a+b)=a"+0b", (wa)"=a"a", o =a, (ab)*=0"a" (1.47)

satisfying

la]|* = [|a*all (1.48)
is called a C* algebra. The element a* is called the adjoint of a. Note that
|la*|| = ||a|| follows from (1.48) and |laa*|| < ||a|||la*].

Any subalgebra which is also closed under involution is called a *-
subalgebra. An ideal is a subspace Z C A such that a € Z, b € A imply
ab € T and ba € Z. If it is closed under the adjoint map, it is called a *-ideal.
Note that if there is an identity e, we have e* = e and hence (a=1)* = (a*)~1
(show this).

Example. The continuous functions C(I) together with complex conjuga-
tion form a commutative C* algebra. o

An element a € A is called normal if aa® = a*a, self-adjoint if a = a*,
unitary if aa* = a*a = I, an (orthogonal) projection if a = a* = a2, and
positive if a = bb* for some b € A. Clearly both self-adjoint and unitary
elements are normal.

Problem 1.14. Let A € £(9). Show that A is normal if and only if
[AQ[| = [|A™]l, Vi € .
(Hint: Problem 0.22.)
Problem 1.15. Show that U : § — § is unitary if and only if U~ = U*.
Problem 1.16. Compute the adjoint of
S : 2(N) — (*(N), (a1,a9,a3,...) — (0,a1,as,...).

1.6. Weak and strong convergence

Sometimes a weaker notion of convergence is useful: We say that v, con-
verges weakly to ¢ and write

VX—_])lcgl Yp =1 or P, (1.49)

if (o, ) — (@, ) for every ¢ € ) (show that a weak limit is unique).

Example. Let ¢, be an (infinite) orthonormal set. Then (¢, ¢,) — 0 for
every 1 since these are just the expansion coefficients of ¥. (¢, does not
converge to 0, since ||¢,| = 1.) o
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Clearly v,, — 1 implies v,, — 1 and hence this notion of convergence is
indeed weaker. Moreover, the weak limit is unique, since (p, ¥,) — (@, )

and (@, 9,) = (p,) imply (¢, (¢ —¥)) = 0. A sequence v, is called a
weak Cauchy sequence if (p,,) is Cauchy for every ¢ € §.

Lemma 1.12. Let $ be a Hilbert space.

(1) ¥ — ¢ implies ||| < liminf ||¢)y,||.

(ii) Every weak Cauchy sequence 1y, is bounded: ||vy| < C.
(iii) Every weak Cauchy sequence converges weakly.
)

(iv) For a weakly convergent sequence v, — ¥ we have 1, — ¥ if and
only if lim sup [|¢n[| < [|¢)]].

Proof. (i) Observe

9[> = (¥,) = liminf (), ¥,) < [|o| iminf [|oby |-

(ii) For every ¢ we have that |[(p,¥n)| < C(y) is bounded. Hence by the
uniform boundedness principle we have |1, | = [[(¢n, )] < C.

(iii) Let ¢, be an orthonormal basis and define ¢, = limy, o0 {@m, ¥n)-
Then ¢ =), ¢mm is the desired limit.

(iv) By (i) we have lim [[¢,,|| = ||?|| and hence

1 = ¥nll* = [91* = 2Re((%, ¥n)) + [9al® = 0.

The converse is straightforward. U

Clearly, an orthonormal basis does not have a norm convergent subse-
quence. Hence the unit ball in an infinite dimensional Hilbert space is never
compact. However, we can at least extract weakly convergent subsequences:

Lemma 1.13. Let $ be a Hilbert space. Every bounded sequence v, has a
weakly convergent subsequence.

Proof. Let ¢ be an orthonormal basis. Then by the usual diagonal se-
quence argument we can find a subsequence 1, such that (¢, 1y,,,) con-
verges for all k. Since v, is bounded, (p, 1y, ) converges for every ¢ € §
and hence 1y, is a weak Cauchy sequence. [l

Finally, let me remark that similar concepts can be introduced for oper-
ators. This is of particular importance for the case of unbounded operators,
where convergence in the operator norm makes no sense at all.

A sequence of operators A, is said to converge strongly to A,

slimA, = A = Ay — Ap Vo € D(A) C D(Ay). (1.50)

n—o0
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It is said to converge weakly to A,
W-_l}imAn =A & AW —-AY YWeDA) CD(A,). (1.51)

Clearly, norm convergence implies strong convergence and strong conver-
gence implies weak convergence.

Example. Consider the operator S, € £(¢2(N)) which shifts a sequence n
places to the left, that is,

Sn (.I'l,.ﬁUQ,...) = (.%'n+1,xn+2,...), (152)

and the operator S} € £(¢2(N)) which shifts a sequence n places to the right
and fills up the first n places with zeros, that is,

S;(.%'l,.fg,...):(0,...,O,x1,x2,...). (153)

n places
Then S,, converges to zero strongly but not in norm (since ||.S,|| = 1) and
S converges weakly to zero (since (@, Sk1)) = (Snpp, 1)) but not strongly
(since [[Soll = [[¥]) - o

Note that this example also shows that taking adjoints is not continuous
with respect to strong convergence! If A,, = A, we only have

(0, Anth) = (Angp, b)) = (A, ¥) = (@, A™)) (1.54)

and hence A¥ — A* in general. However, if 4,, and A are normal, we have
(Problem 1.14)
[AZ 0N = | Ant|| = [|A¥[| = [[A™]| (1.55)

and hence A % A* by Lemma 1.12 (iv) in this case. Thus, at least for
normal operators, taking adjoints is continuous with respect to strong con-
vergence.

Lemma 1.14. Suppose A, € £(9) is a sequence of bounded operators.
(i) s-lim A, = A implies || A|| < liminf ||A4,]|.
n—0o0 n—00
(ii) Every strong Cauchy sequence Ay, is bounded: ||A,| < C.

(iii) If Apyp — At for o in some dense set and |A,|| < C, then
s-lim A,, = A.

n—o0

The same result holds if strong convergence is replaced by weak convergence.

Proof. (i) follows from

4w = lim [ A] < liminf |4,
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for every ¢ with ||¢| = 1.
(ii) follows as in Lemma 1.12 (ii).
(iii) Just use
[Ant) = AY[| < [|Ant) — Anep|| + [[Angp — Agl| + [|Ap — A9
<2009 = ol + [ Anp — Ag|
and choose ¢ in the dense subspace such that ||t — ¢|| < ;& and n large
such that [[A,p — Ayp| < 5.

The case of weak convergence is left as an exercise. (Hint: (2.14).) O

Lemma 1.15. Suppose A,, B, € £($)) are two sequences of bounded oper-
ators.
(i) s-lim A, = A and s-lim B,, = B implies s-lim A, B,, = AB.
n—oo n—oo n—oo

(ii) w-lim A4,, = A and s-lim B,, = B implies w-lim A, B,, = AB.
n—oo

(iii) lim A, = A and w-lim B,, = B implies w-lim A, B,, = AB.

Proof. For the first case, just observe
1(AnBn — AB)Y|| < [[(An — A)BY|| + [[Anll|(Bn — B)¥|| — 0.

The remaining cases are similar and again left as an exercise. O

Example. Consider again the last example. Then

SrSn (z1,x9,...) =(0,...,0,Zpy1, Tpyo,...)
———

n places

converges to 0 weakly (in fact even strongly) but
SnS;(fL'l,l'Q, e ) = (xla To,. .. )

does not! Hence the order in the second claim is important. o

Problem 1.17. Suppose ¥, — ¥ and pn — @. Then (n, n) — (U, 9).
Problem 1.18. Show that 1, — v implies Ap, — Ay for A € £(9).

Problem 1.19. Let {¢;}32, be some orthonormal basis. Show that ¢n — ¢
if and only if ¢y, is bounded and (p;,Vn) — (pj,¢) for every j. Show that
this is wrong without the boundedness assumption.

Problem 1.20. A subspace M C $) is closed if and only if every weak
Cauchy sequence in M has a limit in M. (Hint: M = M++.)
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1.7. Appendix: The Stone—Weierstrafl theorem

In case of a self-adjoint operator, the spectral theorem will show that the
closed x-subalgebra generated by this operator is isomorphic to the C* alge-
bra of continuous functions C'(K) over some compact set K C C. Hence it is
important to be able to identify dense sets. We will be slightly more general
and assume that K is some compact metric space. Then it is straightforward
to check that the same proof as in the case K = [a,b] (Section 0.2) shows
that C(K,R) and C(K) = C(K,C) are Banach spaces when equipped with
the maximum norm ||f|lecc = max,ex |f(2)].

Theorem 1.16 (Stone—Weierstraf}, real version). Suppose K is a compact
metric space and let C(K,R) be the Banach algebra of continuous functions
(with the maximum norm).

If F Cc C(K,R) contains the identity 1 and separates points (i.e., for

every xy # xa there is some function f € F such that f(x1) # f(z2)), then
the algebra generated by F' is dense.

Proof. Denote by A the algebra generated by F. Note that if f € A, we
have |f| € A: By the Weierstral approximation theorem (Theorem 0.20)
there is a polynomial p,(t) such that |[t| — pn(t)] < & for t € f(K) and
hence p,(f) = |f].

In particular, if f, g are in A, we also have

(f+9)+If—4g|
2 )

(f+9)—1f—yl

min{f, g} = 5

max{f, g} =
in A.
Now fix f € C(K,R). We need to find some f. € A with ||f — f:]|o < &

First of all, since A separates points, observe that for given y,z € K
there is a function f,. € A such that f,.(y) = f(y) and f,.(2) = f(2)
(show this). Next, for every y € K there is a neighborhood U(y) such that

fyz(x) > f(2) —e, x€U(y),
and since K is compact, finitely many, say U(y1),...,U(y;), cover K. Then
fe=max{fy o ..., fy; -} € A

and satisfies f, > f —e by construction. Since f,(z) = f(z) for every z € K,
there is a neighborhood V' (z) such that

fo(x) < f(x)+e, z€V(z),

and a corresponding finite cover V(z1),...,V (z;). Now

fE :min{lew"afzk} GZ
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satisfies fo < f +e. Since f —e < f,, < f., we have found a required
function. O

Theorem 1.17 (Stone—Weierstrafl). Suppose K is a compact metric space
and let C(K) be the C* algebra of continuous functions (with the mazimum
norm).

If F C C(K) contains the identity 1 and separates points, then the -
subalgebra generated by F' is dense.

Proof. Just observe that F = {Re(f),Im(f)|f € F} satisfies the assump-
tion of the real version. Hence every real-valued continuous function can be
approximated by elements from F'; in particular, this holds for the real and
imaginary parts for every given complex-valued function. O

Note that the additional requirement of being closed under complex
conjugation is crucial: The functions holomorphic on the unit ball and con-
tinuous on the boundary separate points, but they are not dense (since the
uniform limit of holomorphic functions is again holomorphic).

Corollary 1.18. Suppose K is a compact set and let C(K) be the C* algebra
of continuous functions (with the maximum norm).

If F C C(K) separates points, then the closure of the x-subalgebra gen-
erated by F is either C(K) or {f € C(K)|f(to) = 0} for some ty € K.

Proof. There are two possibilities: either all f € F vanish at one point
to € K (there can be at most one such point since F' separates points)
or there is no such point. If there is no such point, we can proceed as in
the proof of the Stone—Weierstral theorem to show that the identity can
be approximated by elements in A (note that to show |f| € A if f € A4,
we do not need the identity, since p,, can be chosen to contain no constant
term). If there is such a g, the identity is clearly missing from A. However,
adding the identity to A, we get A +C = C(K), and it is easy to see that
A={f e C(K)[f(to) = 0}. O

Problem 1.21. Show that the functions p,(x) = —+=e"®, n € Z, form an
orthonormal basis for $ = L?(0,27).
Problem 1.22. Let k € N and I C R. Show that the x-subalgebra generated
by f(t) = ﬁ for one zg € C is dense in the C* algebra Coo(I) of
continuous functions vanishing at infinity:

e forI=Rifzoc C\R and k=1 or k=2,

e for I =[a,00) if zg € (—o0,a) and k arbitrary,

e for I = (—o00,alU[b,o0) if 29 € (a,b) and k odd.
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(Hint: Add oo to R to make it compact.)

Problem 1.23. Let U C C\R be a set which has a limit point and is sym-
metric under complex conjugation. Show that the span of {(t — )"tz € U}
is dense in C*°(R). (Hint: The product of two such functions is in the span
provided they are different.)

Problem 1.24. Let K C C be a compact set. Show that the set of all
functions f(z) = p(x,y), where p : R? — C is polynomial and z = x + iy, is
dense in C(K).






Chapter 2

Self-adjointness and
spectrum

2.1. Some quantum mechanics

In quantum mechanics, a single particle living in R? is described by a
complex-valued function (the wave function)

U(z,t), (z,t) € R® x R, (2.1)

where = corresponds to a point in space and ¢ corresponds to time. The
quantity p;(z) = |[(x,t)|? is interpreted as the probability density of the
particle at the time ¢. In particular, v» must be normalized according to

/Rg W )2 =1, teR. (2.2)

The location x of the particle is a quantity which can be observed (i.e.,
measured) and is hence called observable. Due to our probabilistic inter-
pretation, it is also a random variable whose expectation is given by

Ey(z) = /R i, d. (2.3)

In a real-life setting, it will not be possible to measure x directly, and one will
only be able to measure certain functions of x. For example, it is possible to
check whether the particle is inside a certain area (2 of space (e.g., inside a
detector). The corresponding observable is the characteristic function xq(z)
of this set. In particular, the number

Boln) = [ xa@lofds = [ panfds @4

63
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corresponds to the probability of finding the particle inside 2 C R3 at time
t € R. An important point to observe is that, in contradistinction to classical
mechanics, the particle is no longer localized at a certain point. In particular,
the mean-square deviation (or variance) Ay (z)? = Ey(2?) — Ey(2)? is
always nonzero.

In general, the configuration space (or phase space) of a quantum
system is a (complex) Hilbert space ), and the possible states of this system
are represented by the elements ) having norm one, ||| = 1.

An observable a corresponds to a linear operator A in this Hilbert space,
and its expectation, if the system is in the state 1), is given by the real number

Ey(A) = (¢, Ap) = (A, ), (2.5)

where (.,..) denotes the scalar product of §. Similarly, the mean-square
deviation is given by

Ay(A)? = Ey(A%) = Ey(A)” = [[(A — Ey(A))0[*. (2.6)

Note that Ay (A) vanishes if and only if 1) is an eigenstate corresponding to
the eigenvalue E(A); that is, A = Ey(A)y.

From a physical point of view, (2.5) should make sense for every ¢ € §).
However, this is not in the cards as our simple example of one particle already
shows. In fact, the reader is invited to find a square integrable function ()
for which z1(x) is no longer square integrable. The deeper reason behind
this nuisance is that E(r) can attain arbitrarily large values if the particle
is not confined to a finite domain, which renders the corresponding opera-
tor unbounded. But unbounded operators cannot be defined on the entire
Hilbert space in a natural way by the closed graph theorem (Theorem 2.9
below).

Hence, A will only be defined on a subset ©(A) C $), called the domain
of A. Since we want A to be defined for at least most states, we require
D(A) to be dense.

However, it should be noted that there is no general prescription for how
to find the operator corresponding to a given observable.

Now let us turn to the time evolution of such a quantum mechanical
system. Given an initial state 1)(0) of the system, there should be a unique
¥ (t) representing the state of the system at time ¢ € R. We will write

P(t) = U(t)i(0)- (2.7)

Moreover, it follows from physical experiments that superposition of
states holds; that is, U(t)(a191(0) + a292(0)) = a191(t) + agtpe(t). In
other words, U(t) should be a linear operator. Moreover, since 1 (t) is a
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state (i.e., || (t)]] = 1), we have
U@ = Nl (2.8)

Such operators are called unitary. Next, since we have assumed uniqueness
of solutions to the initial value problem, we must have

U) =1, U(t+s)=U(t)U(s). (2.9)
A family of unitary operators U(t) having this property is called a one-
parameter unitary group. In addition, it is natural to assume that this
group is strongly continuous; that is,

im U =Ult)y, 1 € H. (2.10)

t—to

Each such group has an infinitesimal generator, defined by

i 1
Hy =lim ~(U()) — ), D(H) = {¢ € H|lim - (U(t)y) — ) exists}.
t—0t t—0 t
(2.11)
This operator is called the Hamiltonian and corresponds to the energy of
the system. If ¢(0) € ©(H), then 9(t) is a solution of the Schrédinger
equation (in suitable units)

d
i (t) = Hy(). (2.12)

This equation will be the main subject of our course.

In summary, we have the following axioms of quantum mechanics.

Axiom 1. The configuration space of a quantum system is a complex
separable Hilbert space $, and the possible states of this system are repre-
sented by the elements of $ which have norm one.

Axiom 2. Each observable a corresponds to a linear operator A defined
maximally on a dense subset ®(A). Moreover, the operator correspond-
ing to a polynomial P,(a) = Z?:o ajal, aj € R, is Py(A) = Z?:o o A7,
D(Pp(A)) =D(A") = {¢ € D(A)|AY € D(A™ 1)} (A% =1T).

Axiom 3. The expectation value for a measurement of a, when the
system is in the state ¢ € ©(A), is given by (2.5), which must be real for
all v € D(A).

Axiom 4. The time evolution is given by a strongly continuous one-
parameter unitary group U(t). The generator of this group corresponds to
the energy of the system.

In the following sections we will try to draw some mathematical conse-
quences from these assumptions:

First, we will see that Axioms 2 and 3 imply that observables corre-
spond to self-adjoint operators. Hence these operators play a central role
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in quantum mechanics and we will derive some of their basic properties.
Another crucial role is played by the set of all possible expectation values
for the measurement of a, which is connected with the spectrum o(A) of the
corresponding operator A.

The problem of defining functions of an observable will lead us to the
spectral theorem (in the next chapter), which generalizes the diagonalization
of symmetric matrices.

Axiom 4 will be the topic of Chapter 5.

2.2. Self-adjoint operators

Let $ be a (complex separable) Hilbert space. A linear operator is a linear
mapping

A:D(A) — 9, (2.13)
where D (A) is a linear subspace of ), called the domain of A. It is called
bounded if the operator norm

[All = sup [[AY] = = sup [, Ap)| (2.14)
1 lell=lvl=t

is finite. The second equality follows since equality in (1), Ap)| < ||| ||A¢l|
is attained when Ay = 21 for some z € C. If A is bounded, it is no
restriction to assume ©(A) = $ and we will usually do so. The Banach space
of all bounded linear operators is denoted by £(f)). Sums and products of
(unbounded) operators are defined naturally; that is, (A+ B)y = Ay + By
for p € D(A+ B) = D(A)ND(B) and ABY = A(Bvy) for ¢ € D(AB) =
[ € D(B)|BY € D(A)}.

Example. (Multiplication operator). Consider the multiplication operator
(Af)(2) = A2)f(z), D(A)={f € L*(RY,dp) | Af € L*(R?,dp)} (2.15)

given by multiplication with the measurable function A : R” — C. First
of all note that ®(A) is dense. In fact, consider 2, = {x € R?||A(x)| <
n} /R Then, for every f € L?(R? dy) the function f, = xq, f € D(A)
converges to f as n — oo by dominated convergence.

Moreover, A is a bounded operator if and only if A(x) is an (essentially)
bounded function and [|A|| = || 4|/ in this case.

If || Ao < 00 we of course have |A(z)] < ||Alloo (a.e.) and |(Af)(2)|* =
|A(@)|?f(2) 2 < ||Alloo| f ()] shows D(A) = §. Furthermore,

1AF2 = [ 14@) @) Pdute) < A1, [ 1@ Pdute) = 4117

shows ||A|| < ||A|lco- To see the converse inequality, consider the set Q. =
{z||A(z)| > ||A]lcc — €} which satisfies p(2) > 0 for € > 0. Thus we can
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choose Q. C Q. with 0 < H(Qa) < 0o, implying
[ Axg, |17 = /Q |A(2)Pdu(z) > (|Allo — €)*lIxa. I
which shows || Al > || Al|co- o

The expression (1), A1)) encountered in the previous section is called the
quadratic form,

qa(Y) = (¥, Ay), e D(4), (2.16)

associated to A. An operator can be reconstructed from its quadratic form
via the polarization identity

1 . ) . .
(9, A¥) = 7 (aale +¥) —aaly = ¥) +igaly — 1Y) —igalp +1v)). (2.17)
A densely defined linear operator A is called symmetric (or hermitian) if

(p, AY) = (Ap, ), ¥, D(A). (2.18)
The justification for this definition is provided by the following

Lemma 2.1. A densely defined operator A is symmetric if and only if the
corresponding quadratic form is real-valued.

Proof. Clearly (2.18) implies that Im(ga(¢))) = 0. Conversely, taking the
imaginary part of the identity

qa(Y +ip) = qa(¥) + qalp) +i((¢, Ap) — (@, AY))

shows Re(Ap,¥) = Re(p, A). Replacing ¢ by ip in this last equation
shows Im(Ap, 1) = Im(p, AY) and finishes the proof. O

In other words, a densely defined operator A is symmetric if and only if
(Y, Ap) = (A, 9), ¢ € D(A). (2.19)

This already narrows the class of admissible operators to the class of
symmetric operators by Axiom 3. Next, let us tackle the issue of the correct
domain.

By Axiom 2, A should be defined maximally; that is, if A is another
symmetric operator such that A C A, then A = A. Here we write A C A
if D(A) C D(A) and Ay = Ay for all i) € D(A). The operator A is called
an extension of A in this case. In addition, we write A = A if both A C A
and A C A hold.

The adjoint operator A* of a densely defined linear operator A is
defined by
DAY = (e e Ap) = W@ Ve DA} 4o

A%y = 4.
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The requirement that ®(A) be dense implies that A* is well-defined. How-
ever, note that ®(A*) might not be dense in general. In fact, it might
contain no vectors other than 0.

Clearly we have (aA)* = a*A* for « € C and (A + B)* O A* + B*
provided ®(A + B) = ©(A) N D(B) is dense. However, equality will not
hold in general unless one operator is bounded (Problem 2.2).

For later use, note that (Problem 2.4)
Ker(A*) = Ran(A4). (2.21)

For symmetric operators, we clearly have A C A*. If, in addition, A =
A* holds, then A is called self-adjoint. Our goal is to show that observables
correspond to self-adjoint operators. This is for example true in the case of
the position operator x, which is a special case of a multiplication operator.

Example. (Multiplication operator). Consider again the multiplication
operator

(Af)(x) = A(2) f(x), D(A)={f € L* R, du) | Af € L*(R?,dp)} (2.22)
given by multiplication with the measurable function 4 : R* — C and let us
compute its adjoint.

Performing a formal computation, we have for h, f € ©(A) that

(hAf) = [ @) Aln)f@)duta) = [ (Al b)) Fe)duo) = (Ah. £),

(2.23)

where A is multiplication by A(z)*,

(Af)(x) = Al2)" f(z), D(A) ={f € L*(R",dp) | Af € L*(R", dp)}.

(2.24)

Note ®(A) = D(A). At first sight this seems to show that the adjoint of

Ais A. But for our calculation we had to assume h € ©(A), and there

might be some functions in ©(A*) which do not satisfy this requirement! In

particular, our calculation only shows A C A*. To show that equality holds,

we need to work a little harder:

If h € D(A*), there is some g € L?(R%, du) such that

/h(w)*A(w)f(fB)du(w) = /g(w)*f(ﬂf)du(:r), fed(4), (225
and thus
/(h(x)A(HC)* —g(@)" f(x)du(z) =0,  fe€D(A). (2.26)

In particular, using Q,, = {z € R?||A(z)| <n} /R4,

/XQn (2)(h(2)A(2)" = g(2))* f(x)du(z) =0,  fe L*R?du), (2.27)
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which shows that xq, (h(z)A(z)* — g(z))* € L*(R? du) vanishes. Since n
is arbitrary, we even have h(r)A(z)* = g(x) € L*(RY du) and thus A* is
multiplication by A(z)* and D(A*) = D(A).

In particular, A is self-adjoint if A is real-valued. In the general case we
have at least |Af|| = ||A*f|| for all f € D(A) = D(A*). Such operators are

called normal. S

Now note that
ACB = B*CA% (2.28)
that is, increasing the domain of A implies decreasing the domain of A*.
Thus there is no point in trying to extend the domain of a self-adjoint

operator further. In fact, if A is self-adjoint and B is a symmetric extension,
we infer A C B C B* C A* = A implying A = B.

Corollary 2.2. Self-adjoint operators are mazximal; that is, they do not have
any symmetric ertensions.

Furthermore, if A* is densely defined (which is the case if A is symmet-
ric), we can consider A**. From the definition (2.20) it is clear that A C A**
and thus A** is an extension of A. This extension is closely related to ex-
tending a linear subspace M via M+ = M (as we will see a bit later) and
thus is called the closure A = A** of A.

It Ais symmetric, we have A C A" and henceﬁZ = A™ C A*; that is,
A lies between A and A*. Moreover, (), A%p) = (A1, ) for all 1 € D(A),
v € D(A*) implies that A is symmetric since A*¢@ = Ap for ¢ € D(A).
Example. (Differential operator). Take $ = L?(0, 27).

(i) Consider the operator

Aof = —isf, D(Ao) = {f € C'0,20] | /(0) = f2r) =0} (2:29)

That Ap is symmetric can be shown by a simple integration by parts (do
this). Note that the boundary conditions f(0) = f(2m) = 0 are chosen
such that the boundary terms occurring from integration by parts vanish.
However, this will also follow once we have computed Aj. If g € D(Af), we
must have

2 27
| st i @nds = [ 5oy floyis (2.30)
0 0
for some § € L?(0,27). Integration by parts (cf. (2.119)) shows
2 T *
f'(z) (g(a:) — i/o Q(t)dt) dx = 0. (2.31)

In fact, this formula holds for g € C[0,27]. Since the set of continuous
functions is dense, the general case § € L?(0,27) follows by approximating

0
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g with continuous functions and taking limits on both sides using dominated
convergence.

Hence g(z) — 1f0 t)ydt € {f'|f € D(Ap)}+. But {f’|f € @(AO)} =
{h € C0, 27| |f t)dt = 0} (show this) implying g(z) = g(0) +1 f; g(
since {f'|f € ’D(Ao)} = {h € H|(1,h) = 0} = {1} and {1}J-l = span{l}.
Thus g € AC|0, 2], where

ACla,b] = {f € Cla, b][f(x) = f(a) + /x g(t)dt, g € L'(a,b)}  (2.32)

denotes the set of all absolutely continuous functions (see Section 2.7). In
summary, g € D(Af) implies g € AC|0,27] and Ajg = g = —ig’. Conversely,
for every g € HY(0,27) = {f € AC|0,27]|f € L*(0,27)}, (2.30) holds with
g = —ig’ and we conclude

AL f = —i%f, D(Ay) = HY(0,27). (2.33)

In particular, Ay is symmetric but not self-adjoint. Since Ag = A%* C Aj,
we can use integration by parts to compute

0= (g, Aof) — (Adg, f) = i(f(0)g(0)" — f(2m)g(27)") (2.34)

and since the boundary values of g € ©(Af) can be prescribed arbitrarily,
we must have f(0) = f(27) = 0. Thus

Aof =it f, D(A) = {f € DA F(0) = fl2m) =0}, (23)

(ii) Now let us take

Af =i f D) = (fe 0.2 F0) = Fm)),  (236)

which is clearly an extension of Ag. Thus A* C Aj and we compute
0={(g,Af) = (A%, f) =1f(0)(9(0)" — g(2m)"). (2.37)

Since this must hold for all f € ®(A), we conclude g(0) = ¢g(27) and
Af=ilf DAY = (€ H'0.2m) [ f0) = fm).  (239)
Similarly, as before, A = A* and thus A is self-adjoint. o

One might suspect that there is no big difference between the two sym-
metric operators Ag and A from the previous example, since they coincide
on a dense set of vectors. However, the converse is true: For example, the
first operator Ay has no eigenvectors at all (i.e., solutions of the equation
Aoy = 2z, z € C) whereas the second one has an orthonormal basis of
eigenvectors!
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Example. Compute the eigenvectors of Ag and A from the previous exam-
ple.

(i) By definition, an eigenvector is a (nonzero) solution of Agu = zu,
z € C, that is, a solution of the ordinary differential equation

—iu/(z) = zu(x) (2.39)

satisfying the boundary conditions u(0) = u(27) = 0 (since we must have
u € ®(Ap)). The general solution of the differential equation is u(z) =
u(0)e'*® and the boundary conditions imply u(x) = 0. Hence there are no
eigenvectors.

(ii) Now we look for solutions of Au = zu, that is, the same differential
equation as before, but now subject to the boundary condition u(0) = u(2m).
Again the general solution is u(z) = u(0)e!*®, and the boundary condition
requires u(0) = u(0)e*™?, Thus there are two possibilities. Either u(0) = 0
(which is of no use for us) or z € Z. In particular, we see that all eigenvectors
are given by

1 inx
up(x) = e n € Z, 2.40
(0) = = (2.40)
which are well known to form an orthonormal basis. o

We will see a bit later that this is a consequence of self-adjointness of A.
Hence it will be important to know whether a given operator is self-adjoint.
Our example shows that symmetry is easy to check (in case of differential
operators it usually boils down to integration by parts), but computing the
adjoint of an operator is a nontrivial job even in simple situations. However,
we will learn soon that self-adjointness is a much stronger property than
symmetry, justifying the additional effort needed to prove it.

On the other hand, if a given symmetric operator A turns out not to
be self-adjoint, this raises the question of self-adjoint extensions. Two cases
need to be distinguished. If A is self-adjoint, then there is only one self-
adjoint extension (if B is another one, we have A C B and hence A = B
by Corollary 2.2). In this case A is called essentially self-adjoint and
D(A) is called a core for A. Otherwise there might be more than one self-
adjoint extension or none at all. This situation is more delicate and will be
investigated in Section 2.6.

Since we have seen that computing A* is not always easy, a criterion for
self-adjointness not involving A* will be useful.

Lemma 2.3. Let A be symmetric such that Ran(A+ z) = Ran(A+z*) = 9
for one z € C. Then A is self-adjoint.
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Proof. Let ) € D(A*) and A*y = . Since Ran(A + z*) = $, there is a
¥ € D(A) such that (A + z*)¥ = ¢ + z*. Now we compute

(W, (A+2)p) = (b + 2", 0) = (A+2)0,9) = (0, (A+2)0), ¢ €D(A),
and hence ¢ = ¥ € D(A) since Ran(A + z) = . O

To proceed further, we will need more information on the closure of
an operator. We will use a different approach which avoids the use of the
adjoint operator. We will establish equivalence with our original definition
in Lemma 2.4.

The simplest way of extending an operator A is to take the closure of its

graph I'(4) = {(1), AY)[ € D(A)} © 92 That is, if (1, Athn) — (1, ),
we might try to define Ay = . For Ay to be well-defined, we need that
(¢, App) — (0,4)) implies ¢) = 0. In this case A is called closable, and
the unique operator A which satisfies I'(A) = I'(4) is called the closure of
A. Clearly, A is called closed if A = A, which is the case if and only if the
graph of A is closed. Equivalently, A is closed if and only if I'(A) equipped

with the graph norm ||(¢,A¢)||1%(A) = |[1]|? + ||A%||? is a Hilbert space
(i.e., closed). By construction, A is the smallest closed extension of A.

Clearly we have aA = aA for « € C and A+ B DO A+ B provided A,
B, and A+ B are closable. However, equality will not hold in general unless
one operator is bounded (Problem 2.8).

Example. Suppose A is bounded. Then the closure was already computed

in Theorem 0.29. In particular, ©(A) = ©(A) and a bounded operator is
closed if and only if its domain is closed. o

Example. Consider again the differential operator Ay from (2.29) and let
us compute the closure without the use of the adjoint operator.

Let f € D(Ap) and let f, € D(Ag) be a sequence such that f, — f,
Ao fn — —ig. Then f; — g and hence f(z) = fox g(t)dt. Thus f € ACI0,27]
and f(0) = 0. Moreover, f(27) = lim, 0 fozﬂ fl(t)dt = 0. Conversely, any
such f can be approximated by functions in D(Ag) (show this). o

Example. Consider again the multiplication operator by A(z) in L?(RY, du)
but now defined on functions with compact support, that is,

D(Ag) = {f € D(A) | supp(f) is compact}. (2.41)

Then its closure is given by Ag = A. In particular, if A(z) is real-valued,
then Ay is essentially self-adjoint and ©(Ay) is a core for A.

To prove Ag = A, let some f € D(A) be given and consider f, =
X{z||e|]<n}f- Then f, € D(Ag) and fu(z) — f(x) as well as A(x)fn(z) —
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A(z)f(z) in L2(R%, du) by dominated convergence. Thus D(A) C D(Ag)
and since A is closed, we even get equality.

Example. Consider the multiplication operator by A(x) = z in L%*(R)
defined on

O(dy) = {f €D()| [ fla)dr=0), (242)
R
Then Ay is closed. Hence D(Ay) is not a core for A.
Note that D(4g) is well-defined since f € D(A) implies f € L'(R) as
we can write f(z) = (1+ |=|)71((1 + |=|) f(z)), where both (1 + |=|)~1, (1+
|z|) f(z) € L*(R). Moreover, ®(Ag) is dense. To see this, it suffices to show

that every element of ©(A) can be approximated by elements from ©(Ay)
(why?). So choose f € ©(A) and consider

Jn(@) = X(enm) (@) (f(2) - % ! F(t)dt).

Clearly f,, € D(Ag). Moreover, f,(x) — f(x) pointwise for every x and

\ful2)] < |f(2)] + ||§,!1

Thus dominated convergence shows f, — f in L?(R).

Ko@) < 1@+l min1, ) € 12(R)

To show that Ay is closed, suppose there is a sequence f,(z) — f(z)
such that xf,(x) — g(z). Since A is closed, we necessarily have f € D(A)
and g(x) = zf(z). But then

0= tim [ fu(w)de = tim [ o (fal@) + sien(@)af, w)de

1 i = x)dx
- [ @ + sien@s(a)ds = [ @) (2.43)
which shows f € ©(Ay). o

Next, let us collect a few important results.

Lemma 2.4. Suppose A is a densely defined operator.
(i) A* is closed.
(i) A is closable if and only if D(A*) is dense and A = A**, respec-
tively, (A)* = A*, in this case.
(iii) If A is injective and Ran(A) is dense, then (A*)~t = (A=Y)*. If
A is closable and A is injective, then A~ = A~1,

Proof. Let us consider the following two unitary operators from $? to itself:

U(‘Pﬂ/}) = (¢7 _SO)? V(@ﬂb) = (1/}780)
Note U!=—-U and V-1 =V.
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(i) From
L(A) = {(¢.§) € 97|, A¥) = (5, 4), Yy € D(A)}
= {(¢,9) € 9[((0, ), (Wb, —¥))52 = 0, V(,9)) € T(A)}
= (UT(A))*, (2.44)
we conclude that A* is closed.
(ii) Similarly, using UT+ = (UT)* (Problem 1.4) and (i), by
T(A) =T(A)+ = (UT'T(AY))*
= {(¥, )| (¥, A%) = (¢, ) = 0,Vp € D(A")}, (2.45)

we see that (0,v) € T(A) if and only if 1) € D(A*)*. Hence A is closable if
and only if D (A*) is dense. In this case, equation (2.44) also shows A" = A*.
Moreover, replacing A by A* in (2.44) and comparing with (2.45) shows
A = A
(iii) Next note that (provided A is injective)
(A ) =VT(A).
Hence if Ran(A) is dense, then Ker(A*) = Ran(A)* = {0} and
D((A*)™Y) = VI(A4*) = VUT(A)L = UV (AL = U(VI(A)*+
shows that (A4*)~! = (A~!)*. Similarly, if A is closable and A is injective,

then A " = A-1 by

(A ") =VI(A) = VI(A) = (A D).
U

Corollary 2.5. If A is self-adjoint and injective, then A~ is also self-
adjoint.

Proof. Equation (2.21) in the case A = A* implies Ran(A)* = Ker(A)
{0} and hence (iii) is applicable.

O

If A is densely defined and bounded, we clearly have ©(A*) = $ and by
Corollary 1.9, A* € £($). In particular, since A = A** we obtain

Theorem 2.6. We have A € £(9) if and only if A* € £(89).

Next note the following estimates for the inverse of symmetric operators.

Lemma 2.7. Let A be symmetric. Then A— z is injective for z € QR with
its inverse being bounded ||(A—z)7|| < |Im(2)|~!. Moreover, Ran(A—z) =
Ran(A — z) and A is closed if and only if Ran(A — z) is closed.
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If A is nonnegative, that is, (1, Ap) > 0 for all ¢ € D(A), we can also
admit z € (—00,0) and the estimate for the inverse now reads ||(A+X\)7Y| <
AL A > 0.

Proof. Let z = z + iy. From

1A = 2)9l* = [I(A + 2)y — iyy]®

(A+2)0l” + Il > vll9 1%, (2.46)

we infer that Ker(A — z) = {0} and hence (A — 2)~! exists. Moreover,
setting ¢ = (A—2) "Ly (y # 0) shows ||(A—2)"Y| < |y|~. Hence (A—2)!
is bounded and hence the domain of its closure equals the closure of its
domain. Moreover, by Lemma 2.4 (iii), A — z (and hence A) is closed if and
only if (A — z)~! is closed.

The argument for the nonnegative case with z < 0 is similar using
Al < (0, (A + X)) < [91l(A + Nl which shows [[(A+A) 7! < A,
A> 0. O

Now we can also generalize Lemma 2.3 to the case of essentially self-
adjoint operators.

Corollary 2.8. A symmetric operator A is essentially self-adjoint if and
only if one of the following conditions holds for one z € C\R:

e Ran(A — z) = Ran(4A — 2*) = 9,
o Ker(A* — z) = Ker(A* — z*) = {0}.

If A is nonnegative we can also admit z € (—00,0).

Proof. First of all, note that by (2.21) the two conditions are equivalent. By
the previous lemma our assumption implies Ran(A — z) = Ran(A — z*) = §
which shows that A is self-adjoint by Lemma 2.3.

Conversely, Lemma 2.7 shows that for symmetric A we have Ker(A—z) =

{0}. If A = A* this implies Ker(A* — 2) = {0} which finishes the proof. [

In addition, we can also prove the closed graph theorem which shows
that an unbounded closed operator cannot be defined on the entire Hilbert
space.

Theorem 2.9 (Closed graph). Let 1 and $2 be two Hilbert spaces and
A 91 — $Ho an operator defined on all of H1. Then A is bounded if and
only if T(A) is closed.

Proof. If A is bounded, then it is easy to see that I'(A) is closed. So let us
assume that T'(A) is closed. Then A* is well-defined and for all unit vectors
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¢ € D(A*) we have that the linear functional £, () = (A*p,1)) is pointwise
bounded, that is,

Lo ()] = (g, Ap)| < [| A9
Hence, by the uniform boundedness principle, there is a constant C such
that ||{,]] = ||[A*¢|| < C. That is, A* is bounded and so is A = A**. O

Note that since symmetric operators are closable, they are automatically
closed if they are defined on the entire Hilbert space.

Theorem 2.10 (Hellinger—Toeplitz). A symmetric operator defined on the
entire Hilbert space is bounded.

Problem 2.1 (Jacobi operator). Let a and b be some real-valued sequences
in £>°(Z). Consider the operator

an:anfn+1+an—1fn—1+bnfn7 fEKZ(Z).
Show that J is a bounded self-adjoint operator.

Problem 2.2. Show that («A)* = a*A* and (A + B)* O A* + B* (where
D(A* + B*) = D(A*) N D(B*)) with equality if one operator is bounded.
Give an example where equality does not hold.

Problem 2.3. Suppose AB is densely defined. Show that (AB)* O B*A*.
Moreover, if B is bounded, then (BA)* = A*B*.

Problem 2.4. Show (2.21).

Problem 2.5. An operator is called normal if ||Ay| = ||A*Y| for all
P € D(A) =D(A").
Show that if A is normal, so is A+ z for every z € C.

Problem 2.6. Show that normal operators are closed. (Hint: A* is closed.)
Problem 2.7. Show that the kernel of a closed operator is closed.

Problem 2.8. Suppose A, B, and A+ B (defined on ®(A+ B) =D(A) N
D(B)) are closable. Show that aA = oA and A+ B O A+ B with equality
if one operator is bounded. Give an example where equality does not hold.

Problem 2.9. Show that if A is closed and B is bounded, then AB is closed.
Moreover, if B is injective and B~ is bounded, then BA is closed.

2.3. Quadratic forms and the Friedrichs extension

Finally we want to draw some further consequences of Axiom 2 and show
that observables correspond to self-adjoint operators. Since self-adjoint op-
erators are already maximal, the difficult part remaining is to show that an
observable has at least one self-adjoint extension. There is a good way of
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doing this for nonnegative operators and hence we will consider this case
first.

A densely defined operator is called nonnegative (resp. positive) if
(1, AY) > 0 (resp. > 0 for 1p # 0) for all p € D(A). Recall that by
Lemma 2.1 any nonnegative operator is automatically symmetric. If A is
positive, the map (¢, %) — (@, A) is a scalar product. However, there
might be sequences which are Cauchy with respect to this scalar product
but not with respect to our original one. To avoid this, we introduce the
scalar product

defined on ®(A), which satisfies ||¢|| < |[1]|4. Let $4 be the completion of
D(A) with respect to the above scalar product. We claim that $4 can be
regarded as a subspace of £); that is, D(A) C H4 C H.

If (¢,) is a Cauchy sequence in ©(A), then it is also Cauchy in $ (since
||l < ||¥]|a by assumption), and hence we can identify the limit in $4 with
the limit of (¢,,) regarded as a sequence in §. For this identification to be
unique, we need to show that if (¢,,) C D(A) is a Cauchy sequence in 4
such that |4y, | — 0, then ||1),||a — 0. This follows from

|’71Z)TLH?4 = <¢na P — ¢m>A + <¢na¢m>A
< H@Z}nHAH@ZJn_wm”A'{' ‘|(A+1)¢n||”wm” (2'48)
since the right-hand side can be made arbitrarily small by first choosing n, m

large such that the first term gets small (note that |[¢,]|4 is bounded) and
then further increasing m such that the second term gets small.

Clearly, the quadratic form ¢4 can be extended to every ¢ € $H4 by
setting

qa(¥) = () a— W% ¥ €Q4) =9a. (2.49)
The set Q(A) is also called the form domain of A.

Example. (Multiplication operator). Let A be multiplication by A(z) >0
in L2(R%, dp). Then

Q(A) =D(A"?) = {f e L*R%,dp) | A"?f € L*(R%,dp)}  (2.50)
and
walf) = [ A@)F@) Pduta) (2.51)
Rd
(show this). o

Now we come to our extension result. Note that A + 1 is injective and
the best we can hope for is that for a nonnegative extension A, the operator
A+ 1 is a bijection from ©(A) onto $.
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Lemma 2.11. Suppose A is a nonnegative operator. Then there is a non-
negative extension A, given by restricting A* to $4, such that Ran(A+ 1) =
9.

Proof. Let us define an operator A by
©<:Zi) - {we‘@l{‘alﬁeﬁ : <%¢>A: <(pa/‘7/~)>7v90€~614}7
Ay = A =9 —1.
Since £ 4 is dense, ¢ is well-defined. Moreover, it is straightforward to see
that A is a nonnegative extension of A and that
D(A) = {y € H13 € H: (p,¥)a = (p,9), Vg € Ha} = H4ND(4")
as D(A) C H4 is dense.

It is also not hard to see that Ran(A + 1) = $. Indeed, for every ¢ € $,
@ — (1), @) is a bounded linear functional on $ 4. Hence there is an element
Y € 53,4 such that (w @) = (1h, )4 for all p € H,. By the definition of A,
(A+1)Y = and hence A + 1 is onto. O

Example. Let us take $ = L?(0,7) and consider the operator

2
Af == f, D)= {f €0, fO) = f(m) =0}, (25)

which corresponds to the one-dimensional model of a particle confined to a
box.

(i) First of all, using integration by parts twice, it is straightforward to
check that A is symmetric:

/0 g(x)"(=f )(fv)dm:/o g'(x)"f (l’)d%:/0 (=g")(@)" f(z)dz. (2.53)

Note that the compact support assumption ensures that the boundary terms
occurring from integration by parts vanish. Moreover, the same calculation
also shows that A is positive:

/f Jid) dx_/]f )Pdz >0, f#0. (2.54)

(i) Next, let us show $H4 = {f € H'(0,7)| f(0) = f(x) = 0}. In fact,

(9. f)a = /0 (¢ @) F (@) + 9(e)* () de, (2.55)

we see that f, is Cauchy in 4 if and only if both f, and f’ are Cauchy
in L%(0, 7r) Thus fn — fand f, — g in L*(0,7) and fu(z) = [ fi(t

implies f(x fo t)dt. Thus f € AC|0,7]. Moreover, f(0 ) =0is obv1ous
and from 0 = fa(m) = [ fr(t)dt we have f(m) = lim,_ o0 [y fr(t)dt = 0.
So we have $4 C {f € H1(0 7T)|f( ) = f(m) = 0}. To see the converse,
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approximate f’ by smooth functions g,. Using g, — fo gn(t)dt instead
of gn, it is no restriction to assume [ gn(t)dt = 0. Now deﬁne fulz) =
Jy gn(t)dt and note that f, € D(A) — f.

(iii) Finally, let us compute the extension A. We have f € D(A) if for
all g € H4 there is an f such that (g, f)4 = (g, f). That is,

/ " (@) f(@)dz = / " g0 (F@) — f(x))d. (2.56)
0 0

Integration by parts on the right-hand side shows

/0 g'()" f'(x)dz = —/O 9’(%)"/0 (f(t) = f(t))dt dz (2.57)

or, equivalently,
/07r q (x)* (f/(:c) + /x(f(t) — f(t))dt> dz = 0. (2.58)

Now observe {g € f)\g € Ha} = {h € 9| [§ h(t)dt = 0} = {1} and thus

)+ [ (f f@)dt € {1} = span{l} So we see f € H?(0,7) =
{f e AC|o, 7r}|f’ e H'(0,7)} and Af = —f”. The converse is easy and
hence

d? <
Af=—25f D) ={f € B*0.7]|f0) = f(m) =0} (259)
o
Now let us apply this result to operators A corresponding to observables.
Since A will, in general, not satisfy the assumptions of our lemma, we will
consider A2 instead, which has a symmetric extension A2 with Ran(A42+1) =
$). By our requirement for observables, A? is maximally defined and hence

is equal to this extension. In other words, Ran(A? + 1) = . Moreover, for
every o € §) there is a ¢ € D(A?) such that

A-)A+i)p=(A+1)A-)yp =9 (2.60)
and since (A £1i)y € D(A), we infer Ran(A £1) = $. As an immediate

consequence we obtain

Corollary 2.12. Observables correspond to self-adjoint operators.

But there is another important consequence of the results which is worth-
while mentioning. A symmetric operator is called semi-bounded, respec-
tively, bounded from below, if there exists a v € R such that

ga(y) = (¥, Ap) 29llY[%, ¢ € D(A). (2.61)
We will write A > v for short.
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Theorem 2.13 (Friedrichs extension). Let A be a symmetric operator which
is bounded from below by v. Then there is a self-adjoint extension

Ap =A%, D(A) =D(A)NHa_ (2.62)

which is also bounded from below by ~. Moreover, A is the only self-adjoint

extension with D(A) C Ha—~.

Proof. If we replace A by A — « we can assume 7 = 0 without loss of
generality. Existence follows from Lemma 2.11. To see uniqueness, let A

be another self-adjoint extension with ®(A4) C $H4. Choose p € D(A) and
1 € D(A). Then

(o (A+ 1)) = (A+ D, 90) = (0, (A+ 1)) = (b, 0) = (0, 9)a,

and by continuity we even get (¢, (/Al + 1)y) = ~<</3,¢>A for every ¢ € $a.
Hence by the definition of A we have ¢ € D(A) and Ay = Av); that is,
A C A. But self-adjoint operators are maximal by Corollary 2.2 and thus
A=A O

Clearly Q(A) = $H4 and g4 can be defined for semi-bounded operators
as before by using [[¢[3 = (v, (A = 7)¢) + [[¥]%,

In many physical applications, the converse of this result is also of im-
portance: given a quadratic form ¢, when is there a corresponding operator
A such that ¢ = ga?

So let ¢ : Q — C be a densely defined quadratic form corresponding
to a sesquilinear form s : Q x Q — C; that is, ¢(¢) = s(¢,¢). As with
a scalar product, s can be recovered from ¢ via the polarization identity
(cf. Problem 0.22). Furthermore, as in Lemma 2.1, one can show that s is
symmetric; that is, s(¢,¥) = s(¢, ¢)*, if and only if ¢ is real-valued. In this
case g will be called hermitian.

A hermitian form ¢ is called nonnegative if ¢(¢)) > 0 and semi-
bounded if q(v)) > v||¢|? for some v € R. As before, we can asso-
ciate a scalar product (1, p)q = s(¥, ) + (1 — )1, ¢) and norm |42 =
q(¥) + (1 —7)||¢|* with every semi-bounded ¢ and look at the completion
9y of Q with respect to this norm. However, since we are not assuming
that ¢ is steaming from a semi-bounded operator, we do not know whether
$4 can be regarded as a subspace of §)! Hence we will call ¢ closable if
for every Cauchy sequence 1), € Q with respect to ||.||q, [|#n] — 0 implies
|¥nllg = 0. In this case we have £, C § and we call the extension of ¢ to
$)4 the closure of ¢. In particular, we will call ¢ closed if Q = §),.

Example. Let $ = L?(0,1). Then
a(f) =1/  fec1], celo1],
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is a well-defined nonnegative form. However, let f,,(z) = max(0,1—n|z—c|).
Then f, is a Cauchy sequence with respect to ||.||; such that || f,|| — 0 but
| fnllq = 1. Hence g is not closable and hence also not associated with a
nonnegative operator. Formally, one can interpret ¢ as the quadratic form
of the multiplication operator with the delta distribution at x = ¢. Exercise:
Show $, =H @ C. o

From our previous considerations, we already know that the quadratic
form g4 of a semi-bounded operator A is closable and its closure is associated
with a self-adjoint operator. It turns out that the converse is also true
(compare also Corollary 1.9 for the case of bounded operators):

Theorem 2.14. To every closed semi-bounded quadratic form q there cor-
responds a unique self-adjoint operator A such that Q = Q(A) and ¢ = qa.
If s is the sesquilinear form corresponding to q, then A is given by

Q(A) = {~¢ € ‘6(1|E|1Z} € fj : 3(‘;0»1/)) = <<,0,1Z;>,\V/(,D € ﬁq}a

o — G (2.63)

Proof. Since ), is dense, ¢ and hence A is well-defined. Moreover, replac-
ing ¢ by q(.) —||.]|?> and A by A—+, it is no restriction to assume v = 0. By
construction, g4 () = q(¢) for ¢» € D(A), which shows that A is nonnegative
(and hence symmetric). Moreover, as in the proof of Lemma 2.11, it follows
that Ran(A + 1) = §. In particular, (A + 1)~! exists and is bounded. Fur-
thermore, for every ¢; € $) we can find ¢; € D(A) such that ¢; = (A+1)1;.
Finally,

(A+1) 1, 02) = (U1, (A +1)vh2) = s(¢h1, ¥2) = s(¥2,¥1)"
= (Y2, (A+ 1)h1)" = (A+ 191, )
= {1, (A+1)"'po)

shows that (A + 1)~! is self-adjoint and so is A + 1 by Corollary 2.5. The
rest is straightforward. O

Any subspace Q C Q(A) which is dense with respect to ||.||4 is called a
form core of A and uniquely determines A.

Example. We have already seen that the operator

2
Af=—Lf D) = {f € 0.7 fO) = Fm) =0} (264

is associated with the closed form

qa(f) = /Oﬂ |f'(@)]dz, Q(A) = {f € H'[0,7]| f(0) = f(m) = 0}. (2.65)
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However, this quadratic form even makes sense on the larger form domain
Q = H'[0,7]. What is the corresponding self-adjoint operator? (See Prob-
lem 2.14.) o

A hermitian form g is called bounded if |g(¥)| < C||¢|* and we call

lgll = sup [q(¢)] (2.66)
ll=1
the norm of ¢. In this case the norm |.||; is equivalent to ||.||. Hence

$Hq = H and the corresponding operator is bounded by the Hellinger—Toeplitz
theorem (Theorem 2.10). In fact, the operator norm is equal to the norm of
q (see also Problem 0.23):

Lemma 2.15. A semi-bounded form q is bounded if and only if the associ-
ated operator A is. Moreover, in this case

lall = 11Al- (2.67)

Proof. Using the polarization identity and the parallelogram law (Prob-
lem 0.22), we infer

2Re(p, AY) = %(9(1/1 +o) —q@ — ) < q@®) +aqle) < llall(I¥]1* + llel?)

and choosing ¢ = [|Ay| 1Ay as well as ||[¢|| = 1 shows that ||A] < ||q]|.
The converse is easy. O

As a consequence we see that for symmetric operators we have

[Al = sup |(¢, Ay)] (2.68)
wll=1

generalizing (2.14) in this case.
Problem 2.10. Let A be invertible. Show A > 0 if and only if A=* > 0.
Problem 2.11. Let A = —25 D(A) = {f € HX(0,7)| f(0) = f(r) = 0}

~-&
and let (x) = ﬁx(w—x). Find the error in the following argument: Since

A is symmetric, we have 1 = (A, Avp) = (1, A%)) = 0.

Problem 2.12. Suppose A is a densely defined closed operator. Show that
A*A (with D(A*A) = {¢ € D(A)|AY € D(A*)}) is self-adjoint. Show
Q(A*A) = D(A). (Hint: A*A>0.)

Problem 2.13. Let A and B be two closed operators. Show |Ay| = ||By||
for all ) € D(A) = D(B) if and only if A*A = B*B.

Conclude that a closed operator A is normal if and only if AA* = A*A.
(Hint: Problem 2.12 and Theorem 2.14.)
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Problem 2.14. Suppose a densely defined operator Ay can be written as
Ag = S*S, where S is a closable operator with ©(S) = D(Ap). Show that

the Friedrichs extension is given by A = S*S.
Use this to compute the Friedrichs extension of Ay = —-L D(A) =

T dz2o

{f € C%(0,7)|f(0) = f(r) = 0}. Compute also the self-adjoint operator
SS* and its form domain.

Problem 2.15. Use the previous problem to compute the Friedrichs exten-
sion A of Ay = —-L, D(Ag) = CP(R). Show that Q(A) = H'(R) and

T dz2

D(A) = H?(R). (Hint: Section 2.7.)

Problem 2.16. Let A be self-adjoint. Suppose ® C D(A) is a core. Then
® is also a form core.

Problem 2.17. Show that (2.68) is wrong if A is not symmetric.

2.4. Resolvents and spectra

Let A be a (densely defined) closed operator. The resolvent set of A is
defined by

p(A)={z€C|(A—2)"" € £®)}. (2.69)
More precisely, z € p(A) if and only if (A — z) : D(A) — $ is bijective
and its inverse is bounded. By the closed graph theorem (Theorem 2.9), it
suffices to check that A — z is bijective. The complement of the resolvent
set is called the spectrum

o(A) = C\p(4) (2.70)

of A. In particular, z € o(A) if A — 2z has a nontrivial kernel. A nonzero
vector ¢ € Ker(A—z) is called an eigenvector and z is called an eigenvalue
in this case.

The function
Ry: p(A) — £(9) (2.71)
z = (A—2)7!

is called the resolvent of A. Note the convenient formula
Ra(z)* = ((A=2)") =((A—2)") "= (A" —2") "' = Ra-(2"). (272)
In particular,
p(A%) = p(A)*. (2.73)

Example. (Multiplication operator). Consider again the multiplication
operator

(Af)(z) = Ax)f(z), D(A) ={f € L* R’ du) | Af € LQ(Rd,du)(}» |
2.74
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given by multiplication with the measurable function A : R* — C. Clearly
(A — 2z)~!is given by the multiplication operator

_ 1

(A=2)""f(a) = mf(fﬂ)?

D((A-2)N) = {f € (R dp) | - f € (R dp))  (275)
whenever this operator is bounded. But [[(4 — 2)7!|| = ||l < 1 s
equivalent to u({z||A(x) — z| < €}) = 0 and hence

p(A) ={z€C|Fe >0: u({z||A(z) — 2| < e}) = 0}. (2.76)

The spectrum
0(A) ={ze€ClVe > 0: p({z||A(z) — 2| < e}) > 0} (2.77)

is also known as the essential range of A(x). Moreover, z is an eigenvalue
of Aif u(A=*({z})) > 0 and XA-1({z}) is a corresponding eigenfunction in
this case. o

Example. (Differential operator). Consider again the differential operator
d
Af =it f, D(A)={f € AC,2x)| f' € I, J(0) = f@m)}  (2.78)

in L2(0,27). We already know that the eigenvalues of A are the integers
and that the corresponding normalized eigenfunctions

1 inx
un(z) = Nors (2.79)

form an orthonormal basis.

To compute the resolvent, we must find the solution of the correspond-
ing inhomogeneous equation —if’(z) — z f(z) = g(z). By the variation of
constants formula, the solution is given by (this can also be easily verified
directly)

. T .
f(z) = f(0)e** +i/ =0 (1) dt. (2.80)
0
Since f must lie in the domain of A, we must have f(0) = f(27) which gives
: 2w
FO0) = g / eg(t)dt,  zeC\Z. (2.81)
- 0
(Since z € Z are the eigenvalues, the inverse cannot exist in this case.) Hence
2T
(A=2)"lg(x)= [ G(zz,t)g(t)dt, (2.82)
0
where .
: — . t>
G(z,z,t) = ¢#(@7D) { 172 Toe C\Z. (2.83)
Hﬁa i< z,



2.4. Resolvents and spectra 85

In particular, o(A) = Z. o

If z,2" € p(A), we have the first resolvent formula
Ra(z) — RA(?) = (2 — 2)Ra(2)Ra(?) = (2 — 2 )Ra(Z)Ra(2). (2.84)
In fact,
(A—2)"t—(z-2NA-2)"1A-2)"
—(A-—2)'A—-(z-A+A-2NA-2)H=A-2)"", (2.85)
which proves the first equality. The second follows after interchanging z and

2'. Now fix 2z’ = 2y and use (2.84) recursively to obtain
Ra(z) =Y (2—20)/Ra(z0)™ + (z — 20)" ' Ra(20)" " Ra(2).  (2.86)
§=0
The sequence of bounded operators

R, = Z(z — 20)' Ra(z0)" (2.87)
j=0
converges to a bounded operator if |z — 29| < |[[Ra(20)| ™!, and clearly we
expect z € p(A) and R,, — Ra(z) in this case. Let Ro = limy, o0 R, and
set o, = Ry, ¢ = Rootp for some ¢ € §. Then a quick calculation shows
ARn'(/) = (A - ZO)Rnw + 20¥n = ID =+ (2 - ZO)(Pn—l + 20pn- (288)
Hence (¢n, Avn) = (¢, + zp) shows ¢ € D(A) (since A is closed) and
(A — z)Root) = 1. Similarly, for ¢ € D(A),
R, AY =Y+ (2 — 20)pn—1 + 20¢n (2.89)
and hence Ry (A — 2)1 = 1 after taking the limit. Thus Ry = Ra(z) as
anticipated.

If A is bounded, a similar argument verifies the Neumann series for
the resolvent

n—1 j
Ra(:) = =3 Sr + A" Ra(2)

2t gn
j=0
==Y AT lz| > [|All. (2.90)
=0

In summary, we have proved the following:

Theorem 2.16. The resolvent set p(A) is open and Ra : p(A) — £(9) is
holomorphic; that is, it has an absolutely convergent power series expansion
around every point zo € p(A). In addition,

|RA(2)|| > dist(z,0(A))~* (2.91)
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and if A is bounded, we have {z € C||z| > [|A]|} C p(A).

As a consequence we obtain the useful

Lemma 2.17. We have z € o(A) if there is a sequence ¢, € D(A) such
that ||Yn]| =1 and ||(A — 2)Yy|| — 0. If z is a boundary point of p(A), then
the converse is also true. Such a sequence is called a Weyl sequence.

Proof. Let 1, be a Weyl sequence. Then z € p(A) is impossible by 1 =
[nll = [[Ra(2)(A = 2)nll < [[Ra(2)II[I(A = 2)¢n] — 0. Conversely, by
(2.91), there is a sequence z, — z and corresponding vectors ¢, € $) such
that ||[Ra(zn)enllllenll™t — oo. Let ¥, = Ra(zn)pn and rescale ¢, such
that [|¢,|| = 1. Then ||¢y|| — 0 and hence

(A = 2)¢ull = llen + (20 = 2)¢nll < llonll + 1z = 2a] =0

shows that 1, is a Weyl sequence. O

Let us also note the following spectral mapping result.
Lemma 2.18. Suppose A is injective and Ran(A) is dense. Then

a(ATH\{0} = (e(A)\{o})~". (2.92)
In addition, we have A = 21 if and only if A~ = 2714,

Proof. Suppose z € p(A)\{0}. Then we claim
Ra-1(z7Y) = —2AR4(2) = —2 — 22Ra(2).

In fact, the right-hand side is a bounded operator from $) — Ran(A) =
D(AY) and

(A7 =271 (=2ARA(2))p = (—z + A)Ra(2)p = 9, @ €N
Conversely, if 1 € D(A™1) = Ran(A4), we have ¢ = Ay and hence
(—2AR4(2)(A™" = 271 = ARA(2) (A = 2)p) = Ap = 4.
ThlllS 271 € p(A™1). The rest follows after interchanging the roles of A and
AN O

Next, let us characterize the spectra of self-adjoint operators.

Theorem 2.19. Let A be symmetric. Then A is self-adjoint if and only
if 0o(A) C R and (A—FE) > 0, E € R, if and only if 0(A) C [F, ).
Moreover, for self-adjoint A we have ||[Ra(2)|| < |Im(2)|™! and, if (A—E) >
0, [RaN| < [A—E|™', A< E.
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Proof. If 0(A) C R, then Ran(A — z) = $, z € C\R, and hence A is self-
adjoint by Lemma 2.3. Next, if 0(A4) C [E, o0) we show (¢, (A — E)y) >0
for every 1p € ®(A) or, since E — X € p(A) for every A > 0, that f(\) =
(0, (A= E+X\)"tp) > 0 for every A > 0 and ||¢|| = 1. By the first resolvent
identity (2.84) and Cauchy—Schwarz, we see

) ==ll(A+XN"el? < —f(V)?

and in particular f is a decreasing function. Suppose f(Ag) < 0 for some
Ao > 0. Then f(X\g) < 0 for A > \g and integrating f’/f% < —1 from \g to

A shows 100)
Ao
A) < .
f) =5 + f(A0) (A = Ao)
Hence f(\) — —00 as A — A\g — f(\o) ™! contradicting the fact that f must
be bounded for all A.
Conversely, if A is self-adjoint (resp. A > E), then R4(z) exists for
z € C\R (resp. z € C\[E, 00)) and satisfies the given estimates as has been
shown in Lemma 2.7. ([

In particular, we obtain (show this!)

Theorem 2.20. Let A be self-adjoint. Then

info(A) = we@(gl’fw”:l(w, Av) (2.93)
and
supo(A4) = sup (v, Ay). (2.94)
PED(A), [[¢l=1

For the eigenvalues and corresponding eigenfunctions we have

Lemma 2.21. Let A be symmetric. Then all eigenvalues are real and eigen-
vectors corresponding to different eigenvalues are orthogonal.

Proof. If Avy; = A\jip;, j = 1,2, we have
Al[en]? = (1, Maor) = (1, Adpr) = (Ar, 1) = (Aaepr, ¢1) = Af [ |

and
(A1 = A2) (W1, 902) = (Ath1,b2) — (A1, 1h2) = 0,
finishing the proof. ([

The result does not imply that two linearly independent eigenfunctions
to the same eigenvalue are orthogonal. However, it is no restriction to
assume that they are since we can use Gram—Schmidt to find an orthonormal
basis for Ker(A — \). If § is finite dimensional, we can always find an
orthonormal basis of eigenvectors. In the infinite dimensional case this is
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no longer true in general. However, if there is an orthonormal basis of
eigenvectors, then A is essentially self-adjoint.

Theorem 2.22. Suppose A is a symmetric operator which has an orthonor-
mal basis of eigenfunctions {p;}. Then A is essentially self-adjoint. In
particular, it is essentially self-adjoint on span{p;}.

Proof. Consider the set of all finite linear combinations ¥ = 2?20 Cip;
which is dense in . Then ¢ = 377 %npj € D(A) and (Ati)p = ¢
shows that Ran(A +1) is dense. O

Similarly, we can characterize the spectra of unitary operators. Recall
that a bijection U is called unitary if (U, Uy) = (¢, U*Uv) = (,1)). Thus
U is unitary if and only if

Ur=u"" (2.95)

Theorem 2.23. Let U be unitary. Then o(U) C {z € C||z| = 1}. All
etgenvalues have modulus one, and eigenvectors corresponding to different
etgenvalues are orthogonal.

Proof. Since ||U|| < 1, we have o(U) C {z € C||z| < 1}. Moreover, U~!
is also unitary and hence o(U) C {z € C||z| > 1} by Lemma 2.18. If
Uj = zp;, j = 1,2, we have
(21 — 22) (Y1, 92) = (U1, ¥2) — (¢1,Utp2) = 0
since Utp = z1p implies U*1p = U lp = 27 1ap = 2*9). O
Problem 2.18. Suppose A is closed and B bounded:
e Show that 1+ B has a bounded inverse if ||B]|| < 1.
o Suppose A has a bounded inverse. Then so does A+ B if ||B|| <
P2
Problem 2.19. What is the spectrum of an orthogonal projection?
Problem 2.20. Compute the resolvent of
Af =71, D(A)={feH0,1]]f(0) =0}
and show that unbounded operators can have empty spectrum.
d2

Problem 2.21. Compule the eigenvalues and eigenvectors of A = —2,
D(A) = {f € H*0,7)|f(0) = f(r) = 0}. Compute the resolvent of A.

Problem 2.22. Find a Weyl sequence for the self-adjoint operator A =
& D(A) = H?(R) for z € (0,00). What is o(A)? (Hint: Cut off the

de )
solutions of —u"(x) = zu(x) outside a finite ball.)
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Problem 2.23. Suppose A = Aj. If ¢ € D(A) is a Weyl sequence for
z € 0(A), then there is also one with 1, € D(Ayp).

Problem 2.24. Suppose A is bounded. Show that the spectra of AA* and
A*A coincide away from 0 by showing

Raa-(2) = é (ARa-a(2)A* —1), Raea(z) = % (A*Raa-(2)A—1).
(2.96)

2.5. Orthogonal sums of operators

Let $;, j = 1,2, be two given Hilbert spaces and let A; : ®(A4;) — $; be
two given operators. Setting ) = 1 & 9, we can define an operator

A1 D AQ, :D(Al () AQ) = @(z‘h) D @(AQ) (297)

by setting (A1 D AQ)(wl + wg) = A1 4+ Aoty for %‘ S @(AJ) Clearly
A1 @ As is closed, (essentially) self-adjoint, etc., if and only if both A; and
Ay are. The same considerations apply to countable orthogonal sums. Let
H=6p j $; and define an operator

@Ajv @(EB Aj) = {Z Y; € @@(Aj)l Z | A5 < o0} (2.98)

by setting @; Ajv = >_; Ajb; for o =3, 1b; € D(P; A;). Then we have

Theorem 2.24. Suppose A; are self-adjoint operators on ;. Then A =
@j Aj is self-adjoint and

Ra(z) = @RAj(z), z € p(A) =C\o(A) (2.99)

where

o(A) = Ja(4)) (2.100)

(the closure can be omitted if there are only finitely many terms).

Proof. Fix z ¢ (J;0(4;) and let ¢ = Im(z). Then, by Theorem 2.19,
R, (2)|| < &' and so R(z) = @D, Ra,;(2) is a bounded operator with
|R(z)|| < &' (cf. Problem 2.27). It is straightforward to check that R(z)
is in fact the resolvent of A and thus o(A) C R. In particular, A is self-
adjoint by Theorem 2.19. To see that o(A) C |J;0(4;), note that the
above argument can be repeated with ¢ = dist(z,J; 0(A4;)) > 0, which will
follow from the spectral theorem (Problem 3.5) to be proven in the next
chapter. Conversely, if z € o(A;), there is a corresponding Weyl sequence
tn € D(A;j) C D(A) and hence z € g(A). O
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Conversely, given an operator A, it might be useful to write A as an
orthogonal sum and investigate each part separately.

Let $1 C $ be a closed subspace and let P; be the corresponding pro-
jector. We say that $; reduces the operator A if P;A C AP;. Note that
this is equivalent to Pi®(A) C D(A) and PiAY = APy for ¢ € D(A).
Moreover, if we set $9 = .6%, we have H = H1 P Hy and P, = 1 — P; reduces
A as well.

Lemma 2.25. Suppose $H = @j $; where each $; reduces A. Then A C
@D, A;, where

Ay = Ay, D(A;) = PD(A) C D(A). (2.101)

If A is closed, then so are the operators A; and A = @j Aj. If A is closable,
then $); also reduces A and

A=P4; (2.102)

Proof. As already noted, P;D(A) C ©D(A) and thus A; is well-defined.
Moreover, if ¢; € D(A;), we have Ay; = APjp; = PjAy; € $H; and thus
Aj : ©(A;) — $;. Furthermore, every 1) € ©(A) can be written as ¢ =
> P and Ay = 32, PjAY = 37, APy shows || AY|? = 32, [|A; Pl
implying D (A) € D(P; A;). This proves the first claim.

If A is closed, it is straightforward to see that the same is true for A;.
Now consider ¢ =3, 1; € D(D; Aj) and abbreviate " = >°%_, 1;. Then
Y — ¢ and AY"™ — P, Aj¢p which implies i) € D(A) and P, Aj¢) = AP
since A is closed.

Now let us turn to the last claim. Suppose ¢ € ©(A). Then there is
a sequence v, € D(A) such that ¥, — 1 and A, — ¢ = Ap. Thus
Pjpp, — Pjp and APjip, = PjAv, — Pjp which shows Pjyp € D(A) and
PjZ?,/) = ZPj@/J; that is, $); reduces A. Moreover, this argument also shows

Pi®(A) CD(A,), and the converse follows analogously. O

If A is self-adjoint, then £ reduces A if PLD(A) C D(A) and APy € $H;
for every ¢ € D(A). In fact, if ) € D(A), we can write ¥ = 1)1 & 1y, with
P, =1— P and ¢; = Pjyp € D(A). Since AP1¢p = Ay and PiAY =
P AY) + PiAYy = Ay 4+ Py Ays, we need to show PjAys = 0. But this
follows since

(o, PrAY2) = (AP1p,2) =0 (2.103)
for every p € ©(A).

Problem 2.25. Show (D, 4;)" = D, A;.
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Problem 2.26. Show that A defined in (2.98) is closed if and only if all A;
are.

Problem 2.27. Show that for A defined in (2.98), we have || Al|=sup; || A;||.

2.6. Self-adjoint extensions

It is safe to skip this entire section on first reading.

In many physical applications, a symmetric operator is given. If this
operator turns out to be essentially self-adjoint, there is a unique self-adjoint
extension and everything is fine. However, if it is not, it is important to find
out if there are self-adjoint extensions at all (for physical problems there
better be) and to classify them.

In Section 2.2 we saw that A is essentially self-adjoint if Ker(A* — z) =
Ker(A* — z*) = {0} for one z € C\R. Hence self-adjointness is related to
the dimension of these spaces, and one calls the numbers

di(A)=dimKs, Ki =Ran(A+i)t =Ker(A* F1), (2.104)

defect indices of A (we have chosen z = i for simplicity; any other z € C\R
would be as good). If d_(A) = d4(A) = 0, there is one self-adjoint extension
of A, namely A. But what happens in the general case? Is there more than
one extension, or maybe none at all? These questions can be answered by
virtue of the Cayley transform

V =(A—-1)(A+1i)"":Ran(A +1) — Ran(A4 — i). (2.105)

Theorem 2.26. The Cayley transform is a bijection from the set of all
symmetric operators A to the set of all isometric operators V (i.e., ||Vp| =

ol for all ¢ € D(V')) for which Ran(l — V') is dense.

Proof. Since A is symmetric, we have [|[(A £1)y|? = || Ay||? + [|[¢||? for all
1 € D(A) by a straightforward computation. Thus for every ¢ = (A+1i)y €
D(V) = Ran(A +1) we have

Vel = [I(A =Dyl = [I(A+ D)yl = el
Next, observe that

2A4(A+1i)71,

1iV:((A—i—i)i(A—i))(A+i)_1:{ 2i(A + 1)1,

which shows that Ran(1 — V) = ©(A) is dense and
A=i1+V)1 V)L

Conversely, let V' be given and use the last equation to define A.
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Since V' is isometric, we have ((1 £ V), (1 FV)p) = £2iIm(Vp, )
for all ¢ € ®(V) by a straightforward computation. Thus for every ¢ =
(1-V)p e D(A) =Ran(1l — V) we have
that is, A is symmetric. Finally, observe that
2i(1—-V)~
2iV (1 - V)L,
which shows that A is the Cayley transform of V' and finishes the proof. [

Aii:((1+V)i(1—V))(1—V)_1:{

Thus A is self-adjoint if and only if its Cayley transform V' is unitary.
Moreover, finding a self-adjoint extension of A is equivalent to finding a
unitary extension of V' and this in turn is equivalent to (taking the closure
and) finding a unitary operator from (V) to Ran(V)+. This is possible
if and only if both spaces have the same dimension, that is, if and only if
d+(A) =d_(A).

Theorem 2.27. A symmetric operator A has self-adjoint extensions if and
only if its defect indices are equal.

In this case let A1 be a self-adjoint extension and Vi its Cayley trans-
form. Then

D(A1)=DA)+ (1 -WN)Ki ={+ i —Vipi|p € D(A), ¢t € K4}

(2.106)
and
A1(Y + oy = Vipy) = A +ipy +iVipy. (2.107)
Moreowver,
. N Fi
(Ar+0)7 = (A+D) 8 T 3 (0F, )k - 6], (2.108)

J
where {goj} is an orthonormal basis for Ky and ¢; = Vlgoj.

Proof. From the proof of the previous theorem we know that ®(A;) =
Ran(1 - Vi) =Ran(1+V)+ (1 - V)K; =9(A) + (1 — V1) K4. Moreover,
A+ —Vips) = AP HA+V)(1-V1) (1= V1)py = Ap+i(1+V1)py.

Similarly, Ran(A4; £1) = Ran(A+1) ® K1 and (4; +1)7! = —3(1 - W),
respectively, (A1 +1)71 = —1(1 -V, ). O

Note that instead of z = i we could use V(z) = (A + 2*)(A + 2)~! for
any z € C\R. We remark that in this case one can show that the defect
indices are independent of z € C; = {z € C|Im(z) > 0}.

Example. Recall the operator A = —i-L D(A) = {f € H'(0,27)|f(0) =

f(2m) = 0} with adjoint A* = —i-L D(A*) = H'(0,2n).
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Clearly
K1 = span{e™} (2.109)
is one-dimensional and hence all unitary maps are of the form
Voe?™ % = e%e® 9 c[0,2m). (2.110)
The functions in the domain of the corresponding operator Ay are given by
folz) = f(x) + a(e® % — e%?), fe®(A), aeC. (2.111)
In particular, fy satisfies
fo(2m) = @ £p(0), & = 162;6_022; (2.112)
and thus we have
D(Ag) = {f € H'(0,2m)| f(27) = ¢ £(0)}. (2.113)

<

Concerning closures, we can combine the fact that a bounded operator
is closed if and only if its domain is closed with item (iii) from Lemma 2.4
to obtain

Lemma 2.28. Suppose A is symmetric. Then the following items are equiv-
alent.

o A is closed.
e D(V)=Ran(A +1) is closed.
e Ran(V) = Ran(A —1i) is closed.

o V is closed.

Next, we give a useful criterion for the existence of self-adjoint exten-
sions. A conjugate linear map C : ) — $ is called a conjugation if it
satisfies C%2 = I and (Cv,Cp) = (1, ). The prototypical example is, of
course, complex conjugation Cv = ¥*. An operator A is called C-real if

CO(A) CD(A), and ACY =CAyY, e D(A). (2.114)
Note that in this case CD(A) = D(A), since D(A) = C?D(A) C CD(A).
Theorem 2.29. Suppose the symmetric operator A is C-real. Then its

defect indices are equal.

Proof. Let {¢;} be an orthonormal set in Ran(A +i)*. Then {C¢p,} is an
orthonormal set in Ran(A —i)t. Hence {¢;} is an orthonormal basis for
Ran(A + i) if and only if {Cy;} is an orthonormal basis for Ran(A4 —i)*.
Hence the two spaces have the same dimension. [l
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Finally, we note the following useful formula for the difference of resol-
vents of self-adjoint extensions.

Lemma 2.30. If A;, j = 1,2, are self-adjoint extensions of A and if {¢;(z)}
is an orthonormal basis for Ker(A* — z), then

(A1 —2)" = (Ag = 2) 71 = (e(2) — a5 (2) {0 (z7), Ypu(2),  (2.115)
7,k
where

oy (2) = (o(2), (A = 2) s (7). (2.116)

Proof. First observe that ((4; — 2z)™! — (A2 — 2)71)p is zero for every
¢ € Ran(A — z). Hence it suffices to consider vectors of the form ¢ =
>-i(pi(2%), @)e;(2") € Ran(A — z)+ = Ker(A* — z*). Hence we have

(A1 =2)7" = (A2 = )7 =D {i(="), )e5(2),
J
where
¥i(2) = (A1 = 2) 7" = (A2 = 2)"Dg;(2").
Now computing the adjoint once using ((4; —z)~!)* = (4; —2*)~! and once

using (3_;(wj,-)15)" = 22;(¥;,.)¥j, we obtain

Y (@il2), )s(z") = ) _{W5(2), (")

J J
Evaluating at ¢ (z) implies

Y(z) = D (Wi(2"), (2 )ei(2) = Y (ag;(2) — ady(2))ps(2)

J J
and finishes the proof. O

Problem 2.28. Compute the defect indices of

Ag=1i D(Ao) = CZ((0,00)).

%7
Can you give a self-adjoint extension of Ay?

Problem 2.29. Let A1 be a self-adjoint extension of A and suppose p €
Ker(A* — zp). Show that ¢(z) = ¢ + (2 — 20)(A1 — 2) "L € Ker(A* — 2).
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2.7. Appendix: Absolutely continuous functions

Let (a,b) C R be some interval. We denote by

AC(a,b) = {f € Cla,b)|f(x) = f(c) + /x g(t)dt, c € (a,b), g € Lige(a,)}

(2.117)
the set of all absolutely continuous functions. That is, f is absolutely
continuous if and only if it can be written as the integral of some locally
integrable function. Note that AC(a,b) is a vector space.

By Corollary A.44, f(x) = f(c)+ [ g(t)dt is differentiable a.e. (with re-
spect to Lebesgue measure) and f'(x) = g(z). In particular, g is determined
uniquely a.e.

If [a,b] is a compact interval, we set
ACla,b] = {f € AC(a,b)|g € L'(a,b)} C Cla,b]. (2.118)
If f,g € AC[a,b], we have the integration by parts formula (Problem 2.30)

b b
/ f(x)g'(z)dz = f(b)g(b) — f(a)g(a) —/ fl(@)g(z)de, (2.119)

which also implies that the product rule holds for absolutely continuous
functions.

We define the usual Sobolev spaces via

H™(a,b) = {f € L*(a,b)|fY) € AC(a,b), fUT) € L*(a,b), 0 < j <m—1}.

(2.120)
Note that H™(a,b) is a Hilbert space when equipped with the norm
m o b
910 = [ 1790 (2.121)
j=07a

(cf. Problem 2.32).

Then we have

Lemma 2.31. Suppose f € H™(a,b), m > 1. Then f is bounded and
limg o £ (2), respectively, limgyy, f9)(2), exists for 0 < j < m — 1. More-
over, the limit is zero if the endpoint is infinite.

Proof. If the endpoint is finite, then fUTY is integrable near this endpoint
and hence the claim follows. If the endpoint is infinite, note that

|f(j)<m)’2 _ ’f(j)(c)‘Q n 2/5’3 Re(f(j)(t)*f(j+l)(t))dt

shows that the limit exists (dominated convergence). Since f () is square
integrable, the limit must be zero. (I
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Hence we can set fU)(a) = lim,, f9)(z), f9)(b) = limgpy, fU)(x) and
introduce

HJ(a,b) = {f € H™(a,b)|fV(a) = f9(b) =0, 0<j<m—1}, (2.122)

which could equivalently be defined as the closure of C§°(a, b) in H™(a, b) (cf.
Problem 2.33). Of course if both endpoints are infinite, we have Hj'(R) =
H™(R).

Finally, let me remark that it suffices to check that the function plus the
highest derivative are in L?; the lower derivatives are then automatically in
L?. That is,

H™(a,b) = {f € L*(a,b)|fY) € AC(a,b), 0< j <m—1, f™ e L?(a,b)}.

(2.123)
For a finite endpoint, this is straightforward. For an infinite endpoint, this
can also be shown directly, but it is much easier to use the Fourier transform
(compare Section 7.1).

Problem 2.30. Show (2.119). (Hint: Fubini.)

Problem 2.31. A function u € L'(0,1) is called weakly differentiable if for
some v € L1(0,1) we have

/0 1 v(@)p(x)dz = — /0 1 w(z)¢ (z)da

for all test functions ¢ € C°(0,1). Show that u is weakly differentiable if
and only if u is absolutely continuous and u' = v in this case. (Hint: You will
need that fol u(t)@' (t)dt =0 for all o € C°(0,1) if and only if u is constant.
To see this, choose some vy € C°(0,1) with I(pg) = fol wo(t)dt = 1. Then
invoke Lemma 0.41 and use that every ¢ € C°(0,1) can be written as

p(t) = @' (t) + () po(t) with ®(t) = [ o(s)ds — () [ o(s)ds.)

Problem 2.32. Show that H™(a,b) together with the norm (2.121) is a
Hilbert space.

Problem 2.33. Show

f 2
i< EE o rem@y. @
(where the first term on the left-hand side is zero if (a,b) is unbounded) and
I£15 < 20 FIIF1 f € Hy(a,b). (2.125)
Conclude that the trace operator
T:H'Y(a,b) = C [ T(f) = (f(a), f(D)), (2.126)

is continuous and that Hg(a,b) is a closed subspace.
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Moreover, show that the closure of C$°(a,b) in H'(a,b) is H(a,b). Sim-
ilarly, show that the closure of C3°(a,b) in H™(a,b) is H{"(a,b). (Hint:
Start with the case where (a,b) is finite.)

Problem 2.34. Show that if f € AC(a,b) and f' € LP(a,b), then f is
Hélder continuous:

@) = F@) < 1 llplz — o7,






Chapter 8

The spectral theorem

The time evolution of a quantum mechanical system is governed by the
Schrodinger equation

. d

1S () = H(1). (3.1)
If § = C* and H is hence a matrix, this system of ordinary differential
equations is solved by the matrix exponential

(1) = exp(—itH)i(0). (3.2)
This matrix exponential can be defined by a convergent power series
oo .
| (—it)"
exp(—itH) =) . (3.3)
n=0

For this approach, the boundedness of H is crucial, which might not be the
case for a quantum system. However, the best way to compute the matrix
exponential and to understand the underlying dynamics is to diagonalize H.
But how do we diagonalize a self-adjoint operator? The answer is known as
the spectral theorem.

3.1. The spectral theorem

In this section, we want to address the problem of defining functions of a
self-adjoint operator A in a natural way, that is, such that

(f+9)(A) = F(A)+9(4),  (f9)(A) = f(A)g(A), (f)(A)=[f(A)". (3.4)
As long as f and g are polynomials, no problems arise. If we want to extend
this definition to a larger class of functions, we will need to perform some
limiting procedure. Hence we could consider convergent power series or
equip the space of polynomials on the spectrum with the sup norm. In both

99
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cases this only works if the operator A is bounded. To overcome this limita-
tion, we will use characteristic functions xo(A) instead of powers A7. Since
xa(A)? = xa(A), the corresponding operators should be orthogonal projec-
tions. Moreover, we should also have xgr(A) = I and xa(A) = > xo,(4)
for any finite union €2 = U?Zl (1, of disjoint sets. The only remaining prob-
lem is of course the definition of xo(A). However, we will defer this problem
and begin by developing a functional calculus for a family of characteristic
functions xq(A).

Denote the Borel sigma algebra of R by 8. A projection-valued mea-
sure is a map

P:B — £(9), Q— P(Q), (3.5)

from the Borel sets to the set of orthogonal projections, that is, P(2)* =
P(Q) and P(Q)? = P(Q), such that the following two conditions hold:

(i) P(R) =1L
(i) If Q@ = {J,, Qn with Q, N Q,,, = 0 for n # m, then Y P(Q)¢ =
P(Q)1) for every ¥ € § (strong o-additivity).

Note that we require strong convergence, » . P(Q,)y = P(Q)1, rather
than norm convergence, ) P(f,) = P(2). In fact, norm convergence
does not even hold in the simplest case where $ = L?(I) and P() = xq
(multiplication operator), since for a multiplication operator the norm is just

the sup norm of the function. Furthermore, it even suffices to require weak
convergence, since w-lim P, = P for some orthogonal projections implies

slim P, = P by (¢, Pyy) = (1, P?y) = (Puib, Py) = ||Pay||? together
with Lemma 1.12 (iv).

Example. Let ) = C" and let A € £(C") be some symmetric matrix. Let
Aly-. o, A be its (distinct) eigenvalues and let P; be the projections onto
the corresponding eigenspaces. Then

PA(@) = > P (3.6)
{ilxeQ}
is a projection-valued measure. o
Example. Let $ = L2(R) and let f be a real-valued measurable function.
Then
P(Q) = xp-1(q) (3.7)
is a projection-valued measure (Problem 3.3). o

It is straightforward to verify that every projection-valued measure sat-
isfies

P@) =0, PR\Q) =1-P(Q), (3.8)
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. P(Q2,UQ9) + P(21 N Qo) = P(21) + P(Qa). (3.9)
Moreover, we also have

P(21)P(22) = P(Q1 N Q). (3.10)

Indeed, first suppose €1 NQs = (). Then, taking the square of (3.9), we infer

P(Q1)P(Q2) + P(Q2)P(Q21) = 0. (3.11)

Multiplying this equation from the right by P(€2) shows that P(€2;)P(€2) =
—P(Q2)P(§21)P(e) is self-adjoint and thus P(Q;)P(Q2) = P(Q2)P () =
0. For the general case Q1 N Qs # (), we now have

P(1)P(Q2) = (P( — Q2) + P(21 N Q) (P(Q2 — ) + P(21 N ())
= P(Q1 N Q) (3.12)
as stated.

Moreover, a projection-valued measure is monotone, that is,
in the sense that (¢, P(Q1)y) < (¢, P(Q2)1) or equivalently Ran(P(£2;)) C
Ran(P(£22)) (cf. Problem 1.7). As a useful consequence, note that P(£23) = 0
implies P(€1) = 0 for every subset 2 C Q.
To every projection-valued measure there corresponds a resolution of
the identity
P(A) = P((—00, ) (3.14)
which has the following properties (Problem 3.4):
(i) P(X) is an orthogonal projection.
(ii) P(A1) < P(Ag) for A1 < Aa.
(iii) s-limy, x P(An) = P(A) (strong right continuity).
(iv) s-limy— oo P(A) = 0 and s-limy_, oo P(A) =L
As before, strong right continuity is equivalent to weak right continuity.

Picking 1 € $), we obtain a finite Borel measure ju,,(2) = (¢, P(Q))) =
| P(Q)9]|? with uy(R) = ||| < co. The corresponding distribution func-
tion is given by py(A) = (¢, P(X)1) and since for every distribution function
there is a unique Borel measure (Theorem A.3), for every resolution of the
identity there is a unique projection-valued measure.

Using the polarization identity (2.17), we also have the complex Borel

measures
1 . .
pop () = (o, PO)Y) = 7 (ko (Q) = oy () + i1 (2) = i1y (€2))-
(3.15)
Note also that, by Cauchy-Schwarz, |, (2)] < |||l []2/]]-
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Now let us turn to integration with respect to our projection-valued
measure. For every simple function f = >, ajxq; (where Q; = f “ay)),
we set

P(f) = / FOVAPO) =3 P(2,). (3.16)
R o
In particular, P(xq) = P(2). Then (¢, P(f)¥) = >_; ajfipy(£2;) shows

(o, P(f)) = /R F\dpios () (3.17)

and, by linearity of the integral, the operator P is a linear map from the set
of simple functions into the set of bounded linear operators on ). Moreover,
IP(f)v|? = > v (€2) (the sets 2 are disjoint) shows

1P = [ 1FO)Pdies() (318)
Equipping the set of simple functions with the sup norm, we infer
IP(H)YI < | Fllsolle2l, (3.19)

which implies that P has norm one. Since the simple functions are dense
in the Banach space of bounded Borel functions B(R), there is a unique
extension of P to a bounded linear operator P : B(R) — £($)) (whose norm
is one) from the bounded Borel functions on R (with sup norm) to the set
of bounded linear operators on $). In particular, (3.17) and (3.18) remain
true.

There is some additional structure behind this extension. Recall that
the set £(9) of all bounded linear mappings on ) forms a C* algebra. A C*
algebra homomorphism ¢ is a linear map between two C* algebras which
respects both the multiplication and the adjoint; that is, ¢(ab) = ¢(a)p(b)

and ¢(a*) = ¢(a)"
Theorem 3.1. Let P(Q2) be a projection-valued measure. Then the operator
P: BR) — £(9) (3.20)
f = Jg F(N)AP(A)

is a C* algebra homomorphism with norm one such that
(P@e. P = [ 6N Ndags(). (3:21)

In addition, if f,(A) — f(\) pointwise and if the sequence || fp || s bounded,
then P(f,) = P(f) strongly.

Proof. The properties P(1) = I, P(f*) = P(f)*, and P(fg) = P(f)P(9)
are straightforward for simple functions f. For general f they follow from
continuity. Hence P is a C* algebra homomorphism.
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Equation (3.21) is a consequence of (P(g)¢, P(f)¥) = (v, P(g* f)v).
The last claim follows from the dominated convergence theorem and

(3.18). 0

As a consequence of (3.21), observe

ipyer (@) = (P(g)p, POP(f)E) = /Q G F WiV, (3.22)

which implies
dpp(gyp,p(pyy = 9" fdigy. (3.23)

Example. Let ) = C" and A = A* € £(C"), respectively, P4, as in the
previous example. Then

Pa(f) = F()P;. (3.24)

7j=1
In particular, P4(f) = A for f(A\) = A. Moreover,

n

m

duy(\) = Y I PlPdO(h — Ay), (3.25)
j=1
where dO(X — );) is the Dirac measure centered at A;. o

Next we want to define this operator for unbounded Borel functions.
Since we expect the resulting operator to be unbounded, we need a suitable
domain first. Motivated by (3.18), we set

D= (v e8| /R PO dps (V) < o). (3.26)

This is clearly a linear subspace of ) since pay(2) = |af?1y(92) and since

Hotp () = [P (p+9)[* < 2(| P(Q)lP+IP(Q)D]1?) = 2(pe () + 11 (2))
(by the triangle inequality).

For every ¢ € Dy, the sequence of bounded Borel functions

fo=xa.f,  Qu={NI[f(A)] <n}, (3.27)

is a Cauchy sequence converging to f in the sense of L?(R, du,). Hence, by
virtue of (3.18), the vectors 1, = P(f,)1 form a Cauchy sequence in $) and
we can define

P(f)p = lim P(fa), 4 €Dy (3.28)
By construction, P(f) is a linear operator such that (3.18) holds. Since
f € LY(R,dpuy) (pyp is finite), (3.17) also remains true at least for ¢ = 1.

In addition, D¢ is dense. Indeed, let €, be defined as in (3.27) and
abbreviate v, = P(£2,)¥. Now observe that duy, = xq,dpy and hence
¥, € Ds. Moreover, 1, — 9 by (3.18) since xq, — 1 in L2(R, duy).
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The operator P(f) has some additional properties. One calls an un-
bounded operator A normal if D(A4) = D(A*) and ||Ay| = ||A*yY] for all
1 € D(A). Note that normal operators are closed since the graph norms on
D(A) = D(A*) are identical.

Theorem 3.2. For every Borel function f, the operator

mﬂzAgumm», D(P(f)) = Dy, (3.20)

is normal and satisfies
IIP(f)"t/fI!?—/\f(A)Izdﬂw(A% <¢7P(f)¢>—/f(k)duw@) (3.30)
R R

for € Dy.
Let f, g be Borel functions and o, 8 € C. Then we have

P(f)" = P(f"), (3.31)

aP(f)+BP(g) C Plaf +Bg), D(aP(f)+BP(9)) =Df1g, (3.32)
and
P(f)P(g) C P(fg), D(P(f)P(g9)) =DyNDgy. (3.33)

Proof. We begin by showing (3.31). Let f be given and define f,, Q, as
above. Since (3.31) holds for f,, by our previous theorem, we get

(0, P(£)¢) = (P(f ), )
for every p,9 € Dy = Dy« by continuity. Thus it remains to show that
D(P(f)) € Df. It € D(P(f)7), we have (¢, P(f)p) = (i, ¢) for all
¢ € D by definition. By construction of P(f) we have P(f,) = P(f)P({,)
and thus

(P(f2)w:0) = (, P(fa)p) = (, P(f)P(2) ) = (P(Q) ), )

for every ¢ € $ shows P(f})y = P(€)1. This proves existence of the limit

i [ 1oy = Jim [P = lim [IP@3I = 9],
R n—oo n—oo

n—o0

which by monotone convergence implies f € L?(R, du,); that is, 1) € D I

That P(f) is normal follows from Dy = Dy = D+ and (3.30), which
implies || P(f)y[|* = [|P(If)¥]? = 1P(f*)¢].

To show (3.32), note D(aP(f) + BP(g)) =D(P(f))ND(P(g9)) =DfN
Dy = Dif|1lg and set fr = xQ,f, 9o = X,9, Where Q, = {A[[f(N)] +
l9(M)| < n}. Then P(fu)y — P(f)¥, Plgn)¥ — P(g)¢ and aP(fn)y +
BP(gn) = Plafu + Bgn) = P((af + Bg)xe,)v — Plaf + Bg)y for
¥ € Dfitig)
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To show (3.33), we start with the case where g is bounded and define f,,,
Q,, as usual. Then P(f,) = P(f)P(2,) as noted above and P(£,)P(g)y —
Plg) plus P(£)P(Qu) P(g)t = P(f2) P(g) = P(fug) > P(f g)i for v €
o shows Plg)y € D(P() and PPy = P(F3)v; thatis, PPl =

q9).

Finally, if ¢g is unbounded, define g,, €, as usual. Then P(g,)v —
P(g)y and P(f)P(gn)¥ = P(fgn)th = P(f g)¢ for ¢ € Dy NDy4; that is,
P(g)y € D(P(f)) and P(f)P(g) = P(fg)¢. O

These considerations seem to indicate some kind of correspondence be-
tween the operators P(f) in $ and f in L?(R,dpu,). Recall that U : $ —
is called unitary if it is a bijection which preserves norms ||[U%|| = [|¢| (and
hence scalar products). The operators A in ) and A in § are said to be
unitarily equivalent if

UA=AU, UD(A) =9(A). (3.34)
Clearly, A is self-adjoint if and only if A is and o(A) = o(A).

Now let us return to our original problem and consider the subspace
9y = {P(9)¢|g € L*(R,dpy)} C 9. (3.35)

Note that $, is closed since L? is and v, = P(g,)y converges in § if and
only if g, converges in L?. It even turns out that we can restrict P(f) to
$y (see Section 2.5).

Lemma 3.3. The subspace $y reduces P(f); that is, Py P(f) C P(f)Py,
where Py, is the projection onto $y.

Proof. First, suppose f is bounded. Any ¢ € $) can be decomposed as
¢ = P(9)¢ + ¢ Moreover, (P(h)p, P(f)g*) = (P(f*h)p, ') = 0
for every bounded function h implies P(f)pot € Y)i. Hence PyP(f)p =
PyP(f)P(g9)Y = PyP(f g)y = P(f)Py¢p, which by definition says that £,
reduces P(f).

If f is unbounded, we consider f, = fxq, as before. Then, for every
0 € Dy, P(fn)Pypyp = PyP(fn)p. Letting n — oo, we have P(Qy,)Pyp —
Py and P(fn)Ppp = P(f)P(Qn)Pyp — PyP(f)p. Finally, closedness of
P(f) implies Pyp € ®f and P(f)Pyp = PyP(f)e. O

In particular, we can decompose P(f) = P(f)‘ﬁw ® P(f)}ﬁl. Note that
' v

Py®Dy =D N $Hy = {P(9)dlg, fg € L*(R,dpy)} (3.36)
and P(f)P(g)Y = P(fg)y € $y in this case.
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By (3.30), the operator

Uyp: Hy — L3R, duy) (3.37)
P(g)y = g

is unitary. Moreover, by (3.36) we have Uy Py®(P(f)) = Uyp(Df N Hy) =
{9 € L2(R, dyuy)| fg € L2(R, dyuy)} = () and thus

UyP(f)|5,, = fUs, (3.38)

where f is identified with its corresponding multiplication operator.

The vector 7 is called cyclic if $,, = §, and in this case, our picture
is complete. Otherwise we need to extend this approach. A set {1;}jecs (J
some index set) is called a set of spectral vectors if [|¢;| = 1 and $y, L Hy;
for all ¢ # j. A set of spectral vectors is called a spectral basis if Dy, =
$. Luckily, a spectral basis always exists:

Lemma 3.4. For every projection-valued measure P, there is a (at most
countable) spectral basis {1} such that

H =P 9. (3.39)
n
and a corresponding unitary operator

U=Pu,, : 9 - P LR, duy,) (3.40)

such that for every Borel function f,

UP(f)=fU,  UDs;=23(f). (3.41)

Proof. It suffices to show that a spectral basis exists. This can be easily
done using a Gram—Schmidt-type construction. First of all, observe that if
{¥j}jes is a spectral set and ¢ L )y, for all j, we have ), L §,, for all j.
Indeed, ¢ L $, implies P(g)y L $y, for every bounded function g since
(P(9)y, P(f)vj) = (¢, P(g* f)wj) = 0. But P(g)y with g bounded is dense
in $y, implying £, L ﬁ¢j.

Now start with some total set {'&]} Normalize ¢; and choose this to
be 1. Move to the first 1%- which is not in §),,, project to the orthogonal
complement of §),,, and normalize it. Choose the result to be 1. Proceeding
like this, we get a set of spectral vectors {1;} such that span{d;j} ch i ;-

Hence $ = span{¢;} C D, Hy;- O
It is important to observe that the cardinality of a spectral basis is not

well-defined (in contradistinction to the cardinality of an ordinary basis of
the Hilbert space). However, it can be at most equal to the cardinality of
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an ordinary basis. In particular, since $) is separable, it is at most count-
able. The minimal cardinality of a spectral basis is called the spectral
multiplicity of P. If the spectral multiplicity is one, the spectrum is called
simple.

Example. Let $ = C? and A = (8 (1)) and consider the associated projec-
tion-valued measure P4(2) as before. Then ¢; = (1,0) and ¢ = (0,1) are
a spectral basis. However, ¢» = (1,1) is cyclic and hence the spectrum of
Ais simple. If A = ({9), there is no cyclic vector (why?) and hence the
spectral multiplicity is two. o

Now observe that to every projection-valued measure P we can assign a
self-adjoint operator A = fR AdP(X). The question is whether we can invert
this map. To do this, we consider the resolvent Ra(z) = [ (A —2)"1dP(\).
From (3.17) the corresponding quadratic form is given by

Fy(2) = (b, Ra(2)) = / !

]R/\_Z

Ay (M), (3.42)

which is known as the Borel transform of the measure p,,. By

tm(Fy(2)) = 1m(2) | =g, (3.43)

we infer that Fy(z) is a holomorphic map from the upper half-plane into
itself. Such functions are called Herglotz or Nevanlinna functions (see
Section 3.4). Moreover, the measure i, can be reconstructed from Fy(z)
by the Stieltjes inversion formula

A+0
A) = limlim — Im(Fy(t + ic))dt. 3.44
pop(A) = limalim . m(Fy(t +ic)) (3.44)
(The limit with respect to § is only here to ensure right continuity of ju,,(\).)
Conversely, if F;(z) is a Herglotz—Nevanlinna function satisfying |Fy(2)| <
‘IT]‘{Z)P then it is the Borel transform of a unique measure s, (given by the
Stieltjes inversion formula) satisfying p,(R) < M.
So let A be a given self-adjoint operator and consider the expectation of
the resolvent of A,

Fy(z) = (¢, Ra(2)¥). (3.45)
This function is holomorphic for z € p(A) and satisfies
Fy(+") = Fy(e) and |Fy(z) < 22 (3.46)
~ [Im(z)]

(see (2.72) and Theorem 2.19). Moreover, the first resolvent formula (2.84)
shows that it maps the upper half-plane to itself:

Im(Fy(2)) = Im(2)|| Ra(2)9]|*; (3.47)
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that is, it is a Herglotz—Nevanlinna function. So by our above remarks, there
is a corresponding measure fi,,(\) given by the Stieltjes inversion formula.
It is called the spectral measure corresponding to .

More generally, by polarization (2.17), for each ¢, € $ we can find a
corresponding complex measure fi,  such that

(. Ra:) = [ 5oV, (3.48)

The measure p, 4y is conjugate linear in ¢ and linear in 1 since a com-
plex measure is uniquely determined by its Borel transform (Problem 3.29).
Moreover, a comparison with our previous considerations begs us to define
a family of operators via the sesquilinear forms

s, ) = /R xo(\)dptp (V). (3.49)

Since the associated quadratic form is nonnegative, go(v) = sq(¥,v) =
py () > 0, the Cauchy-Schwarz inequality for sesquilinear forms (Prob-
lem 0.24) implies [sa(p, V)| < ga(0)2e(¥)/? = pe(Q) (@) <
1o (R)Y2 11, (R)Y/2 < ||p]| ||#]|. Hence, Corollary 1.9 implies that there is
indeed a family of nonnegative (0 < (1, P4()) < [[%]|?) and hence self-
adjoint operators P4(2) such that

(0, PA(Q)) = /R XN dig (V). (3.50)

Lemma 3.5. The family of operators P4(Q2) forms a projection-valued mea-
sure.

Proof. We first show P4(Q1)Pa(Q2) = Pa(21 N Q) in two steps. First
observe (using the first resolvent formula (2.84))

| 5z nnaeres ) = (Ral)p RaE)W) = (o, Ra(:) Ra(20)

L (. Ra2) — (. Ra(2)0))

1 1 1 1 dpgp(N)
= — d = | — _Teviiy
z—Z/R()\—z )\—2> o (A) /R)\—Z A—z

implying dug (2100 (A) = (A — 2) " 'dpgy(A) by Problem 3.29. Secondly,
we compute

/RAl_Zdﬂso,PA(ﬂ)w() {0, Ra(2) Pa(Q2)Y) = (Ra(z") g, Pa(2)9)

= [ xaWdiny ) = [ 5

Hcp d)()‘)
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implying dp, p, ) (N) = Xa(A)dpg .y (N). Equivalently, we have
(@, PA(S1) Pa(Q2)9) = (@, Pa(1 N Q2)1)
since XQ,XQ, = XQ;nQ,- In particular, choosing €23 = {22, we see that
P4(£21) is a projector.
To see Pa(R) = 1, let ¢ € Ker(P4(R)). Then 0 = duy, p,myp(N) =
XR(A)dpipp(N) = dpip . (N) implies (p, Ra(2)1) = 0 which implies ¢ = 0.
Now let Q@ = o2 Q,, with Q, N Q,, = 0 for n # m. Then

n

D (W Pa@)9) = D np(€) = (4, Pa()9) = py(9)
j=1

j=1
by o-additivity of p,. Hence P4 is weakly o-additive which implies strong
o-additivity, as pointed out earlier. O

Now we can prove the spectral theorem for self-adjoint operators.

Theorem 3.6 (Spectral theorem). To every self-adjoint operator A there
corresponds a unique projection-valued measure Pa such that

A= /IR AdPA(N). (3.51)

Proof. Existence has already been established. Moreover, Theorem 3.1
shows that P4((A — 2)7!) = Ra(z), z € C\R. Since the measures fi,  are
uniquely determined by the resolvent and the projection-valued measure is
uniquely determined by the measures ., ., we are done. O

The quadratic form of A is given by

ga(t) = /R Ay () (3.52)

and can be defined for every % in the form domain
Q(4) = D(|AI"?) = {¢ € 9] /R [Aldpy (A) < o0} (3.53)

(which is larger than the domain D(A) = {¢ € H| [ Adpy(X) < co}). This
extends our previous definition for nonnegative operators.

Note that if A and A are unitarily equivalent as in (3.34), then URA(z) =
R ;(2)U and hence

iy = dfiry. (3.54)
In particular, we have UP4(f) = P;(f)U, UD(Pa(f)) = D(P;(f)).

Finally, let us give a characterization of the spectrum of A in terms of
the associated projectors.
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Theorem 3.7. The spectrum of A is given by
d(A) ={X € RIPs((A—¢e,A\+¢)) #0 for all ¢ > 0}. (3.55)
Proof. Let 2, = (A\o — 2, o+ 1). Suppose P4(£,) # 0. Then we can find
a ¥, € Pa(Q)$ with |1, = 1. Since
1(A = X0)tnl1? = (A = Xo) Pa()thn|?
1

- /R (A= X0)xa, (Ndjiy, (V) <

n2
we conclude \g € 0(A) by Lemma 2.17.
Conversely, if Pa((Ao — €, o +¢)) =0, set
Je(A) = XB\(rg—e x0+2) (M) (A = Ag) 7
Then
(A= Xo)Pa(fe) = Pa((A = A0) fe(N) = Pa(R\(Ao — &, Ao +¢)) = L.
Similarly, Pa(f:)(A — Xo) = I[|p(4) and hence Ao € p(A). O
In particular, P4((A1, A2)) = 0 if and only if (A1, A2) C p(A).
Corollary 3.8. We have
Pa(o(A) =1 and Pa(RNp(A)) =0. (3.56)
Proof. For every A € RNp(A) there is some open interval I with P4(I)) =
0. These intervals form an open cover for RN p(A), and there is a countable
subcover J,. Setting Q, = Jn\ U,,<,, Jm, we have disjoint Borel sets which

cover RN p(A) and satisfy P4(2,,) = 0. Finally, strong o-additivity shows
PARNp(A)Y =32, Pa(Qn)y = 0. O

Consequently,

Pa(f) = Pa(o(A))Pa(f) = Palxo(a)f)- (3.57)
In other words, P4(f) is not affected by the values of f on R\o(A)!

It is clearly more intuitive to write P4(f) = f(A) and we will do so from
now on. This notation is justified by the elementary observation

Pa(d aN)=> ;A (3.58)
j=0 j=0

Moreover, this also shows that if A is bounded and f(A) can be defined via
a convergent power series, then this agrees with our present definition by
Theorem 3.1.

Problem 3.1. Show that a self-adjoint operator P is a projection if and
only if o(P) C {0, 1}.
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Problem 3.2. Consider the parity operator II : L?(RY) — L%(R%),
Y(x) = Y(—x). Show that 11 is self-adjoint. Compute its spectrum o(II)
and the corresponding projection-valued measure Pr.

Problem 3.3. Show that (3.7) is a projection-valued measure. What is the
corresponding operator?

Problem 3.4. Show that P(\) defined in (3.14) satisfies properties (i)—(iv)
stated there.

Problem 3.5. Show that for a self-adjoint operator A we have ||Ra(2)|| =
dist(z, 0(A))71L.

Problem 3.6. Suppose A is self-adjoint and ||B — z|| < r. Show that

0(A+ B) C 0(A) + By(z0), where By(20) is the ball of radius v around zp.
(Hint: Problem 2.18.)

Problem 3.7. Show that for a self-adjoint operator A we have [|[AR4(2)|| <

\Ir‘nz(|z)|' Find some A for which equality is attained.

Conclude that for every ¢ € $ we have
lim [|ARA(2)Y| =0, (3.59)
Z—00
where the limit is taken in any sector | Re(z)| < |Im(z)[, € > 0.

Problem 3.8. Suppose A is self-adjoint. Show that, if ¢ € D(A™), then

LAy A" ]l
Ra(z)p ==Y pu TS O(W

Jj=0

), as z — 00. (3.60)

(Hint: Proceed as in (2.90) and use the previous problem.)

Problem 3.9. Suppose A is self-adjoint. Let \g be an eigenvalue and v a
corresponding normalized eigenvector. Compute [i,.

Problem 3.10. Suppose A is self-adjoint. Show
Ran(Pa({Xo})) = Ker(A — \).

(Hint: Start by verifying Ran(Pa({Ao})) C Ker(A—X\g). To see the converse,
let v € Ker(A — Xo) and wuse the previous example to compute

(¥, Pa({ Ao })¥0).)

3.2. More on Borel measures

Section 3.1 showed that in order to understand self-adjoint operators, one
needs to understand multiplication operators on L?(R,dy), where du is a
finite Borel measure. This is the purpose of the present section.
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The set of all growth points, that is,
o(p) ={r e Rlu((A—¢e,\+¢)) > 0 for all ¢ > 0}, (3.61)

is called the spectrum of . The same proof as for Corollary 3.8 shows that
the spectrum o = o(u) is a support for p; that is, u(R\o) = 0. In fact,
it coincides with the (topological) support, () = supp(i), as defined in
(A.7).

In the previous section we have already seen that the Borel transform of
1,

1
F(z) = du(A .62
()= [ 3. (362)
plays an important role.

Theorem 3.9. The Borel transform of a finite Borel measure is a Herglotz—
Nevanlinna function. It is holomorphic in C\o(u) and satisfies

F(z*) = F(2)", |F(2)] < Ii?i“))’ z € Cy. (3.63)

Proof. First of all, note
1 dp(A)
Im(F = (1 1
w(Fe) = [ 1w () dut = tmge) [

which shows that F' maps Cy to C;. Moreover, F(z*) = F(z)* is obvious

and
du(N) 1
e < [ A< s /R ap(N)

establishes the bound. Moreover, since p(R\o) = 0, we have

F:) = [ 5sdutv),

z

which together with the bound
1 < 1
IA—z| ~ dist(z,0)
allows the application of the dominated convergence theorem to conclude
that F is continuous on C\o. To show that F' is holomorphic in C\o,
by Morera’s theorem, it suffices to check [ F(z)dz = 0 for every triangle
I' € C\o. Since (A — 2)~! is bounded for (A, 2) € 0 x T, this follows from
Jr(Z—=2) 1dz = 0 by using Fubini, [, F(2)dz = [} [e(A — 2)'du(N) dz =
Jz Jr(A = 2)"tdzdu(X) = 0. O

Note that F' cannot be holomorphically extended to a larger domain. In
fact, if F' is holomorphic in a neighborhood of some A € R, then F(\) =
F(X*) = F(\)* implies Im(F' (X)) = 0, and the Stieltjes inversion formula
(Theorem 3.23) shows that A € R\o(u).
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Associated with this measure is the operator
AFO) =AM, D(4) = {f € AR, dp)Af(N) € L*(R,du)}.  (3.64)
By Theorem 3.7 the spectrum of A is precisely the spectrum of pu; that is,

o(A) =o(u). (3.65)
Note that 1 € L?(R, du) is a cyclic vector for A and that
dpg,r(A) = g(A)* F(A)du(A). (3.66)

Now what can we say about the function f(A) (which is precisely the
multiplication operator by f) of A7 We are only interested in the case where
f is real-valued. Introduce the measure

(Fer)(Q) = u(f~H(Q). (3.67)
Then
/g(A)d(f*u)(/\) Z/g(f(k))du(/\)- (3.68)
R R

In fact, it suffices to check this formula for simple functions g, which follows
since xq o f = Xxy-1(q)- In particular, we have

It is tempting to conjecture that f(A) is unitarily equivalent to multi-
plication by A in L?(R,d(f.p)) via the map

L*(R,d(fepn)) = L*(R,du), g~ go f. (3.70)
However, this map is only unitary if its range is L2(R, dpu).
Lemma 3.10. Suppose f is injective. Then
Us L3R dp) = LR, d(fur)), g g0 f) (3.71)
is a unitary map such that U f(\) = A.
Example. Let f(\) = A%2. Then (g o f)(\) = g(A\?) and the range of the
above map is given by the symmetric functions. Note that we can still

get a unitary map L2(R,d(fup)) @ L2(R,d(fup)) — L*(R,du), (g1,92)
91(A%) + 92(A%) (X(0,00) (A) = X(0,00) (=) °

Lemma 3.11. Let f be real-valued. The spectrum of f(A) is given by
o(f(A) = o(fup). (3.72)

In particular,

a(f(A)) C f(o(4)), (3.73)
where equality holds if f is continuous and the closure can be dropped if, in
addition, o(A) is bounded (i.e., compact) or |f(\)| — oo for |A\| = oc.
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Proof. The first formula follows by comparing
o(fi) = {ANER|u(f TN —e,A+¢)) >0 for all € > 0}
with (2.77).
Next, let A & f(o(A)). Then there exists an ¢ > 0 such that (A — e, A +

) ¢ f(o(A)) and thus ||(f(A) — )Y < e~ ! which shows A & o(f(A)).

If f is continuous, f~1((f(A) — &, f(A) + €)) contains an open interval
around A and hence f(\) € o(f(A)) if A € o(A). If, in addition, o(A) is
compact, then f(o(A)) is compact and hence closed. Similarly, if |f(\)| —
oo for |A| — oo, suppose 1, = f(An) — 1. Then, A, is bounded (otherwise
1, were also unbounded and could not be convergent), and we can pass to a
convergent subsequence \,, — A € 0(A) such that n = f(\) € f(c(4)). O

Whether two operators with simple spectrum are unitarily equivalent
can be read off from the corresponding measures:

Lemma 3.12. Let Ay, As be self-adjoint operators with simple spectrum and
corresponding spectral measures py and ps of cyclic vectors. Then A1 and
Ag are unitarily equivalent if and only if 1 and po are mutually absolutely
continuous.

Proof. Without restriction, we can assume that A; is multiplication by A
in L2(R, du;). Let U : L?(R,du;) — L*(R,dus) be a unitary map such that
UA; = AoU. Then we also have U f(A1) = f(A2)U for every bounded Borel
function and hence

UFN) = UF(N) -

and thus U is multiplication by u(\
unitary, we have

m(Q):/ IXQ\Qdm:/ quledm:/ |uf*dpa;
R R Q

that is, duy = |u|?dus. Reversing the roles of A; and As, we obtain dus =
|v[2dpy, where v = U~ 1.

ST

1=
) = U(1)(N\). Moreover, since U is

The converse is left as an exercise (Problem 3.18). O

Next, we recall the unique decomposition of p with respect to Lebesgue
measure,

dp = dptge + dis, (3.74)

where pi4. is absolutely continuous with respect to Lebesgue measure (i.e.,
we have piq.(B) = 0 for all B with Lebesgue measure zero) and y is singular
with respect to Lebesgue measure (i.e., us is supported, us(R\B) = 0, on
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a set B with Lebesgue measure zero). The singular part ps can be further
decomposed into a (singularly) continuous and a pure point part,

dps = dptse + dptpp, (3.75)

where 5. is continuous on R and i, is a step function. Since the measures
dftae, dptse, and dpy, are mutually singular, they have mutually disjoint
supports My, My., and M,,. Note that these sets are not unique. We will
choose them such that M), is the set of all jumps of 1(\) and such that M.
has Lebesgue measure zero.

To the sets My, M., and My, correspond projectors P* = xy,.(A),
P* = xu,.(A), and PPP = xpy, (A) satisfying P + P*¢ 4 PPP = 1. In
other words, we have a corresponding direct sum decomposition of both our
Hilbert space

L*(R,dp) = L*(R, dpae) © LA(R, dpse) ® L*(R, dpiyp) (3.76)
and our operator
A= (AP™) @ (AP*) @ (APPP). (3.77)

The corresponding spectra, 04c(A) = 0(ftac), Tsc(A) = 0(se), and opp(A) =
o (pupp) are called the absolutely continuous, singularly continuous, and pure
point spectrum of A, respectively.

It is important to observe that o,,(A) is in general not equal to the set
of eigenvalues

op(A) = {\ € R|\ is an eigenvalue of A} (3.78)

since we only have op,(A) = o, (A).

Example. Let $§ = (?(N) and let A be given by A§, = %571, where 9, is
the sequence which is 1 at the n’th place and zero otherwise (that is, A is
a diagonal matrix with diagonal elements ). Then o,(A) = {Z|n € N}
but 0(A) = opp(A) = 0p(A) U{0}. To see this, just observe that ¢, is the
eigenvector corresponding to the eigenvalue % and for z ¢ o(A) we have
R4(2)0, = 1500 At z = 0 this formula still gives the inverse of A, but
it is unbounded and hence 0 € o(A) but 0 ¢ 0,(A). Since a continuous
measure cannot live on a single point and hence also not on a countable set,

we have 04.(A) = 0s.(A) = 0. o

Example. An example with purely absolutely continuous spectrum is given
by taking i to be the Lebesgue measure. An example with purely singularly
continuous spectrum is given by taking u to be the Cantor measure. o
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Finally, we show how the spectrum can be read off from the boundary
values of Im(F') toward the real line. We define the following sets:

Mae = {0 < limsup Im(F (X +ig)) < oo},
el0

M = {\|limsup Im(F (X + ie)) = oo}, (3.79)
el0

M, = {}| liigelm(F()\ +ie)) > 0},
[

M = My U Mg = {A0 < limsup Im(F (X +i¢)) }.
el0
Then, by Lemma 3.25 and Theorem 3.27, we conclude that these sets are
minimal supports for pae, fs, fpp, and p, respectively. In fact, by Theo-
rem 3.27, we could even restrict ourselves to values of A\, where the lim sup
is a lim (finite or infinite).

Lemma 3.13. The spectrum of p is given by
o(u) =M, M = {\0< limﬁ)nf Im(F(\ +ig))}. (3.80)
1>

Proof. First, observe that F' is real holomorphic near A ¢ o(u) and hence
Im(F(X)) = 0 in this case. Thus M C o(p) and since o(u) is closed, we
even have M C o(u). To see the converse, note that by Theorem 3.27, the
set M is a support for M. Thus, if A € o(u), then

O<pu(N=—e,A+e)=pu((A—e,A+e)NM)

for all e > 0 and we can find a sequence A, € (A—1/n, A+1/n)NM converging
to A from inside M. This shows the remaining part o(u) C M. O

By Lemma 3.25, the set M, is precisely the set of point masses of ;1 and
thus
o (ptpp) = Mp. (3.81)
To recover o(pgc) from M., we need the essential closure of a Borel set
Q CR,

Q= {NeR||(A—e,A+¢£)NQ| >0 for all e > 0}, (3.82)

where || denotes the Lebesgue measure of a Borel set . Note that Q7 is

closed, whereas, in contradistinction to the ordinary closure, we might have
Q¢ Q° (e.g., every isolated point of Q will disappear).

Lemma 3.14. The absolutely continuous spectrum of u is given by

0 (ttac) = My (3.83)
Proof. We use that 0 < pac((A — e, A+ ¢€)) = pac((A — e, A + ) N Mg.)
is equivalent to |(A — &, A 4+ ) N My| > 0. One direction follows from the
definition of absolute continuity and the other from minimality of M,.. [
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Problem 3.11. Show that the set of eigenvalues of the operator A of multi-
plication by X in L*(R,dp) is precisely the set of point masses of u: op(A) =
M,.

Problem 3.12. Construct a multiplication operator on L*(R) which has
dense point spectrum.

Problem 3.13. Let A be Lebesgue measure on R, and let f be a strictly
increasing function. Show that

d(fN) = d(f),
where f~' is the inverse of f extended to all of R by setting f~(y) = x for
y € [f(@=), flaz+)].
Moreover, if f € AC(R) with f" > 0, then

1
d(fed) = ———dA.
A= F )
Problem 3.14. Let du(\) = xjo1](A\)dA and f(A) = X(—aoy(A), t € R.
Compute fyipt.

Problem 3.15. Let A be the multiplication operator by the Cantor function
in L?(0,1). Compute the spectrum of A. Determine the spectral types.

Problem 3.16. Find a multiplication operator in L*(0,1) with purely sin-
gular continuous spectrum. (Hint: Find a function whose inverse is the
Cantor function and use Problem 3.13.)

Problem 3.17. Let A be multiplication by X in L*(R). Find a function f

such that o(f(A)) # f(o(A)). Moreover, find a continuous function f such
that o(f(A)) # f(o(A)).

Problem 3.18. Show the missing direction in the proof of Lemma 3.12.
=0 if |Q] = 0.

€SS —~ €SS -~ €SS ~ESS

Problem 3.19. Show (21 UQ)  =Q;  UQs ~ and Q
Moreover, show that Q7" is closed and satisfies Q""" C Q.

3.3. Spectral types

Our next aim is to transfer the results of the previous section to arbitrary
self-adjoint operators A using Lemma 3.4. To this end, we will need a
spectral measure which contains the information from all measures in a
spectral basis. This will be the case if there is a vector ¢ such that for every
p € 9 its spectral measure p, is absolutely continuous with respect to jiy.
Such a vector will be called a maximal spectral vector of A, and p,, will
be called a maximal spectral measure of A.

Lemma 3.15. For every self-adjoint operator A there is a mazximal spectral
vector.
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Proof. Let {1;},cs be a spectral basis and choose nonzero numbers ¢; with
Zje] ’5j|2 = 1. Then I claim that

v=D &
jeJ
is a maximal spectral vector. Let ¢ be given. Then we can write it as ¢ =

> fi(A)p; and hence dpuy, = 325 | fildpny, . But py(Q) = 32, e[y, (Q) =
0 implies puy,; (©2) = 0 for every j € J and thus p,(22) = 0. O

A set {¢;} of spectral vectors is called ordered if 1, is a maximal
spectral vector for A restricted to (@f;ll .6¢j)l. As in the unordered case
one can show

Theorem 3.16. For every self-adjoint operator there is an ordered spectral
basis.

Observe that if {1;} is an ordered spectral basis, then py,, , is absolutely
continuous with respect to fiy;.

If 1 is a maximal spectral measure, we have o(A) = o(u) and the fol-
lowing generalization of Lemma 3.11 holds.

Theorem 3.17 (Spectral mapping). Let p be a mazximal spectral measure
and let f: R — C. Then the spectrum of f(A) is given by

o(f(A)) = {z € Clu(f~1(B(2))) > 0 for all € > 0}. (3.84)

In particular,

a(f(A)) C f(a(A)), (3.85)
where equality holds if f is continuous and the closure can be dropped if, in
addition, o(A) is bounded or | f(\)| — oo for |A| — oc.

Next, we want to introduce the splitting (3.76) for arbitrary self-adjoint
operators A. It is tempting to pick a spectral basis and treat each summand
in the direct sum separately. However, since it is not clear that this approach
is independent of the spectral basis chosen, we use the more sophisticated
definition

Hae = {¥ € H|py is absolutely continuous},
Nse = {1 € H|py is singularly continuous},
Dpp = {¥ € H|py is pure point}. (3.86)
Lemma 3.18. We have
9= Hae D Nse D Npp- (3.87)

There are Borel sets M, such that the projector onto $,. is given by P™* =
XM, (A4), zz € {ac, sc,pp}. In particular, the subspaces $)g, Teduce A. For
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the sets My, one can choose the corresponding supports of some mazximal
spectral measure (.

Proof. We will use the unitary operator U of Lemma 3.4. Pick ¢ € $ and
write ¢ = > p with ¢, € 9y,,. Let f, = Upy,. Then, by construction
of the unitary operator U, ¢, = f,(A)y, and hence du,, = |fal*dpiy, -
Moreover, since the subspaces $),,, are orthogonal, we have

dpp = Z ‘ntQdﬂwn

and hence

gz = Y| FalPdpty e € {ac,se,pp).
n

This shows
USpw = @ LZ(R, dfiep, 22)5 xzx € {ac, sc, pp},
n

and it reduces our problem to the considerations of the previous section.

Furthermore, note that if 4 is a maximal spectral measure, then every
support for pi.; is also a support for ji, ., for every ¢ € 9. O

The absolutely continuous, singularly continuous, and pure point
spectrum of A are defined as

Oac(A) = 0(Als,.), 0sc(A) =0(Als,.), and op(A) =0(Als,,),
(3.88)
respectively. If p is a maximal spectral measure, we have o4.(A) = o (fqc),

0sc(A) = o (pse), and opp(A) = o (ppp)-
If A and A are unitarily equivalent via U, then so are Alg,, and A Fu
by (3.54). In particular, 0,,(A) = am(fl).

Problem 3.20. Compute 0(A), 04c(A), 0sc.(A), and o,,(A) for the multi-

plication operator A = 7 JrlmQ in L?(R). What is its spectral multiplicity?

Problem 3.21. Show Theorem 3.17. What needs to be changed in the proof
of the second part of Lemma 3.11 to cover complez-valued functions?

3.4. Appendix: Herglotz—Nevanlinna functions

Let Cy = {z € C|£Im(z) > 0} be the upper, respectively, lower, half-plane.
A holomorphic function F : C; — C, mapping the upper half-plane to
itself is called a Herglotz—Nevanlinna function. The sum of two Herglotz—
Nevanlinna functions is again one and so is the composition. We can define
F on C_ using F(z*) = F(z)*.
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Example. The following are examples of Herglotz—Nevanlinna functions:
F(z) = a+ bz if Im(a),b > 0 and F(z) = 1= if Im(A) < 0. Note that we
have F'(z*) = F(2)* only if a € R and A\ € R in the previous two examples.
F(z) =log(z) and F(z) = y/z provided we use the standard branches with
arg(z) € (—m, 7. o

In Theorem 3.9 we have seen that the Borel transform of a finite measure
is a Herglotz—Nevanlinna function satisfying a growth estimate. Here we
want to show that the converse is also true. Even though our interest is
mainly in Herglotz—Nevanlinna functions, we will need the connection with
their counterparts on the unit disc which will allow for simpler proofs below.

Recall that .

i—z

i+z
is a conformal bijection from C, to the unit disc D = {z € C||z| < 1} and
hence

2z (3.89)

i—z
i+z
is a Herglotz—Nevanlinna function if and only if C(z) is a Carathéodory
function; that is, C': D — {z € C|Re(z) > 0}. Note that the converse is
given by

F(z) =1C(

) (3.90)

i—z
i+=z
Theorem 3.19 (Herglotz representation). Every Carathéodory function is
of the form

O(z) = —iF(i—2). (3.91)

. e + 2
C(z) =ic+ /[mﬂ] o Zdv(cp) (3.92)
for some finite measure dv and some real constant c. Explicitly, we have
/ dv =Re(C(0), ¢ =TIm(C(0)). (3.93)
[_W’W}

Proof. Let C : D — C be a Carathéodory function and 0 < r < 1. Then,
for every z with |z| < r, we have

1 C+z  r¥/C+2* d¢
)= i = <C - Z> Oz

1 (+z d¢

- 2mi ICl=r fe <C - Z> C(C)?

Taking real parts and setting ¢ = rel?, we see

Re((2)) = [ " Py (arg() — @)dun(p),
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dvy(p) = Re(C(rei‘P))Z—f.

where
1 4 rel¥ 1 — 72
P.(p) =R v )
0= (1575 = T gremr

In particular, taking z = 0, we have

/ " dvn() = Re(C(0)) < oo

—T
and hence (since for |z| < 1 the functions P/, converge uniformly to P
asrT1)

™

Re(C(2) =lim [ Pl (arg(2) = o)dva ()

= lim B (arg(z) — )dvr(9).

Moreover, since the sequence of measures v, is bounded, Lemma A.35 implies
that there is a subsequence which converges vaguely to some measure dv

which satisfies
el¥ + 2
Re(C(z)) = / Re (eicp — z) dv ().

[_ﬂ'vﬂ-]

P (arg(z) — @)dv(p) = /

[_77771-]
Since a holomorphic function is determined by its real part up to an imagi-
nary constant, the claim follows. ([

The corresponding result for Herglotz—Nevanlinna functions now follows
via the connection (3.90).

Theorem 3.20. Every Herglotz—Nevanlinna function is of the form

F(z):bz—l—a+/R<>\iZ—1_|_/\>\2) dp(N),

142X du(X)
= .94
bz+a+/R/\_z1+/\2 (3.94)
with N
dp(A
b > R : .
>0,a € R, /Rl_i_)\2<oo (3.95)

Conversely, given a, b, p as above, F(z) given by (3.94) is holomorphic
in C\ supp(u) where supp(p) is the (topological) support of p and satisfies
F(z*) = F(z)*. Moreover,

Im(F(z)) = Im(2) (b —i—/R ’f\lli(i)Q> , 2z € C\supp(p), (3.96)
as well as
dIZEZ) =b /R &lu_(?)w z € C\ supp(p). (3.97)
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Proof. The homeomorphism f : (—m,7) - R, ¢ — 11+ ﬁ maps our mea-
sure v to a finite measure i = f,u, defined via fi(A) = v(f~1(A)), such that

(Theorem A.31)

/ o(F O dR() = / 9(0)dv ().
R —7, )

In particular, with g(p) = Zi:fi, 1) = arg(l+/\), we obtain that any
Herglotz—Nevanlinna function F(z) = iC (iz) is of the form (3.94) with

du() = (14 A2da0N), a=—c, b=v({-mm}).
The last part follows as in Theorem 3.9, using the estimate
’1 + 2\ < 1+ |z|(|Re( - z)| + | Re(2)|) <o+ .1 + | Re(2)z]
A=z VRe(A = 2)2 4+ Tm(z)? dist (2, supp(y))

O

Example. The Herglotz representations of the functions from the previous
examples are given by

1 1
o /R 00 =) dr, 2 e C\{Ao},

log(z) = /0 ( iz 1Ji\)\2)d)\ 2 € C\(—00,0],
)Fdx 2 € C\(~o0,0].

Va= f / A— 2 1+)\2

o

The general representation (3.94) can be simplified in case of a growth
estimate as follows:

Corollary 3.21. Let p be the measure associated with o Herglotz—
Nevanlinna function F(z). Then

M
b=0, / du<M < Im(F(iy)) < —. (3.98)
R Yy
Moreover, in this case,
. dp(N) _ A
F(Z) =a+ " E, a=a /Rwdu(A) € R, (399)
and
1
F(z)=a- - / dp+o(z71), (3.100)
R

as z — oo in any sector in the upper (or lower) half-plane.
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Proof. Note that the second condition reads

2

Y
A2 42

yInﬂl7ﬁy))::by2+—]£ dp(\) < M (3.101)

and implies b = 0 and [, du < M (use monotone convergence). The converse
is straightforward.

For the last claim, observe

F(z)=a— “(f) +i/RZ f ~dn(y)

and use dominated convergence with the elementary estimate

A ||
< .
A—z| 7 |Im(2)]
O
In particular, note the useful formula
lim A Im(F(iA)) = p(R). (3.102)

A—00

If we have the stronger condition |F'(iy)| < %, then we must also have a = 0
in the last corollary.

Theorem 3.22. A function F' is a Herglotz—Nevanlinna function satisfying
M

Fliy) < 2 (3.103)
Y

if and only if it is the Borel transform of a finite measure p.

Our next question is if p is uniquely determined by F. This is answered
by the following theorem:

Theorem 3.23. Let F' be a Herglotz—Nevanlinna function. Then the mea-
sure pvin (3.94) is unique and can be reconstructed via the Stieltjes inversion
formula

1 A

Q(u(()\l,)\g))—i—u([/\l,)\g])):liml Im(FO\+ie))dy  (3.104)
el0 T A

for any A1 < Aa. The constants a,b are given by

o = Re(F(i)), b—Im(F(i))—/Rdu()\). (3.105)
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Proof. Without loss of generality, we can assume b = 0. By Fubini we have

1 [* Az €
— Im(F (A —d d\
) mEoea= [ e dute)

)
3
/ A T )
where

1 A2 B 1 )\2—1' )\1—%
2 et = (v (M) —avetan ()
1

1
=3 (Xpare] () + X 00) (@)

pointwise. Hence the result follows from the dominated convergence theorem
since 0 < %(arctan(h%) - arctan(%)) <1. O

Of course this implies that there is a one-to-one correspondence between
Herglotz Nevanlinna functions and triples (a, b, 1) satisfying a € R, b > 0,

and fR 1+)\2 < oo given by (3.94).

We can even strengthen the content of the last theorem a bit:

Corollary 3.24. Let F' be a Herglotz—Nevanlinna function with associated
measure jr. The measures m— Im (F()\ + ia))d)\ converge vaguely to du as
€} 0. In fact, we have

lim — /f ) Im (F(X +ie))d = /fdu (3.106)

elo T

for every continuous f satisfying |f(\)| < 1—5—7 and for any f € Cy(R)

provided b = 0 and u(R) < co. Furthermore,
A1

1 1
I €)dA =5 ! ’
alfgﬂ' Ao FO)Im (F(A + ig)) dA 2 (/()\o,h)f M+/[Ao,kﬂf M)

(3.107)
for any A1 < A2 and every f € C[Ag, A1].

Proof. As in the previous theorem, using Fubini, we have
A1

1 . L
lim — f(A) Im (F(/\+16))d/\—1€1i51/Rf5du,

el T 2o

where
f = —1 . f(A s d\
(@) T Jxo ( )()\—a:)2+€2 '

Now the claim follows from dominated convergence since

1 C £ (1+€>C
< . =
|f€($)|—w/ﬂgl+x2 G-+’ T v+
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and
[ (@), z € (Ao, A1),
lim f.(x) = % (A5), x=2X\;, j=0,1,
=0 0, else.
The last case follows using |f-(z)| < L [, Cmd/\ =Cif |f(N)] <
C. O

This last result raises questions of how properties of u can be read off
from the boundary behavior of F'(A+ic) as € | 0. As a first result we show:

Lemma 3.25. Let F' be a Herglotz—Nevanlinna function with associated
measure . Then

lgiﬁ)lelm (F(A+ig)) = u({A}). (3.108)

Proof. This follows from
2

€
limelm (F(A+ie)) = 1i —d = dp = A
i T (F(\+ ) = lim [ (o) = [ v = n((A)
by virtue of the dominated convergence theorem:. O

Furthermore, the Radon-Nikodym derivative of ;1 can be obtained from
the boundary values of F.

Theorem 3.26. Let F' be a Herglotz—Nevanlinna function with associated
measure . Then

(Dp)(N) < liminf 1 Im (F(X\ +ie)) < limsup ! Im (F(X +ie)) < (Dp)(N).

el0 T elo T
(3.109)

Proof. Without loss of generality, we can assume b = 0. We need to esti-
mate

. €
Tm(F(\ +ic)) = /R Kt = Ndu(t), () = .
We first split the integral into two parts:
Im(F(A\+ig)) = | K (t—N)du(t)+ K (t—=N)du(t), Is = (A=9,A+9).

Is R\Ié
Clearly the second part can be estimated by
Ko(t = Ndp(t) < K-(9)u(R),
R\Is

To estimate the first part, we integrate

KL(s) ds du(t)
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over the triangle {(s,t)[]A —s <t <A+, 0<s<d} ={(s,t)[A -0 <t <
A+, [t — A < s <0} and obtain

)
/MMM@@=/mmw«w—mww
0 Is

Now suppose there are constants ¢ and C such that ¢ < “(QI;) <C,0<s<h.
Then

2¢ arctan(g) < | K (t—XN)du(t) <2C arctan(g)

Is
since
b 5
0K (9) +/ —sK.(s)ds = arctan(g).
0
Thus the claim follows combining both estimates. O

As a consequence of Theorem A.45 and Theorem A.46, we obtain (cf.
also Lemma A.47)

Theorem 3.27. Let F' be a Herglotz—Nevanlinna function with associated
measure . Then the limit

Im(F(\)) = liﬁr)l Im(F(X +ie)) (3.110)

exists a.e. with respect to both p and Lebesgue measure (finite or infinite)
and

(D)) =~ Tm(F() (3.111)

whenever (Du)(\) exists.

Moreover, the set {\Im(F()\)) = oo} is a support for the singularly
continuous part and {A|0 < Im(F(X)) < oo} is a minimal support for the
absolutely continuous part.

In particular,

Corollary 3.28. The measure p is purely absolutely continuous on I if
lim sup, o Im(F'(X +ig)) < oo for all A € 1.

The limit of the real part can be computed as well.
Corollary 3.29. The limit

lim F(\ + i) (3.112)

exists a.e. with respect to both u and Lebesgue measure. It is finite a.e. with
respect to Lebesque measure.
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Proof. If F(z) is a Herglotz—Nevanlinna function, then so is \/F(z). More-
over, y/F(z) has values in the first quadrant; that is, both Re(\/F(z))
and Im(,/F(z)) are positive for z € C;. Hence both \/F(z) and i\/F(z)
are Herglotz—Nevanlinna functions, and by virtue of Theorem 3.27, both
limits lim. o Re(y/F' (A +ie)) and limgjoIm(\/F (X +1ie)) exist and are fi-
nite a.e. with respect to Lebesgue measure. By taking squares, the same
is true for F(z) and hence lim.jo F(A + ic) exists and is finite a.e. with
respect to Lebesgue measure. Since lim.joIm(F (X + i€)) = oo implies
lim, g F'(X + ie) = oo, the result follows. O

Finally, we note that the growth of F' along the imaginary axis is related
to the growth of its associated measure.

Lemma 3.30. Let F be a Herglotz—Nevanlinna function with associated
measure . and b = 0. Then, for every 0 < v < 2, we have

dp(A) * Im(F(iy))
/RH np S = /1 Tdy < oo. (3.113)

Proof. First of all, note that we can split F'(z) = F1(z) + F2(z) according
to du = x[—1,1dp + (1 + x(=1,11)dp. The part Fi(z) corresponds to a finite
measure and does not contribute by (3.103). Hence we can assume that pu
is not supported near 0. Then Fubini shows

/0°° Im(F / /AQJr Fdp(\)dy :sinzrv/:m)/ﬂgulhd“()‘)’

which proves the claim. Here we have used (Problem 3.36)

B /2
/ 42 = Nsin(ya/2)”
O

The case v = 0 is the content of Theorem 3.22; and for the case v = 2,
see Problem 3.37.

Problem 3.22. Let u be a finite Borel measure and F' its Borel transform.
Show that (3.103) holds with M = u(R).

Problem 3.23. Show

1 1 14|z

114
‘)\—z ~ 1+ |A| | Im(2)] (3:-114)
and \ P
1 1 141z
= A1
’)\—z 14+ A2] = 14 A% |Im(2)] (3:115)

for every A\ € R. (Hint: First search for the mazimum of |\ — z|™' and
IM|A = 2|71 as a function of X (cf. also Problem 5.7).)
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Problem 3.24. Let F' be a Herglotz—Nevanlinna function. Show that
F(z) =bz+o(2)

as z — oo in any sector in the upper (or lower) half-plane. If in addition

Jz Mldu(X) < oo, show that

F(z):bz—i-&—i-/R@:bz—i-d%-o(l)

as z — oo in any sector in the upper (or lower) half-plane. (Hint: Use
Problem 3.23.)

Problem 3.25. Let F' be a Herglotz—Nevanlinna function with associated
measure (. Show the estimate

p([A—e, A +¢]) < 2eIm(F (A +ie)), e > 0.

Conclude that p is Holder continuous of exponent o € (0,1] if C(\) =
SUD.¢(0,1] el=Im(F(\ + ig)) is locally bounded.

Problem 3.26. Find all rational Herglotz functions F' : C — C satisfying
F(z*) = F(2)" and lim),|o |2F(2)] = M < co. What can you say about
the zeros of F'?

Problem 3.27. Show that every mon-constant Herglotz—Nevanlinna func-
tion maps Cy to C.

Problem 3.28. Let F' be a Herglotz—Nevanlinna function corresponding to
a discrete measure (i.e., | is a pure point measure with isolated masses).
Show that F' has only first order zeros and poles on the real line which are
interlacing. (Hint: Note that F is strictly increasing on the real line, away
from its poles.)

Problem 3.29. A complex measure du is a measure which can be written
as a complex linear combination of positive measures dji;:

dp = dpy — dps +i(dps — dpa).

F(2) = /R Ad_“z

be the Borel transform of a complexr measure. Show that p is uniquely de-
termined by F via the Stieltjes inversion formula

Let

L (O, 2)) + (A, Al)) = 1 1/A2<F<A+'>—F<A—'>>dx
9 U{(AL, A2 H([AL, A2 —alﬁ)l%i N le e .

Problem 3.30. Compute the Borel transform of the complex measure given
by du(\) = 2.
yap 1)
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Problem 3.31. Show that the second part of Corollary 3.2/ extends to the
case where A\ = —00 or \o = 0o under the conditions used in the first part.

Problem 3.32. Let F' be a Herglotz—Nevanlinna function. Then
liﬁ)wRe (F(A+ie)) =0.

Problem 3.33 (Exponential Herglotz representation). Show that every Her-
glotz—Nevanlinna function can be written as

F(z) = exp <c+/R<)\iz_1+>\)\2> 5(/\)d/\>,

€0 = lim ~ arg(F(A +12))

where

for a.e. X and ¢ = log|F(i)|. Moreover, 0 < {(X) < 1. (Hint: log(F(z)) is
also a Herglotz—Nevanlinna function.)

Problem 3.34. Show that

du(A
F(z):1+/AM£), /du<oo,
R z R
if and only if

F(z) = exp (/R i(\)\_)d:\) , /Rf()\)d)\ < o0.

Moreover, in this case [ dp = [p E(N)dA. (Hint: log(1+z) = z+ 0(272).)

Problem 3.35. Suppose || Im (F(.+ie)) |, < 7C for some 1 < p < oco. Then
du(XN) = g(A\)dX with ||g||, < C. (Hint: Use Theorem 3.23 and Hélder’s

inequality to show p((A1, A2)) < C|A2 — )\1|1/‘1. Now use outer reqularity to
conclude that p is absolutely continuous.)

Problem 3.36. Show

0o 1—v
y /2

d — 3 E 0727
/0 1+ ey 7SO

/ R — aec (0,1).

oo L4 e” sin(am)’

by proving

(Hint: To compute the last integral, use a contour consisting of the straight
lines connecting the points —R, R, R+ 2mi, —R+ 2mi. Fvaluate the contour
integral using the residue theorem and let R — oco. Show that the contribu-
tions from the vertical lines vanish in the limit and relate the integrals along
the horizontal lines.)
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Problem 3.37. In Lemma 3.30 we assumed 0 < v < 2. Show that in the
case v = 2 we have

log(1 + A\?) > Im(F(iy))

. -1 log (142
(Hint: [° /\gﬂﬂdy: Ogg; ).)




Chapter 4

Applications of the
spectral theorem

This chapter can be mostly skipped on first reading. You might want to have a
look at the first section and then come back to the remaining ones later.

Now let us show how the spectral theorem can be used. We will give a
few typical applications:

First, we will derive an operator-valued version of the Stieltjes inversion
formula. To do this, we need to show how to integrate a family of functions
of A with respect to a parameter. Moreover, we will show that these integrals
can be evaluated by computing the corresponding integrals of the complex-
valued functions.

Secondly, we will consider commuting operators and show how certain
facts, which are known to hold for the resolvent of an operator A, can be
established for a larger class of functions.

Then we will show how the eigenvalues below the essential spectrum and
dimension of Ran P4(2) can be estimated using the quadratic form.

Finally, we will investigate tensor products of operators.

4.1. Integral formulas

We begin with the first task by having a closer look at the projections P4 (€2).
They project onto subspaces corresponding to expectation values in the set
Q. In particular, the number

(1, xa(A)) (4.1)

131
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is the probability for a measurement of a to lie in 2. In addition, we have

(1, Ag) = /Q Nup(V) €ll(Q), ¥ e Pa@)9, [l =1, (42)

where hull(2) is the convex hull of Q.

The space Ran X{AO}(A) is called the eigenspace corresponding to Ag
since we have

(.40 = [ Mo Vibtas ) = 0 [ o) =dalips)  (03)

and hence Ay = Ao for all 1 € Ranxyy,3(A). The dimension of the
eigenspace is called the multiplicity of the eigenvalue.

Moreover, since
—ie

lm—— = 4.4
ST e w—— X0} (A, (4.4)

we infer from Theorem 3.1 that
lim —1eRa(Xo + i)Y = Xx(ne} (AP (4.5)

Similarly, we can obtain an operator-valued version of the Stieltjes inversion
formula. But first we need to recall a few facts from integration in Banach
spaces.

We will consider the case of mappings f : I — X where I = [tg,t1] C R is
a compact interval and X is a Banach space. As before, a function f: I — X
is called simple if the image of f is finite, f(I) = {x;}]", and if each inverse
image f~!(z;), 1 <i < n, is a Borel set. The set of simple functions S(I, X)
forms a vector space and can be equipped with the sup norm

[flloc = sup [ f(£)]]- (4.6)
tel

The corresponding Banach space obtained after completion is called the set

of regulated functions R(I, X).

Observe that C(I,X) C R(I,X). In fact, consider the simple function
fn = 2?2—01 F(8:)X[s;,5,41), Where s; = to + b=t Since f € C(1,X) is
uniformly continuous, we infer that f, converges uniformly to f.

For f € S(I,X) we can define a linear map [ : S(I,X) — X by

[ e =3 w7 o, @)
i=1
where |Q| denotes the Lebesgue measure of €. This map satisfies

H /I S0t < [ fllso(t1 — to) (48)
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and hence it can be extended uniquely to a linear map [ : R([,X) — X
with the same norm (¢; — ¢9) by Theorem 0.29. We even have

|| / F(t)dt] < / 1£(8)]dt, (4.9)

which clearly holds for f € S(I, X) and thus for all f € R(I,X) by conti-
nuity. In addition, if A € £(X,Y’), then

A/If(t)dt:/]Af(t)dt, FeR(X). (4.10)

Again, this holds for simple functions and thus extends to all regulated
functions by continuity. In particular, if / € X* is a continuous linear
functional, then

</f dt) /(f( ))dt, f e R, X), (4.11)

and if A(t) € R(I, £($)), then

</1 AG)dt) v= /I(A(tmdt' (4.12)

If I =R, we say that f: I — X is integrable if f € R([—r,r], X) for all
r > 0 and if || f(¢)|| is integrable. In this case, we can set

/ f(t)dt = lim f(t)dt (4.13)

r—00

and (4.9) and (4.11) still hold.

We will use the standard notation ftt;’ 5)ds = [} X(ts,t5)(5) f(s)ds and
tf: f(s)ds = — :23 f(s)ds.

We write f € CY(I,X) if

*f()

exists for all t € I and deﬁnes a continuous function I — X. In particular,
if feC(I,X), then F(t j; (s)ds € C1(I,X) and dF/dt = f as can be
seen from
t+6
[F(t+e)—F(t)— f(t)el = H/ (t))ds|| <lel sup [[f(s) — f(D).
s€[tt+e]
(4.15)

o Jtte) = f{t)

5—>0 £

(4.14)

The important facts for us are the following two results.

Lemma 4.1. Suppose f I xR — C is a bounded uniformly continuous
function and set F(X) = [, f(t,\)dt. Let A be self-adjoint. Then f(t,A) €
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R(I1,£($)) and
F(A) = /f(t, A)dt, respectively, F(A)p = /f(t, A)ip dt. (4.16)
I I
Proof. That f(t,A) € R(I,£($)) follows from the spectral theorem, since

it is no restriction to assume that A is multiplication by X in some L? space.
We compute

(o /] £(t, Aydyp) = /I (o0 11, Ayt

_ /I /R F(E N dpip (V)

_ /R /I F(E Nt dpigp ()
_ /R F(Ndpipp(N) = (g, F(A)))

by Fubini’s theorem and hence the first claim follows. ([
Lemma 4.2. Suppose f: R — £(9) is integrable and A € £($). Then
A / F(#)dt = / AF(t)dt. (4.17)
R R

Proof. It suffices to prove the case where f is simple and of compact sup-
port. But for such functions the claim is straightforward. O

Now we can prove an operator-valued version of the Stieltjes inversion
formula.

Theorem 4.3 (Stone’s formula). Let A be self-adjoint. Then
1 [ 1

D (Ra(A+ie) — Ra(A —ig))dX > 5(PA([Al, A2]) + Pa((A1,A2)))
A
' (4.18)
strongly.
Proof. By

)\2 )\2
i 1 _ 1 : d)\zl/ __
2mi Jy, \z—A—ie x—A+ie T [y, (x— )2+ e

= % <arctan ()\zs—x) — arctan ()\15_56)>

1
5 (X[Al,AQ](fU) + X(,\I,AZ)(@) )
the result follows combining the last part of Theorem 3.1 with Lemma 4.1.

O
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Note that by using the first resolvent formula, Stone’s formula can also
be written in the form

A2

<¢,;(pA([Al,M])+PA((A1,A2)))w>:lsifg?lT | Ty, Ra(A+ie)y)dd

e [
= lim — |RA(X 4+ ie)y||2dA.

T (4.19)

Problem 4.1. Let I' be a differentiable Jordan curve in p(A). Show

xa(4) = / Ry (z)dz,
r
where ) is the intersection of the interior of I' with R.

Problem 4.2. Suppose f € C'(I,X). Show that % (t) = 0 if and only if
f is constant. In particular, the fundamental theorem of calculus holds:

F0) = Flto) + ttf’(S)ds,

where f'(t) = Lf(t).
Problem 4.3. Suppose f € C(R) is bounded. Show that

;/f()\)(RA(A+i€)—RA()\—ie))d)‘if(A)
T JRr

and

1 [

37 | T (FaOrtie)=Ra(h=ie)) A 5 (Pallh A +Pa(Mr. 42) £(4).

(Hint: For the first part, show L [ f(A\)Im(-—5—)d\ — f(z). Now the

T—A—€
second part follows from the first if f vanishes at the boundary points and it

remains to show the cases f(A) =1 and f(A\) = A.)

4.2. Commuting operators

Now we come to commuting operators. As a preparation we first prove

Lemma 4.4. Let K C R be closed and let Coo (K) be the set of all continuous
functions on K which vanish at oo (if K is unbounded) with the sup norm.
The x-subalgebra generated by the function
1
A—z
for one z € C\K is dense in Coo(K).

A=

(4.20)
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Proof. If K is compact, the claim follows directly from the complex Stone—
Weierstrafl theorem since (A\; —2z) ™! = (Ay—2) ! implies A\; = A2. Otherwise,
replace K by K = KU{oo}, which is compact, and set (co—z)~" = 0. Then
we can again apply the complex Stone-Weierstraf} theorem to conclude that

our *-subalgebra is equal to {f € C(K)|f(cc) = 0} which is equivalent to
Coo(K). O

We say that two bounded operators A, B commute if
[A,B] = AB—- BA=0. (4.21)

If A or B is unbounded, we soon run into trouble with this definition since
the above expression might not even make sense for any nonzero vector (e.g.,
take B = (¢, .)9 with ¢ ¢ D(A)). To avoid this nuisance, we will replace A
by a bounded function of A. A good candidate is the resolvent. Hence if A
is self-adjoint and B is bounded, we will say that A and B commute if

[Ra(z2),B] = [Ra(z%),B] =0 (4.22)
for one z € p(A).

Lemma 4.5. Suppose A is self-adjoint and B is bounded. Then B commutes
with A if and only if
BA C AB. (4.23)
Moreover, in this case,
[f(A)7 B] =0 (4.24)
for every bounded Borel function f. If f is unbounded, the claim holds for
every ¥ € D(f(A)) in the sense that Bf(A) C f(A)B.

Proof. First of all, (4.23) implies B(A — z) C (A — 2)B for all z € C.
Multiplying with Ra(z) from the right, we get B = (A — z)BRa(z) for
z € p(A), and multiplying this last relation with R4(z) from the left, we
finally get (4.22) for all z € p(A).

Conversely, (4.22) tells us that (4.24) holds for every f in the *-sub-
algebra generated by Ra(z). Since this subalgebra is dense in C(c(A4)),
the claim follows for all such f € Co(0(A)). Next, fix ¢ € $ and let f be
bounded. Choose a sequence f,, € Coo(0(A)) converging to f in L(R, dpy).
Then

Bf(AY = lim Bf,(A) = lin f,(A)BY = f(A)By.

If f is unbounded, let ) € D(f(A)) and choose f, as in (3.27). Then
FAVBYS = lim fu(A)BY = lim Bf(A)y

shows f € L*(R,dupy) (ie., By € D(f(A4))) and f(A)By = Bf(A)y. O

In the special case where B is an orthogonal projection, we obtain
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Corollary 4.6. Let A be self-adjoint and $1 a closed subspace with corre-
sponding projector Py. Then $1 reduces A if and only if Py and A commute.

Furthermore, note

Corollary 4.7. If A is self-adjoint and bounded, then (4.22) holds if and
only if (4.21) holds.

Proof. Since o(A) is compact, we have A € Cx(0(A)), and hence (4.21)
follows from (4.24) by our lemma. Conversely, since B commutes with every
polynomial of A, the claim follows from the Neumann series. O

As another consequence, we obtain

Theorem 4.8. Suppose A is self-adjoint and has simple spectrum. A bound-
ed operator B commutes with A if and only if B = f(A) for some bounded
Borel function.

Proof. Let ¥ be a cyclic vector for A. By our unitary equivalence it is no
restriction to assume $ = L*(R, djy). Then
Bg(A) = Bg(A) -1 = g(A)(B1)(A)

since B commutes with the multiplication operator g(\). Hence B is multi-
plication by f(\) = (B1)(\). O

The assumption that the spectrum of A is simple is crucial as the exam-
ple A = T shows. Note also that the functions exp(—itA) can also be used
instead of resolvents.

Lemma 4.9. Suppose A is self-adjoint and B is bounded. Then B commutes
with A if and only if

[e 4 Bl =0 (4.25)
for all t € R.

Proof. It suffices to show [f(A), B] = 0 for f € S(R), since these functions
are dense in Coo(R) by the complex Stone-Weierstrafl theorem. Here f
denotes the Fourier transform of f; see Section 7.1. But for such f we have

A~

— L oAt — L oAt _
a8 = o1 | rwe a5 = —= [ ol Bl =0
by Lemma 4.2. O

The extension to the case where B is self-adjoint and unbounded is
straightforward. We say that A and B commute in this case if

[Ra(21), Rp(22)] = [Ra(27), Rp(22)] = 0 (4.26)
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for one z; € p(A) and one zp € p(B) (the claim for z5 follows by taking
adjoints). From our above analysis it follows that this is equivalent to

e e8] =0, t,s€eR, (4.27)

respectively,
[f(A),9(B)] =0, (4.28)
—iAt

for arbitrary bounded Borel functions f and g. Note that in this case e
will leave the domain of A invariant and vice versa (show this).

Given a quantum mechanical system with Hamiltonian H, every observ-
able A commuting with H corresponds to a conserved quantity. In fact,
for ¢ € D(A) and 9 (t) = e %), we see that the expectations

(W (1), Ay (1)) = (7', Ae™Hty) = (719, o7 AY) = (9, AY) (4.29)
are independent of time.
Problem 4.4. Let A and B be self-adjoint. Show that A and B commute if

and only if the corresponding spectral projections P4(S2) and Pg() commute
for every Borel set Q. In particular, Ran(Pp(Q2)) reduces A and vice versa.

Problem 4.5. Let A and B be self-adjoint operators with pure point spec-
trum. Show that A and B commute if and only if they have a common
orthonormal basis of eigenfunctions.

Problem 4.6. Let Ay, Ay be self-adjoint, and let B be bounded. Show that
BA; C AsB
implies
Bf(A1) C f(A2)B

for every Borel function f.

4.3. Polar decomposition

Let A be a closed operator. Recall that, by Problem 2.12, A* A is self-adjoint
and Q(A*A) = D(A). Hence we can define the absolute value of an operator
via

|A| = VA*A. (4.30)
A straightforward calculation shows
AN = (o, [APY) = (v, AAp) = [|AY], ¢ € D(|A]) =D(4), (4.31)
which in particular implies
Ker(A) = Ker(|A|) = Ran(]A])*. (4.32)
As a consequence, the operator

_ [ o=1A]Y = AY if p € Ran(|A]),
U_{¢HO if ¢ € Ker(JA|) (4.33)
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extends to a well-defined partial isometry; that is, U : Ker(U)* — Ran(U)
is unitary, where Ker(U) = Ker(A) and Ran(U) = Ker(A*)1. Equivalently,

U*U = Pxer(4); UU* = Pger(a%) (4.34)
where Pp; is the projection onto the subspace M. In particular, we have
Theorem 4.10 (Polar decomposition). Every closed operator A admits a
polar decomposition

A=U|A|l = |A"|U, (4.35)

where U is a unitary from Ker(U) = Ker(A) to Ran(U) = Ker(A*)*.

Proof. To get the second equality, use (Problem 2.3) A* = |A|U*, implying
|A*|?2 = AA* = (U|A|U*)(U|A|U*), which shows |A*| = U|A|U*. O

As a simple consequence, we also obtain
Corollary 4.11. Let A be a closed operator with polar decomposition A =
U|A|. Then
A=UlA|l = |A*|U =UA"U,
A* =U"A*| = |A|lU* = U AU™,
|A| = U*A = A*U = U*|A*|U,
|A*| = UA* = AU* = U|A|U".
Problem 4.7. Show Ran(A) = Ran(|A*|).

Problem 4.8. Compute |A| for the rank one operator A = a{p, ). Com-
pute |A*| also.

Problem 4.9. Let f()\), g(\) be two Borel functions such that f(X)g(A) = A
(for a.e. X € R). Then

A=g([A*DUF(AD.
(Hint: Begin with A = g(|A*|)f(|A*|)U and use Problem 4.6.)

Problem 4.10. Let A be closed. Show that A is normal if and only if
|A| = |A*|. (Hint: Problem 2.13.)

4.4. The min-max theorem

In many applications, a self-adjoint operator has a number of eigenvalues
below the bottom of the essential spectrum. The essential spectrum is ob-
tained from the spectrum by removing all discrete eigenvalues with finite
multiplicity (we will have a closer look at this in Section 6.2). In general,
there is no way of computing the lowest eigenvalues and their corresponding
eigenfunctions explicitly. However, one often has some idea about how the
eigenfunctions might approximately look.
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So suppose we have a normalized function v which is an approximation
for the eigenfunction ¢ of the lowest eigenvalue F1. Then by Theorem 2.20
we know that

(1, A1) > (1, Apr1) = Ei. (4.36)
If we add some free parameters to 11, one can optimize them and obtain

quite good upper bounds for the first eigenvalue. This is known as the
Rayleigh—Ritz method.

But is there also something one can say about the next eigenvalues?
Suppose we know the first eigenfunction 1. Then we can restrict A to
the orthogonal complement of ¢; and proceed as before: FEy will be the
infimum over all expectations restricted to this subspace. If we restrict to
the orthogonal complement of an approximating eigenfunction 1, there will
still be a component in the direction of ; left and hence the infimum of the
expectations will be lower than Fs. Thus the optimal choice ¥y = ¢; will
give the maximal value Fs.

More precisely, let {¢; j.vzl be an orthonormal basis for the space spanned
by the eigenfunctions corresponding to eigenvalues below the essential spec-
trum. Here the essential spectrum o.ss(A) is given by precisely those values
in the spectrum which are not isolated eigenvalues of finite multiplicity (see
Section 6.2). Assume they satisfy (A — E;)p; = 0, where E; < Ej; are
the eigenvalues (counted according to their multiplicity). If the number of
eigenvalues N is finite, we set E; = inf 0ce5(A) for j > N and choose ¢;
orthonormal such that ||(A — E;)e;| <e.

Define
U, ) = {0 € DA [0l = 1, ¢ € span{yn, ...} T} (4.37)
(i) We have

inf JAYV) < B, + O(e). 4.38
weU(wl,...,wn_l)W ¥) (€) (4.38)

In fact, set ¢ = Z?Zl a;p; and choose o such that ¢ € U(¢1,...,¥n—1).
Then
(0, AY) =3 |oy[*Ej + O(e) < En + O(e) (4.39)
j=1
and the claim follows.

(ii) We have

inf AV > E, — O(e). 4.40
weU((P17""§07L71)<1/} ¥) () (4.40)

In fact, set ¢ = ¢,.

Since € can be chosen arbitrarily small, we have proven the following.
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Theorem 4.12 (Max-min). Let A be self-adjoint and let E; < Fy < Eg---
be the eigenvalues of A below the essential spectrum, respectively, the in-
fimum of the essential spectrum, once there are no more eigenvalues left.
Then

E,= su inf , A, 4.41
¢1,...,£n71 d’GUW’l,mﬂ/’n—l)(w /l/)> ( )

where U(Yn, ..., ¥n—1) is defined in (4.37).

Clearly the same result holds if ®(A) is replaced by the quadratic form
domain Q(A) in the definition of U. In addition, as long as E,, is an eigen-
value, the sup and inf are in fact max and min, explaining the name.

Corollary 4.13. Suppose A and B are self-adjoint operators with A > B
(i.e., A— B >0). Then E,(A) > E,(B).

Similarly we obtain (Problem 4.11):

Theorem 4.14 (Min-max). Let A be self-adjoint and let E; < Ey < Eg---
be the eigenvalues of A below the essential spectrum, respectively, the in-
fimum of the essential spectrum, once there are no more eigenvalues left.
Then

E,= inf sup (1, Ay, (4.42)
VloeWn—1 eV (1. thn—1)

where
V(i .othn) ={0 € DAYl =1, o € span{epr, ..., n}}  (4.43)
Problem 4.11. Prove Theorem 4.14.

Problem 4.12. Suppose A, A, are self-adjoint, bounded and A, — A.
Then Ey(Ayn) = Ex(A). (Hint: ||A—A,|| < ¢ is equivalent to A—e < A, <
A+e.)

4.5. Estimating eigenspaces
Next, we show that the dimension of the range of P4(€2) can be estimated
if we have some functions which lie approximately in this space.

Theorem 4.15. Suppose A is a self-adjoint operator and +;, 1 < j < k,
are linearly independent elements of .

(i) Let X e R, ¢; € Q(A). If
(¥, Ap) < Al (4.44)
for any nonzero linear combination ¢ = Z§:1 cjv;, then
dim Ran P4 ((—o0,\)) > k. (4.45)
Similarly, (1, Ap) > X|b||? implies dim Ran Pa((\, 00)) > k.
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(ii) Let M < Ag, ¥; € D(A). If

Ao+ A1 A2 — A
Ay < 222

1(A = 11l (4.46)

for any nonzero linear combination ¢ = Z§:1 cjv;, then

dim Ran Pa((A1,A\2)) > k. (4.47)

Proof. (i) Let M = span{y;} C $. We claim dim Ps((—o0,\))M =
dim M = k. For this it suffices to show Ker P4((—o0,\))|ar = {0}. Sup-
pose P4((—o0, ) =0, ¢ # 0. Then we see that for any nonzero linear
combination v,

<w,Aw>Z/]Rndw(n)Z/[A )nduw(n)

zAA;)wmmzAww.

This contradicts our assumption (4.44).
(ii) This is just the previous case (i) applied to (A — (A2 + A1)/2)? with
A= (g — A\)%/4 a

Another useful estimate is

Theorem 4.16 (Temple’s inequality). Let \y < Ay and ¥ € D(A) with
|v|| =1 such that

A= (¢, Ap) € (A1, A2). (4.48)
If there is one isolated eigenvalue E between A\ and Ao, that is, o(A) N
()\1,)\2) = {E}, then

A - Nyl

N cp ey LA

4.49
A — A A=A ( )

Proof. First of all, we can assume A = 0 if we replace A by A— \. To prove
the first inequality, observe that by assumption (E, Ay) C p(A) and hence the
spectral theorem implies (A —X\2)(A—E) > 0. Thus (¢, (A—X2)(A—FE)) =
| A9 ||? + A2E > 0 and the first inequality follows after dividing by Ay > 0.
Similarly, (A — A1)(A — E) > 0 implies the second inequality. O

Note that the last inequality only provides additional information if
1A= N[ < (A2 = (A= M)

A typical application is if & = Ej is the lowest eigenvalue. In this case
any normalized trial function ¢ will give the bound Ey < (¢, Ay). If, in
addition, we also have some estimate Ao < F; for the second eigenvalue E,
then Temple’s inequality can give a bound from below. For A\; we can choose
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any value A1 < Ejp; in fact, if we let A; — —o0, we just recover the bound
we already know.

4.6. Tensor products of operators

Recall the definition of the tensor product of Hilbert space from Section 1.4.
Suppose Aj, 1 < j < n, are (essentially) self-adjoint operators on ;. For
every monomial A\['* -+ A" we can define

(A" @ @A) @ - @1y = (A]'1) @ - @ (A7"Un), ¥ € D(A}7),

(4.50)
and extend this definition by linearity to the span of all such functions
(check that this definition is well-defined by showing that the corresponding
operator on F($1,...,9,) vanishes on N ($1,...,9,)). Hence for every

polynomial P(Ay,...,\,) of degree N, we obtain an operator
P(A1,.. A1 @ ®@1bn, 1 € D(AY), (4.51)
defined on the set
D = span{y1 ® - @ Uy |1h; € D(AY)}. (4.52)

Moreover, if P is real-valued, then the operator P(A1,...,A,) on ® is sym-
metric and we can consider its closure, which will again be denoted by
P(Aq,..., Ap).

Theorem 4.17. Suppose A;, 1 < j < n, are self-adjoint operators on $;
and let P(A1,...,\n) be a real-valued polynomial and define P(Ay,...,A,)
as above.

Then P(Ax,...,A,) is self-adjoint and its spectrum is the closure of the
range of P on the product of the spectra of the Aj; that is,

o(P(A1, ..., An)) = P(o(Ay), ..., 0(An)). (4.53)

Proof. By the spectral theorem, it is no restriction to assume that A; is
multiplication by A; on L?(R, dp;) and P(Ay, ..., A,) is hence multiplication
by P(A1,..., ) on L2(R™, dpuy x --- x dpy,). Since D contains the set of
all functions 1 (A1) - - - ¥, (\y) for which ¢; € L2(R,dp;), it follows that the
domain of the closure of P contains L2(R™, duj X --- x duy,). Hence P is
the maximally defined multiplication operator by P(A1,...,\,), which is
self-adjoint.

Now let A = P(Aq,...,A\,) with A\; € 0(A;). Then there exist Weyl
sequences 1j € @(A;V) with (A; — A\j)¢r — 0 as k — oo. Consequently,
(P=X)Y, — 0, where ¢, = ¢ 1, ®- - -®1)1 ;, and hence A € o(P). Conversely,
if X &€ P(o(A1),...,0(A4,)), then |[P(A1,...,A,) — Al > € for a.e. \; with
respect to p; and hence (P — A\)~! exists and is bounded; that is, A €
p(P). O




144 4. Applications of the spectral theorem

The two main cases of interest are A1 ® Ao, in which case
(A1 ® Ay) = 0(A1)o(Az) = {Mide|N; € 0(4))}, (4.54)
and A1 @ [+ 1 ® Ay, in which case
o(A1 @T+1® Az) =0(A1) +0(A2) = {1 + X2|\j € 0(4))}. (4.55)

Problem 4.13. Show that the closure can be omitted in (4.55) if at least
one operator is bounded and in (4.54) if both operators are bounded.




Chapter 5

Quantum dynamics

As in the finite dimensional case, the solution of the Schrodinger equation
S(0) = Ho() (1)
is given by
() = exp(—itH)b(0). (5.2)
A detailed investigation of this formula will be our first task. Moreover, in
the finite dimensional case, the dynamics is understood once the eigenvalues
are known and the same is true in our case once we know the spectrum. Note
that, like any Hamiltonian system from classical mechanics, our system is
not hyperbolic (i.e., the spectrum is not away from the real axis) and hence
simple results such as all solutions tend to the equilibrium position cannot
be expected.

5.1. The time evolution and Stone’s theorem

In this section, we want to have a look at the initial value problem associated
with the Schrodinger equation (2.12) in the Hilbert space $. If § is one-
dimensional (and hence A is a real number), the solution is given by

() = e (0). (5-3)
Our hope is that this formula also applies in the general case and that we
can reconstruct a one-parameter unitary group U(t) from its generator A

(compare (2.11)) via U(t) = exp(—itA). We first investigate the family of
operators exp(—itA).

Theorem 5.1. Let A be self-adjoint and let U(t) = exp(—itA).

(i) U(t) is a strongly continuous one-parameter unitary group.

145
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(il) The limit limy_,o (U (t)y) — ) exists if and only if ¢ € D(A), in
which case limy_o (U () — ¢) = —iAy.
(iii) U(t)D(A) = D(A) and AU(t) = U(t)A.

Proof. The group property (i) follows directly from Theorem 3.1 and the
corresponding statements for the function exp(—itA). To prove strong con-
tinuity, observe that

t—to t—to

lim ||e—itA¢ _ e—itkoHQ — lim /R |e—it>\ _ e—it()/\|2d'uw()\)

— li —itA —itgA 2d AN =0
/Rtlntlo ’e € ’ /Jw( )
by the dominated convergence theorem.

Similarly, if ¢ € ©(A), we obtain
1 . 1 .
i | (674 =) + 14[* =i [ 157 = 1) + APy () =0
t—0 R t

since [e7#* — 1| < [tA]. Now let A be the generator defined as in (2.11).
Then A is a symmetric extension of A since we have

(o, Ay = Tim(p, L(U(t) — 1)) = lim(~—(U(~t) — D), ) = (Ap, )

t—0 " 't t—0" —t
and hence A = A by Corollary 2.2. This settles (ii).
To see (iii), replace ¢ — U(s)% in (ii). O

For our original problem, this implies that formula (5.3) is indeed the

solution to the initial value problem of the Schrodinger equation
.d
() = A(), 6(0) = € D(A). (54)
Here ¢ : R — $ is said to be differentiable if
d o W(t+e) =)
Su(t) = lig W= (5.5)
exists for all ¢ € R. In fact, it is the only solution.

Lemma 5.2. The function ¢(t) = U(t)yg is the only solution of (5.4).

Proof. Let ¢(t) be a solution and consider ¢(t) = U(—t)y(t). Then a
straightforward calculation shows that ¢(t) is differentiable with

d o1 .

—ro(t) = lim = ((U(—t +e) = U®) ((t) — elAp(t) + o(c))

e—0 €

U@ (@At +2) = B(t)) =0.
Hence (Problem 5.2), ¢(t) = ¢(0) = 1), implying ¢ (t) = U(t)vy. O
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Moreover,

({U0)p, AU()y) = (U, U)A) = (¢, A) (5.6)

shows that the expectations of A are time independent. This corresponds
to conservation of energy.

On the other hand, the generator of the time evolution of a quantum
mechanical system should always be a self-adjoint operator since it corre-
sponds to an observable (energy). Moreover, there should be a one-to-one
correspondence between the unitary group and its generator. This is ensured
by Stone’s theorem.

Theorem 5.3 (Stone). Let U(t) be a weakly continuous one-parameter uni-
tary group. Then its generator A is self-adjoint and U(t) = exp(—itA).

Proof. First of all, observe that weak continuity together with item (iv) of
Lemma 1.12 shows that U(t) is in fact strongly continuous.

Next we show that A is densely defined. Pick ¥ € $ and set
vr= [ Ut
0

(the integral is defined as in Section 4.1), implying lim,_,o 7~ 11/, = 1. More-
over,

t+7 T
HUOv, —v) = [ Ulswas = [ Uvs
1

T+ 1 t
= t/T U(s)ypds — t/o U(s)yds

1 ! 1t
= tU(T)/o U(s)ds — t/o U(s)pds = U(r) — ¢

as t — 0 shows 1, € D(A). As in the proof of the previous theorem, we can
show that A is symmetric and that U(¢t)©(A) = D(A).

Next, let us prove that A is essentially self-adjoint. By Corollary 2.8 it
suffices to prove Ker(A* — z*) = {0} for z € C\R. Suppose A*p = z*p.
Then for each ¢ € ©(A) we have

d

(P UMY) = (o, 14U ()4) = —i{A7p, U(t)y) = —iz(p, U(t)¥)

and hence (p, U(t)1)) = exp(—izt)(p, ). Since the left-hand side is bounded
for all ¢ € R and the exponential on the right-hand side is not, we must have
(p,1) = 0 implying ¢ = 0 since D(A) is dense.

So A is essentially self-adjoint and we can introduce V (t) = exp(—itA).
We are done if we can show U(t) = V(¢).
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Let ¢ € ©(A) and abbreviate ¥ (t) = (U(t) — V(t))¢. Then
Ll s) — ()

5—0 S
and hence %H@Z)@)HQ = 2Re(y(t),1Ay(t)) = 0. Since 9 (0) = 0, we have
¥(t) = 0 and hence U(t) and V(t) coincide on ®(A). Furthermore, since
D(A) is dense, we have U(t) = V(t) by continuity. O

— Av()

As an immediate consequence of the proof, we also note the following
useful criterion.

Corollary 5.4. Suppose ® C D(A) is dense and invariant under U(t).
Then A is essentially self-adjoint on ©.

Proof. As in the above proof, it follows that (p,1) = 0 for every ¢ € ©
and ¢ € Ker(A* — z%). O

Note that by Lemma 4.9 two strongly continuous one-parameter groups
commute,

[e7it4 e71$B] = 0, (5.7)
if and only if the generators commute.

Clearly, for a physicist, one of the goals must be to understand the time
evolution of a quantum mechanical system. We have seen that the time
evolution is generated by a self-adjoint operator, the Hamiltonian, and is
given by a linear first order differential equation, the Schrodinger equation.
To understand the dynamics of such a first order differential equation, one
must understand the spectrum of the generator. Some general tools for this
endeavor will be provided in the following sections.

Problem 5.1. Let § = L%(0,27) and consider the one-parameter unitary
group giwven by U(t)f(z) = f(x —t mod 2mw). What is the generator of U?

Problem 5.2. Suppose 1(t) is differentiable on R. Show that

[9(t) = ()l <Mt —s], M= sup [[—(7)].
(Hint: Consider f(1) = Hz/J(T)—w(s)H—M(T;s) for T € [s,t]. Suppose Ty is
the largest T for which the claim holds with M > M and find a contradiction
if 1o < t.)

Problem 5.3. Consider the abstract wave equation

d2
@w(t) + Hy(t) =0, (5.8)
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where H > 0 is some nonnegative operator. If H = —A 1is the free
Schrédinger operator (cf. Section 7.3), then (5.8) is the usual wave equa-
tion in R?,

Introducing ¢ = (v, %¢), equation (5.8) can be written as an equivalent
first order system

i%ﬂ@:%ﬂm H:CL,Q. (5.9)

Show that
p(t) = V(t)e(0) (5.10)
solves (5.9) provided p(0) = D(H) & D(HY?) with

V(t) = c(tHY?) <(1) (1)) +ts(tHY?) (%I é) ,
D(V(t) =D(H?) & 9,

o __sin(A)
where c(A\) = cos(A) and s(\) = ==
In particular, show that V(t) is a strongly continuous one-parameter
group (which, however, is not unitary).

Problem 5.4. To make V(t) from the previous example unitary, we will
change the underlying Hilbert space.

Let A be some closed operator such that H = A*A (cf. Problem 2.12).
(For example, one could choose A = |H|'/? but for given H a factorization
H = A*A might be easier to find than |H|'/2.)

Suppose Ker(A) = {0} and let $Ho = Ker(A*)+ = Ran(A4) C H. More-
over, let $1 be the Hilbert space obtained from D(A) by taking the completion
with respect to the norm |wlly = | Aul| = |HY24|| (note that ||l wil be
equivalent to the graph norm if 0 € p(A) and $H1 will be just D(A) in this
case).

Show that H is self-adjoint in 1 when defined on D(H) = D(A*A)®

D(A) by showing that it is unitarily equivalent to a supersymmetric Dirac

operator (cf. Problem 8./).
0 1
U_QA0>

More precisely, show that
extends to a unitary map U : H1 9 — H R H and show that UHU ! = D,
where D 1is given by

D:le fé) D(D) = (D(A") N $0) & D(A) C & H.
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In particular, conclude that V (t) defined in (5.10) extends to a unitary group
in 91 ®H and hence the solution of (5.8) preserves the energy

AP + 56

Problem 5.5. How can the case Ker(A) = Ker(H) # {0} be reduced to the
case Ker(A) = Ker(H) = {0} in the previous problem?

5.2. The RAGE theorem

Now, let us discuss why the decomposition of the spectrum introduced in
Section 3.3 is of physical relevance. Let ||¢|| = ||¢|| = 1. The vector (p,¥)p
is the projection of ¢ onto the (one-dimensional) subspace spanned by .
Hence |(p,1)|? can be viewed as the part of ¢ which is in the state . The
first question one might raise is, how does

(e, UY)?,  Ut) =e 4, (5.11)
behave as t — co? By the spectral theorem,
few(t) = (0. U0 = [ i) (5.12)

is the Fourier transform of the measure j, . Thus our question is an-
swered by Wiener’s theorem.

Theorem 5.5 (Wiener). Let p be a finite complex Borel measure on R and
let

() = [ e Pduy (5.13)
R
be its Fourier transform. Then the Cesaro time average of i(t) has the limit

17
lim /O HPdt =Y lu({Ah) (5.14)

AeR
where the sum on the right-hand side is finite.

Proof. By Fubini, we have

/ £)[2dt = / [ [ ety i
//< / (== y)tdt> dp(x)dp™ (y).

The function in parentheses is bounded by one and converges pointwise to
X0}(z —y) as T'— oo. Thus, by the dominated convergence theorem, the
limit of the above expression is given by

/R / xi0y (& — ) du(z)du* () = / u({yDdu () = 3 b

yeR



5.2. The RAGE theorem 151

which finishes the proof. ([

To apply this result to our situation, observe that the subspaces $gc,
$se, and Hy,, are invariant with respect to time evolution since P**U(t) =
XM,, (A)exp(—itA) = exp(—itd)xn,, (A) = U(t)P*™, zx € {ac,sc,pp}.
Moreover, if ) € $,,, we have P* = 1), which shows (g, f(A)y) =
(g, PT2f(A)) = (P™ ¢, f(A)Y), implying dpy y = dppaey . Thus if py is
ac, sc, or pp, S0 is 4 for every ¢ € 9.

That is, if ¥ € He = Hae D Hse, then the Cesaro mean of |(p, U(t))|*
tends to zero. In other words, the average of the probability of finding the
system in any prescribed state tends to zero if we start in the continuous
subspace $. of A.

If v € $Hae, then dp, 4 is absolutely continuous with respect to Lebesgue
measure and thus fi, () is continuous and tends to zero as [t — co. In
fact, this follows from the Riemann-Lebesgue lemma (see Lemma 7.7 below).

Now we want to draw some additional consequences from Wiener’s the-
orem. This will eventually yield a dynamical characterization of the contin-
uous and pure point spectrum due to Ruelle, Amrein, Georgescu, and En#f.
But first we need a few definitions.

An operator K € £(9) is called a finite rank operator if its range is
finite dimensional. The dimension

rank(K) = dim Ran(K)

is called the rank of K. If {¢;}"_, is an orthonormal basis for Ran(K), we

Jj=1
have
n n

Ky =" (o5, Ki)p; = Y (5, 4)p;, (5.15)
7=1 j=1
where ¢; = K*¢;. The elements 1); are linearly independent since Ran(K') =
Ker(K*)*. Hence every finite rank operator is of the form (5.15). In addi-
tion, the adjoint of K is also finite rank and is given by

Kb = {5, 0. (5.16)
j=1

The closure of the set of all finite rank operators in £($)) is called the set
of compact operators €(£)). It is straightforward to verify (Problem 5.6)

Lemma 5.6. The set of all compact operators €(9)) is a closed *-ideal in

£(9).

There is also a weaker version of compactness which is useful for us. The
operator K is called relatively compact with respect to A if

KRu(2) € ¢(9) (5.17)
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for one z € p(A). By the first resolvent formula this then follows for all
z € p(A). In particular, we have D(A) C D(K).
Now let us return to our original problem.

Theorem 5.7. Let A be self-adjoint and suppose K is relatively compact.
Then

1 /T . .
lim — / |Ke tAPy|2dt =0  and lim ||[Ke 4Py =0
T 0 t—o00

(5.18)
for every ¢ € ©(A). If, in addition, K is bounded, then the result holds for
every ¥ € 9.

Proof. Let ¢ € ., respectively, ¥ € $,., and drop the projectors. Abbre-
viate ¥(t) = e 44, Then, given a finite rank operator K as in (5.15), the
claim follows from

1w = || St wdes] = 3 1w, won?
j=1 Jj=1

together with Wiener’s theorem, respectively, the Riemann-Lebesgue lemma.
Hence it holds for every finite rank operator K.

If K is compact, there is a sequence K, of finite rank operators such
that ||K — K,|| < 1/n and hence

1 9 2
Y@ < (1K@l + —llvl)” < 2B @1 + 51811
Thus the claim holds for every compact operator K.

If ¢ € D(A), we can set P = (A — 1)Ly, where ¢ € §. if and only if
Y € 9. (since H, reduces A). Since K (A +1i)~! is compact by assumption,
the claim can be reduced to the previous situation. If K is also bounded,
we can find a sequence ¢, € ®(A) such that ||¢) — ¢y, || < 1/n and hence

i i 1
[Ke || < [[Ke Ay, + ~ I,
concluding the proof. O

With the help of this result we can now prove an abstract version of the
RAGE theorem.

Theorem 5.8 (RAGE). Let A be self-adjoint. Suppose K,, € £(9) is a se-
quence of relatively compact operators which converges strongly to the iden-
tity. Then

R —itA
D= {wesl i lim 7 [ 1K i = o),

Hpp = {¢ € H| lim sup||(I— Kn)e_itAwH = 0}. (5.19)
n—00 4>
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Proof. Abbreviate ¢(t) = exp(—itA)y. We begin with the first equation.

Let ¢ € .. Then
1/2

T T
;/0 [ Kntp(t)|ldt < (;/0 IIan(t)Hth) —0

by Cauchy—Schwarz and the previous theorem. Conversely, if ¢ € $., we

can write ¥ = ¥°¢ + ¢YPP. By our previous estimate it suffices to show
| KnyPP(t)|| > € > 0 for n large. In fact, we even claim
lim sup || K y?(t) — *(2)]| = 0. (5.20)
n—o0 tZO

By the spectral theorem, we can write YPP(t) = >, a;(t);, where the ¢,
are orthonormal eigenfunctions and o;(t) = exp(—itA;)a;. Truncate this
expansion after N terms. Then this part converges uniformly to the desired
limit by strong convergence of K,. Moreover, by Lemma 1.14, we have
| Kn|| < M, and hence the error can be made arbitrarily small by choosing
N large.

Now let us turn to the second equation. If 1 € §,,, the claim follows
by (5.20). Conversely, if ¢ & $,,,, we can write ¥» = ¢+ ¢PP and by our
previous estimate it suffices to show that ||(I — K,,)¥(¢)|| does not tend to
0 as n — oo. If it did, we would have

1 T
0= Jim = [ 1@=Ku) o

T—o00

. 1T . ¢
> el = Jim 7 [ Ko @l = o),
a contradiction. O

In summary, regularity properties of spectral measures are related to
the long-time behavior of the corresponding quantum mechanical system.
However, a more detailed investigation of this topic is beyond the scope of
this manuscript. For a survey containing several recent results, see [35].

It is often convenient to treat the observables as time dependent rather
than the states. We set
K(t) = e Keit4 (5.21)
and note
(), Kp(®) = (6, K@), (1) =e . (5.22)
This point of view is often referred to as the Heisenberg picture in the
physics literature. If K is unbounded, we will assume D(A) C ©(K) such
that the above equations make sense at least for ¢y € ©(A). The main
interest is the behavior of K(t) for large ¢t. The strong limits are called
asymptotic observables if they exist.
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Theorem 5.9. Suppose A is self-adjoint and K is relatively compact. Then

T
lim 1/0 e Ke Mydt = Y PA({ANKPA({ADY, ¥ €D(A).

T—oo T
Aeop(A)

(5.23)
If K is in addition bounded, the result holds for every i € 9.

Proof. We will assume that K is bounded. To obtain the general result,
use the same trick as before and replace K by KR4 (z). Write ¢ = ¢¢+)PP.
Then

1 T 1 T
1 — ¢ < 1 — ¢ =
Tlgn T||/0 K (t)yedt| < Tlgn T/o | K (t)ydt| =0

by Theorem 5.7. As in the proof of the previous theorem, we can write
YPP =3 ayip; and hence

1T I
zj:ajT/o K(t);dt = zj:aj <T/0 el J)dt> K.
As in the proof of Wiener’s theorem, we see that the operator in parentheses
tends to Pa({\;}) strongly as T' — oo. Since this operator is also bounded
by 1 for all T', we can interchange the limit with the summation and the
claim follows. O

We also note the following corollary.

Corollary 5.10. Under the same assumptions as in the RAGE theorem,
we have

1 (T . .
lim lim — / A K e My dt = PPy, (5.24)
n—00 T'—o00 0
respectively,
R “itA
nlgI;oTlgI;oT/O eI — Kp)e " pdt = Py (5.25)

Problem 5.6. Prove Lemma 5.6.

Problem 5.7 (Mean ergodic theorem). Show
1T
lim / (‘Paelt ¢> = <(pa PA({O})¢>
T—)OOT 0

and conclude

1T
slim - etAdt = P4({0}).

T—o0 0

(Hint: Lemma 1.12 (iv).)
Problem 5.8. Prove Corollary 5.10.
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Problem 5.9. A finite measure is called o Rajchman measure if it sat-
isfies

tlggo a(t) = 0. (5.26)
Note that by the Riemann—Lebesgue lemma (cf. Lemma 7.7), every absolutely
continuous measure is Rajchman. Moreover, by the Wiener theorem (cf.
Theorem 5.5), every Rajchman measure is continuous (however, there are
examples which show that the converse of both claims is not true).

Let A be self-adjoint. Show that the set of all vectors for which the
spectral measure is a Rajchman measure,
$re = {1 € 9] lim (e "19) = 0} C e, (5.27)
is a closed subspace which is invariant under e 54,
(Hint: First show ) € $yc if and only if limy_o0 (i, e #49) = 0 for every
0 € 9. In fact, first show this for p € {e~1544)|s € R} and then extend it to
the general case.)

Problem 5.10. Under the same assumptions as for Theorem 5.7, show
lim ||Ke #APreqy|| =0,
t—o00

where P"¢ is the projector onto $,. from the previous problem.

5.3. The Trotter product formula

In many situations the operator is of the form A + B, where e and e*
can be computed explicitly. Since A and B will not commute in general, we
cannot obtain e*5) from et4eltB. However, we at least have

Theorem 5.11 (Trotter product formula). Suppose A, B, and A+ B are
self-adjoint. Then

HA+B) _ i (ei%A ei%B)” . teR (5.28)

n—oo

Proof. First of all, note that we have
(eiTAeiTB)” B eit(A+B)

n—1 .
. . n—1—1g . . . . ¥
_ (em-A elTB) J (el’T‘A el™B _ elT(A+B)) (elT(A+B)) ’

.
Il
o

where 7 = %, and hence

H(eiTAeiTB)TL o eit(A+B)¢|| < |t| |H|13|X| };17_(8)7
s|<|t

where )
FT(S) _ ||*(eiTA el™TB _ eiT(A+B))eiS(A+B)¢H.
T
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Now for 1) € D(A+ B) = D(A) ND(B), we have
1 .. .
— (T eTB — e TATB)y ) 5 iAY 4+ iBip — i(A+ B)p =0

-

as 7 — 0. So lim,_,o F;(s) = 0 at least pointwise, but we need this uniformly

with respect to s € [—|t], |t]]-

Pointwise convergence implies

1 . .

||7(elTA elTB B elT(A+B))¢|| < C(¢)
-

and, since ©(A + B) is a Hilbert space when equipped with the graph norm
HT/J|I%(A+B) = [|%]|? + ||(A + B)%||?, we can invoke the uniform boundedness
principle to obtain

1 4 .
H;(GITA B — AT BNy || < C|lY||r(atp)-
Now

1 . .. . . .
|F‘r(s) o FT(T‘)| < ||;(GITA el’T‘B _ elT(A+B))(els(A+B) _ ew‘(A—l—B))u}H
< C||(eiS(A+B) - eiT(A+B))¢||F(A+B)

shows that F(.) is uniformly continuous and the claim follows by a standard
5 argument. O

If the operators are semi-bounded from below, the same proof shows

Theorem 5.12 (Trotter product formula). Suppose A, B, and A+ B are
self-adjoint and semi-bounded from below. Then

o tA+B) _ pi <e—%Ae—%B>”, t>0. (5.29)

n—oo

Problem 5.11. Prove Theorem 5.12.



Chapter 6

Perturbation theory for
self-adjoint operators

The Hamiltonian of a quantum mechanical system is usually the sum of
the kinetic energy Hy (free Schrédinger operator) plus an operator V' cor-
responding to the potential energy. Since Hj is easy to investigate, one
usually tries to consider V as a perturbation of Hy. This will only work
if V' is small with respect to Hy. Hence we study such perturbations of
self-adjoint operators next.

6.1. Relatively bounded operators and the Kato—Rellich
theorem

An operator B is called A bounded or relatively bounded with respect
to A if ®(A) C D(B) and if there are constants a,b > 0 such that

[1BY[l < allAp] +bllll, € D(A). (6.1)

The infimum of all constants a for which a corresponding b exists such that
(6.1) holds is called the A-bound of B.

The triangle inequality implies
Lemma 6.1. Suppose B;, j = 1,2, are A bounded with respective A-bounds
a;, 1 = 1,2. Then a1 B1 + asBy is also A bounded with A-bound less than

lar|ar + |aglag. In particular, the set of all A bounded operators forms a
vector space.

There are also the following equivalent characterizations:

157
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Lemma 6.2. Suppose A is closed with nonempty resolvent set and B is
closable. Then the following are equivalent:

(i) B is A bounded.
(ii) ®(A) C D(B).
(ili) BRA(z) is bounded for one (and hence for all) z € p(A).
Moreover, the A-bound of B is no larger than inf.c ) || BRA(2).

Proof. (i) = (ii) is true by definition. (ii) = (iii) since BR(%) is a closed
(Problem 2.9) operator defined on all of $) and hence bounded by the closed
graph theorem (Theorem 2.9). To see (iii) = (i), let ©» € D(A). Then

1Byl = [[BRA(2)(A = 2)¢[| < al (A = 2)9[| < al Ap]| + (alz)][4]),

where a = ||BRa(z)||. Finally, note that if BR4(z) is bounded for one
z € p(A), it is bounded for all z € p(A) by the first resolvent formula. O

Example. Let A be the self-adjoint operator A = —%, D(A) = {f €
H?[0,1]|£(0) = f(1) = 0} in the Hilbert space L?(0,1). If we want to add a
potential represented by a multiplication operator with a real-valued (mea-
surable) function ¢, then ¢ will be relatively bounded if ¢ € L?(0,1): Indeed,
since all functions in ®(A) are continuous on [0, 1] and hence bounded, we
clearly have ©(A) C ®(q) in this case. o

We are mainly interested in the situation where A is self-adjoint and B
is symmetric. Hence we will restrict our attention to this case.

Lemma 6.3. Suppose A is self-adjoint and B is relatively bounded. The
A-bound of B is given by
lim ||[BRA(£iN)]. (6.2)
A—00
If A is bounded from below, we can also replace £iX\ by —\.

Proof. Let ¢ = Rg(£i\)Y, A > 0, and let as, be the A-bound of B. Then
(use the spectral theorem to estimate the norms)

b
IBRA(FINY|| < al ARA(FIN Y + b Ra(FINY]| < (@ + )[4

Hence lim sup, || BRA(£i\)|| < aoo which, together with the inequality as, <
infy ||BRA(£i))|| from the previous lemma, proves the claim.

The case where A is bounded from below is similar, using

vl b
IBRA-0 < (amax (1520) 4 2 ) ol

for =\ < . O

(6.3)
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Now we will show the basic perturbation result due to Kato and Rellich.

Theorem 6.4 (Kato—Rellich). Suppose A is (essentially) self-adjoint and
B is symmetric with A-bound less than one. Then A+ B, (A + B) =
D(A), is (essentially) self-adjoint. If A is essentially self-adjoint, we have
D(A) CD(B) and A+ B=A+B.

If A is bounded from below by v, then A+ B is bounded from below by

v — max (a\'y| + b, %) (6.4)

Proof. Since by (6.1) the graph norm of A dominates those of B and A+ B,
we obtain ®(A4) C D(B) and D(A) C D(A + B). Thus we can assume that
A is closed (i.e., self-adjoint). It suffices to show that Ran(A + B +i\) = .
By the above lemma, we can find a A > 0 such that || BRA(%i)\)|| < 1. Hence
—1 € p(BR4(+£i))) and thus I + BR4(+i)) is onto. Thus

(A+ B xi)\) = (I+ BRa(£iN))(A £ 1N)
is onto and the proof of the first part is complete.

If A is bounded from below, we can replace i\ by —\, and the above
equation shows that R4 p exists for A sufficiently large. The explicit bound
(6.4) follows after solving (6.3) from the proof of the previous lemma for

A (]

Example. In our previous example, we have seen that ¢ € L?(0,1) is
relatively bounded by checking ©(A) C ©(q). However, working a bit harder
(Problem 6.2), one can even show that the relative bound is 0 and hence
A + q is self-adjoint by the Kato—Rellich theorem. o

Finally, let us show that there is also a connection between the resolvents.

Lemma 6.5. Let A, B be two given operators with ®(A) C D(B) such that
A and A+ B are closed. Then we have the second resolvent formula

Ratp(z) — Ra(2) = —Ra(2)BRayB(2) = —Ray(2)BRa(z)  (6.5)

for z € p(A)Np(A+ B). The same conclusion holds if A+ B is replaced by
a closed operator C with ©(C) = D(A) and B=C — A.

Proof. We compute
Ro(2) + Ra(2)BRc(2) = Ra(2)(C — 2)Reo(2) = Ra(z).
The second identity follows by interchanging the roles of A and C. (]
Problem 6.1. Show that (6.1) implies
1By < @] Ag|* + 67| ||
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with @ = a(1 4 €%) and b = b(1 + e2) for every e > 0. Conversely, show
that this inequality implies (6.1) with a = a and b = b.

Problem 6.2. Let A be the self-adjoint operator A = —%, D(A) ={f €
H2[0,1]|£(0) = f(1) = 0} in the Hilbert space L*(0,1) and q € L?(0,1).
Show that for every f € ©(A) we have

" 2 2
1115 < 2||f 17+ 6HfH

for every € > 0. Conclude that the relative bound of q wzth Tespect to A is
zero. (Hint: |f(x)|* < ‘fo f(t)dt]? < fo |f/(t)]2dt = —fo t)* f"(t)dt.)

Problem 6.3. Let A be as in the previous example. Show that q is relatively
bounded if and only if x(1 — x)q(x) € L?(0,1).

Problem 6.4. Compute the resolvent of A+ (i, .)1. (Hint: Show

I+ alp, )y) ' =1- m(% L

and use the second resolvent formula.)

6.2. More on compact operators

Recall from Section 5.2 that we have introduced the set of compact operators
€(9) as the closure of the set of all finite rank operators in £(5)). Before we
can proceed, we need to establish some further results for such operators.
We begin by investigating the spectrum of self-adjoint compact operators
and show that the spectral theorem takes a particularly simple form in this
case.

Theorem 6.6 (Spectral theorem for compact operators). Suppose the op-
erator K 1is self-adjoint and compact. Then the spectrum of K consists of
an at most countable number of eigenvalues which can only cluster at 0.
Moreover, the eigenspace to each nonzero eigenvalue is finite dimensional.

In addition, we have

> APg({A}). (6.6)

A€o (K)

Proof. It suffices to show rank(Pg((A —e, A +¢))) < oo for 0 < e < |A[.
Let K, be a sequence of finite rank operators such that |K — K, || < 1/n. If
Ran P ((A—¢, A+¢)) is infinite dimensional, we can find a vector v, in this
range such that ||¢n| = 1 and K, = 0. But this yields a contradiction
since

> ‘<¢na(K_Kn)wn>’ - ’<wan¢n>‘ > ‘)“ —e>0
by (4.2). O

S
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As a consequence, we obtain the canonical form of a general compact
operator.

Theorem 6.7 (Canonical form of compact operators). Let K be compact.
There exist orthonormal sets {¢;}, {¢;} and positive numbers s; = s;(K)
such that

J
Note quj:sj(;gj and K*qgj =s5j¢;, and hence K*quj:s?gbj and KK*qgj =
s?qﬁj.

The numbers s;(K)? > 0 are the nonzero eigenvalues of KK*, respec-
tively, K*K (counted with multiplicity), and s;(K) = s;(K*) = s; are called
singular values of K. There are either finitely many singular values (if K
is finite rank) or they converge to zero.

K = Zsj<¢j, -><73j7 K* = Zsj@gj, )@ (6.7)

Proof. By Lemma 5.6, K*K is compact and hence Theorem 6.6 applies.
Let {¢;} be an orthonormal basis of eigenvectors for Px+((0,00))$ and
let 332 be the eigenvalue corresponding to ¢;. Then, for any 9 € $, we can
write

=2 (650005 +
J

with ¥ € Ker(K*K) = Ker(K). Then
K=" s5(¢,0);,
J

where ¢; = s;'K¢;, since |K¢[? = (), K*K¢p) = 0. By (5, ) =
(sjsr) H(K s, Kon) = (sjsn) (K K¢j, d) = sjs;, (05, dr), we see that
the {¢;} are orthonormal and the formula for K* follows by taking the
adjoint of the formula for K (Problem 6.5). The rest is straightforward. O

If K is self-adjoint, we can choose ¢; = ajquSj, 0]2- = 1, to be the eigen-
vectors of K, and ojs; are the corresponding eigenvalues.

Moreover, note that we have (Problem 6.6)

1] = max s (K). (6.8)

From the max-min theorem (Theorem 4.12) we obtain:

Lemma 6.8. Let K be compact; then

SE)= win  sw Ky, (69)
P1sen—1 YeU (Pr1,....0n—1)

where U(wla .. 7¢n) = {’(7[) € ‘S;.']| ||1/1|| = 17 77Z) € Span{¢17' . 'aqujn}J_}'
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In particular, note
si(AK) < [|Alls;(K),  s;(KA) <|[Alls;(K) (6.10)
whenever K is compact and A is bounded (the second estimate follows from
the first by taking adjoints).
Finally, let me remark that there are a number of other equivalent defi-
nitions for compact operators.

Lemma 6.9. For K € £(9), the following statements are equivalent:
(i) K is compact.

) K* is compact.
A, € £(9) and A, > A strongly implies A, K — AK.

P, — Y weakly implies K, — K in norm.

11

(i) K
(i)
(iii)
(iv) ¢, bounded implies that K, has a (norm) convergent subse-
quence.

Proof. (i) & (i’). This is immediate from Theorem 6.7.

(i) = (ii). Translating A, — A, — A, it is no restriction to assume
that A = 0. Since ||A,| < M, it suffices to consider the case where K is
finite rank. Then using (6.7) and applying the triangle plus Cauchy—Schwarz
inequalities yields

2
N N

14K < sup | D sil{dy, 0)l1Audsll | < s 4ndyl* — 0.

llell=1 j=1 j=1
( i) = (iii). Again, replace 1, — 1, — ¥ and assume ¢ = 0. Choose
= (¢n, )¢, lell = 1. Then [[K¢py| = [|AnK*|| — 0.

( i) = (iv). If ¢, is bounded, it has a weakly convergent subsequence
by Lemma 1.13. Now apply (iii) to this subsequence.
(iv) = (@

). Let ¢; be an orthonormal basis and set

n
K, = Z«Oﬁ >K90]
j=1
Then

=K =Kl = sup K@= (o5, ¥)Ke;)
lnéll=1 p

= sup K|
Ypespan{p; 12, [lvll=1

is a decreasing sequence tending to a limit € > 0. Moreover, we can find
a sequence of unit vectors ¢, € span{yp;}32, for which ||K¢y| > /2. By
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assumption, K1, has a convergent subsequence which, since 1,, converges
weakly to 0, converges to 0. Hence € must be 0 and we are done. ([

The last condition explains the name compact. Moreover, note that one
cannot replace A, K — AK by KA, — KA in (ii) unless one additionally
requires A, to be normal (then this follows by taking adjoints — recall
that only for normal operators is taking adjoints continuous with respect
to strong convergence). Without the requirement that A, be normal, the
claim is wrong as the following example shows.

Example. Let ) = ¢?(N), let A,, be the operator which shifts each sequence
n places to the left, and let K = (d1,.)01, where 6; = (1,0,...). Then
s-lim A,, = 0 but |KA,| = 1. o

Problem 6.5. Deduce the formula for K* from the one for K in (6.7).
Problem 6.6. Prove (6.8).

6.3. Hilbert—Schmidt and trace class operators

Among the compact operators, two special classes are of particular impor-
tance. The first ones are integral operators

- /M K(z.)bw)du(y). &€ L*(M, dp), (6.11)

where K (z,y) € L*(M x M, du®dyu). Such an operator is called a Hilbert—
Schmidt operator. Using Cauchy—Schwarz,

[ v P = [ ][ 1K@ e " du(o)
/(/‘K”'dﬂ )(/rw )Pdu(y) ) ()
<//’“y>2du ) dule )(/ ) Pduly ) (6.12)

we see that K is bounded. Next, pick an orthonormal basis ¢;(z) for
L*(M,du). Then, by Lemma 1.10, ¢;(z)¢;(y) is an orthonormal basis for
L*(M x M,du ® dyu) and

K(z,y) =Y _cijpi()ej(y), cij=(pi, Kgj), (6.13)

Z’?j

where

Slasl = [ [ K@ pPa)dut) <. (614)
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In particular,
Kip(z) =Y cijlef, ¥)pi(x) (6.15)
0,3
shows that K can be approximated by finite rank operators (take finitely
many terms in the sum) and is hence compact.
Using (6.7), we can also give a different characterization of Hilbert—
Schmidt operators.

Lemma 6.10. If $ = L%*(M,du), then a compact operator K is Hilbert—
Schmidt if and only if 3, sj(K)? < 0o and

SR = [ [ 1K) Pdudnt). (6.16)

i this case.

Proof. If K is compact, we can define approximating finite rank operators
K, by considering only finitely many terms in (6.7):

Ko = si(0), )9
j=1
Then K, has the kernel Ky, (z,y) =37, 5;6i(y)*éj(x) and

n

/ / Ko y) P duty) = 3 s;(5)>.
M JM

7j=1
Now if one side converges, so does the other and, in particular, (6.16) holds
in this case.

Conversely, choose ¢; = ¢; in (6.15). Then a comparison with (6.7)
shows

Z ngéj = 5;(K)¢;
J

and thus

si(K)? =Y leigl™.
i
O

Hence, we will call a bounded operator Hilbert—Schmidt if it is compact
and its singular values satisfy

> si(K)? < 0. (6.17)
J

By our lemma, this coincides with our previous definition if $§ = L?(M, du).
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Since every Hilbert space is isomorphic to some L?(M,du), we see that
the Hilbert—Schmidt operators together with the norm

K= (3 s02) " (6.18)

J

form a Hilbert space (isomorphic to L?(M x M, du®dy)). Note that || K|z =
| K*|2 (since sj(K) = s;(K*)). There is another useful characterization for
identifying Hilbert—Schmidt operators:

Lemma 6.11. A bounded operator K is Hilbert—Schmidt if and only if
D K g < o0 (6.19)
J

for some orthonormal basis and

D IEKel* = IIK113 (6.20)
j

for every orthonormal basis in this case.

Proof. First of all, note that (6.19) implies that K is compact. To see this,
let P,, be the projection onto the space spanned by the first n elements of
the orthonormal basis {¢;}. Then K, = KP, is finite rank and converges
to K since

1/2
1K = K)ol = 1 2Bl < Y lellEesl < (XK ) el
i>n j>n j>n
where ¢ =, cjp;.
The rest follows from (6.7) and
DO IE il =" (b Kop)l? =Y (K dp, o)
J Jk Ik
=D K )P =D sk(K)2.
k k
Here we have used span{¢y} = Ker(K*)* = Ran(K) in the first step. [

This approach can be generalized by defining

1K1 = (3 i) (6.21)

J
plus corresponding spaces

Tp(9) = {K € €®)|[|K]lp < oo}, (6.22)
which are known as Schatten p-classes. Note that by (6.8)
K< 1K) (6.23)
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and that by s;(K) = s;(K*) we have
1Ky = 17 p- (6.24)

Lemma 6.12. The spaces J,(9)) together with the norm ||.||, are Banach
spaces. Moreover,

HKHp—sup{(ng,K% ) (o) ONS} (6.25)

where the sup is taken over all orthonormal sets.

Proof. The hard part is to prove (6.25): Choose ¢ such that %—I—% =1 and
use Hélder’s inequality to obtain (sj|...|> = (sp\...|2)1/p|...]2/q)

ZSJ‘ Wm‘bj (ZS (Pm(bj > (Z‘ ‘Pna(bj )1/‘1
J J
< (X Sltemant)”

Clearly the analogous equation holds for QASJ-, . Now using Cauchy—Schwarz
and the above inequality, we have

(s Kol = | > 5% (0, 6515} (@)
J

(Zs (s 65)] ) (Zs (s $5)] )

Summing over n, a second appeal to Cauchnychwarz and interchanging the

order of summation finally gives

> (. Ko) \M(Zs”\ (o b12)” (Zsprwn,qﬁj )2
§<28§)1/2<Z )1/2 ZS

J J

Since equality is attained for ¢, = ¢, and ¥, = ¢, equation (6.25) holds.

Now the rest is straightforward. From

(3 It (5 + Kapggyi)

/ /
< <Z\<¢j,K1¢j>1p)l o (Z !<¢j7K2<Pj>\p>l ’
i i
< 1 K1llp + [ Kz2]lp,
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we infer that J,() is a vector space and the triangle inequality. The other
requirements for a norm are obvious and it remains to check completeness.
If K, is a Cauchy sequence with respect to .||, it is also a Cauchy sequence
with respect to ||| (|[K]| < ||K]|lp). Since €($) is closed, there is a compact
K with |K — K,|| = 0, and by || K|/, < C, we have

(Xl e p) " <

for every finite ONS. Since the right-hand side is independent of the ONS
(and in particular on the number of vectors), K is in J,(9). O

In combination with (6.10), we also obtain:
Corollary 6.13. The set of J operators forms a x-ideal in £($) and
1K Allp < IANK]lp,  respectively, [[AK ||, < [JA[[[| K. (6.26)

The two most important cases are p = 1 and p = 2: Jo($)) is the space
of Hilbert—Schmidt operators investigated at the beginning of this section
and J1(9) is the space of trace class operators. Since Hilbert—Schmidt
operators are easy to identify, it is important to relate J1($)) with J2($):

Lemma 6.14. An operator is trace class if and only if it can be written as
the product of two Hilbert-Schmidt operators, K = K1 Ko, and in this case
we have

[ < ]2 K22 (6.27)

Proof. By Cauchy—-Schwarz we have

/
S Kia)| = S 1K o, Kowon)| < (3 1Kol Y 1K)
= | K[|z K22,

and hence K = K7 K5 is trace class if both K7 and K9 are Hilbert—Schmidt
operators. To see the converse, let K be given by (6.7) and choose K; =

35 V/55(K) (@5, )0;, respectively, Kz = 33, \/s;(K)(¢), ). O

Now we can also explain the name trace class:

Lemma 6.15. If K is trace class, then for every orthonormal basis {yn}
the trace

tr(K) =Y (pn, Kpn) (6.28)

n

is finite and independent of the orthonormal basis.
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Proof. Let {¢,} be another ONB. If we write K = K; Ky with K;, Ko
Hilbert—Schmidt, we have

Z<80n7K1K2SOn> = Z<KT(PWK2SOW,> = Z<Kik§0n7wm><wva2§0n>

n n,m

Z K21/)m7 (Pn @naK1¢m> = Z<K§wm7K11/}m>

m

= Z (Y, Ko K1)

Hence the trace is independent of the ONB and we even have tr(K;K2) =
tI‘(KQKl). O

Clearly for self-adjoint trace class operators, the trace is the sum over
all eigenvalues (counted with their multiplicity). To see this, one just has to
choose the orthonormal basis to consist of eigenfunctions. This is even true
for all trace class operators and is known as the Lidskij trace theorem (see
[63] or [24] for an easy-to-read introduction).

Finally we note the following elementary properties of the trace:

Lemma 6.16. Suppose K, K1, Ko are trace class and A is bounded.

(i) The trace is linear.

(i) tr(K*) = tr(K)*.
(iii) If K1 < Ko, then tr(K;) < tr(K32).
(iv) tr(AK) = tr(KA).

Proof. (i) and (ii) are straightforward. (iii) follows from K; < K» if and
only if (o, K1p) < (p, Kap) for every ¢ € $. (iv) By Problem 6.7 and (i),
it is no restriction to assume that A is unitary. Let {¢, } be some ONB and
note that {¢,, = Ap,} is also an ONB. Then

tr(AK) =Y (tn, AK(pn) = Y (Apy, AK Apy)

n n

— 3 K Agy) = tr(K A)

n

and the claim follows. O

Problem 6.7. Show that every bounded operator can be written as a linear
combination of two self-adjoint operators. Furthermore, show that every
bounded self-adjoint operator can be written as a linear combination of two
unitary operators. (Hint: x + ivV1 — 22 has absolute value one for x €

[-1,1].)
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Problem 6.8. Let § = (*(N) and let A be multiplication by a sequence
a(n). Show that A € J,(¢*(N)) if and only if a € ¢P(N). Furthermore, show
that ||All, = |lal|p in this case.

Problem 6.9. Show that A > 0 is trace class if (6.28) is finite for one (and
hence all) ONB. (Hint: A is self-adjoint (why?) and A =/ AVA.)

Problem 6.10. Show that, for an orthogonal projection P, we have
dim Ran(P) = tr(P),

where we set tr(P) = oo if (6.28) is infinite (for one and hence all ONB by
the previous problem).

Problem 6.11. Show that, for K € €, we have

K= si(05, ),

J

where |K| = vVK*K. Conclude that
1Kl = (sx(| K [P)) /2.

Problem 6.12. Suppose K, Ky are bounded self-adjoint operators. Show
that if —Ko < K < Ky, then | K|, < ||Kollp. (Hint: Corollary 4.13.)

Problem 6.13. Suppose K is compact and let Kj, = (p;, Kog) be the
matriz elements with respect to some ONB {¢;}. Then

p\ 1/p

Kl < (D | D 1Kl
Eo\

(Hint: Show that —Ky < K < Ky, where Ky is diagonal in this ba-
sis with diagonal entries given by . |Kjk|. For this, use |[Kji{p;,.)¢x +
Krj(pr: )il = K| ()5 )0 + (Prs ) or) by Problem 4.8.)

Problem 6.14. An operator of the form K : (*(N) — (2(N), f(n)
> jenk(n+j)f(j) is called a Hankel operator.

o Show that K is Hilbert—Schmidt if and only if ZjeNj\k(j)P < 00
and this number equals || K||2.

o Show that K is Hilbert-Schmidt with || K||2 < ||c||1 if |k(n)| < c¢(n),
where c(n) is decreasing and summable.

(Hint: For the first item, use summation by parts.)
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6.4. Relatively compact operators and Weyl’s theorem

In the previous section, we have seen that the sum of a self-adjoint operator
and a symmetric operator is again self-adjoint if the perturbing operator is
small. In this section, we want to study the influence of perturbations on
the spectrum. Our hope is that at least some parts of the spectrum remain
invariant.

We introduce some notation first. The discrete spectrum o4(A) is the
set of all eigenvalues which are isolated points of the spectrum and whose
corresponding eigenspace is finite dimensional. The complement of the dis-
crete spectrum is called the essential spectrum oes5(A) = o(A4)\oq(A).
Hence the essential spectrum consists of all accumulation points of the spec-
trum plus all isolated eigenvalues of infinite multiplicity. In particular, note
that the essential spectrum is closed.

If A is self-adjoint, we might equivalently set
04(A) = {\ € 0,(A)|rank(Ps((A—e, A +¢€))) < oo for some ¢ > 0}, (6.29)
respectively,
Oess(A) = {X € Rlrank(Pa((A —e,A+¢))) = oo for all e > 0}.  (6.30)

Hence the essential spectrum consists of the absolutely continuous spectrum,
the singularly continuous spectrum, accumulation points of eigenvalues, and
isolated eigenvalues of infinite multiplicity.

Example. For a self-adjoint compact operator K we have by Theorem 6.6
that

oess(K) C {0}, (6.31)

where equality holds if and only if $) is infinite dimensional. o

Let A be self-adjoint. Note that if we add a multiple of the identity to
A, we shift the entire spectrum. Hence, in general, we cannot expect a (rel-
atively) bounded perturbation to leave any part of the spectrum invariant.
Next, if Ag is in the discrete spectrum, we can easily remove this eigenvalue
with a finite rank perturbation of arbitrarily small norm. In fact, consider

A+ePa{o}). (6.32)

Our only hope is that the remainder, namely the essential spectrum, is stable
under finite rank perturbations. To show this, we first need a good criterion
for a point to be in the essential spectrum of A.

Lemma 6.17 (Weyl criterion). A point A is in the essential spectrum of a
self-adjoint operator A if and only if there is a sequence 1, € D(A) such that
|tnll = 1, ¥y converges weakly to 0, and ||(A — XN),|| — 0. Moreover, the
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sequence can be chosen orthonormal. Such a sequence is called a singular
Weyl sequence for A.

Proof. Let v, be a singular Weyl sequence for the point A. By Lemma 2.17
we have A € 0(A) and hence it suffices to show A € 4(A). If A € 04(A), we
can find an € > 0 such that P. = P4((A — &, A + ¢)) is finite rank. Consider
% = 61/}71' Clearly H(A — )‘)T/}n” - HPE(A - )‘)T/}n” < H(A - /\)wnH — 0 and
Lemma 6.9 (iii) implies 1,, — 0. However,

~ 1
fon=dult= [ dmg [ N @)
R\ (A—e,\+e€) €7 JR\(A—e,A+¢)

1
< A= Xl?

and hence ||¢,|| — 1, a contradiction.

Conversely, if X\ € 0.s5(A) is isolated, it is an eigenvalue of infinite mul-
tiplicity and we can choose an orthogonal set of eigenfunctions. Otherwise,
if A € 0ess(A) is not isolated, consider P, = P4([A — %,)\ — %H) U+
%—i—l’ A+ 1]). Then rank(P,,) > 0 for an infinite subsequence n;. Now pick

1; € Ran Pnj. [l

Now let K be a self-adjoint compact operator and 1, a singular Weyl
sequence for A. Then 1, converges weakly to zero and hence

(A + K = Nnl < [[(A= Al + [[Kipnll =0 (6.33)

since ||(A — A)i,|| = 0 by assumption and ||Kvy,| — 0 by Lemma 6.9 (iii).
Hence 0¢s5(A) C 0ess(A + K). Reversing the roles of A + K and A shows
Oess(A+ K) = 0ess(A). In particular, note that A and A+ K have the same
singular Weyl sequences.

Since we have shown that we can remove any point in the discrete spec-
trum by a self-adjoint finite rank operator, we obtain the following equivalent
characterization of the essential spectrum.

Lemma 6.18. The essential spectrum of a self-adjoint operator A is pre-
cisely the part which is invariant under compact perturbations. In particular,

Oess(A) = N o(A+K). (6.34)
Kee(9H),K*=K

There is even a larger class of operators under which the essential spec-
trum is invariant.

Theorem 6.19 (Weyl). Suppose A and B are self-adjoint operators. If
Ru(z) — Rp(z) € €(9) (6.35)
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for one z € p(A) N p(B), then
Uess(A) = Uess(B)- (636)

Proof. In fact, suppose \ € oess(A) and let ¥, be a corresponding singular
Weyl sequence. Then

1 _ Ra(z)
A— z)wn oz=A
and thus ||(R4(2)— 5= )¥n|| = 0. Moreover, by our assumption we also have
I(R5(2) =55 )¢nll — 0and thus [[(B=A)gal = 2= All(Rp(2)— 55)¢nll =
0, where ¢, = Rp(z)1y,. Since

lim [lgnl = lim (A~ 2) " eon + (Ris(2) — (A= 2) " )l

(Ra(z) —

n—oo
===t #0,
we obtain a singular Weyl sequence @, = ||¢n| "¢, for B, showing \ €
0ess(B). Now interchange the roles of A and B. O

As a first consequence, note the following result:

Theorem 6.20. Suppose A is symmetric with equal finite defect indices.
Then all self-adjoint extensions have the same essential spectrum.

Proof. By Lemma 2.30, the resolvent difference of two self-adjoint exten-
sions is a finite rank operator if the defect indices are finite. O

In addition, the following result is of interest.

Lemma 6.21. Suppose
Ra(z) — Rp(z) € €(9) (6.37)

for one z € p(A)Np(B). Then this holds for all z € p(A)Np(B). In addition,
if A and B are self-adjoint, then

F(A) - £(B) € €($) (6.38)
for all f € Cx(R).
Proof. If the condition holds for one z, it holds for all since we have (using
both resolvent formulas)
RA(Z) — Rp(2)
= (1= (2 = #)RB(2)(Ra(2) — Rp(2))(1 = (2 = ) Ra(?)).
Let A and B be self-adjoint. The set of all functions f for which the

claim holds is a closed *-subalgebra of Coo(R) (with sup norm). Hence the
claim follows from Lemma 4.4. O
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Remember that we have called K relatively compact with respect to
A if KR4(z) is compact (for one and hence for all z), and note that by
the second resolvent formula the resolvent difference Raix(2) — Ra(z) is
compact if K is relatively compact. In particular, Theorem 6.19 applies if
B = A+ K, where K is relatively compact.

For later use, observe that the set of all operators which are relatively
compact with respect to A forms a vector space (since compact operators
do) and relatively compact operators have A-bound zero.

Lemma 6.22. Let A be self-adjoint and suppose K is relatively compact
with respect to A. Then the A-bound of K is zero.

Proof. Write

KRa(M) = (KRA(1))((A - 1) Ra(A))
and observe that the first operator is compact and the second is normal
and converges strongly to 0 (cf. Problem 3.7). Hence the claim follows from
Lemma 6.3 and the discussion after Lemma 6.9 (since R4 is normal). O

In addition, note the following result which is a straightforward conse-
quence of the second resolvent formula.

Lemma 6.23. Suppose A is self-adjoint and B is symmetric with A-bound
less than one. If K is relatively compact with respect to A, then it is also
relatively compact with respect to A + B.

Proof. Since B is A bounded with A-bound less than one, we can choose
a z € C such that |[BR4(z)| < 1 and hence, using the second resolvent
formula,

BRayp(2) = BRA(2)(I+ BRa(2))! (6.39)
shows that B is also A + B bounded and the result follows from

KRa+p(z) = KRA(2)(I — BRa+p(2)) (6.40)
since KR4(z) is compact and BR 44 p(z) is bounded. O

Problem 6.15. Let A and B be self-adjoint operators. Suppose B is rel-
atively bounded with respect to A and A + B is self-adjoint. Show that if
|B|'2Ra(z) is Hilbert-Schmidt for one z € p(A), then this is true for all
z € p(A). Moreover, |B|Y?Rap(2) is also Hilbert-Schmidt and Rayp(z) —
RA(z) is trace class.

Problem 6.16. Show that A = f% +q(z), D(A) = H*(R) is self-adjoint
if ¢ € L*(R). Show that if —u"(z) + q(x)u(z) = zu(x) has a solution for
which u and v’ are bounded near +0o (or —oo) but u is not square integrable
near +00 (or —o0), then z € oess(A). (Hint: Use u to construct a Weyl
sequence by restricting it to a compact set. Now modify your construction
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to get a singular Weyl sequence by observing that functions with disjoint
support are orthogonal.)

6.5. Relatively form-bounded operators and the KLMN
theorem

In Section 6.1, we have considered the case where the operators A and B have
a common domain on which the operator sum is well-defined. In this section,
we want to look at the case where this is no longer possible, but where it
is still possible to add the corresponding quadratic forms. Under suitable
conditions this form sum will give rise to an operator via Theorem 2.14.

Example. Let A be the self-adjoint operator A = —%, D(A) = {f €
H?[0,1]|f(0) = f(1) = 0} in the Hilbert space L?(0,1). If we want to
add a potential represented by a multiplication operator with a real-valued
(measurable) function ¢, then we already have seen that ¢ will be relatively
bounded if ¢ € L?(0,1). Hence, if ¢ & L?(0,1), we are out of luck with the
theory developed so far. On the other hand, if we look at the corresponding
quadratic forms, we have Q(A) = {f € H'[0,1]|f(0) = f(1) = 0} and
Q(q) = D(|q|*/?). Thus we see that Q(A) C Q(q) if ¢ € L'(0,1).

In summary, the operators can be added if ¢ € L2(0, 1) while the forms
can be added under the less restrictive condition ¢ € L'(0,1).

Finally, note that in some drastic cases, there may be no way to define
the operator sum: Let x; be an enumeration of the rational numbers in (0, 1)

and set
o0

1

x) = Y

q(x) j;% Tzl
where the sum is to be understood as a limit in L'(0,1). Then ¢ gives
rise to a self-adjoint multiplication operator in L?(0,1). However, note that
D(A) N D(q) = {0}! In fact, let f € D(A) ND(¢g). Then f is continuous
and g(z)f(x) € L*(0,1). Now suppose f(z;) # 0 for some rational number
xzj € (0,1). Then by continuity |f(z)| > § for € (z; — ¢,2; + ¢€) and
q(@)|f(x)| > 6277z — x;/7Y/2 for x € (x; — &,2; + €), which shows that
q(z)f(x) & L?(0,1) and hence f must vanish at every rational point. By
continuity, we conclude f = 0. o

Recall from Section 2.3 that every closed semi-bounded form ¢ = ¢y
corresponds to a self-adjoint operator A (Theorem 2.14).

Given a self-adjoint operator A > 7 and a (hermitian) form ¢ : Q — R
with Q(A) C 9, we call ¢ relatively form bounded with respect to g4 if
there are constants a,b > 0 such that

la(¥)| < aga () +BlIV[%, ¥ € Q(A). (6.41)
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The infimum of all possible a is called the form bound of ¢ with respect
to q4.

Note that we do not require that g be associated with some self-adjoint
operator (though it will be in most cases).

Example. Let A= —%, ©(A) = {f € H[0,1]|f(0) = f(1) = 0}. Then
Q(f):|f(c)|2v fEHl[Oal]v CE(O,l),

is a well-defined nonnegative form. Formally, one can interpret ¢ as the
quadratic form of the multiplication operator with the delta distribution at
r = c But for f € Q(A) = {f € H'[0,1]|f(0) = f(1) = 0}, we have by
Cauchy—Schwarz

07 =2re [ 10w <2 [ 1707 £ < 71+ P
Consequently, ¢ is relatively bounded with bound 0 and hence ¢4 + ¢ gives
rise to a well-defined operator as we will show in the next theorem. o

The following result is the analog of the Kato—Rellich theorem and is
due to Kato, Lions, Lax, Milgram, and Nelson.

Theorem 6.24 (KLMN). Suppose g4 : Q(A) — R is a semi-bounded closed
hermitian form and q a relatively bounded hermitian form with relative bound
less than one. Then qa + q defined on Q(A) is closed and hence gives rise
to a semi-bounded self-adjoint operator. Fxplicitly we have ga +q > v — b.

Proof. Without loss of generality, we consider only the case v = 0. A
straightforward estimate shows ga(¥) + q(v) > (1 — a)ga(v) — b||e[|* >
—bl1]|?; that is, g4 + ¢ is semi-bounded. Moreover, by
1013044 = a4(®) + (@) + (0 + DI[9[* < (1 + a)ga(¥) + (26 + 1)[[¥]?
< @+a+ WYl

and

1
[$l1G, = aa() + 11 < 7= (aa (@) +a(®) + b0 11%) + [l
1
< Wl e
we see that the norms ||.||,, and |.||q,+¢ are equivalent. Hence g4 + ¢ is
closed and the result follows from Theorem 2.14. (]

In the investigation of the spectrum of the operator A + B, a key role
is played by the second resolvent formula. In our present case, we have the
following analog.
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Theorem 6.25. Suppose A —~ > 0 is self-adjoint and let ¢ : Q — R be a
hermitian form with Q(A) C Q. Then the hermitian form
a(Ra(=N)'?p),  pes, (6.42)

corresponds to a bounded operator Cq(X) with ||Cy(N)|| < a for A > 2 — v if
and only if q is relatively form bound with constants a and b.

In particular, the form bound is given by

)\lim |Cq(N)]- (6.43)
—00
Moreover, if a < 1, then

Ryrq(=2) = Ra(=N)2(1+ Cy(\) " Ra(—=N)"*. (6.44)

Here Ry, +q(2) is the resolvent of the self-adjoint operator corresponding to
qa +q.

Proof. We will abbreviate C' = C,(A) and RY? = Ra(~=\)"/2. If ¢ is form
bounded, we have for A > 3 — v that

a(RY*9)| < aqaq(RY*) + b|RY 9|

b
= al, (A =7+ -)Rav) < all¢|?,

and hence q(R114/ 2¢) corresponds to a bounded operator C'. The converse is

similar.
If a < 1, then (1 + C)~! is a well-defined bounded operator and so is
R = Ri/Z(l + C’)_le/z. To see that R is the inverse of A1 + A, where A4,

is the operator associated with g4 + ¢, take ¢ = RL/QQZJ € Q(A) and ¢ € H.
Then

3A1+)\(§07 Rw) = SA+)\(QD7 Rw) + S<307 Rw)
— (3, (1+ C)'RY%P) + (3, C(1 + C) T RY%p) = (g, 9).

Taking ¢ € ©(A41) C Q(A), we see (A1 + Ny, RY) = (p,v) and thus
R = R4,(—\) (Problem 6.17). O

Furthermore, we can define Cy(\) for all z € p(A), using
Co(2) = (A+ N)?Ra(=2)2)* Co(MN) (A + X)?Ra(=2)"2. (6.45)

We will call ¢ relatively form compact if the operator Cy(z) is compact for
one and hence all z € p(A). As in the case of relatively compact operators
we have
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Lemma 6.26. Suppose A —~ > 0 is self-adjoint and let q be a hermitian
form. If q is relatively form compact with respect to qa, then its relative
form bound is O and the resolvents of qa + q and q4 differ by a compact
operator.

In particular, by Weyl’s theorem, the operators associated with q4 and
ga + q have the same essential spectrum.

Proof. Fix Ao > 2 —y and let A > Xg. Consider the operator D(\) =
(A+X0)"/2RA(—))/? and note that D()) is a bounded self-adjoint operator
with [|[D(A)|| < 1. Moreover, D()A) converges strongly to 0 as A — oo (cf.
Problem 3.7). Hence ||[D(A\)C(X\o)|| — 0 by Lemma 6.9, and the same is
true for C(A) = D(A\)C(Ao)D(A). So the relative bound is zero by (6.43).
Finally, the resolvent difference is compact by (6.44) since (1 + C)~! =
1-Cc(1+0) L. O

Corollary 6.27. Suppose A—~ > 0 is self-adjoint and let q1, qo be hermitian
forms. If q1 is relatively bounded with bound less than one and qo is relatively
compact, then the resolvent difference of ga+q1+ q2 and g4+ q1 is compact.
In particular, the operators associated with ga+q1 and g4 + q1 + g2 have the
same essential spectrum.

Proof. Just observe that Cy 14 = Cy + Cypy and (1 + Cy + Cpy) ™t =
(1+CQ1)_1 - (1+CQ1)_1C¢12(1+C(11 +Cf12)_1' a

Finally, we turn to the special case where ¢ = qp for some self-adjoint
operator B. In this case we have
Cp(2) = (|BI'*Ra(=2)""?)" sign(B)| B|'/*Ra(—2)"/? (6.46)
and hence
ICB() < [IIBIY?Ra(=2)"?|? (6.47)
with equality if V' > 0. Thus the following result is not too surprising.

Lemma 6.28. Suppose A—~ > 0 and B is self-adjoint. Then the following
are equivalent:

(i) B is A form bounded.
(ii) Q(A) € Q(B).
(iit) |B]"2RA(2)"/? is bounded for one (and hence for all) z € p(A).

Proof. (i) = (ii) is true by definition. (ii) = (iii) since |B|"/2R4(z)'/?
is a closed (Problem 2.9) operator defined on all of $) and hence bounded
by the closed graph theorem (Theorem 2.9). To see (iii) = (i), observe
|B|'2RA(2)"? = |B|Y?Ra(20)"?*(A — 20)'/?R(2)"/?, which shows that
|B|'2R 4(2)"/? is bounded for all z € p(A) if it is bounded for one zy € p(A).
But then (6.47) shows that (i) holds. O
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Clearly, Cg(\) will be compact if |B|'/2R4(2)'/? is compact. However,
since RL/ 2(z) might be hard to compute, we provide the following more

handy criterion.

Lemma 6.29. Suppose A —~ > 0 and B is self-adjoint where B is rela-
tively form bounded with bound less than one. Then the resolvent difference
Rayp(2) — Ra(z) is compact if |B|Y?Ra(z) is compact and trace class if
|B|'2R (%) is Hilbert-Schmidt.

Proof. Abbreviate Ry =Ra(—\), By =|B|'/?, By=sign(B)|B|'/2. Choose
A >« such that ||Cg()\)|| < 1. Then we have

(1+Cp) ' = i(—l)j((Ble/%*Bng/z)j
j=0

=1-(BIR{) | S (-1 (BeR A (BIRY)) | BoR)[”
7=0

=1-(BIR{*)" (1 + Cp) ' BRY?,

where Cp = Bng/Q(Ble/Q)*. Hence by (6.44) we see Rarp — R4 =
—(B1RA)*(1 + Cg) 'BaR4 and the claim follows. O

Moreover, the second resolvent formula still holds when interpreted suit-
ably:

Lemma 6.30. Suppose A —~ > 0 and B is self-adjoint. If Q(A) C Q(B)
and g4 + qp is a closed semi-bounded form, then
Rasp(2) = Ra(2) — (|B]'Y?Rayp(z"))" sign(B)|B|'/* Ra(2)
= Ra(2) — (IB|"?Ra(z"))"sign(B)|B|'*Rayp(z)  (6.48)

for z € p(A)Np(A+ B). Here A+ B is the self-adjoint operator associated
with ga +4B.

Proof. Let ¢ € D(A + B) and ¢ € §. Denote the right-hand side in
(6.48) by R(z) and abbreviate R = R(z), Ra = Ra(z), By = |B|"/?, By =
sign(B)|B|'/2. Then, using sa1p-(,%) = (A+ B+ 2")p, ),
sa+B—z(0, RY) = sa1B—2(¢, Rav) — (B1Ry g(A+ B+ 2%)p, BaRat)
= sa+B—:(p, Rav) — sB(p, Rav)) = sa—z(p, Rav)
= (o, ¥).

Thus R = R4yp(z) (Problem 6.17). The second equality follows after ex-
changing the roles of A and A + B. ([
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It can be shown using abstract interpolation techniques that if B is
relatively bounded with respect to A, then it is also relatively form bounded.
In particular, if B is relatively bounded, then BR4(z) is bounded and it is
not hard to check that (6.48) coincides with (6.5). Consequently A + B
defined as operator sum is the same as A + B defined as form sum.

Problem 6.17. Suppose A is closed and R is bounded. Show that R =
Ra(z) if and only if (A — 2)"p, RY) = (p, 1) for all o € D(A"), P € 5.

Problem 6.18. Let q be relatively form bounded with constants a and b.
Show that Cy(X) satisfies ||Cy(N)|| < max(a, ﬁ) for X\ > —~. Furthermore,
show that ||Cy(N)|| decreases as A — oc.

6.6. Strong and norm resolvent convergence

Suppose A,, and A are self-adjoint operators. We say that A, converges to
A in the norm, respectively, strong resolvent sense, if

ILm R4, (2) = Ra(z), respectively, S—Em Ra,(2) = Ra(z), (6.49)

for one z € I' = C\X, ¥ = 0(A) U, 0(A4,). In fact, in the case of
strong resolvent convergence, it will be convenient to include the case if A,
is only defined on some subspace £, C £, where we require P, = 1 for
the orthogonal projection onto $,. In this case R4, (z) (respectively, any
other function of A4,) has to be understood as R4, (z)P,, where P, is the
orthogonal projector onto $),. (This generalization will produce nothing
new in the norm case, since P,, — 1 implies P, = 1 for sufficiently large n.)

Using the Stone—Weierstrafl theorem, we obtain as a first consequence

Theorem 6.31. Let A,, A be self-adjoint operators and suppose A, con-
verges to A in the norm resolvent sense. Then f(A,) converges to f(A) in
norm for every bounded continuous function f:¥— C with limy_,_ f(A) =

If A,, converges to A in the strong resolvent sense, then f(Ay) converges
to f(A) strongly for every bounded continuous function f: % — C.

Proof. The set of functions for which the claim holds clearly forms a *-
subalgebra (since resolvents are normal, taking adjoints is continuous even
with respect to strong convergence), and since it contains f(\) = 1 and
fA) = )\%ZO, this *-subalgebra is dense by the Stone—Weierstrafl theorem
(cf. Problem 1.22). The usual § argument shows that this *-subalgebra is
also closed.

It remains to show the strong resolvent case for arbitrary bounded con-
tinuous functions. Let x, be a compactly supported continuous function
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(0 < xm < 1) which is one on the interval [—m, m]. Then X, (An) = xm(A),
F(A)xm(An) = f(A)xm(A) by the first part and hence
1(f(An) = FEANDI <IF (AT = Xxm (A)) ]
17 AR HI O (A) = xom (An)) 4|
+ 1 (An)xm (An) = f(A)xm (A)) Y]]
+ LA = xm(A)) ]

can be made arbitrarily small since || f(.)|| < || flloo and xum(.) = I by Theo-
rem 3.1. U

As a consequence, note that the point z € I' is of no importance, that
is,

Corollary 6.32. Suppose A, converges to A in the norm or strong resolvent
sense for one zy € I'. Then this holds for all z € T'.

Also,

Corollary 6.33. Suppose A,, converges to A in the strong resolvent sense.
Then

eltAn 5 6lt4 e R, (6.50)
and if all operators are semi-bounded by the same bound
e tn B emtA >0, (6.51)

Next we need some good criteria to check for norm, respectively, strong,
resolvent convergence.

Lemma 6.34. Let A,, A be self-adjoint operators with D(A,) = D(A).
Then A, converges to A in the norm resolvent sense if there are sequences
an and b, converging to zero such that

1(An = APl < anllPl] + bal[AY]l, ¢ € D(A) = D(An). (6.52)

Proof. From the second resolvent formula

Ra,(2) = Ra(z) = Ra, (2)(A = An)Ra(2),

we infer
1R, () = Ra@)6 ] < | Ra, Ol (anl Ra@)l + ball ARAG)])
< (an+ba) 9]
and hence |[Ra, (1) — Ra(i)|| < an + by, — 0. O

In particular, norm convergence implies norm resolvent convergence:
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Corollary 6.35. Let A,,, A be bounded self-adjoint operators with A, — A.
Then A, converges to A in the norm resolvent sense.

Similarly, if no domain problems get in the way, strong convergence
implies strong resolvent convergence:

Lemma 6.36. Let A,,, A be self-adjoint operators where A, is defined in
Hn C H and P, is the orthogonal projection onto $,,. Then A, converges to
A in the strong resolvent sense if there is a core ®g of A such that for every
Y € Do we have Ppp € D(A,,) for n sufficiently large and A, Ppp — A,

Proof. We begin with the case $,, = $). Using the second resolvent formula,
we have

1(Ra, (1) = Ra(i))¥] < [[(A = An)Ra(D)3] = 0
for 1 € (A —1)®( which is dense, since Dg is a core. The rest follows from
Lemma 1.14.
If $3,, C §, we can consider 4, = 4, ®0 = A, P, and conclude Ry (i) N
RA(i) from the first case. By Rj (i) = Ra, (1) ®1= Ra, P, +i(1 — P,) the
same is true for Ra, (i) P, since 1 — P, > 0 by assumption. O

If you wonder why we did not define weak resolvent convergence, here
is the answer: it is equivalent to strong resolvent convergence.

Lemma 6.37. Let A,,, A be self-adjoint operators. Suppose W—_l}irn Ry, (2) =
Ra(z) for some z € I'\R. Then S—Em R4, (2) = Ra(z) also.

Proof. By R4, (z) — Ra(z) we also have R4, (z)* — Ra(z)* and thus by
the first resolvent formula

| Ra, (201 = [Ra(2)$]* = (¢, Ra, (") Ra, (2) — Ra(z") Ra(2)¥)
= L (R, (2) — Ra (&%) + Ralz) = Ra()) = 0.
Together with Ra, (2)Y — Ra(2)y we have Ry, (2)1) — Ra(2)y by virtue
of Lemma 1.12 (iv). O

Now what can we say about the spectrum?

Theorem 6.38. Let A, and A be self-adjoint operators. If A, converges
to A in the strong resolvent sense, we have o(A) C lim, o 0(4,). If A,
converges to A in the norm resolvent sense, we have o(A) = lim,_,o0 0(Ay).
Here lim,, oo 0(A,,) denotes the set of all X for which there is a sequence
An € 0(Ay) converging to A.
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Proof. Suppose the first claim were incorrect. Then we can find a A € o(A)
and some ¢ > 0 such that o(A4,) N (A —¢e,A+¢) = (). Choose a bounded
continuous function f which is one on (A — §,A + §) and which vanishes
outside (A — &, A +¢). Then f(A,) =0 and hence f(A)y = lim f(A,)y =0
for every 1. On the other hand, since A € o(A), there is a nonzero ¢ €
Ran P4((A — §, A+ 5)) implying f(A)y = 1, a contradiction.

To see the second claim, it suffices to show that A € limo(A,,) implies
A € o(A). To this end, recall that the norm of R4(z) is just one over
the distance from the spectrum. In particular, A\ ¢ o(A) if and only if
|[Ra(A+1)|]] < 1. So A & o(A) implies ||[Ra(A +1)]| < 1, which implies
|Ra, (A +1)|| <1 for n sufficiently large, which implies A\ & o(A,,) for n
sufficiently large. O

Example. Note that the spectrum can contract if we only have convergence
in the strong resolvent sense: Let A, be multiplication by %az in L?(R).
Then A,, converges to 0 in the strong resolvent sense, but ¢(A,) = R and
a(0) ={0}. o
Lemma 6.39. Suppose A,, converges in the strong resolvent sense to A. If
PA({\}) =0, then

s-lim Py, ((—00, A)) = s-lim Py, ((—00, A]) = Pa((—00,A)) = Pa((—o0, A]).

n—00 n—0oo

(6.53)

Proof. By Theorem 6.31, the spectral measures i, ,, corresponding to A,

converge vaguely to those of A. Hence ||Pa, (2)9]|? = pin () together with
Lemma A.34 implies the claim. O

Using P((Ao,A\1)) = P((—00,A1)) — P((—00, Ag]), we also obtain the
following.

Corollary 6.40. Suppose A,, converges in the strong resolvent sense to A.
If PA({\o}) = Pa({M1}) =0, then

slim Pa, (Ao, M) = sclim Pa, (Do, M) = Pa((ho, At)) = Pa(lAo, M),
(6.54)

Example. The following example shows that the requirement P4({A}) =0
is crucial, even if we have bounded operators and norm convergence. In fact,

let $ = C2 and
1 1 0
w0, -

< 8 ; ) , (6.56)

Then A,, — 0 and

Py, ((=00,0)) = Pa, ((—00,0])
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but Py((—00,0)) =0 and Py((—o0,0]) =1. o

Problem 6.19. Suppose A, — A in the norm resolvent sense and let A be
bounded. Show that A,, are eventually bounded and A,, — A in norm. (Hint:
First show ||An|| — ||All and conclude that R4 (i) and Ra, (i) are eventually
bi-Lipschitz uniformly in n. Now use the second resolvent formula.)

Problem 6.20. Show that for self-adjoint operators, strong resolvent con-
vergence is equivalent to convergence with respect to the metric

AA.B) = 3 L (Bali) ~ Ro(@)eul. (6.57)
neN

where {op tnen is some (fived) ONB.

Problem 6.21 (Weak convergence of spectral measures). Suppose A, — A
in the strong resolvent sense and let fi, 4, p1y be the corresponding spectral
measures. Show that

/ S\ i (N) = / FN () (6.58)

for every bounded continuous f. Give a counterexample when f is not con-
tinuous.
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Schrodinger Operators






Chapter 7

The free Schrodinger
operator

7.1. The Fourier transform

We first review some basic facts concerning the Fourier transform which
will be needed in the following section.

Let C*°(R™) be the set of all complex-valued functions which have partial
derivatives of arbitrary order. For f € C*°(R") and o € Nj we set

a|a‘f (0% (5] Qn
8af:m, =2 apt, |al=o + . (7.1)
An element o € Nj is called a multi-index and |« is called its order. We
will also set (Az)® = Allz® for A € R. Recall the Schwartz space

S(RY) = {f € C=(RY)|sup |27(0)(2)] < 00, @, f € Ng} (7.2)

which is a subspace of LP(R™) and which is dense for 1 < p < oo (since
C*(R"™) c S(R™)). Note that if f € S(R™), then the same is true for
x®f(x) and (Oqf)(x) for every multi-index a. For f € S(R") we define its
Fourier transform via

1 )
Then,

Lemma 7.1. The Fourier transform maps the Schwartz space into itself,
F : S(R™) — S(R™). Furthermore, for every multi-index o € Nij and every

187
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f € S(R™) we have
@) Np) = (p)*f(p), @ f@) () =1"0ufp).  (74)

Proof. First of all, by integration by parts, we see

1 —ipx 0 m
(G @) 0) = Goyors [ ™ g f s

: <273>n o (o) v

1 1 .
- i iPT M i
Since we can repeat this argument with an arbitrary number of derivatives,
the first formula follows.

Similarly, the second formula follows from

@@ ) = G [ e p s

1 0 —ipx n _-iA
:W/" (18}%6 P >f(f'3)d x_lﬁpjf(p)’

where interchanging the derivative and integral is permissible by Prob-
lem A.20. In particular, f(p) is differentiable.

To see that f € S(R") if f € S(R™), we begin with the observation
that f is bounded; in fact, || f|lcoc < (27)72||f|l1. But then p®(9sf)(p) =
i=1l=181(9,2P f () (p) is bounded since D2’ f(x) € S(R™) if f € S(R™).

([

Hence we will sometimes write pf(x) for —i0f(x), where 9 = (d1,...,0n)
is the gradient.

Three more simple properties are left as an exercise.

Lemma 7.2. Let f € S(R™). Then

(f(@+a) (p) =ef(p), acR", (7.5)
(e f(2))"(p) = ( —a), acR" (7.6)
(f(xa))"(p) = f( ), A>0. (7.7)

Next, we want to compute the inverse of the Fourier transform. For this,
the following lemma will be needed.

Lemma 7.3. We have e *°/2 € S(R™) for Re(z) > 0 and

—2x? 1 —p? z
Fe /2)(17) = We pi/ee) (7.8)
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Here 22 has to be understood as (v/z)™, where the branch cut of the root
is chosen along the negative real axis.

Proof. Due to the product structure of the exponential, one can treat each
coordinate separately, reducing the problem to the case n = 1.
Let ¢ () =exp(—z22/2). Then ¢, (z)+zx¢.(x) =0 and hence i(pd. (p)+
2¢’(p)) = 0. Thus ¢.(p) = c¢1/.(p) and (Problem A.26)
1
exp(—zx?/2)dx = —

=75 7

at least for z > 0. However, since the integral is holomorphic for Re(z) > 0
by Problem A.22; this holds for all z with Re(z) > 0 if we choose the branch
cut of the root along the negative real axis. O

C_sz

Now we can show

Theorem 7.4. The Fourier transform F : S(R") — S(R™) is a bijection.
Its inverse is given by
1

Fo)@) =00 = oiars | a0 (79)

We have F%(f)(x) = f(—z) and thus F* =1.

Proof. Abbreviate ¢.(r) = exp(—ez?/2). By dominated convergence we
have

o) @) = s [ )
~lim o [ e @

1

and, invoking Fubini and Lemma 7.2, we further see

—tim o [ e sy

5%0( )
1 m
—im o [ w/zdn/a( D)y
1
5—)0 271')” / ('bl a:—i—\fz) (x)v

which finishes the proof, where we used the change of coordinates z = %
and again dominated convergence in the last two steps. ([
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From Fubini’s theorem we also obtain Plancherel’s identity

£ n 1 * P ipr g, qn
| wrre = oo [ ] sy imer ey

- / f@Pd (7.10)

for f € S(R™). Thus, by Theorem 0.29, we can extend F to all of L?(R")
by setting F(f) = limy,—00 F(fm), where fp, is an arbitrary sequence from
S(R™) converging to f in the L? norm.

Theorem 7.5 (Plancherel). The Fourier transform F extends to a unitary
operator F : L2(R™) — L?(R™). Its spectrum is given by

o(F)={zeClz* =1} ={1,-1,i, —i}. (7.11)

Proof. As already noted, F extends uniquely to a bounded operator on
L?(R™). Since Parseval’s identity remains valid by continuity of the norm
and since its range is dense, this extension is a unitary operator. It remains
to compute the spectrum. In fact, if v, is a Weyl sequence, then (F? +
PV F+2)(F—2)0n = (F* =29, = (1 —2*)4, — 0 implies 2* = 1. Hence
o(F) C {z € C|z* = 1}. We defer the proof for equality to Section 8.3, where
we will explicitly compute an orthonormal basis of eigenfunctions. ([l

We also note that this extension is still given by (7.3) whenever the
right-hand side is integrable.

Lemma 7.6. Let f € L*(R™)N L?(R"); then (7.3) continues to hold, where
F now denotes the extension of the Fourier transform from S(R™) to L*(R™).

Proof. Fix a bounded set X C R"™ and let f € L?(X). Then we can
approximate f by functions f, € C°(X) in the L? norm. Since L?(X)
is continuously embedded into L'(X) (Problem 0.36), this sequence will
also converge in L'(X). Extending all functions to R™ by setting them
zero outside X, we see that the claim holds for f € L?(R") with compact
support. Finally, for general f € L'(R") N L?(R"), consider f,, = fx B (0)-

Then f,, — f in both L'(R™) and L?(R"™) and the claim follows. O
In particular,
£ I T 1 —ipx n
f(p) = lim (@) /x|<me f(z)d"z, (7.12)

where the limit has to be understood in L*(R") and can be omitted if f €
LY(R™) N L2(R").

Clearly, we can also regard the Fourier transform as a map on L'(R").
To this end, let C, (R™) denote the Banach space of all continuous functions
f : R™ — C which vanish at oo equipped with the sup norm (Problem 7.5).



7.1. The Fourier transform 191

Lemma 7.7 (Riemann-Lebesgue). The Fourier transform as defined by
(7.3) is a bounded injective map from L*(R™) into Coo(R™) satisfying

1o < @) 72| £l (7.13)

Proof. Clearly we have f € Coo(R") if f € S(R™). Moreover, since S(R")
is dense in L'(R"), the estimate

1 ; 1
————su e P f(x)|d"r = —— x)|d"x
s [ e @ = oo [ i)
shows that the Fourier transform extends to a continuous map from L!(R")
into Cso(R™).

To see that the Fourier transform is injective, suppose f = 0. Then
Fubini implies

sup | f(p)| <
p

0= [ v@iwis= [ owieas
for every ¢ € S(R™). Hence Lemma 0.41 implies f = 0. O

Note that F : L'(R") — Cu(R™) is not onto (cf. Problem 7.6). More-
over, F~1Ff = f whenever f, Ff € L*(R") since this is all that was used
in the proof of Theorem 7.4.

Another useful property is the convolution formula.
Lemma 7.8. The convolution
(Feo@ = [ fwgle—nd'y= [ fa-pewdy  (114)

of two functions f,g € LY(R") is again in L*(R™) and we have Young’s
inequality

1 gllx < (£l llgllx- (7.15)
Moreover, its Fourier transform is given by
(f 9)"(p) = 2m)"* f (P)3(p)- (7.16)

Proof. The fact that fx*g isin L' together with Young’s inequality follows
by applying Fubini’s theorem to h(x,y) = f(x — y)g(y). For the last claim
we compute

A 1 —ipx n mn
(=00 = s [ [ it -y as

—i 1 —ip(x— n n
— [ i) P L e gta = ey

N / T ()g(p)dty = (2n)"2 F (9)g ().

where we have again used Fubini’s theorem. ([
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In other words, L'(R") together with convolution as a product is a
Banach algebra (without identity). As a consequence we can also deal with
the case of convolution on S(R") as well as on L%(R").

Corollary 7.9. The convolution of two S(R™) functions as well as their
product is in S(R"™) and

(fx9)"=(@m"?fa,  (f9)" =(@2m)"*fxg

i this case.

Proof. Clearly the product of two functions in S(R") is again in S(R")
(show this!). Since S(R") C L*(R"), the previous lemma implies (f * g)" =
(2m)"2f§ € S(R™). Moreover, since the Fourier transform is injective on
LY(R™), we conclude f % g = (27)"2(fg)" € S(R™). Replacing f,g by f, g
in the last formula finally shows f x § = (27)"?(fg)" and the claim follows
by a simple change of variables using f(p) = f (—p). O

Corollary 7.10. The convolution of two L*(R™) functions is in Cuo(R™)
and we have ||f * gllco < || fll2llgll2 as well as

(fg)" = (2m) " fxg

i this case.

Proof. The inequality ||f * glloc < ||fll2/lg]l2 is immediate from Cauchy—
Schwarz and shows that the convolution is a continuous bilinear form from
L?(R™) to L*°(R™). Now take sequences fy,, g, € S(R") converging to f,g €
L?(R™). Then using the previous corollary together with continuity of the
Fourier transform from L!'(R™) to Coo(R™) and on L?(R™), we obtain

(fg)/\ = 11_)111 (fngn)/\ = (277)7n/2 11_}111 fn * gn = (27[-)7”/2]8* g
This also shows f % § € Co(R™) by the Riemann—Lebesgue lemma. O

Finally, note that by looking at the Gaussian’s ¢y(z) = exp(—Az?/2),
one observes that a well-centered peak transforms into a broadly spread peak
and vice versa. This turns out to be a general property of the Fourier trans-
form known as uncertainty principle. One quantitative way of measuring
this fact is to look at

I(z; = 2)f ()13 = / (zj = 2%)|f(2)Pd"x (7.17)

R"

which will be small if f is well concentrated around x° in the j’th coordinate
direction.
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Theorem 7.11 (Heisenberg uncertainty principle). Suppose f € S(R™).
Then for any x°,p° € R, we have

1713

I = 2) f(@)2ll (g — 2" P2 = 75

(7.18)
Proof. Replacing f(x) by eiszof(x—i-azoej) (where e; is the unit vector into
the j’th coordinate direction) we can assume z° = p’ = 0 by Lemma 7.2.
Using integration by parts, we have

115 [ 1f@Pda=— [ a0\l ==2Re [ ot 0@
Hence, by Cauchy—Schwarz,
1715 < 2l )03 @)l = 2l F@lallps  0)]

and the claim follows. O

Recall that |f(z)|? is interpreted as the probability distribution for the
position of a particle, and | f (x)|? is interpreted as the probability distribu-
tion for its momentum. Equation (7.18) says that the variance of both distri-
butions cannot both be small and thus one cannot simultaneously measure
position and momentum of a particle with arbitrary precision. An abstract
version will be given in Theorem 8.2 below.

Another version states that f and f cannot both have compact support.

Theorem 7.12. Suppose f € L>(R"). If both f andf have compact support,
then f =0.

Proof. Let A, B C R™ be two compact sets and consider the subspace of

~

all functions with supp(f) € A and supp(f) C B. Then

flz) = - K(z,y)f(y)d"y,

where
1

K(z,y) = (2m)n

/B TP aly)d"p = 2m) " Rp(y — 2)xa(y).

Since K € L*(R™ x R"), the corresponding integral operator is Hilbert—
Schmidt, and thus its eigenspace corresponding to the eigenvalue 1 can be
at most finite dimensional.

Now if there is a nonzero f, we can find a sequence of vectors ™ — 0
such that the functions f,(x) = f(z — x™) are linearly independent (look
at their supports) and satisfy supp(f,) C 24, supp(fn) C B. But this a
contradiction by the first part applied to the sets 24 and B. ([
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Problem 7.1. Show that S(R™) C LP(R™). (Hint: If f € S(R™), then
|f(z)] < O ITj—, (1 + sz)fm for every m.)
Problem 7.2. Compute the Fourier transform of the following functions
fR—=C:

(i) f(z) = X(fl,l)(x)- (ii) f(p) = Zﬁy Re(k) > 0.
Problem 7.3. Suppose f(z) € L'(R) and g(z) = —izf(x) € L'(R). Then
f s differentiable and f' = g.
Problem 7.4. A function f : R™ — C is called spherically symmetric if
it is invariant under rotations; that is, f(Ox) = f(x) for all O € SO(R™)
(equivalently, f depends only on the distance to the origin |x|). Show that the

Fourier transform of a spherically symmetric function is again spherically
symmetric.

Problem 7.5. Show that Coo(R™) is indeed a Banach space. Show that
C®(R™) is dense. (Hint: Lemma 0.39.)
Problem 7.6. Show that F : L'(R™) — Co(R™) is not onto as follows:

(i) The range of F is dense.

(ii) F is onto if and only if it has a bounded inverse.

(iii) F has no bounded inverse.

(Hint for (iii) in the case n = 1: Suppose p € C°(0,1) and set fr,(x) =
S efto(x — k). Then ||fulll = mllel1 and | fmlloe < const since ¢ €
S(R) and hence |p(p)| < const(1 + |p|)~2.)

Problem 7.7 (Wiener). Suppose f € L*(R™). Then the set {f(z + a)|a €
R"} is total in L?(R™) if and only if f(p) # 0 a.e. (Hint: Use Lemma 7.2
and the fact that a subspace is total if and only if its orthogonal complement
is zero.)

Problem 7.8. Suppose f(z)eF*l € LY(R) for some k > 0. Then f(p) has

an analytic extension to the strip |Im(p)| < k.

7.2. Sobolev spaces

We begin by introducing the Sobolev space
H'(R") = {f € L*(R")||p|" f(p) € L*(R™)}. (7.19)

The most important case is when r is an integer; however, our definition
makes sense for any r > 0. Moreover, note that H"(R™) becomes a Hilbert
space if we introduce the scalar product

(o= | F®)*a(p) (L + |p*)"d"p. (7.20)
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In particular, note that by construction F maps H"(R™) unitarily onto
L3R", (1 + |p|*>)"d"p). Clearly H"(R™) C H""}(R") with the embedding
being continuous. Moreover, S(R") C H"(R"™) and this subset is dense
(since S(R™) is dense in L2(R™, (1 + |p|?)"d"p)).

The motivation for the definition (7.19) stems from Lemma 7.1, which
allows us to extend differentiation to a larger class. In fact, every function
in H"(R™) has partial derivatives up to order |r], which are defined via

0uf = ((i0)* ()Y,  feH(R"), |a| < (7.21)

Example. Consider f(z) = (1 — |z|)x[=1,1)(z). Then flp) = \/gcos;#

and f € H'(R). The weak derivative is f'(x) = —sign(z)x(_11)(). o

By Lemma 7.1 this definition coincides with the usual one for every
f € S(R™) and we have

| 9@ @uh)@)ds = (5" 0a1)) = 60", ()" )
= (-)FNGp)3(6), F0)) = ()" {0ug", )

= (=1) . (Oag)(2) f(z)d"z, (7.22)
for f,g € H"(R™). Furthermore, recall that a function h € L}OC(R”) satisfy-
ing

/ p@)h(z)d"z = (~1)1°1 [ (Bapp)(2)f(2)d"z, ¢ € CO(R"), (7.23)
n Rn
is also called the weak derivative or the derivative in the sense of distri-
butions of f (by Lemma 0.41 such a function is unique if it exists). Hence,
choosing g = ¢ in (7.22), we see that H"(R") is the set of all functions hav-
ing partial derivatives (in the sense of distributions) up to order r, which
are in L?(R™).

In this connection, the following norm for H™(R") with m € Ny is more
common:

2 2
1F13m =Y 10afl3. (7.24)
la|<m
By [p*] < |p/l®l < (1 + |p|>)™/? it follows that this norm is equivalent to
(7.20).

Of course, a natural question to ask is when the weak derivatives are in
fact classical derivatives. To this end, observe that the Riemann—Lebesgue
lemma implies that 9, f(x) € Cs(R™) provided p®f(p) € L*(R™). Moreover,
in this situation the derivatives will exist as classical derivatives:
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Lemma 7.13. Suppose f € L'(R") or f € L2(R") with (1 + |p|*)f(p) €
LYR™) for some k € No. Then f € Ck (R"), the set of functions with
continuous partial derivatives of order k all of which vanish at co. Moreover,

0uf) () = ()" f(p), ol <k, (7.25)

i this case.

Proof. We begin by observing that

1

f(z) = @ /Rn e'P” f(p)d"p,

which follows from Lemma 7.6 and the discussion after Lemma 7.7. Now
the claim follows as in the proof of Lemma 7.1 by differentiating the integral
using Problem A.20. (]

Now we are able to prove the following embedding theorem.

Theorem 7.14 (Sobolev embedding). Suppose r > k+ & for some k € Ny.
Then H™(R™) is continuously embedded into C¥ (R™) with

10aflloc < Crpllfllzes — lof <k (7.26)

Proof. Abbreviate (p) = (1+ [p|*)!/2. Now use |(ip)* f(p)| < ()| f(p)| =
(p)~5 - (p)leI+s| f(p)|. Now (p)= € LA(R") if s > % (use polar coordinates
to compute the norm) and (p)l*1+5|f(p)| € L(R™) if s 4 |a| < 7. Hence the
claim follows from the previous lemma. O

In fact, we can even do a bit better.

Lemma 7.15 (Morrey inequality). Suppose f € H"?tY(R™) for some v €
(0,1). Then f € C&V(R”), the set of functions which are Holder continuous
of exponent v and vanish at co. Moreover,

/(@) = F@)] < CanlF D) lonsai 12 = I (7.27)

i this case.
Proof. We begin with

fla )~ @) = o [ @ = D)

implying

ot i) = 0] < ooz [ S i,
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where again (p) = (1 + |p|?)"/2. Hence, after applying Cauchy-Schwarz, it
remains to estimate (recall (A.62))

‘eipy_H? . 1/Iyl ) -1
/ n (p)nt2y d"p < Sn n+27 dr

n—l
+ Sn //| ‘ n+27 dr

S, S,
2y 29(1 —7)

where S,, = nV,, is the volume of the unit sphere in R". O

ool = lyl*7,

e —L— Y ]

Using this lemma we immediately obtain:

Corollary 7.16. Suppose r > k + vy + 5 for some k € Ng and v € (0,1).

Then H™(R") is continuously embedded into CE(R™), the set of functions
in CF (R™) whose highest derivatives are Holder continuous of exponent ~.

Problem 7.9. Suppose f € L*(R") show that e~ (f(z+e;e)— f(x)) — gj(x)
in L? if and only if pjf(p) € L?, where e; is the unit vector into the j'th
coordinate direction. Moreover, show g; = 0;f if f € H*(R").

7.3. The free Schrodinger operator

In Section 2.1 we have seen that the Hilbert space corresponding to one
particle in R? is L?(R®). More generally, the Hilbert space for N particles
in R is L?(R"), n = Nd. The corresponding nonrelativistic Hamilton
operator, if the particles do not interact, is given by

Hy = —A, (7.28)

A= —. 7.29
> 02 (7.29)

Here we have chosen units such that all relevant physical constants disap-

pear; that is, A = 1 and the mass of the particles is equal to m = % Be

aware that some authors prefer to use m = 1; that is, Hy = —%A.

Our first task is to find a good domain such that Hy is a self-adjoint
operator.

By Lemma 7.1 we have that
— Ag(z) = (P ()" (x) (7.30)
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for ¢ € S(R™). Moreover, if we work with weak derivatives, this even holds
for ¢» € H?(R™), and the operator

Hop = —A¢,  D(Hy) = H*(R"), (7.31)
is unitarily equivalent to the maximally defined multiplication operator

(FHoF Nelp) =p°e(p), D% ={p € L*R")|p*e(p) € LQ(RZ)}- |
7.32

Theorem 7.17. The free Schrodinger operator Hgy is self-adjoint and its
spectrum is characterized by

o(Hp) = 04c(Hp) = [0,00), osc(Ho) = opp(Hp) = 0. (7.33)

Moreover, the spectral measure corresponding to v is purely absolutely con-
tinuous and given by

1 e
dpgp(N) = §X[o,oo)()\))\ /2-1 </S

Proof. It suffices to show (7.34). First, observe that

|¢(ﬁw)\2dn—1w) d. (7.34)

n—1

R R P 2
(0 R (2)0) = (B ()0) = [ 5Oy [Ty,

rn P2 — z z

where
dfi(r) = X[oroe) (r)r™! < / w(mn?dn—lw) ir.
S

Hence, after a change of coordinates, we have

n—1

1
6 Rag(2)9) = [ 5 dmu(),
R —Z
where dji,, is given by (7.34). This proves the claim. O
Slightly more general, we can consider operators p; = %% and define
the operator f(p) via
Fo)(@) = FH(f () () (@) (7.35)

for any measurable function f : R® — C. The corresponding operator will
be self-adjoint if f is real-valued, and in the special case f(p) = p? we obtain
just Hy = —A and hence this provides an alternate way of defining functions
of Hy. As a useful consequence of this observation we note:

Lemma 7.18. Suppose f € L?(R™). Then the operator f(p) is an integral
operator given by

1
fp)y(z) = W o

and its range is a subset of Coo(R™).

fl—y)v(y)dy, (7.36)
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Proof. This follows from the definition since the Fourier transform maps
multiplications to convolutions by Corollary 7.10. ([

Recall that f(p) will be bounded if and only if f € L*°(R"™) and the
operator norm is given by || f(p)|| = || f]co-

Finally, we note that the compactly supported smooth functions are a
core for Hy.

Lemma 7.19. The set C°(R") = {f € S(R"™)|supp(f) is compact} is a
core for Hy.

Proof. It is not hard to see that S(R™) is a core (Problem 7.10), and hence
it suffices to show that the closure of Hp|coo(grn) contains Hy| S®n)- To see
this, let p(x) € C°(R™) which is one for || < 1 and vanishes for |z| > 2. Set
¢n(z) = @(Lx). Then ¥y (z) = @n(x)(z) is in C°(R™) for every ¢ € S(R™)
and 1, — 1, respectively, Ay, — A. O

Note also that the quadratic form of Hy is given by
(@) =3 [ 10p@Pde, v e = HEY. (730
j=17%"

Problem 7.10. Show that S(R™) is a core for Hy. (Hint: Show that the
closure of Ho|swny contains Hy.)

Problem 7.11. Show that {1 € S(R)[(0) = 0} is dense but not a core for
Hy= -2

—&
7.4. The time evolution in the free case

Now let us look at the time evolution. We have

e tHoy () = Fle g (p). (7.38)
The right-hand side is a product and hence our operator should be express-
ible as an integral operator via the convolution formula. However, since
e~1tP” is not in L?, a more careful analysis is needed.

Consider . ,

fo(p?) = e P o 50, (7.39)
Then f.(Hg)y — e *Hog) by Theorem 3.1. Moreover, by Lemma 7.3 and
the convolution formula, we have

1 _le—y?
Je(Ho)p(x) = (4t £ 22 /Rn e At (y)d"y (7.40)
and hence ) 2
e_itHO¢($) = (4’/’1’175)”/2 /]Rn ei 4ty w(y)dny (741)
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for t # 0 and ¢ € L' N L?. In fact, the limit of the right-hand side exists
pointwise by dominated convergence, and its pointwise limit must thus be
equal to its L? limit. For general ¢ € L?, the integral has to be understood
as a limit.

Using this explicit form, it is not hard to draw some immediate conse-
quences. For example, if ¢» € L2(R™) N L'(R™), then ¢ (t) € C(R") for t # 0
(use dominated convergence and continuity of the exponential) and satisfies

(Ol < oz WO (7.42)

Thus we have spreading of wave functions in this case. Moreover, it is even
possible to determine the asymptotic form of the wave function for large ¢
as follows. Observe

T
elat

i —iZ¥ m
(dmit)n /2 /}Rn e (y)e 2t dy

- (;ﬁ)m ei%r (eizﬁz/}(y)>/\ (%)_ (7.43)

Moreover, since exp(i%;)¥(y) — ¥(y) in L? as || — co (dominated conver-
gence), we obtain

e Moy () =

Lemma 7.20. For every ¢ € L?>(R™) we have

—itH L\"2 20w
)~ () FOG) 0 (7.44

in L? as |t| — .

Note that this result is not too surprising from a physical point of view.
In fact, if a classical particle starts at a point x(0) = x¢ with velocity v = 2p
(recall that we use units where the mass is m = %), then we will find it at
r = xo + 2pt at time t. Dividing by 2¢, we get 5; = p+ 5F ~ p for large ¢.
Hence the probability distribution for finding a particle at a point x at time
t should approach the probability distribution for the momentum at p = 3;
that is, |1 (z,t)|?d"z = W(%)ng)ﬁ This could also be stated as follows:
The probability of finding the particle in a region 2 C R” is asymptotically
for |t| — oo equal to the probability of finding the momentum of the particle

in 2%(2 This is sometimes known as Dollard’s theorem.

Next, we want to apply the RAGE theorem in order to show that for
every initial condition, a particle will escape to infinity.

Lemma 7.21. Let g(z) be the multiplication operator by g and let f(p) be
the operator given by f(p)w(z) = F~L1(f(p)v(p))(z). Denote by LL(R™) the
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bounded Borel functions which vanish at infinity. Then

f(p)g(z) and g(z)f(p) (7.45)

are compact if f,g € LX(R") and (extend to) Hilbert-Schmidt operators if
f.9 € L*(R").

Proof. By symmetry, it suffices to consider g(z)f(p). Let f,g € L?. Then
(Corollary 7.10)
1

o) [0w) = o [ a@)f e = uwy

shows that g(x)f(p) is Hilbert-Schmidt since g(z)f(z —y) € L>(R™ x R™).
If f,g are bounded, then the functions fr(p) = x{pp2<ry(P)f(p) and
IR(T) = X{a22<r}(z)g(z) are in L?. Thus ggr(x)fr(p) is compact and by
l9(x)f(p) = gr(x) fRDI < lgllscllf = fRllco + 19 = gRllcoll fRllo0

it tends to g(z)f(p) in norm since f, g vanish at infinity. O

In particular, this lemma implies that
xa(Ho +1)~! (7.46)
is compact if 2 C R™ is bounded and hence

: —itHg 2 _
Jim {Ixae™ 09 = 0 (7.47)

for every ¢ € L?(R"™) and every bounded subset Q of R™. In other words,
the particle will eventually escape to infinity since the probability of finding
the particle in any bounded set tends to zero. (If ¢ € L'(R™), this of course
also follows from (7.42).)

7.5. The resolvent and Green’s function

Now let us compute the resolvent of Hy. We will try to use an approach
similar to that for the time evolution in the previous section. Since the
function (p? — 2)~! is not in LY(R") for n > 1, it is difficult to compute its
inverse Fourier transform directly, and we would need to look at some regu-
larization f-(p) = exp(—ep?)(p* — 2)~! as in the previous section. However,
since it is highly nontrivial to compute the inverse Fourier transform of this
latter function, we will use a small ruse.

Note that

Ry, (z) = / ettt Re(z) < 0. (7.48)
0
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Indeed, by virtue of Lemma 4.1, lim, o0 [y e*le~tHodt = lim,_, o Ry, (2)(I—
e "(Ho=2)) — Ry (z). Moreover,

e tp(e) = i [
4rt)" 72 g

Y(y)dy, >0, (7.49)

by the same analysis as in the previous section. Hence, by Fubini, we have

Rpzo(2)Y(x) = A Go(z, |z — yN)v(y)d"y, (7.50)
where
o0 1 _ﬁ .
Gol(z,r) :/0 We wt2dt, >0, Re(z) < 0. (7.51)

The function Gy(z, r) is called Green’s function of Hy. The integral can be
evaluated in terms of modified Bessel functions of the second kind as follows:
First of all, it suffices to consider z < 0 since the remaining values will follow

by analytic continuation. Then, making the substitution ¢t = 2\;5265, we

obtain

n_q
/oo 1 e_%+2tdt _ i <\/TZ> 2 /oo e—yse—xcosh(s)ds
0 (47rt)n/2 47 2mr — oo

(7.52)

where we have abbreviated z = \/—zr and v = § — 1. But the last integral
is given by the modified Bessel function K, (x) (see [44, (10.32.9)]) and thus

1 (y=z\ !
2 \ 27

Note K, (z) = K_,(z) and K,(z) > 0 for v,z € R. The functions K, (z)
satisfy the differential equation (see [44, (10.25.1)])

d? 1d V2
-2 1 () = .54
<dx2 +xdx 1 $2>K (x)=0 (7.54)

and have the asymptotics (see [44, (10.30.2) and (10.30.3)])

Go(z,r) Kn_y(V—2ar). (7.53)

MWy O(z7v*2), v >0,
Ko@) = { —Qloé(z‘;)) +O(1), v=0, (7:55)
for |x| — 0 and (see [44, (10.40.2)])
K, (z) = ] —e *(1 + O(z™Y)) (7.56)

2z
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for || — oo. For more information, see, for example, [44] or [69]. In
particular, Go(z,r) has an analytic continuation for z € C\[0, 00) = p(Hp).
Hence we can define the right-hand side of (7.50) for all z € p(Hy) such that

/n/n z e —y[vy)d yd (7.57)

is analytic for z € p(Hp) and ¢, € S(R™) (by Morera’s theorem). Since
it is equal to (@, Ry, (z)y) for Re(z) < 0, it is equal to this function for all
z € p(Hyp), since both functions are analytic in this domain. In particular,
(7.50) holds for all z € p(Hy).

If n is odd, we have the case of spherical Bessel functions which can be
expressed in terms of elementary functions. For example, we have

1

G = VTR =1 7.58
o(err) = gL s, (759
and
1 —V —Z2T
Go(z,r) = yp , n=3. (7.59)

Using Stone’s formula we can even extend this result:

Theorem 7.22. Suppose f(A2)A\~D/2 ¢ L2(R). Then

F@P)i(x) = / F(lz — yl)(y)dy, (7.60)
.

where

F(r) = (21) " *Hy o1 (f(s?)(s/r)">1)(r) (7.61)

satisfies F(r)r=1/2 ¢ L2(R). Here H,, v >

> —1, is the Hankel trans-
form given by

/ f(s)Ju(sr)sds, (7.62)

with J,(z) being the Bessel function of order v. For f(A)A"~1D/2 ¢ L2(R),
the last integral has to be understood as a limit limp .o fOR as with the
Fourier transform.

Proof. Note that Lemma 7.18 implies (7.60) with F(|z|) = g(z), where
g(p) = f(p?). In particular, F(r)r(®=1/2 ¢ L2(R). Moreover, we can assume
both f and v to be in some dense sets, say f € C.(0,00) and ¢ € C.(R"). In
order to compute F' explicitly we now use Problem 4.3 which implies (using

Go(z*,1) = Go(z,1)%)

F0R)0(e) = 2tim [ 500 [ Im(Goln+ .o — )b du,
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where the limit has to be understood in L?(R™). Moreover, the limit will
also exist pointwise for a.e. x and a suitable subsequence. Now using [44,
(10.27.8) and (10.4.3)], one sees

clo 4\ 27

n/2—1
lim l Im(Go(A +ig,r)) = ! ( ﬁ) Jn/271(r\r)‘)

and using Fubini we obtain (7.60) with F' given as in the theorem. O

In particular, comparing with Lemma 7.18 shows that the Fourier trans-
form of a radial function can be expressed in terms of the Hankel transform
and that the Hankel transform is unitary on L?([0, 00), s ds).

Example. In the case f(p?) = X[o,\) (p?) one can evaluate the integral using
[44, (10.22.1)] to obtain

Pry(Ai() = / Po(\ |2 — 5 () dy, (7.63)

n

where

VA

27

n/2
PO()UT) = < ) Jn/Q(T\/X)X(O,oo)()‘) (764)

In particular,
sin(r\/X)7 n=1,
PO(Aa T) = X(O,oo)()‘) singﬂ%)fr X cos(rv/\)

on2r3 5 n = 3.

Problem 7.12. Verify (7.50) directly in the case n = 1.

Problem 7.13. The Bessel function of order v € C can be defined as

B e (—1)7 2\ 2i+v
a9 _;j!F(V—I—j—&-l) (2) '

Show that J,(z) is a solution of the Bessel differential equation

20"+ 2 4 (22— v)u=0.

Prove the following properties of the Bessel functions.
() (A 0(2)) = 5 Ty (2).
(i) Ju-1(2) + Jog1(z) = ZJ,(2).
(iil) Jy—1(2) — Jy11(2) = 2J,(2).
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Problem 7.14. Consider the modified Hankel transform

o (£)(r) = 2m) "1, (f(5)(s/7)")(r)
appearing in Theorem 7.22. Show that

Hosp(F)(r) = 2 /0 " cos(rs) f(s)ds = /2 f(r)

T
if we extend f to all of R such that f(r) = f(—r).

Moreover, show that (under suitable assumptions on f)

s 1d -

Hy1(f)(r) = %aHy(f)(r).

(Hint: £277J,(2) = =27V J,11(2) by [44, (10.6.6)].)






Chapter 8

Algebraic methods

8.1. Position and momentum

Apart from the Hamiltonian Hy, which corresponds to the kinetic energy,
there are several other important observables associated with a single par-
ticle in three dimensions. Using the commutation relation between these
observables, many important consequences about these observables can be
derived.

First, consider the one-parameter unitary group
U;(t)(x) = e *iy(x),  1<j<3. (8.1)
For ¢ € S(R?), we compute
—itx; _
L) — ()

t—0 t

= 2;9(a) (8.2)

and hence the generator is the multiplication operator by the j’th coordi-
nate function. By Corollary 5.4, it is essentially self-adjoint on 1 € S(R?).
It is customary to combine all three operators into one vector-valued oper-
ator x, which is known as the position operator. Moreover, it is not hard
to see that the spectrum of x; is purely absolutely continuous and given
by o(z;) = R. In fact, let ¢(z) be an orthonormal basis for L?(R). Then
©i(r1)pj(z2)¢pr(xs) is an orthonormal basis for L?(R?), and z1 can be writ-
ten as an orthogonal sum of operators restricted to the subspaces spanned
by ¢;(z2)pr(xs). Each subspace is unitarily equivalent to L?(R), and z is
given by multiplication with the identity. Hence the claim follows (or use
Theorem 4.17).

Next, consider the one-parameter unitary group of translations

Ui(09)(x) = p(x —tej),  1<j<3, (8.3)

207
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where e; is the unit vector in the j'th coordinate direction. For ¢ € S(R?),

we compute
—te;) — 10
i PE =) = Y@ 19 (8.4)
t—0 t i0x;
and hence the generator is p; = %%. Again it is essentially self-adjoint
on ) € S(R3). Moreover, since it is unitarily equivalent to xj by virtue of
the Fourier transform, we conclude that the spectrum of p; is again purely
absolutely continuous and given by o(p;) = R. The operator p is known as

the momentum operator. Note that since
[Ho,pjl(z) =0, ¢ € SR?), (8.5)

we have

d

SEWp0) =0, b(t) =g e S®)  (56)

that is, the momentum is a conserved quantity for the free motion. More
generally, we have

Theorem 8.1 (Noether). Suppose A is a self-adjoint operator which com-
mutes with a self-adjoint operator H. Then D (A) is invariant under e |
that is, e D (A) = D(A), and A is a conserved quantity, that s,

(), Ap()) = ((0), Ap(0), () = e p(0) €D(A).  (8.7)

Proof. By the second part of Lemma 4.5 (with f(A) = X\ and B = e *H),
we see D(A) = D(e M A) C D(Ae ) = {yle”Hy € D(A)}, which
implies e HD(A) C D(A), and [e” | A]yp = 0 for o) € D(A). O

Similarly, one has
ilpj, 1) (x) = 6ptp(z), ¢ e S(R?), (8.8)

which is known as the Weyl relations. In terms of the corresponding
unitary groups, they read

efispj efita:k — eistéjkefitzjefispk ) (89)
The Weyl relations also imply that the mean-square deviation of position

and momentum cannot be made arbitrarily small simultaneously:

Theorem 8.2 (Heisenberg Uncertainty Principle). Suppose A and B are
two symmetric operators. Then for every ¢ € D(AB) N D(BA) we have

1
Ay(A)Ay(B) 2 5IEy([4, B))| (8.10)
with equality if
(B —Ey(B))Y =iMA —Ey(A))y, A eR\{0}, (8.11)
or if Y is an eigenstate of A or B.
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Proof. Let us fix ©) € D(AB) N D(BA) and abbreviate
A=A—-EyA), B=DB-EyB).
Then Ay (A) = ||Ay||, Ay(B) = ||B| and hence by Cauchy-Schwarz
(A, By)| < Ay(A)Ay(B).
Now note that

1
AB = J{A, B} +

2
where {A, B} and i[4, B] are symmetric. So
A A 1 .o 1
(A, By)[* = |4, ABY)[* = S[{w, {A, BY)[* + 5 |(0, [A, BJY)I*,
which proves (8.10).

To have equality if ¢ is not an cigenstate, we need Bw = z/lz/z for
equality in Cauchy—Schwarz and (¢, {A, B}¢) = 0. Inserting the first into
the second requirement gives 0 = (z — z*)||A%||? and shows Re(z) =0. O

[A,B], {A BY=AB+ BA

In the case of position and momentum, we have (||¢| = 1)
djk
Ay (ps)Ay(er) = =7 (8.12)
and the minimum is attained for the Gaussian wave packets
n/4
¢(x) = <A> e_%|$—$0|2—ip0x7 (813)
T

which satisfy Ey(2) = ¢ and Ey(p) = po, respectively, Ay (p;)? = % and
A¢($k)2 = %
Problem 8.1. Check that (8.13) realizes the minimum.

8.2. Angular momentum

Now consider the one-parameter unitary group of rotations

(Ui 0Y) () = o(M;(1)'w),  1<j<3, (8.14)
where M, (t) is the matrix of rotation around e; by an angle of ¢:
1 0 0 cos(t) 0 sin(t)
My =10 cos(t) —sin(t)|, M= 0 1 0 ,
0 sin(t) cos(t) —sin(t) 0 cos(t)
cos(t) —sin(t) 0
Mz = |sin(t) cos(t) 0]. (8.15)
0 0 1
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For ¢ € S(R?), we compute

o POV ) —

t—0 t

3
?) _ 3" cinziprd (), (8.16)

7,k=1
where

1 if ijk is an even permutation of 123,
gijk = § —1 ifijk is an odd permutation of 123, (8.17)
0 otherwise.

Again, one combines the three components into one vector-valued operator
L = x A p, which is known as the angular momentum operator. Its
components are explicitly given by

3

Li= ) cijutipr. (8.18)
Jk=1
Since e?7Li = I, we see by Theorem 3.17 that the spectrum is a subset of Z.

In particular, the continuous spectrum is empty. We will show below that
we have o(L;) = Z. Note that since

[Ho, Ljlp(x) =0, ¢ € S(R?), (8.19)
we again have
WO LpO) =0, P = Hop0) e SE)  (3:20)

that is, the angular momentum is a conserved quantity for the free motion
as well.

Moreover, we even have

3
[Li, Kl (x) = iz€iijk"¢($)7 ) € S(R®), Kj € {Lj,pj,;}, (8:21)
k=1

and these algebraic commutation relations are often used to derive informa-
tion on the point spectra of these operators. In this respect, the domain

D= span{a:o‘e_é\ aeNj} c S(RY) (8.22)
is often used. It has the nice property that the finite dimensional subspaces
Dy = span{xae_é| la] <k} (8.23)

are invariant under L; (and hence they reduce L;).

Lemma 8.3. The subspace ® C L*(R"™) defined in (8.22) is dense.
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Proof. By Lemma 1.10, it suffices to consider the case n = 1. Suppose
(p,1) =0 for every ¢ € ©. Then

2

1 [—— 22 o (ita)
m/‘P(:L‘)e 2 51(3') dr =0
j:

for every finite k& and hence also in the limit ¥ — oo by the dominated

22
convergence theorem. But the limit is the Fourier transform of p(z)e™ 7,
which shows that this function is zero. Hence ¢(x) = 0. O

Since D is invariant under the unitary groups generated by L;, the op-
erators L; are essentially self-adjoint on © by Corollary 5.4.

Introducing L? = L} + L3 + L3, it is straightforward to check
I3 L) =0, e SE). (8.24)

Moreover, @, is invariant under L? and L3 and hence @}, reduces L? and
Ls. 1In particular, L? and Lz are given by finite matrices on ®;. Now
let $,, = Ker(Ls —m) and denote by Pj the projector onto ®j. Since
L? and L3 commute on ®y, the space Pp$,, is invariant under L?, which
shows that we can choose an orthonormal basis consisting of eigenfunctions
of L? for P.$),,. Increasing k, we get an orthonormal set of simultaneous
eigenfunctions whose span is equal to ®. Hence there is an orthonormal
basis of simultaneous eigenfunctions of L? and Ls.

Now let us try to draw some further consequences by using the commuta-
tion relations (8.21). (All commutation relations below hold for ¢ € S(R?).)
Denote by $;,, the set of all functions in ® satisfying

L3ty =map,  L*p=1(1+1)9. (8.25)

By L? > 0 and o(L3) C Z we can restrict our attention to the case [ > 0
and m € Z.

First, introduce two new operators
Ly =1L1+iLy, [Ls,Ly]==+Ly. (8.26)
Then, for every v € $;,,, we have
Ly(Lytp) = (m+1)(Leyp),  LX(Layp) =101+ 1)(Leyp);  (8.27)
that is, L4+$;m — 91,m+1. Moreover, since
L =13+ L3+ L+Ly, (8.28)
we obtain

ILep||* = (¥, Ly Lewp) = (I(1 4+ 1) — m(m £ 1))||¢|| (8.29)
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for every ¢ € ;. If 1 # 0, we must have [({ + 1) —m(m £ 1) > 0, which
shows $;,, = {0} for |m| > [. Moreover, Li$;,m — i mt1 is injective
unless |m| = [. Hence we must have $);,, = {0} for [ ¢ Np.

Up to this point, we know o(L?) C {I(I+1)|l € No}, o(L3) C Z. In order
to show that equality holds in both cases, we need to show that §;,, # {0}
forl e Ng, m=—1,—l+1,...,1—1,1. First of all, we observe

1 o2

Yoo(@) = —7e7 % € Hoo. (8.30)
Next, we note that (8.21) implies
[L3,r4] = T2, Ty =21 £ ixg,
[Lt,24] =0, (L, 2] = +223,
(L%, 24] = 224 (1 + L3) F 2x3L+. (8.31)

Hence if ¢ € $;, then (z £ix2)Y € $Hi4141. Thus

1 o
Yii(x) = ﬁ(xl + izg)"boo(z) € i, (8.32)
respectively,
Gne) = | A Ly () € 5 (8.33)
b A= w2 b ‘
The constants are chosen such that |1y | = 1.

In summary,

Theorem 8.4. There exists an orthonormal basis of simultaneous eigenvec-
tors for the operators L? and L;. Moreover, their spectra are given by

o(L?) = {I(1 + 1)|l € No}, o(L3) = 7. (8.34)

We will give an alternate derivation of this result in Section 10.3.

8.3. The harmonic oscillator

Finally, let us consider another important model whose algebraic structure
is similar to those of the angular momentum, the harmonic oscillator

H = Hy+ w2, w>0. (8.35)
We will choose as domain
x2
D(H) =D =span{z®e™ 2 |a € N3} C L*(R?) (8.36)

from our previous section.
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We will first consider the one-dimensional case. Introducing

A= ¢1§ (@x - ;a;i) . DA =D, (8.37)
we have
[A_,Ay] =1 (8.38)
and
H=wl@2N+1), N=A,A_, 9D(N)=29, (8.39)

for every function in ®. In particular, note that ®© is invariant under AL.

Moreover, since

[N,Ay] = +A4, (8.40)

we see that N1 = n1p implies NA11y = (n & 1)ALtp. Moreover, | A ¢|? =
(Y, A_A ) = (n+1)|[¥||?, respectively, |A_1||?> = n|[1)||?, in this case and
hence we conclude that o,(N) C No.

If N4y = 0, then we must have A_1 = 0, and the normalized solution
of this last equation is given by

Yo(x) = (9)1/4 e eo. (8.41)

™

Hence
1

is a normalized eigenfunction of N corresponding to the eigenvalue n. More-

AT () (8.42)

over, since

]. L/.)ZL‘Q

nla) = (9)"" Ha(vame s (3.43)

where H,,(z) is a polynomial of degree n given by

z2 n z2 n
Hy(x)=ez <$ - C;i) ez = (—1)”6302%6_902, (8.44)

we conclude span{t,} = ©. The polynomials H,(z) are called Hermite
polynomials.

In summary,

Theorem 8.5. The harmonic oscillator H is essentially self-adjoint on O
and has an orthonormal basis of eigenfunctions

¢n1,n2,n3 (CL‘) = wnl (l‘l)wng ($2)¢n3 (553)’ (845)
with n,(x;) from (8.43). The spectrum is given by
o(H) ={(2n+ 3)w|n € Np}. (8.46)
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Finally, there is also a close connection with the Fourier transformation.
Without restriction we choose w = 1 and consider only one dimension. Then
it easy to verify that H commutes with the Fourier transformation,

FH =HF, (8.47)
on ®. Moreover, by FAL = FiALF, we even infer

since F1g = 19 by Lemma 7.3. In particular,
o(F)={zeClz* =1} (8.49)

8.4. Abstract commutation

The considerations of the previous section can be generalized as follows.
First of all, the starting point was a factorization of H according to H = A*A
(note that A4 from the previous section are adjoint to each other when
restricted to ®). Then it turned out that commuting both operators just
corresponds to a shift of H; that is, AA* = H 4 ¢. Hence one could exploit
the close spectral relation of A*A and AA* to compute both the eigenvalues
and eigenvectors.

More generally, let A be a closed operator and recall that Hy = A*A is a
self-adjoint operator (cf. Problem 2.12) with Ker(H) = Ker(A). Similarly,
H; = AA* is a self-adjoint operator with Ker(H;) = Ker(A*).

Theorem 8.6. Let A be a densely defined closed operator and introduce
Hy = A*A, Hy = AA*. Then the operators Hy Ho)t and H,
are unitarily equivalent.

If Hyypo = Evg, ¥y € D(Hy), then ¥y = Ay € D(Hy) with Hi = Ey
and |11 || = VE|[vbo||. Moreover,

Ru,(2) 2 %(ARHO(z)A* R %(A*RHl(z)A ~1). (850)

‘Ker( ‘Ker(Hl)J-

Proof. Introducing |A| = Hé/ ?, we have the polar decomposition (Sec-
tion 4.3)

A=UlA|,
where

U : Ker(A)* — Ker(A*)*
is unitary. Taking adjoints, we have (Problem 2.3)
A* = |A|U”

and thus Hy = AA* = U|A||A|U* = UHoU* shows the claimed unitary
equivalence.
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The claims about the eigenvalues are straightforward (for the norm,
note that Ayy = VEU 1p). To see the connection between the resolvents,
abbreviate P; = Py, ({0}). Then

1 1
RH1 (Z) = RH1 (Z)(l — P1) + ;Pl = URHOU* + ;Pl
1
> L (002 R 12 ~ 10" + )
z
1 1
= ; (ARHOA* + (1 — Pl) + Pl) = ; (ARHOA* + 1) ,
where we have used UU* =1 — P. O
We will use this result to compute the eigenvalues and eigenfunctions of

the hydrogen atom in Section 10.4. In the physics literature, this approach
is also known as supersymmetric quantum mechanics.

Problem 8.2. Show that Hy = —% + q can formally (i.e., ignoring do-
mains) be written as Hy = AA*, where A = —% + ¢, if the differential
equation V" + qip = 0 has a positive solution. Compute Hy = A*A. (Hint:

o=")

Problem 8.3. Take Hy = —% + A, A >0, and compute Hy. What about
domains?

Problem 8.4. Let A be a closed operator. Show that the supersymmetric
Dirac operator

D:C‘)l f‘é) D(D) = D(A*) & D(A) C H?

is self-adjoint. Compute

0 AA*

Note that since D? is self-adjoint this shows that A*A (and AA*) is self-
adjoint — see Problem 2.12.

D2 — (A*A 0 ) D(D?) = D(A*A) & D(AA*) C 2.






Chapter 9

One-dimensional
Schrodinger operators

9.1. Sturm—Liouville operators

In this section, we want to illustrate some of the results obtained thus far
by investigating a specific example, the Sturm—Liouville equation

710 = i (- @) 1 f@) 4 d@f@) Lot € ACE@ D, 0)

on an arbitrary open interval I = (a,b) C R. Here AC(a,b) denotes the set
of absolutely continuous functions (cf. Section 2.7).

The case p = r = 1 can be viewed as the model of a particle in one
dimension in the external potential ¢q. Moreover, the case of a particle in
three dimensions can in some situations be reduced to the investigation of
Sturm-Liouville equations. In particular, we will see how this works when
explicitly solving the hydrogen atom.

The suitable Hilbert space is

2 o b *
L*((a,b),r(zx)dz),  (f,9) —/ f(@) g(x)r(z)de. (9-2)

We require

(i) pte Llloc([)7 positive,

(ii) ¢ € L},.(I), real-valued,
(iii) r € L}, (I), positive.

loc

217
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If a is finite and if p~!, ¢, € L*((a,c)) (¢ € I), then the Sturm-Liouville
equation (9.1) is called regular at a. Similarly for b. If it is regular at both
a and b, it is called regular.

The maximal domain of definition for 7 in L?(I,r dz) is given by
D(r) ={f € L*(I,rdz)|f,pf € AC(I), 7f € L*(I,r dx)}. (9-3)
It is not clear that ®(7) is dense unless (e.g.) p € AC(I), p',q € L2 (I),

loc

r~t € L (I) since C§°(I) € D(7) in this case. We will defer the general

loc
case to Lemma 9.4 below.

Since we are interested in self-adjoint operators H associated with (9.1),
we perform a little calculation. Using integration by parts (twice), we obtain
the Lagrange identity (a < c < d < b)

d d
[ oy =wig ) -Walg'.0)+ [ oy sran. 0.9
for f,g,pf",pg’ € AC(I), where

Walfis f2) = (p(UFLS5 = £ 1)) @) (9.5)

is called the modified Wronskian.

Equation (9.4) also shows that the Wronskian of two solutions of Tu = zu
is constant:

Wz(ul, UQ) == W(ul, UQ), TUu1,2 = 2U1,2- (96)

Moreover, it is nonzero if and only if u; and us are linearly independent
(compare Theorem 9.1 below).

If we choose f,g € ©(7) in (9.4), then we can take the limits ¢ — a and
d — b, which results in

(9. 7f) =Walg™, f) = Wi(g". f) + (79, f),  f.g €D(7). (9.7)
Here W, (g%, f) has to be understood as a limit.

Finally, we recall the following well-known result from ordinary differ-
ential equations.

Theorem 9.1. Suppose rg € L} (I). Then there exists a unique solution

loc

finf' € AC(I) of the differential equation
(t—2)f =g, z e C, (9.8)
satisfying the initial condition
fle)=a, (pf(c)=4, a,peC, cel. (9.9)

In addition, f is entire with respect to z.
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Proof. Introducing

(7). ()

we can rewrite (9.8) as the linear first-order system
—1
u — Au = v, Az) = 0 p (@) .
q(z) —zr(x) 0
Integrating with respect to z, we see that this system is equivalent to the
Volterra integral equation

w-Ku=u, (K@) = [ A ww) = (5)+ [ o

We will choose some d € (¢,b) and consider the integral operator K in the
Banach space C([c,d]). Then for every h € C([c,d]) and x € [c,d] we have
the estimate

K@< 2l ) = [ty a0 = 4@,

n!

which follows from induction

K (B) (2)] = / ””A@)Kn(h)(y)dy‘ < / " aw)| K" () (y)|dy
x a n a xn—i—l
<l [ atn ™8y = S

Hence the unique solution of our integral equation is given by the Neumann
series (show this)

u(z) = K"(w)(x).
n=0

To see that the solution u(x) is entire with respect to z, note that the partial
sums are entire (in fact polynomial) in z and hence so is the limit by uniform
convergence with respect to z in compact sets. An analogous argument for
d € (a,c) finishes the proof. O

Note that f,pf’ can be extended continuously to a regular endpoint.

Lemma 9.2. Suppose uy, ug are two solutions of (T — z)u = 0 which satisfy
W{(u1,u2) = 1. Then any other solution of (9.8) can be written as (o, 5 € C)

f(z) = ui(x) (a +/juzg rdy) + ug(x) (5 —/Cmulg rdy),
f(z) = () (a —i—/chQg rdy) + uy(x) (ﬂ —/julg rdy). (9.10)

Note that the constants «, 8 coincide with those from Theorem 9.1 if uy(c) =
(puy)(c) =1 and (puy)(c) = uz(c) = 0.
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Proof. It suffices to check 7f — z f = ¢. Differentiating the first equation
of (9.10) gives the second. Next, we compute

o = (pun) (a+ [ uagrdy) + (put) (5~ [wrgrdy) = W(ur, u)gr
=(q— zr)uy (a + /qu rdy) + (g — zr)ue <ﬁ — /ulg rdy) —gr

— (=)l —gr

which proves the claim. [l

Now we want to obtain a symmetric operator and hence we choose
Aof =77, D(Ag) =D(1)NAC(I), (9.11)

where AC.(I) denotes the functions in AC(I) with compact support. This
definition clearly ensures that the Wronskian of two such functions vanishes
on the boundary, implying that Ay is symmetric by virtue of (9.7). Our first
task is to compute the closure of Ay and its adjoint. For this, the following
elementary fact will be needed.

Lemma 9.3. Suppose V' is a vector space and I, 11, ..., 1, are linear func-

tionals (defined on all of V') such that (\;_, Ker(l;) C Ker(l). Then | =
> j—o@jlj for some constants a; € C.

Proof. First of all, it is no restriction to assume that the functionals /; are
linearly independent. Then the map L : V — C", f+— (I1(f),...,ln(f)) is
surjective (since € Ran(L)* implies > j=12lj(f) = 0 for all f). Hence
there are vectors fy € V' such that [;(fx) = 0 for j # k and I;(f;) = 1. Then
F=>20 1 () fi € M= Ker(l;) and hence I(f) =327, 1;(f)I(fj) = 0. Thus

we can choose o = I(f;). O

Now we are ready to prove

Lemma 9.4. The operator Ay is densely defined and its closure is given by

Aof =71f, D(Ao) ={f €D(1) | Walf,9) = Wi(f,9) =0, Vg € D(1)}.
(9.12)
Its adjoint is given by

ASf =7f, D(AL) =D(r). (9.13)

Proof. We start by computing Aj and ignore the fact that we do not know
whether ©(Ap) is dense for now.

By (9.7) we have ©(7) C ®(A{) and it remains to show D(Af) € D(7).
If h € D(A}), we must have

<h7 A0f> = <kaf>a Vf S ©(A0)7
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for some k € L(I,rdzx). Using (9.10), we can find a h such that 7h = k,
and from integration by parts, we obtain

b ~
/ (h(z) = h(z))* (7 f)(z)r(z)dz = 0, VfeD(Ay). (9.14)

Clearly we expect that i — h will be a solution of 7u = 0 and to prove this,
we will invoke Lemma 9.3. Therefore, we consider the linear functionals

b ) b
(g) = / (h(x) - (@) g()r(x)de,  1(g) = / ui (@) g(@)r(x)de,

on L2(I,rdx), where u; are two solutions of Tu = 0 with W (uy,uz2) # 0.
Then we have Ker(l;) NKer(l2) C Ker(l). In fact, if g € Ker(l;) N Ker(l2),
then

b

fla) =) [ " () g()r (y)dy + uz(x) [ wwswray

is in ®(Ap) and g = 7f € Ker(l) by (9.14). Now Lemma 9.3 implies
b ~
/ (h(z) — h(z) + cyuy (x) + agus(z))*g(x)r(z)de = 0, Vg € L2(I,rdx)

and hence h = h + aqyu; + aoug € (7).

Now what if ®(Ap) were not dense? Then there would be some freedom
in the choice of k since we could always add a component in ®(A4g)*. So
suppose we have two choices k1 # k2. Then by the above calculation, there
are corresponding functions h1 and h2 such that h = h1 +oq1ur + g 2u2 =
h2 + 2,11 + a2 2u2. In particular, h1 hg is in the kernel of 7 and hence
k1= Th1 = Th2 = ko, a contradiction to our assumption.

Next we turn to Ag. Denote the set on the right-hand side of (9.12)
by ©. Then we have ® C D(AF*) = D(Ap) by (9.7). Conversely, since
Ay C A}, we can use (9.7) to conclude

Wa(f,h) = Wi(f,h) =0, f€D(A),h € D(A]).

Now replace h by a h € D(Aj) which coincides with h near a and vanishes
identically near b (Problem 9.1). Then W,(f, h) = Wo(f,h) — Wi(f, h) = 0.
Finally, Wy(f, h) = W,(f,h) = 0 shows f € D. O

Example. If 7 is regular at a, then W,(f,g) = 0 for all ¢ € ©(7) if and
only if f(a) = (pf')(a) = 0. This follows since we can prescribe the values
of g(a), (pg')(a) for g € D(7) arbitrarily. o

This result shows that every self-adjoint extension of Ay must lie between
Ap and Aj. Moreover, self-adjointness seems to be related to the Wronskian
of two functions at the boundary. Hence we collect a few properties first.
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Lemma 9.5. Suppose v € D(7) with W,(v*,v) = 0 and suppose there is a
f e D(r) with Wy (v*, f) # 0. Then, for f,g € (1), we have

Wa(o,f) =0 <  Walv, f*) =0 (9.15)

and
Wo(v, f) = Wa(v,g) =0 = Wu(g", f)=0. (9.16)

Proof. For all fi,..., fs € ©(7), we have the Pliicker identity

W (f1, £2)Wa(f3, fa) + Wa(f1, fs)Wa(fas f2) + Wa(f1, f)Wa(f2, f3) =0,
(9.17)
which remains valid in the limit x — a. Choosing fi = v, fo = f, fg =

v*, fa = f, we infer (9.15). Choosing f1 = f, foa = g%, fs = v, fa = f, we
infer (9.16). O

Problem 9.1. Given «,f,7,0, show that there is a function f in D(T)
restricted to [c,d] C (a,b) such that f(c) = «, (pf')(c) = B and f(d) = ~,
(pf)(c) = 6. (Hint: Lemma 9.2.)

Problem 9.2. Let Ay = d L D(Ag) = {f € H*0,1]|f(0) = f(1) = 0}
and B = q, D(B) = {f € L*(0,1)|qf € L?(0,1)}. Find a ¢ € L*(0,1) such
that ©(Ap) ND(B) = {0}. (Hint: Problem 0.40.)
Problem 9.3. Let ¢ € L}, (I). Define

d

Ap =+ +¢, D(As) = {f € L*()|f € AC(I), £f'+ ¢f € L*(])}

and Ao+ = A+|ac.(r)- Show Ap g = Ax and
D(Ao+) ={f € D(Ar)| xlgilbf(x)g(x) =0,Yg € D(A5)}.
In particular, show that the limits above exist.

Problem 9.4 (Liouville normal form). Show that every Sturm-Liouville
equation can be transformed into one withr =p =1 as follows Show that

the tmnsformatwn U : L*((a,b),rdz) — L*(0,¢c), ¢ = f 7 D dt, defined

via u(z) — v(y), where

/,/ dt,  oly) = Vr@)p(y) u=(y)),

is unitary. Moreover, if p,r,p’, 7" € AC(a,b), then

p(

—(pu') + qu = rAu

transforms into
—" + Qu = v,
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where

(pr)*/4

r

Q=q-— (p((pr) %)

2. Weyl’s limit circle, limit point alternative

Inspired by Lemma 9.5, we make the following definition: We call 7 limit
circle (l.c.) at a if there is a v € D(7) with W,(v*,v) = 0 such that
Wa(v, f) # 0 for at least one f € ©(7). Otherwise 7 is called limit point
(Lp.) at a and similarly for b.

Example. If 7 is regular at a, it is limit circle at a. Since

Wa(v, f) = (pf)a)v(a) — (pv')(a) f(a), (9.18)
any real-valued v with (v(a), (pv')(a)) # (0,0) works. o

Note that if W,(f,v) # 0, then W,(f,Re(v)) # 0 or Wy (f, Im( )) #0

Hence it is no restriction to assume that v is real and W,(v*,v) = 0 i

tr1V1ally satisfied in this case. In particular, 7 is limit point if and nly f
Wa(f,g) =0 for all f,g € D(7).

Theorem 9.6. If 7 is l.c. at a, then let v € D(1) with Wy(v*,v) = 0 and
Wa(v, f) # 0 for some f € ©(7). Similarly, if T is Lc. at b, let w be an
analogous function. Then the operator

A: D(A) — L*(I,rdx) (9.19)
f = Tf
with
D(A)={fe€D(1)] Wa(v,f)=04iflc. ata (9.20)

Wiy(w, f) =0 if L.c. at b}
is self-adjoint. Moreover, the set

D1 ={fe€D(7)| Jxpel: Vxe (a,xy), Wy(v, f) =0, (9.21)
Jzy € 1: Vr € (x1,b), Wy(w, f) = 0}

is a core for A.

Proof. By Lemma 9.5, A is symmetric and hence A C A* C Af. Let g €
D(A*). As in the computation of Ay we conclude W, (f,g) = Wi(f,g) =0
for all f € ©(A). Moreover, we can choose f such that it coincides with v
near a and hence W, (v, g) = 0. Similarly, Wj(w, g) = 0; that is, g € D(A).

To see that ©1 is a core, let A1 be the corresponding operator and observe
that the argument from above, with A; in place of A, shows A] = A. O

The name limit circle, respectively, limit point, stems from the original
approach of Weyl, who considered the set of solutions 7u = zu, z € C\R,
which satisfy W, (u*,u) = 0. They can be shown to lie on a circle which
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converges to a circle, respectively, a point, as * — a or x — b (see Prob-
lem 9.9).

Before proceeding, let us shed some light on the number of possible
boundary conditions. Suppose 7 is l.c. at a and let uy, uo be two real-valued
solutions of 7u = 0 with W (uy,us) = 1. Abbreviate

BCY(f) = Wa(uj, f),  feD(r). (9-22)

Let v be as in Theorem 9.6. Then, using Lemma 9.5, it is not hard to see
that

Wa(v, f) =0 & cos(a) BCL(f) —sin(a) BC2(f) = 0, (9.23)

BCL(v)

where tan(a) = Hence all possible boundary conditions can be

BC2(v)"
parametrized by « € [0,7). If 7 is regular at a and if we choose u;(a) =
(pub)(a) =1 and (pu))(a) = uz(a) = 0, then
BCi(f)=—f(a),  BCi(f)=(pf)(a), (9:24)
and the boundary condition takes the simple form
sin(a)(pf’)(a) — cos(a) f(a) = 0. (9.25)
The most common choice of & = 0 is known as the Dirichlet boundary
condition f(a) = 0. The choice @ = 7/2 is known as the Neumann

boundary condition (pf’)(a) = 0.

Finally, note that if 7 is l.c. at both a and b, then Theorem 9.6 does not
give all possible self-adjoint extensions. For example, one could also choose

BC,(f) =e“BCy(f),  BCF(f) = *BCi(f). (9.26)

The case a = 0 gives rise to periodic boundary conditions in the regular
case.

Next we want to compute the resolvent of A.
Lemma 9.7. Suppose z € p(A). Then there exists a solution uq(z,z) of
(1 — 2)u = 0 which is in L*((a,c),rdz) and which satisfies the boundary

condition at a if T is l.c. at a. Similarly, there exists a solution up(z, x) with
the analogous properties near b.

The resolvent of A is given by

b
(A—2)Tg(x) = / Gz 2, y)9(y)r(y)dy, (9.27)
where

— 1 Ub(Z,LE)’LLa(Z,y), x 2 Y,
Glz,2,9) = W (up(2), uq(2)) { ua(z, v)up(z,y), = <uy. (9.28)
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Proof. Let g € L?(I,rdx) be real-valued and consider f = (A — z)7lg €
D(A). Since (1 — z)f = 0 near a, respectively, b, we obtain u,(z,z) by
setting it equal to f near a and using the differential equation to extend it
to the rest of I. Similarly, we obtain u;. The only problem is that u, or u
might be identically zero. Hence we need to show that this can be avoided
by choosing g properly.

Fix z and let g be supported in (¢,d) C I. Since (t—z)f = g, Lemma 9.2
implies

f(z) = ui(z) <a+/juwrdy> + ug () (ﬁ+/:ulgrdy>. (9.29)

Near a (z < ¢) we have f(z) = auy(z) 4 Buz(z) and near b (z > d) we have
f(z) = auy(z) + Buz(x), where & = o + fab usgrdy and B = 8+ f(f uigr dy.
If f vanishes identically near both a and b, we must have o = = a = B =0
and thus a = 8 = 0 and f(f uj(y)g(y)r(y)dy = 0, j = 1,2. This case can
be avoided by choosing a suitable g and hence there is at least one solution,
say up(2).

Now choose u; = up and consider the behavior near b. If uy is not square
integrable on (d,b), we must have 5 = 0 since fuy = f — quyp is. If ug is
square integrable, we can find two functions in ©(7) which coincide with u,
and ug near b. Since W (up,u2) = 1, we see that 7 is L.c. at b and hence
0 = Wy(up, f) = Wy(up, Gup + Bug) = . Thus S = 0 in both cases and we
have

£(@) = w(2) <a + / " agr dy> +us(a) / " gr dy.

Now choosing g such that f; upgr dy # 0, we infer the existence of uy(2).
Choosing us = u, and arguing as before, we see a = 0 and hence
b

@) = (@) [ w9y +ua(s) [ uwowro)dy
b
=/ G(z,z,y)9(y)r(y)dy

for every g € L2(I,r dx). Since this set is dense, the claim follows. ([

Example. If 7 is regular at a with a boundary condition as in the pre-
vious example, we can choose u,(z,z) to be the solution corresponding to
the initial conditions (uq(z,a), (pul,)(z,a)) = (sin(«), cos(«)). In particular,
uq(z, x) exists for all z € C.

If 7 is regular at both a and b, there is a corresponding solution u(z, x),
again for all z. So the only values of z for which (A — z)~! does not exist
must be those with W (up(z),uq(2)) = 0. However, in this case uy(z, )
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and wuy(z,x) are linearly dependent and wuq(z,x) = yup(z,z) satisfies both
boundary conditions. That is, z is an eigenvalue in this case.

In particular, regular operators have pure point spectrum. We will see
in Theorem 9.10 below that this holds for every operator which is l.c. at
both endpoints. o

In the previous example, u4(z, ) is holomorphic with respect to z and
satisfies uq(z,)* = uq(2*, ) (since it corresponds to real initial conditions
and our differential equation has real coefficients). In general we have:

Lemma 9.8. Suppose z € p(A). Then uq(z,x) from the previous lemma
can be chosen locally holomorphic with respect to z such that
ua(z, )" = uq(2", x) (9.30)

and similarly for uy(z, ).

Proof. Since this is a local property near a, we can assume b is regular
and choose uy(z, z) such that (up(z,b), (puy)(z,b)) = (sin(B), — cos(5)) as in
the example above. In addition, choose a second solution v,(z, x) such that
(vp(2,b), (pv;)(2,b)) = (cos(f),sin(B)) and observe W (uy(2),vp(2)) = 1. If
z € p(A), z is no eigenvalue and hence u,(z,z) cannot be a multiple of
up(z, ). Thus we can set

Uq(z,7) = vp(2, ) + m(z)up(z, x)
and it remains to show that m(z) is holomorphic with m(2)* = m(z*).

Choosing h with compact support in (a,c) and g with support in (¢, b),
we have

(h, (A= 2)"g) = (h,ua(2))(g", up(2))
= ((h, vp(2)) + m(2)(h, up(2))) (9", up(2))

(with a slight abuse of notation since uy, v, might not be square integrable).
Choosing (real-valued) functions h and g such that (h, uy(2)){(g*, up(z)) # 0,
we can solve for m(z):

(h, (A= 2)""g) = (b, vp(2)) (9", w(2))

m(z) =
(hy up(2)){g*; un(2))
This finishes the proof. (I
Example. We already know that 7 = —d% on [ = (—o0,00) gives rise to

the free Schrédinger operator Hy. Furthermore,
us(z,2) = TV, 2z eC, (9.31)

are two linearly independent solutions (for z # 0) and since Re(y/—2) > 0
for z € C\[0, 00), there is precisely one solution (up to a constant multiple)
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which is square integrable near oo, namely u+. In particular, the only
choice for u, is u— and for uy is u4 and we get

Gz, y) = 2;_7(3—@'%—9' (9.32)

which we already found in Section 7.5. o

If, as in the previous example, there is only one square integrable solu-
tion, there is no choice for G(z,x,y). But since different boundary condi-
tions must give rise to different resolvents, there is no room for boundary
conditions in this case. This indicates a connection between our l.c., l.p.
distinction and square integrability of solutions.

Theorem 9.9 (Weyl alternative). The operator T is l.c. at a if and only if
for one zg € C all solutions of (T — zo)u = 0 are square integrable near a.
This then holds for all z € C and similarly for b.

Proof. If all solutions are square integrable near a, 7 is l.c. at a since the
Wronskian of two linearly independent solutions does not vanish.

Conversely, take two functions v, € D(7) with Wy(v,0) # 0. By con-
sidering real and imaginary parts, it is no restriction to assume that v and v
are real-valued. Thus they give rise to two different self-adjoint extensions
A and A (choose any fixed w for the other endpoint). Let uq and @, be the
corresponding solutions from above. Then W (ug,4,) # 0 (since otherwise
A = A by Lemma 9.5) and thus there are two linearly independent solutions
which are square integrable near a. Since any other solution can be written
as a linear combination of those two, every solution is square integrable near
a.

It remains to show that all solutions of (7 — z)u = 0 for all z € C are
square integrable near a if 7 islc.at a. In fact, the above argument ensures
this for every z € p(A4) N p(A), that is, at least for all z € C\R.

Suppose there are two linearly independent solutions w; and us of
(1 — z0)u = 0. Without loss of generality, we can assume W (uj,u2) = 1.
We will show that any solution u of (7 — z)u = 0 is square integrable. Using
(T — z0)u = (2 — z0)u and (9.10), we have (a < c <z < b)

(o) = aur () + fua(w) + (= = 20) [ (1 (@)uay) — 1 ()o@ uly)r 9) .

Since u;j € L*((c,b),rdx), we can find a constant M > 0 such that

b
/ fura(y) Pr(y) dy < M.
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Now choose ¢ close to b such that |z — zg|2M? < 1/8. Next, estimating the
integral using Cauchy—Schwarz gives

‘/ ur(z)uz(y) — i (y)uz(z))uly )T(@/)dy}2
/ Jur (@)uz(y) — w1 (y)ua(@)*r(y dy/ [u(y)Pr(y) dy

< M (jur@P + lua@)P) [ 1) Priv) dy
and hence

/ CJuw)Pr(y) dy < 3(laf* + [B12)M + 6]z — z*M? / " July)Pr(y) dy

3(laf +18PIM + 5 [ u(o)Priv) dy
Thus .
[ 1w Pr)dy < 6(aP + 1571
and since u € AC(I),Cwe have u € L?((c,b),r dz) for every c € (a,b). O

Now we turn to the investigation of the spectrum of A. If 7 is l.c. at
both endpoints, then the spectrum of A is very simple.

Theorem 9.10. If T is l.c. at both endpoints, then the resolvent is a Hilbert—
Schmidt operator; that is,

b b
//]G(z,x,y)|2r(y)dyr(x)dw<oo. (9.33)

In particular, the spectrum of every self-adjoint extension is purely discrete,
and the eigenfunctions (which are simple) form an orthonormal basis.

Proof. This follows from the estimate

[ ([ m@tPron+ [ )
<2 [ uaPrdy | T Pridy,

which shows that the resolvent is Hilbert—Schmidt and hence compact. [

Note that all eigenvalues are simple. If 7 is l.p. at one endpoint, this is
clear, since there is at most one solution of (7 — A\)u = 0 which is square
integrable near this endpoint. If 7 is l.c., this also follows since the fact that
two solutions of (7 — A)u = 0 satisfy the same boundary condition implies
that their Wronskian vanishes.



9.2. Weyl’s limit circle, limit point alternative 229

If 7 is not l.c., the situation is more complicated and we can only say
something about the essential spectrum.

Theorem 9.11. All self-adjoint extensions of Ay have the same essential
spectrum. Moreover, if Aqe and Ag, are self-adjoint extensions of T restricted
to (a,c) and (¢,b) (for any c € I), then

Uess(A) = Uess(Aac) U Uess(Acb)- (934)

Proof. Since (7 —i)u = 0 has two linearly independent solutions, the defect
indices are at most two (they are zero if 7 is Lp. at both endpoints, one if
T is l.c. at one and l.p. at the other endpoint, and two if 7 is l.c. at both
endpoints). Hence the first claim follows from Theorem 6.20.

For the second claim, restrict 7 to the functions with compact support
in (a,c) U (c,d). Then, this operator is the orthogonal sum of the operators
Ap,ac and Ag . Hence the same is true for the adjoints and hence the defect
indices of Ag 4. ® Ao, are at most four. Now note that A and A, © Awp
are both self-adjoint extensions of this operator. Thus the second claim also
follows from Theorem 6.20. ([

In particular, this result implies that for the essential spectrum only the
behaviour near the endpoints a and b is relevant.

Another useful result to determine if ¢ is relatively compact is the fol-
lowing:

Lemma 9.12. Suppose k € L2 ((a,b),rdx). Then kRa(z) is Hilbert-
Schmidt if and only if

1 b
2 2
= I .
kRAGIE = s [ M@ P (G ema)roye (03)
is finite.
Proof. From the first resolvent formula, we have
b
G(z,z,y) — G, z,y) = (2 — z’)/ G(z,z,t)G(Z, t,y)r(t)dt.

Setting # = y and 2’ = z*, we obtain

b
Im(G(z,z,z)) = Im(z)/ |Gz, z,t)[>r(t)dt. (9.36)

a
Using this last formula to compute the Hilbert—Schmidt norm proves the
lemma. O
Problem 9.5. Compute the spectrum and the resolvent of T = —d%, I =

(0,00) defined on D(A) ={f € D(7)|f(0) = 0}.
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Problem 9.6. Suppose T is given on (a,00), where a is a reqular endpoint.
Suppose there are two solutions u+ of Tu = zu satisfying r(x)"/?|lus(z)| <
CeT® for some C,a > 0. Then z is not in the essential spectrum of any self-
adjoint operator corresponding to T. (Hint: You can take any self-adjoint
extension, say the one for which u, = u— and up = uy. Write down what
you expect the resolvent to be and show that it is a bounded operator by
comparison with the resolvent from the previous problem.)

Problem 9.7. Suppose a is reqular and lim,_, q(z)/r(x) = oco. Show that
Oess(A) = 0 for every self-adjoint extension. (Hint: Fix some positive con-
stant n, choose ¢ € (a,b) such that q(z)/r(z) > n in (c,b), and use Theo-
rem 9.11.)

Problem 9.8 (Approximation by regular operators). Fiz functions v,w €
D(1) as in Theorem 9.6. Pick Iy, = (¢, d) with ¢y, | a, dpy 1 b and define
Am: D(An) — L*(Lyn,rdr) ,

f = Tf
where
D(An) ={f € L*(Iy,rdr)| f,pf € AC(I,,), Tf € L*(I,,,rdr),
Wcm(v7 f) = de(w7 f) = 0}
Then A, converges to A in the strong resolvent sense as m — oo. (Hint:
Lemma 6.36.)
Problem 9.9 (Weyl circles). Fiz z € C\R and ¢ € (a,b). Introduce
W (u, u*),

z— z*

[u]z = eR

and use (9.4) to show that
e =le+ [ TPy, (=20,

Hence [u], is increasing and exists if and only if u € L*((c,b),r dz).

Let uy 2 be two solutions of (T — z)u = 0 which satisfy [ui]. = [ug]c =0
and W(ui,ug) = 1. Then, all (nonzero) solutions u of (1 — z)u = 0 that
satisfy [u]p = 0 can be written as

u = u2 +mui, m € C,

up to a complex multiple (note [u1], > 0 for z > c).
Show that

w2+ murle = ur]e (jm — M (@) - R@)”).

where
W (uz, ui)s

M(z) = - W (ui,ui)s
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and

R(w)? = (W (g, ui)ol? + W, 3)aW (i) ) (12 = 2 [ )
— (|z — z*][ul]x>_2.

Hence the numbers m for which [u], = 0 lie on a circle which either converges
to a circle (if limg_, R(x) > 0) or to a point (if limy_, R(x) =0) as © — b.
Show that T is l.c. at b in the first case and l.p. in the second case.

9.3. Spectral transformations I

In this section, we want to provide some fundamental tools for investigating
the spectra of Sturm—Liouville operators and, at the same time, give some
nice illustrations of the spectral theorem.

Example. Consider again 7 = —% on I = (—o0,00). From Section 7.3
we know that the Fourier transform maps the associated operator Hy to the
multiplication operator with p? in L?(R). To get multiplication by A, as in
the spectral theorem, we set p = v/A and split the Fourier integral into a
positive and negative part, that is,

Jz ei\r’\xf(x) dz

= ( oo @) da

) , A€ o(Hpy) =10,00). (9.37)

Then

X[0,00) (A)
2vV/\

is the spectral transformation whose existence is guaranteed by the spectral
theorem (Lemma 3.4). Note, however, that the measure is not finite. This
can be easily fixed if we replace exp(ziv/Az) by v(\) exp(£iv/Az). o

Note that in the previous example the kernel VAT of the integral trans-
form U is just a pair of linearly independent solutions of the underlying
differential equation (though no eigenfunctions, since they are not square
integrable).

2
U:L*(R) —» @ LR, d\) (9.38)
j=1

More generally, if
U:L*(I,rdx) — L*(R,du), f(x)— /u()\,x)f(:):)r(x) dx (9.39)
I

is an integral transformation which maps a self-adjoint Sturm-Liouville op-
erator A to multiplication by A, then its kernel u(\, z) is a solution of the
underlying differential equation. This formally follows from UAf = AU f
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which implies

0= /I w0 2)(r — N f(2)r(z) de = /I (7 — Nuh 2) f@)r(@) dz (9.40)
and hence (7 — Nu(A,.) = 0.

Lemma 9.13. Suppose

k
U: L*(I,rdx) — €D L*(R, dp;) (9.41)
j=1

is a spectral mapping as in Lemma 3.4. Then U is of the form

b
UHO) = / u(h @) f(@)r(x) de, (9.42)

where u(\,x) = (ur(\, ), ..., ux(\, ) is measurable, and for a.e. X (with
respect to ;), each u;j(X,.) is a solution of Tuj; = Auj which satisfies the
boundary conditions of A (if any). Here the integral has to be understood as
f; dr = limc|q atp fcd dx with limit taken in @j L?(R, dpj).

The inverse is given by
k
U E)@) = 3 [ ) BN (V). (9.43)
j=1

Again, the integrals have to be understood as fR dpj = limpg_e0 f_RR dpj with
limits taken in L*(I,r dzx).

If the spectral measures are ordered, then the solutions u;(\), 1 < j <1,
are linearly independent for a.e. A\ with respect to py. In particular, for
ordered spectral measures, we always have k < 2 and even k=1 if 7 is l.c.
at one endpoint.

Proof. Using U;Ra(z) = = U;, we have

b
Uif(e) = (= 2)0; | Gleaa) I )rly) do

If we restrict R4(z) to a compact interval [c,d] C (a,b), then Ra(2)X|cq
is Hilbert—Schmidt since G(z, ¥, y)x[,q)(y) is square integrable over (a,b) X
(a,b). Hence UjX[c,q) = (A — 2)UjRA(2)X|c,q) 18 Hilbert-Schmidt as well and
Bc’d]()\, y) such that

b
Uixeaf) (V) = / a0 2) f@)r(z) da

by Lemma 6.10 there is a corresponding kernel u
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A

Now take a larger compact interval [¢,d] D [¢,d]. Then the kernels coincide
c,d e,d .

on [c,d], ug ]()\, )= ug ]()\, )X[e,d)» since we have Ujx(.q = UjX[é,dA]X[C,d}'

In particular, there is a kernel u;(A, z) such that

b
Ujf(ac):/ uj(\, x) f(x)r(x) de

for every f with compact support in (a,b). Since functions with compact
support are dense and Uj is continuous, this formula holds for every f pro-
vided the integral is understood as the corresponding limit.
Using the fact that U is unitary, (F,Ug) = (U~'F, g), we see that
b b
> [EO [ wag@i@d= [ (U E) g ds
j R a a
Interchanging integrals on the right-hand side (which is permitted at least
for g, F with compact support), the formula for the inverse follows.

Next, from U;Af = AU, f, we have

b b
/ uj(A\, z)(7f)(x)r(x) de = )\/ uj( A\, z) f(x)r(x) d

for a.e. A and every f € ©(Ap). Restricting everything to [c,d] C (a,b),
the above equation implies u;(A,.)|jcq € D(Afzo) and A7y gui(A, g =
A (A, )|fe,q)- In particular, u;(A,.) is a solution of Tu; = Au;. Moreover, if
7 is L.c. near a, we can choose ¢ = a and allow all f € ©(7) which satisfy
the boundary condition at a and vanish identically near b.

Finally, assume the p; are ordered and fix [ < k. Suppose
l

> i (Nu(A,z) = 0.
j=1

Then we have

d gWFE(N) =0,  F=Uf,

j=1
for every f. Since U is surjective, we can prescribe Fj arbitrarily on o(y),
e.g., F;(A\) =1 for j = jo and Fj(\) = 0 otherwise, which shows ¢;,(\) =
0. Hence the solutions uj(A,z), 1 < j < [, are linearly independent for
A € o(w), which shows that &k < 2 since there are at most two linearly
independent solutions. If 7 is l.c. and u;(\, x) must satisfy the boundary
condition, there is only one linearly independent solution and thus k = 1. [

Note that since we can replace u; (A, ) by vj(A)u; (A, ) where |v;(A\)| =
1, it is no restriction to assume that u;(\, z) is real-valued.
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For simplicity, we will only pursue the case where one endpoint, say a,
is regular. The general case can often be reduced to this case and will be
postponed until Section 9.6.

We choose a boundary condition

cos(a)f(a) — sin(a)p(a)f'(a) =0 (9.44)

and introduce two solutions s(z,z) and ¢(z,x) of Tu = zu satisfying the
initial conditions

s(z,a) = sin(a), p(a)s'(z,a) = cos(a),
c(z,a) = cos(a), pla)d(z,a) = —sin(a). (9.45)

Note that s(z,x) is the solution which satisfies the boundary condition at
a; that is, we can choose u,(z, ) = s(z,x). In fact, if 7 is not regular at a
but only l.c., everything below remains valid if one chooses s(z,z) to be a
solution satisfying the boundary condition at a and ¢(z,z) to be a linearly
independent solution with W(c(z), s(z)) = 1.

Moreover, in our previous lemma we have uj (A, z) = v4(\)s(A, z), and
using the rescaling du(A\) = |[va(\)[2dpa(N) and (U1 f)(A) = 7a(M\)(Uf)(N),

we obtain a unitary map
b
U: L*(I,rdx) — L*(R,dp), UHA) = / s\, z) f(x)r(z)dz (9.46)

with inverse
(U F) () = /R sOu ) PO (9.47)

Note, however, that while this rescaling gets rid of the unknown factor v, (),
it destroys the normalization of the measure p. For p; we know pq(R) (if
the corresponding vector is normalized), but p might not even be bounded!
In fact, it turns out that u is indeed unbounded.

So up to this point we have our spectral transformation U which maps A
to multiplication by A, but we know nothing about the measure u. Further-
more, the measure p is the object of desire since it contains all the spectral
information of A. So our next aim must be to compute u. If A has only
pure point spectrum (i.e., only eigenvalues), this is straightforward as the
following example shows.

Example. Suppose E € 0,(A) is an eigenvalue. Then s(F,z) is the cor-
responding eigenfunction and the same is true for Sg(\) = (Us(E))(N). In
particular, xgy(A)s(E,r) = s(E, ) shows Sp()\) = (Uxygy(4)s(E))(\) =
X(my (N Su(); that is,

2 —
sen={ P A28 (9.45)
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Moreover, since U is unitary, we have

b
HS(E)HZ—/ S(E,x)%(fﬂ)dx—/RSE(A)Zdu(A)— Is(E)|I*p({E}); (9.49)

that is, u({E}) = ||s(F)||~2. In particular, if A has pure point spectrum
(e.g., if 7 is limit circle at both endpoints), we have

Z Is( ||2 O\ —Ej), op(A) ={E;};21, (9.50)

where dO is the Dirac measure centered at 0. For arbitrary A, the above
formula holds at least for the pure point part fipy,. o

In the general case, we have to work a bit harder. Since ¢(z,z) and
s(z, z) are linearly independent solutions,

W(e(z),s(2)) = 1, (9.51)
we can write uy(z, x) = Yp(2)(c(z, ) + mp(2)s(z, )), where
W(c(z),up(2))  cos(a)p(a)uy(z,a) + sin(a)uy(z, a)
W(s(2),up(2)) cos(a)uy(z,a) — sin(a)p(a)uy(z,a)’

z € p(4),

(9.52)
is known as the Weyl-Titchmarsh m-function. Note that m;(z) is holo-
morphic in p(A) and that

mp(2)=—

mp(2)* = myp(2*) (9.53)

since the same is true for uy(z, ) (the denominator in (9.52) only vanishes if
up(z, x) satisfies the boundary condition at a, that is, if z is an eigenvalue).
Moreover, the constant 7;(z) is of no importance and can be chosen equal
to one,

up(z, ) = c(z,x) + mp(2)s(z, z). (9.54)
Lemma 9.14. The Weyl m-function satisfies

mp(z) — my(2

b
@) _ / (2 ) (2, ) (v) dy, (9.55)

where uy(z, ) is normalized as in (9.54). In particular, for Z = z* we see
that it is a Herglotz—Nevanlinna function satisfying

b
Im(my(z)) = Im(z)/ lup(z, x)|?r(z) d. (9.56)

Z—Z

Proof. Given two solutions u(z), v(x) of Tu = zu, Tv = Zv, respectively, it
follows from the Lagrange identity (9.4) that

(= 2) [ ulw)o(o)r) dy = Walu, ) = Walu, o)
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A~

Now choose u(z) = up(z, x) and v(x) = up(2, x),

(- 2) / "z y)un(, ) (y) dy = Walun(2), un(2)) + (my(2) — my(2)),

and observe that W, (up(z),up(2)) vanishes as x 1 b, since both wup(z) and
up(2) are in O (7) near b. O

Lemma 9.15. Let
>
G(Z, x,y) _ S(Z’x)ub(z’y)a y-x, (957)
s(z,y)ub(z,aj), Yy < x,
be the Green function of A. Then

(UG(z,z,.))(\) = S)(\)\_’? and (Up(x)0:G(z,x,.))(N) =

p(z)s'(A, @)
A—z
(9.58)
for every x € (a,b) and every z € p(A).

Proof. First of all, note that G(z,x,.) € L?((a,b),r dz) for every = € (a,b)
and z € p(A). Moreover, from Ra(z)f = U1y Uf, we have

b S X
/ G(z,x,y)f(y)r(y)dy=/R(A’A_)iwdu(/\), (9.59)

where F' = Uf. Here equality is to be understood in L?, that is, for a.e.
x. However, the left-hand side is continuous with respect to x and so is the
right-hand side, at least if F' has compact support. Since this set is dense,
the first equality follows. Similarly, the second follows after differentiating
(9.59) with respect to . O

Corollary 9.16. We have

(Uup(2))(A) =

9.60
=, (9.60)

where up(z, x) is normalized as in (9.54).

Proof. Choosing x = a in the lemma, we obtain the claim from the first
identity if sin(a) # 0 and from the second if cos(a) # 0. O

Now combining Lemma 9.14 and Corollary 9.16, we infer from unitarity
of U that

b
Im(my(z)) :Im(z)/ lup(z, x)|*r(x) dx:Im(z)/Rp\lzpdu()\) (9.61)

and since a holomorphic function is determined up to a real constant by its
imaginary part, we obtain
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Theorem 9.17. The Weyl m-function is given by

1 A
=d — ——— | du(A deR .62
o) =d+ [ (5= o)., deR o0
and
1
d = Re(my (1)), /R ) = m(my (i) < oe. (9.63)
Moreover, 1 is given by the Stieltjes inversion formula
A+0
p(A) = ]51&)1 181&1 p ; Im(my(t + ie))dt, (9.64)
where )
Im(my(A +1ie)) = 8/ lup(\ + ie, x)|*r () da. (9.65)

Proof. Choosing z =1iin (9.61) shows (9.63) and hence the right-hand side
of (9.62) is a well-defined holomorphic function in C\R. By

LA - Im(z)
A—z 1+227 7 |]A—z?

its imaginary part coincides with that of m;(z) and hence equality follows.

Im(

The Stieltjes inversion formula follows from Theorem 3.23. U
Example. Consider 7 = —j—; on I = (0,00). Then
c(z,z) = cos(a) cos(v/zx) — su\1(fa) sin(v/zx) (9.66)
z
and
s(z,z) = sin(«) cos(v/2x) + CO\S([OZ) sin(v/zx). (9.67)
z
Moreover,
up(z, ) = up(z, 0)e V" (9.68)
and thus .
my(z) = sin(a) — /=2 C(.)s(a)7 (9.69)
cos(a) + v/ —zsin(«)
respectively,
VA
dup(X) = dA. 9.70
H) = s 1 Asm(a))) (970)
o

Note that if o # 0, we even have fﬁdu()\) < 0 in the previous
example and hence

mp(2) = — cot(a) +/ 3 !

dp(N) (9.71)
RA—Z



238 9. One-dimensional Schrédinger operators

in this case (the factor — cot(«) follows by considering the limit |z| — oo
of both sides). Formally, this even follows in the general case by choosing
r=ain u(z,z) = (U‘l)\iz)(m); however, since we know equality only for
a.e. x, a more careful analysis is needed. We will address this problem in

the next section.

Problem 9.10. Show

cos(a — fB)mp g(2) + sin(a — B)
cos(a — ) —sin(a — B)my g(z)
(Hint: The case =0 is (9.52).)

(9.72)

mp o (Z) =

Problem 9.11. Suppose 7 is l.c. at a. Let ¢po(x), Oo(x) be two real-valued
solutions of Tu = Aou for some fized \g € R such that W (6y, ¢o) = 1. Show
that the limits

lim Wa(do,u(2)),  lim Wi (6, u(2)) (9.73)
exist for every solution u(z) of Tu = zu.
Introduce
¢(z7 33‘) = Wa(c(z)7 ¢0)3(Z7 .%') - Wa(s(z>v ¢0)C<27 x)?
0(z,x) = Wy(c(2),00)s(z,x) — Wa(s(2),00)c(z, ), (9.74)

where ¢(z,x) and s(z,x) are chosen with respect to some base point ¢ € (a,b)
and a singular Weyl m-function My(z) such that
U(z,x) = 0(z, 1) + My(2) (2, 2) € L*(c, b). (9.75)

Show that all claims from this section still hold true in this case for the oper-
ator associated with the boundary condition Wy(¢o, f) = 0. (Hint: Plicker’s
identity. )

9.4. Inverse spectral theory

In this section, we want to show that the Weyl m-function (respectively,
the corresponding spectral measure) uniquely determines the operator. For
simplicity, we only consider the case p=1r = 1.

We begin with some asymptotics for large z away from the spectrum.
We recall that /z always denotes the branch with arg(z) € (—m,7|. In
particular, Re(v/—z) > 0 for all z € C\[0,00) and Re(v/—z) = 0 for all
z € [0,00). We will write ¢(z,x) = cqo(2,z) and s(z,z) = sq(z, z) to display
the dependence on a whenever necessary. Clearly

Sa(z,x) = sin(a)co(z, ) + cos(a)so(z, x),
ca(z,7) = cos(a)co(z, z) — sin(a)so(z, x). (9.76)

We first observe (Problem 9.12)
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Lemma 9.18. For a =0, we have

co(z,z) = cosh(v/—z(z — a)) + O(
1

\/jz(:):fa))’

1
V==
sinh(v/=2(z — a)) + oéeﬁ(m—a)), (9.77)

so(z,x) =

h

uniformly for x € (a,c) as |z| = oo.

Note that for z € C\[0, 00), this can be written as
1
\/7_—2))7
vV—z(z—a) 1+0 1
e (1+ (\/TZ

1
co(z,x) = ieﬁ(z_“)(l + O(

so(z,x) = 2\/13

for Im(z) — oo, and for z = X € [0, 00), we have

), (9.78)

co(\, x) = cos(VA(z — a)) + O(\lr/\),

1 1
so(A,x) = 7 sin(VA(z —a)) + O(X)’ (9.79)
as A — 00.
From this lemma we obtain
Lemma 9.19. The Weyl m-function satisfies
—cot(a) + ——— + O(2), 0,
my(z) = cot() sin(a)2v/—z (), a# (9.80)
—v/—z+0(1), a =0,

as z — oo in any sector €| Re(z)| < |Im(z)], € > 0.

Proof. Evaluating (9.36) using Lemma 9.15 (as in (9.61)), we conclude as
in the proof of Theorem 9.17 that

G(z,z,z) = d(z) +/R <)\ i o 1_:\)\2) s\, 2)2du(N).

Hence, Problem 3.24 implies G(z,z,2) = o(z) as z — oo in any sector
e|Re(z)| < |Im(z)|. Now solving G(z,z,z) = s(z,x)up(z,x) for my(z) and
using the asymptotic expansions from Lemma 9.18, we see

_ 6(27 J}) 2 —2v/—z(z—a)

my(z) = 52, 7) + o(z% )
from which the case a = 0 and the leading term in the case o # 0 follows.
The next term in the case a # 0 follows using (9.72) with 5 = 0. O

Note that assuming ¢ € C*([a,b)), one can obtain further asymptotic
terms in Lemma 9.18 and hence also in the expansion of my(z).
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Corollary 9.20. The following asymptotics are valid:
ef\/jzlyf‘rd

G(z,z,y) = RV (1 + 0(2_1/2)) , (9.81)
e JCO8(@) +O( ), a# T,

up(z, ) = eV 2E—a) {\/1_7 N O(i):ﬁ Y Zr, (9.82)

my(z) = —Eig + O(r V2o ama)y (9.83)

as z — oo in any sector | Re(z)| < |Im(z)[, € > 0.

Proof. First of all, note that we can write

_ ua(z@)up(z,7) -1
Gz z,2) = W(ua(2),up(2))  ma(z,x) + mp(z,z)’
where
RS ') BN (Y
a( ) ) Ua(Z,.’L') d b( ) ) U,b(Z,fL')

are the Weyl m-functions associated with H restricted to (a,z) and (z,b)
with a Dirichlet boundary condition at z, respectively. Hence (9.80) implies
(9.81) in the case y = x. Furthermore, the asymptotics for u;(z, ) follow
from up(z,x) = G(z,2,x)/s(z,x) which in turn implies the z # y case since
G(z,z,y) = G(z,z,y)up(z,y)/up(z,x), y > x. Finally, (9.83) follows after
solving (9.81) for my(z). O

Now we come to our main result of this section:

Theorem 9.21. Suppose 7, j =0, 1, are given on (a,b) and both are regular
at a. Moreover, A; are some self-adjoint operators associated with T; and
the same boundary condition at a.

Let c € (a,b). Then qo(x) = qi(x) for x € (a,c) if and only if my p(2) —
mop(2) = o(e2(c=) Re(v=2)) 45 2z — oo along some nonreal ray.

Proof. The direct claim is immediate from (9.83). To see the converse,
first note that by (9.77) we have s1(z,x)/so(z,2) — 1 as z — oo along any
nonreal ray. Moreover, (9.81) in the case y = x shows so(z, z)uj (2, 2) — 0
and s1(z,2)ugp(z, ) — 0 as well. Hence the entire function

s1(z,x)co(z, ) — so(z,x)c1(z, x) =s1(2, x)uop(z, ) — so(z, )urp(2, x)
+ (myp(2) —mop(2))so(z, x)s1(z, x)

vanishes as z — oo along any nonreal ray for fixed z € (a,c) by the as-
sumption on my(2) — mop(z). Moreover, by (9.77), this function has
an order of growth < 1/2 and thus by the Phragmén—Lindel6f theorem
(e.g., [62, Thm. 4.3.4]) is bounded on all of C. By Liouville’s theorem it
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must be constant and since it vanishes along rays, it must be zero; that
is, s1(z,x)co(z,2) = so(z,z)ci(z,x) for all z € C and = € (a,c). Dif-
ferentiating this identity with respect to z and using W(c;(2),s;(z)) = 1
shows s1(z,2)? = so(z, )% Taking the logarithmic derivative further gives

si(z,x)/s1(z,2) = 56(2 x)/so(z,x) and differentiating once more shows
s{(z,x)/s1(z,x) = si(z,x)/so(z,x). This finishes the proof since g;(z) =
) ey (e2). 0

By virtue of Lemma 3.30, the asymptotics of mp(z) in turn tell us more
about L?(R,dp). For example, using (9.80) and (9.79), we obtain

/s(/\,a:)2(1 + A\)T7du(N) < oo for gy > % (9.84)
As a consequence we obtain:
Lemma 9.22. We have
G(z,z,y) = /R Wdu(/\), (9.85)

where the integrand is integrable.

Proof. By Lemma 9.15, this formula holds for given fixed x in the sense
of L*((a,b),rdz) with respect to y. Since our above observation implies
integrability for all y (uniformly for x,y € (a,c)), both sides are continuous
and the claim follows. O

Problem 9.12. Prove Lemma 9.18. (Hint: Without loss, set a = 0. Now
use that
sin(a)

N
\/_7/ sinh(v'=2(z — y))a(y)c(z, y)dy

c(z,z) = cos(a) cosh(y/—zx) —

sinh(v/—zx)

by Lemma 9.2 and consider &(z,x) = e~V "*%¢(z,z).)
9.5. Absolutely continuous spectrum

In this section, we will show how to locate the absolutely continuous spec-
trum. We will again assume that a is a regular endpoint. Moreover, we
assume that b is [.p. since otherwise the spectrum is discrete and there will
be no absolutely continuous spectrum.

In this case, we have seen in Section 9.3 that A is unitarily equivalent to
multiplication by A in the space L?(R, du), where p is the measure associated
to the Weyl m-function. Hence by Theorem 3.27 we conclude that the set

My = {\|lim sup Im(my(A + ig)) = oo} (9.86)
el0
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is a support for the singularly continuous part and

Mye = {0 < limsup Im(mp(\ +ie)) < oo} (9.87)
el0

is a minimal support for the absolutely continuous part. Moreover, o,.(A)
can be recovered from the essential closure of M,.; that is,

o 7ESS

Tac(A) = ML (9.88)

Compare also Section 3.2.

We now begin our investigation with a crucial estimate on Im(my(A+ie)).
Set

1 fll(a,z) = \//x \f(W)]?r(y)dy, =€ (a,b). (9.89)

Lemma 9.23. Let
e = (2/Is(M) (@) le) ll(a2)) (9.90)

and note that since b is l.p., there is a one-to-one correspondence between
e € (0,00) and x € (a,b). Then

S (az
5 — V24 < [my(\+ ie)|HCE>\§”§’§ <5+ V2. (9.91)

Proof. Let £ > a. Then by Lemma 9.2,
up(A +ie, ) = c(\, ) — mp(A + ie)s(\, x)
—ie /{:C (c()\,x)s()\, y) — (A, y)s()\,:c))ub()\ +ie,y)r(y)dy.
Hence one obtains after a little calculation (as in the proof of Theorem 9.9)
le(X) = mp(A +i€)5(A) | (@.2) <lup(X +18)ll(a,2)
+ 2e[|s(A) | (@) 1) | a,0) 1up (A + 1) [ (0,0)
Using the definition of € and (9.56), we obtain
le(A) = mp(A +ie)s(A) 7,2y < 4llus(A +ie)l[F, .
< Lup(A+ie)|2, ) = glm(mb(k Fie)
< 8llsMll () lcM) | a,2) Tm(mp (A + i€)).

Combining this estimate with

. 2 . 2
o) = mp(r + )5, 0y = (leWlliaz) = mo(r + i) sl a.0))

shows (1 — )2 < 8t, where t = [my(A + i€)|[|s(V) | a0 OV [ Ly O
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We now introduce the concept of subordinacy. A nonzero solution u of
Tu = zu is called sequentially subordinate at b with respect to another
solution v if

lim inf ”uH(a’w) =
z—b HvH(a,x)

0. (9.92)

If the liminf can be replaced by a lim, the solution is called subordinate.
Both concepts will eventually lead to the same results (cf. Remark 9.26
below). We will work with (9.92) since this will simplify proofs later on and
hence we will drop the additional sequentially.

It is easy to see that if u is subordinate with respect to v, then it is
subordinate with respect to any linearly independent solution. In particular,
a subordinate solution is unique up to a constant. Moreover, if a solution
u of Tu = Au, A € R, is subordinate, then it is real up to a constant, since
both the real and the imaginary parts are subordinate. For z € C\R we
know that there is always a subordinate solution near b, namely wuy(z, ).
The following result considers the case z € R.

Lemma 9.24. Let A € R. There is a subordinate solution u(X) at b if and
only if there is a sequence €y, | 0 such that my(\ + ie,) converges to a limit
in RU{oco} as n — oo. Moreover,

cos(a)p(a)u/ (A, a) + sin(a)u(X, a)

nh—>nc>lo my(A+ien) = cos(a)u(A, a) — sin(a)p(a)u/ (A, a) (9:93)

in this case (compare (9.52)).

Proof. We will consider the number « fixing the boundary condition as a
parameter and write s4(2,2), ca(2, ), My, €tc., to emphasize the depen-
dence on a.

Every solution can (up to a constant) be written as sg(\,z) for some
B € [0,7). But by Lemma 9.23, sg(), z) is subordinate if and only there is
a sequence €, J 0 such that lim, o mp g(A +ie,) = 00, and by (9.72), this
is the case if and only if

cos(a — B)ymp g(A +iepn) + sin(a — B3)

oo 0 (Atien) 360 cos(a — ) —sin(a — B)my, g(A + iey,) cot(a=F)
is a number in R U {oo}. O

We are interested in N(7), the set of all A € R for which no subordinate
solution exists, that is,

N(7) = {X € R|No solution of 7u = Au is subordinate at b} (9.94)

and the set
Sa(T) = {A| sa(A, x) is subordinate at b}. (9.95)

From the previous lemma we obtain
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Corollary 9.25. We have X\ € N(7) if and only if
liminf Im(mp(A +i€)) >0 and limsup |mp(A +ie)| < oc.
€l0 el0

Similarly, X € So(7) if and only if limsup, o [mp(A + ig)| = oo.

Remark 9.26. Since the set, for which the limit lim. o my(X + i) does not
exist, is of zero spectral and Lebesgue measure (Corollary 3.29), changing
the liminf in (9.92) to a lim will affect N(7) only on such a set (which is
irrelevant for our purpose). Moreover, by (9.72), the set where the limit
exists (finitely or infinitely) is independent of the boundary condition a.

Then, as a consequence of the previous corollary, we have

Theorem 9.27. The set N(1) C Mg, is a minimal support for the absolutely
continuous spectrum of H. In particular,
0ac(H) = N(7) (9.96)

Moreover, the set S, (1) 2 My is a minimal support for the singular spectrum

of H.

€SS

Proof. By our corollary we have N(7) C M,.. Moreover, if A\ € M,.\N(7),
then either 0 = liminf Im(my) < limsup Im(my) or limsup Re(mp) = oo.
The first case can only happen on a set of Lebesgue measure zero by Theo-
rem 3.27, and the same is true for the second by Corollary 3.29.

Similarly, by our corollary we also have S (7) D M,, and A € S, (7)\ M
happens precisely when lim sup Re(m;) = oo, which can only happen on a
set of Lebesgue measure zero by Corollary 3.29. U

Note that if (A1, A2) € N(7), then the spectrum of every self-adjoint
extension H of 7 is purely absolutely continuous in the interval (A1, A2).
Example. Consider Hy = —j—; on (0,00) with a Dirichlet boundary con-
dition at « = 0. Then it is easy to check Hy > 0 and N(79) = (0,00). Hence
oac(Hp) = [0,00). Moreover, since the singular spectrum is supported on
[0,00)\N(19) = {0}, we see o5.(Hp) = 0 (since the singular continuous spec-
trum cannot be supported on a finite set) and o,,(Hp) C {0}. Since 0 is no
eigenvalue, we have o,,(Hp) = 0. o

Problem 9.13. Determine the spectrum of Hy = —% on (0,00) with a
general boundary condition (9.44) at a = 0.

9.6. Spectral transformations I1

In Section 9.3, we have looked at the case of one regular endpoint. In this
section, we want to remove this restriction. In the case of a regular endpoint
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(or more generally an [.c. endpoint), the choice of u(A, ) in Lemma 9.13 was
dictated by the fact that u(A, z) is required to satisfy the boundary condition
at the regular (I.c.) endpoint. We begin by showing that in the general case
we can choose any pair of linearly independent solutions. We will choose
some arbitrary point ¢ € I and two linearly independent solutions according
to the initial conditions

c(z,e) =1, ple)d(z,¢) =0, s(z,¢) =0, p(c)s'(z,c)=1. (9.97)

We will abbreviate

s(z,2) = (C(z’ ””)) . (9.98)

Lemma 9.28. There is a measure du(\) and a nonnegative matriz R(\)
with trace one such that

U: L*(I,rdx) — L*(R,Rdp)
f(@) = [, s 2)f(@)r(x) de
is a spectral mapping as in Lemma 9.13. As before, the integral has to be
understood as f: dz = lime|q grp fcd dx with limit taken in L*(R, Rdp), where

L?(R, Rdu) is the Hilbert space of all C?-valued measurable functions with
scalar product

(9.99)

(f.9)= /Rf*Rg dp. (9.100)

The inverse is given by

w*Fmﬂ—Axx@R@wumm». (9.101)

Proof. Let Uy be a spectral transformation as in Lemma 9.13 with corre-
sponding real solutions w;(\, z) and measures dp;(x), 1 < j < k. Without
loss of generality, we can assume k = 2 since we can always choose dus = 0
and ua (A, ) such that u; and ug are linearly independent.

Now define the 2 x 2 matrix C'()\) via

ul()‘vx) _ C()\,.f)
<mmw>“”@um
and note that C'(\) is nonsingular since uj, ug as well as s, ¢ are linearly
independent.

Set dii = dpy + dpo. Then dp; = rjdip and we can introduce R =

c* ( 3 792 )C’ . By construction, R is a (symmetric) nonnegative matrix. More-

over, since C'(A) is nonsingular, tr(R) is positive a.e. with respect to fi. Thus
we can set R = tr(R)"'R and dyu = tr(R)~'dji.
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This matrix gives rise to an operator

C: L*(R,Rdp) » @ LA R, duj),  F(A) = CNF(N),
J

which, by our choice of Rdu, is norm preserving. By CU = Uy it is onto
and hence it is unitary (this also shows that L?(R, Rdu) is a Hilbert space,
i.e., complete).

It is left as an exercise to check that C' maps multiplication by A in
L*(R, Rdp) to multiplication by A in @D, L*(R,dp;) and the formula for
UL O

Clearly the matrix-valued measure Rdu contains all the spectral in-
formation of A. Hence it remains to relate it to the resolvent of A as in
Section 9.3.

For our base point x = ¢ there are corresponding Weyl m-functions
me(2z) and myp(z) such that

ua(2) = c(z,x) — my(2)s(z, x), up(z) = c(z, ) + mp(2)s(z, x). (9.102)

The different sign in front of m,(z) is introduced such that m,(z) will again
be a Herglotz—Nevanlinna function. In fact, this follows using reflection at
¢, © — ¢ — —(x — ¢), which will interchange the roles of mg,(z) and my(2).
In particular, all considerations from Section 9.3 hold for m,(z) as well.

Furthermore, we will introduce the Weyl M-matrix

_ 1 -1 (ma(z) —my(2))/2
M(z)= Ma(2) +my(2) ((ma(z) —mp(2))/2 ma(z)me(z) ) '
(9.103)
Note det(M(z)) = —=. Since by virtue of (9.52)
_ _pu(ze) o pOw(z,0)
ma(z) = a(z.0) d my(2) w(n0) (9.104)
it follows that W(ug(z), up(2)) = ma(z) + mp(z) and
M(z) =
< G(z,2,7) (P()0x + p(y)0y)G (2, x, y)/2>
(P(2)0x +p(Y)y)G(2,2,9) /2 p()ap(y)0yG (2, x,y) x?g?b .

where G(z, x,y) is the Green function of A. Note that while p(x)0,G(z, z,y)
has different limits as y — x from y > x, respectively, y < x, the above off-
diagonal elements are continuous.

We begin by showing
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Lemma 9.29. Let U be the spectral mapping from the previous lemma.
Then

(UG(z,x,.)(\) =

)\ — Z§()‘a .’E),

(Up(x)0,G(z,2,.))(N) = (x)g'()\, x) (9.106)
for every x € (a,b) and every z € p(A

X
Proof. First of all, note that G(z, z, .)
and z € p(A). Moreover, from R4 (z)f

2((a b),rdz) for every x € (a,b)

€L
=U-! = ZUf,wehave

/ Glzva.1) f(0)r()dy = | 75O )R EO)du()

where F' = U f. Now proceed as in the proof of Lemma 9.15. O

With the aid of this lemma, we can now show

Theorem 9.30. The Weyl M-matrixz is given by

M(z)= D +/R (A ! - 1+Ax2> RONdu(N), Dy €R,  (9.107)
and
D = Re(M(i)) / L ROR(Y) = Tm(M () (9.108)
B Sy ! |
where
Re(M(2)) = %(M(z)nLM*(z)), Tm(M(2)) = %(M( )~ M*(2)). (9.109)

Proof. By the previous lemma, we have

1
[ 16 e = [ R0,
Moreover, by (9.28), (9.56), and (9.102), we infer

[ 16G.cnray - m(rub<z P /C\w ) Pr(y)dy

it ) - D

Similarly, we obtain

Im(M2s(2))
/\z_/\‘sz()\)du()\) ﬁ

and
Im(Miz(2))

/ — MQRm(A)du(A) )
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Hence the result follows as in the proof of Theorem 9.17. ([l
Example. Consider 7 = —j—; on I = (—00,00). Then we already know

from the example in Section 9.3 that m;(z) is given by (9.69). Moreover, by
symmetry, we have mg(z) = myp(z), implying

1 0
M(z) = 3 (F ) (9.110)

and

R(N\)du(\) = % (% \%) dA. (9.111)
<&

Now we are also able to extend Theorem 9.27. Note that by

( ! A )dﬂ(x) (9.112)

tr(M(z)) = Mn(z) + MQQ(Z) =d —I—/

R\A—2z 1+A2
(with d = tr(D) € R), we have that the set
M = {\|limsup Im(tr(M (X + ie))) = oo} (9.113)
el0

is a support for the singularly continuous part and

Mo = {0 < lim sup Im(tr(M (X + i€))) < oo} (9.114)
el

is a minimal support for the absolutely continuous part.

Theorem 9.31. The set No(7) U Ny(7) C Mqyc is a minimal support for the
absolutely continuous spectrum of A. In particular,

0ac(A) = No(r) U N (7). (9.115)
Moreover, the set
U Saa(m) N Shalr) 2 M, (9.116)
a€l0,m)

is a support for the singular spectrum of A.

Proof. By Corollary 9.25 we have 0 < lim inf Im(m,) and lim sup [m,| < co
if and only if A € N,(7) and similarly for m,.

Now suppose A € N,(7). Then limsup |M;;| < oo since limsup | M| =
o0 is impossible by 0 = lim inf | M;!| = lim inf |m, 4myp| > lim inf Tm(m,) >
0. Similarly, limsup |Mag| < oo. Moreover, if limsup |my| < oo, we also
have

m(mg + my) lim inf Im(m,,)

I
lim inf Im(M31) = lim inf >0

|mg +mp|2 ~ limsup [mg|? + lim sup |myp|?
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and if lim sup |my| = oo, we have

mq

mp

lim inf Im(Ma2) = lim inf Im (1 M ) > lim inf Im(m,) > 0.

Thus Ny (1) € M, and similarly Ny(7) C Mge.

Conversely, let A € M,.. By Corollary 3.29, we can assume that the
limits lim m, and lim mj both exist and are finite after disregarding a set of
Lebesgue measure zero. For such A, lim Im(M;1) and lim Im(Mag) both exist
and are finite. Moreover, either lim Im(M/11) > 0, in which case lim Im(m, +
mp) > 0, or limIm(Mj;) = 0, in which case

|ma\21m(mb) + |mb|21m(ma) —0

lim Im(Ma2) = 1i
0 < lim Im(My2) = lim il T [

yields a contradiction. Thus A € N,(7) U Ny(7) and the first part is proven.

To prove the second part, let A € M. If lim sup Im(M1) = oo, we have
limsup |Mi1] = oo and thus liminf |m, + my| = 0. But this implies that

there is some subsequence such that limm, = —limm, = cot(a) € RU{oo}.
Similarly, if limsup Im(May2) = oo, we have liminf |m, 1 + m;1| = 0, and
there is some subsequence such that lim mb_1 = —limm,! = tan(a) €
R U {oo}. This shows My C |, Sa,a(T) N Shal(T). O
Problem 9.14. Show
Im(ma(A)+me (V) 1m(ma(N)mg(A)) d\
[ma (N2 +[ms(M)[?

m(meg (A

[ma (N)[? Im(my (X)) +[mp (V) [ Im(ma () | 7
[ma ()P +[ms (

° [ma (NP +lms(V)]?

(
R(\)dpiac(N) = lflna(A)IQ(+)|mb8))
A)

|
)
|
where mq () = limg g mq (A + i€) and similarly for my(X\).

Moreover, show that the choice of solutions
ub()‘a IL‘) _ C()‘a IE)
<ua(>‘7x)> B V()\) <S(>\,SL‘) ’

B 1 1 mp(N)
Y = o T (1 —nl(A)) ’

diagonalizes the absolutely continuous part,

where

VI ROV () = 3 (0RO
Problem 9.15. Show that at an eigenvalue E, we have
_ 1 lu(E,0)[? u(E,0)u/(E,0)
RE{ED = [ (B, ) 2da <u(E70>*u’(E,0> W/ (E,0)[? > ’

where u(E, x) is a corresponding eigenfunction.
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9.7. The spectra of one-dimensional Schrodinger operators

In this section, we want to look at the case of one-dimensional Schrédinger
operators; that is, r = p =1 on (a, b) = (0, 00).
Recall that
d2

Hy= -2
0 dea

D(Hy) = H*(R), (9.117)
is self-adjoint and
am () = 111, Q(Ho) = H'(R). (9.118)

Hence we can try to apply the results from Chapter 6. We begin with a
simple estimate:

Lemma 9.32. Suppose f € H'(0,1). Then
1 1 1
sup |f(z)? <e / F(@)Pde + (14 1) / f@)de (9.119)
x€[0,1] 0 € Jo

for every e > 0.

Proof. First, note that

(1)l

3

T 1
f(@)]? = [f(0)] + 2/ Re(f(t)*f'(#))dt < |f(e)]” + 2/ Vel f(1)] di
0

;
<If@F+ [ <€|f’(t)\2 4 f(t)\2> ”

for any ¢ € [0,1]. But by the mean value theorem there is a ¢ € (0,1) such
1
that [£(0)% = [, 17(t)dt. 0

As a consequence we obtain

Lemma 9.33. Suppose ¢ € L2 (R) and

loc
n+1
sup/ lq(z)dz < . (9.120)
nezZ Jn
Then q is relatively bounded with respect to Hy with bound zero.

Similarly, if ¢ € Li. (R) and

loc

n+1
sup/ lq(z)|dx < oo, (9.121)
neZ Jn

then q is relatively form bounded with respect to Hy with bound zero.
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Proof. Let Q be in L2 (R) and abbreviate M = sup,cz [ |Q(x)[2dz.

loc n |

Using the previous lemma, we have for f € H'(R) that

n+1
lQfIE <Y / Q@) @) Pdr < MY sup |f(x)?

ez’ m nez TE€Mn+1]
n+1 , 5 1 n+1 5
<M 14—
< 2(/ Fafaes @t D) [1 )P

= M7+ @+ DIAR).

Choosing @ = |q|'/?, this already proves the form case since |f’|?

qm,(f). Choosing @ = ¢ and observing g, (f) = (f, Hof) < |[Hof|llIf]l <
s([Hof|*> + || fII?) for f € H*(R) shows the operator case.

O

Hence, in both cases, Hy + ¢ is a well-defined (semi-bounded) operator
defined as operator sum on D (Hy + q) = D(Hy) = H%(R) in the first case
and as form sum on Q(Hy + ¢) = Q(Hp) = H*(R) in the second case. Note
also that the first case implies the second one since by Cauchy—Schwarz we

have
/ " @lde < ( / " rq<x>\2dx) " (9.122)

This is not too surprising since we already know how to turn Hy + ¢ into
a self-adjoint operator without imposing any conditions on ¢ (except for
L} (R)) at all. However, we get at least a simple description of the (form)
domains, and by requiring a bit more, we can even compute the essential

spectrum of the perturbed operator.

Lemma 9.34. Suppose ¢ € L'(R). Then the resolvent difference of Hy and
Hy + q is trace class.

Proof. Using Go(z,z,x)=1/(2/—2), Lemma 9.12 implies that |q|"/2 Rz, ()
is Hilbert—Schmidt and hence the result follows from Lemma 6.29. O

Lemma 9.35. Suppose q € L}OC(R) and

n+1
lim lg(z)|dz = 0. (9.123)
[n|—o0 Jp
Then Rpy4q(2) — Ru,(z) is compact and hence oess(Ho + q) = 0ess(Ho) =
[0, 00).

Proof. By Weyl’s theorem it suffices to show that the resolvent difference is
compact. Let ¢,(z) = ¢(¥)XR\[—nn] (7). Then Rpyy14(2) — Ruy1q, (2) is trace
class, which can be shown as in the previous theorem since g—g¢,, has compact
support (no information on the corresponding diagonal Green’s function is
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needed since by continuity it is bounded on every compact set). Moreover,
by the proof of Lemma 9.33, ¢, is form bounded with respect to Hy with
constants a = M, and b = 2M,, where M, = Supj,,;>, fTZnH lq(z)|?dz.
Hence by Theorem 6.25 we see

Rityeq(—A) = Rig (=)' (1 = Cg, V) Ray (02, A>2,
with ||Cy,, (M| < M,,. So we conclude
Rty (=A) = Rizg (=A) = =Rt (=1)'/2C, () (1 = Cy,, (V)™  Rizy (=22,

A > 2, which implies that the sequence of compact operators Rpy4q(—\) —
RHy4q,(—A) converges to Rpy4+q(—A) — Ruy(—A) in norm, which implies
that the limit is also compact and finishes the proof. U

Using Lemma 6.23, respectively, Corollary 6.27, we even obtain

Corollary 9.36. Let ¢ = q1 + qo where q1 and g2 satisfy the assumptions of
Lemma 9.33 and Lemma 9.35, respectively. Then Ho+ q1 + qo is self-adjoint
and Jess(]irO +q1+ Q2) = Uess(HO + (h)-

This result applies, for example, in the case where ¢o is a decaying per-
turbation of a periodic potential ¢.

Finally we turn to the absolutely continuous spectrum.

Lemma 9.37. Suppose ¢ = q1 +q2, where q1 € L*(0,00) and g € AC|0, 00)
with ¢, € L*(0,00) and limg oo g2(x) = 0. Then there are two solutions
utr (N, x) of Tu = Au, A >0, of the form

ur(\,x) = (14 o(1))ug (N z), u\(N\z)=(1+ 0(1))U6,i()‘=$) (9.124)

as x — 0o, where
uo,+ (A, ) = exp (ii/ VA — @(y)dy) . (9.125)
0

Proof. We will omit the dependence on A for notational simplicity. More-

over, we will choose z so large that Wy (uo—,uo.+) = 2iy/A — g2(x) # 0.
Write

u(e) = Up(w)a(e), Uo(x)=<u?’+<x) “’Ogg) a<x>=<Zf§§§)-

g, () up

Then
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where
g+(x) =qi(x) £ i

Hence, u(z) will solve Tu = Au if

1 —q4(x) —q—(x)uo,—(x)?
ad(z)= ———— ( -+ ’ a(x).
<(@) W (uo,—, uo +) g+ (x)uo 4 (2)? q-(x) alz)

Since the coefficient matrix of this linear system is integrable, the claim
follows by a simple application of Gronwall’s inequality. O

Theorem 9.38 (Weidmann). Let q1 and g2 be as in the previous lemma
and suppose ¢ = q1 + qo satisfies the assumptions of Lemma 9.35. Let
H = Ho+qi1+q2. Then oqc(H) = [0,00), 05c(H) =0, and op(H) C (—00,0].

Proof. By the previous lemma, there is no subordinate solution for A > 0 on
(0, 00) and hence 0 < Im(my(A+i0)) < oco. Similarly, there is no subordinate
solution (—o0,0) and hence 0 < Im(mq(A+10)) < co. Thus the same is true
for the diagonal entries M;;(z) of the Weyl M-matrix, 0 < Im(M;;(A +
i0)) < oo, and hence du is purely absolutely continuous on (0,00). Since
Oess(H) = [0,00), we conclude o4.(H) = [0,00) and os.(H) C {0}. Since
the singular continuous part cannot live on a single point, we are done. [

Note that the same results hold for operators on [0, c0) rather than R.
Moreover, observe that the conditions from Lemma 9.37 are only imposed
near 400 but not near —co. The conditions from Lemma 9.35 are only used
to ensure that there is no essential spectrum in (—o0,0).

Having dealt with the essential spectrum, let us next look at the discrete
spectrum. In the case of decaying potentials, as in the previous theorem,
one key question is whether the number of eigenvalues below the essential
spectrum is finite.

As preparation, we shall prove Sturm’s comparison theorem:

Theorem 9.39 (Sturm). Let 19, 71 be associated with qo > q1 on (a,b),
respectively. Let (c¢,d) C (a,b) and Tou = 0, pv = 0. Suppose at each end
of (¢c,d) either Wy(u,v) = 0 or, if ¢,d € (a,b), u = 0. Then v is either a
multiple of u in (c,d) or v must vanish at some point in (c,d).

Proof. By decreasing d to the first zero of u in (¢, d] (and perhaps flipping
signs), we can suppose u > 0 on (c¢,d). If v has no zeros in (¢,d), we can
suppose v > 0 on (¢, d) again by perhaps flipping signs. At each endpoint,
W (u,v) vanishes or else u = 0, v > 0, and u/(¢) > 0 (or «/(d) < 0). Thus,
We(u,v) <0, Wy(u,v) > 0. But this is inconsistent with

d
W, v) — Wi, v) = / (aolt) — a1 (0))ultyol(t) dt, (9.126)
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unless both sides vanish. O

In particular, choosing ¢y = ¢ — A\g and ¢; = ¢ — A1, this result holds for
solutions of Tu = Agu and v = A\qv.

Now we can prove

Theorem 9.40. Suppose q satisfies (9.121) such that H is semi-bounded
and Q(H) = HYR). Let \g < --- < Ay < -+ be its eigenvalues below
the essential spectrum and g, ..., Yn,... the corresponding eigenfunctions.
Then 1, has n zeros.

Proof. We first prove that 1,, has at least n zeros and then that if v, has
m zeros, then (—oo, \,] has at least (m + 1) eigenvalues. If v, has m zeros
at x1,x2,...,Tym and we let g = a, Tm4+1 = b, then by Theorem 9.39, ¥ 4+1
must have at least one zero in each of (zo,x1), (1, 22), ..., (Tm, Tm+1); that
is, ¥p+1 has at least m+1 zeros. It follows by induction that v, has at least
N ZEros.

On the other hand, if v, has m zeros x1, ..., %y, define
< <
"73(:[;> = wn(x)’ ajj B x._ $]+17 ] = O? R 7m7 (9'127)
0 otherwise,
where we set z9 = —o0 and z,,41 = 0o. Then 7; is in the form domain

of H and satisfies (n;, Hn;) = A, ||n;|>. Hence if n = > jeocings then
(n, Hn) = A |In||? and it follows by Theorem 4.15 (i) that there are at least
m + 1 eigenvalues in (—oo, A,]. O

Note that by Theorem 9.39, the zeros of 1, interlace the zeros of .
The second part of the proof also shows

Corollary 9.41. Let H be as in the previous theorem. If the Weyl solution
u+(A,.) has m zeros, then dimRan_. x)(H) > m. In particular, X below
the spectrum of H implies that uy(X,.) has no zeros.

The equation (7 —\)u is called oscillating if one solution has an infinite
number of zeros. Theorem 9.39 implies that this is then true for all solu-
tions. By our previous considerations this is the case if and only if o(H) has
infinitely many points below A. Hence it remains to find a good oscillation
criterion.

Theorem 9.42 (Kneser). Consider q on (0,00). Then

1
lim inf (:172q(:z:)) > —— implies nonoscillation of T near co (9.128)
T—00 4
and
1
lim sup (ac2q(x)) < —— implies oscillation of T near co. (9.129)

T—00 4
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Proof. The key idea is that the equation

d? I

dz? = 2?2

is of Euler type. Hence it is explicitly solvable with a fundamental system
given by

TO = —

There are two cases to distinguish. If ;1 > —1/4, all solutions are nonoscil-
latory. If ;1 < —1/4, one has to take real/imaginary parts and all solutions

are oscillatory. Hence a straightforward application of Sturm’s comparison
theorem between 7y and 7 yields the result. ([

Corollary 9.43. Suppose q satisfies (9.121). Then H has finitely many
eigenvalues below the infimum of the essential spectrum 0 if

1
lim inf (2%q(z)) > —= (9.130)
|z|—o00 4
and infinitely many if
1
lim sup (z%¢q(z)) < —-. (9.131)

Problem 9.16. Suppose q(x) is symmetric, q(—z) = q(x). Show that all
etgenvectors are either symmetric or anti-symmetric. Show that under the
assumptions of Theorem 9.40 the lowest eigenvalue is symmetric.

Problem 9.17. Show that if q is relatively bounded with respect to Hy, then
necessarily ¢ € L? (R) and (9.120) holds. Similarly, if q is relatively form

loc

bounded with respect to Hy, then necessarily ¢ € L} (R) and (9.121) holds.

loc

Problem 9.18. Suppose ¢ € L'(R) and consider H = f% + q. Show
that info(H) < [z q(x)dz. In particular, there is at least one eigenvalue
below the essential spectrum if [, q(x)dx < 0. (Hint: Let ¢ € CP(R) with
o(x) =1 for |x| <1 and investigate qr(prn), where p,(x) = p(z/n).)






Chapter 10

One-particle
Schrodinger operators

10.1. Self-adjointness and spectrum

Our next goal is to apply these results to Schrodinger operators. The Hamil-
tonian of one particle in d dimensions is given by

H=Hy+YV, (10.1)

where V : R? — R is the potential energy of the particle. We are mainly
interested in the case 1 < d < 3 and want to find classes of potentials which
are relatively bounded, respectively, relatively compact. To do this, we need
a better understanding of the functions in the domain of Hy.

Lemma 10.1. Suppose n < 3 and ¢» € H?>(R™). Then ¢ € Coo(R™) and for
every a > 0 there is a b > 0 such that

[¥lloc < allHo[| + bl[4]]- (10.2)

Proof. The important observation is that (p? + %)=t € L*([R") if n < 3.
Hence, since (p? ++2)¢ € L*(R"), the Cauchy—Schwarz inequality

151 = [1(0* + %)~ (0 + )b (p) 1
<E*+ )G+ %))

shows ¢ € L'(R™). But now everything follows from the Riemann-Lebesgue
lemma, that is,

[llee < 2m)72[1(0* + 7)) + 22114 (@)])
= (v/2m)"2(1(0* + V) (v How | + 1),
which finishes the proof. O

257
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Now we come to our first result.

Theorem 10.2. Let V' be real-valued and V € LZ(R™) if n > 3 and V €
LE(R™) + LA(R™) if n < 3. Then V is relatively compact with respect to Hy.
In particular,

H=Hy+V, D(H) = H*(R"), (10.3)
is self-adjoint, bounded from below and
Oess(H) = [0, 00). (10.4)

Moreover, C°(R™) is a core for H.

Proof. Write V = Vj + V5 with V; € LE(R") and V, € L?(R") if n < 3 and
Vo = 0 otherwise. Clearly ©(Hy) C ©(V4) and our previous lemma shows
that ®(Hy) C ©(V2) as well. Moreover, invoking Lemma 7.21 with f(p) =
(p?—2)71, 2 € p(Hyp), and g(z) = Vj(x) (note that f € LZ(R™)NL?(R™) for
n < 3) shows that both V; and V3 are relatively compact. Hence V' = V4 V5
is relatively compact. Since CZ°(R™) is a core for Hy by Lemma 7.19, the
same is true for H by the Kato—Rellich theorem. ([

Observe that since C°(R") C D(Hy), we must have V € L2 (R") if
D(Hp) CD(V).

Corollary 10.3. Let V be as in the previous theorem. Then xq, with Q C
R™ bounded, is relatively compact with respect to H = Ho+V. In particular,
the operators K, = X, (0) satisfy the assumptions of the RAGE theorem.

Proof. This follows from Lemma 6.23 and the discussion after Lemma 7.21.
O

10.2. The hydrogen atom

We begin with the simple model of a single electron in R? moving in the
external potential V' generated by a nucleus (which is assumed to be fixed
at the origin). If one takes only the electrostatic force into account, then
V' is given by the Coulomb potential and the corresponding Hamiltonian is
given by

HO = _A - % D(HWY) = H2(R?). (10.5)

If the potential is attracting, that is, if v > 0, then it describes the hydrogen
atom and is probably the most famous model in quantum mechanics.

We have chosen as domain D(HW) = D(Hy) ND (%) = D(Hp), and by

||
Theorem 10.2, we conclude that H®) is self-adjoint. Moreover, Theorem 10.2
also tells us
Tess(HM) = [0, 00) (10.6)
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and that H® is bounded from below,
Ey =info(HW) > —cc. (10.7)

If v < 0, we have H) > 0 and hence Ey = 0, but if v > 0, we might have
Ey < 0 and there might be some discrete eigenvalues below the essential
spectrum.

In order to say more about the eigenvalues of H("), we will use the fact

that both Hy and V() = —~/|z| have a simple behavior with respect to
scaling. Consider the dilation group
U(s)y(z) = e "/ (e *z),  seR, (10.8)

which is a strongly continuous one-parameter unitary group. The generator
can be easily computed:

Dy(a) = ap+pa)(a) = (ap— 5)wle),  wESEY.  (10.)

Now let us investigate the action of U(s) on H™:
HY(s) =U(—s)HOU(s) = e 2 Hy + >V, D(HWV(s)) = D(HW).
Now suppose HW ) = A¢p. Then
(W, [U(s), HOJ) = (U (=), M) = (M, U(s)9)) = 0 (10.11)

and hence

0= i~ (0, [U(s), HOL) = li (U (=), )
= — (b, (2Hy + V). (10.12)

Thus we have proven the virial theorem.

Theorem 10.4. Suppose H = Ho+V with V' symmetric, relatively bounded,
and U(—s)VU(s) = e *V. Then every normalized eigenfunction 1 corre-
sponding to an eigenvalue \ satisfies

N =, Hot) = (6, V) (10.13)

In particular, all eigenvalues must be negative.

This result even has some further consequences for the point spectrum
of HW.

Corollary 10.5. Suppose v > 0. Then
op(HW) = o4(HY) = {E}} jen,, Ey< Ej < Ej11 <0,  (10.14)

with limjﬁoo Ej =0.
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Proof. Choose ¢ € C2°(R\{0}) and set ¢(s) = U(—s)y. Then

(W(s), HMp(s)) = e 2 (s, Hoyp) + e (1p, VD)

which is negative for s large. Now choose a sequence s, — oo such that
we have supp((s,)) N supp(Y(sm)) = 0 for n # m. Then Theorem 4.15
(i) shows that rank(Ppa)((—00,0))) = oco. Since each eigenvalue Ej; has
finite multiplicity (it lies in the discrete spectrum), there must be an infinite
number of eigenvalues which accumulate at 0. O

If v < 0, we have a4(H™M) = () since HY) > 0 in this case.

Hence we have obtained quite a complete picture of the spectrum of
HW . Next, we could try to compute the eigenvalues of H1) (in the case
~v > 0) by solving the corresponding eigenvalue equation, which is given by
the partial differential equation

— Ad(w) — —ip(x) = Mb(x). (10.15)

|z

For a general potential this is hopeless, but in our case we can use the rota-
tional symmetry of our operator to reduce our partial differential equation
to ordinary ones.

First of all, it suggests a switch from Cartesian coordinates = =
(1,2, 23) to spherical coordinates (r,0, ) defined by

x1 = rsin(f) cos(p), 2 =rsin(f)sin(p), x3 = rcos(d), (10.16)

where r € [0,00), 6 € [0,7], and ¢ € (—m,7]. This change of coordinates
corresponds to a unitary transform

L3(R?) — L%((0,00),72dr) @ L((0,7),sin(8)df) @ L?((0,2n),dy). (10.17)
In these new coordinates (7,6, @), our operator reads

190 ,0 1
m_o_19.0 15 _
H r2 arr or + T,QL +V(r), V(r) - (10.18)
where
0 0 1 9?2

_78111(9)%811'1(9)% — 7811’1(9)287%02. (1019)

=L+ I13+13=

(Recall the angular momentum operators L; from Section 8.2.)

Making the product ansatz (separation of variables)

P(r,0,0) = R(r)O(0)2(p), (10.20)
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we obtain the three Sturm—Liouville equations

1d ,d (l1+1
(_2+(+)

—+ V(T)) R(r) = AR(r),

72 drr dr 72
TTL2
g ()4 ) o) = 0+ 1)06),
2
—Cng@(@) =m*®(p). (10.21)

The form chosen for the constants I(I + 1) and m? is for convenience later
on. These equations will be investigated in the following sections.

Problem 10.1. Generalize the virial theorem to the case U(—s)VU(s) =
eV, a € R\{0}. What about Corollary 10.57

10.3. Angular momentum

We start by investigating the equation for ®(y) which is associated with the
Sturm-Liouville equation
T =-8"  I=(0,2n). (10.22)

Since we want 1 defined via (10.20) to be in the domain of Hy (in particular
continuous), we choose periodic boundary conditions the Sturm-Liouville
equation
AD =70, D(A)={dc L*0,21)| & € AC[0,2n7],
®(0) = ®(27), 9'(0) = ¢’ (27)}.
(10.23)

From our analysis in Section 9.1, we immediately obtain

Theorem 10.6. The operator A defined via (10.22) is self-adjoint. Its
spectrum is purely discrete, that is,

o(A) = 04(A) = {m?|m € Z}, (10.24)
and the corresponding eigenfunctions
1

D () = meimw, m € 7, (10.25)

form an orthonormal basis for L(0,27).

Note that except for the lowest eigenvalue, all eigenvalues are twice de-
generate.

We note that this operator is essentially the square of the angular mo-
mentum in the third coordinate direction, since in polar coordinates
10

Ly=-—.
3 idy

(10.26)
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Now we turn to the equation for O(6):

m2
70(6) = sinl(H) (-ja sin(e)d% + Sm(e)) 0(6), I=1(0,7),m e No.

(10.27)

For the investigation of the corresponding operator we use the unitary
transform

L*((0,7),sin(0)d) — L*((—1,1),dz), ©(0) — f(z) = O(arccos(z)).

(10.28)
The operator 7 transforms to the somewhat simpler form
d d m?
=——(1-2Y)— - ——. 10.29
m dm( “ )daf 1— 22 ( )
The corresponding eigenvalue equation
Tmu =1l + 1)u (10.30)

is the associated Legendre equation. For [ € Ny it is solved by the
associated Legendre functions [44, (14.6.1)]

dm
P (z) = (-1)"™(1 - fcz)m/z’w—mf’z(w), Im| <1, (10.31)
where the
P(z) = iil(aﬂ —1)! 1eN (10.32)
) 91 gyl ’ 0 ‘

are the Legendre polynomials [44, (14.7.13)] (Problem 10.2). Moreover,
note that the Pj(x) are (nonzero) polynomials of degree | and since 7,
depends only on m?, there must be a relation between P/"(z) and P, ™ (z).
In fact (Problem 10.3),

—-m _ m (l + m)' m
A second, linearly independent, solution is given by
e =A@ [ s (10.34)
P o (1—e)Pr(t)* ’

In fact, for every Sturm-Liouville equation, v(z) = u(z) [*

p(t)dﬁ satisfies
7v = 0 whenever 7u = 0. Now fix [ = 0 and note Py(z) = 1. For m = 0 we
have Q) = arctanh(z) € L? and so 79 is l.c. at both endpoints. For m > 0
we have Q' = (v +1)"™/2(C 4 O(x £ 1)) which shows that it is not square
integrable. Thus 7, is l.c. for m = 0 and l.p. for m > 0 at both endpoints.

In order to make sure that the eigenfunctions for m = 0 are continuous (such
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that 1) defined via (10.20) is continuous), we choose the boundary condition
generated by Py(z) =1 in this case:

Anf =1,
D(Am) = {f € L*(—1,1)| f € ACY(~1,1), 7 f € L*(-1,1), (10.35)
lim,—41(1 — 22)f'(z) = 0 if m = 0}.
Theorem 10.7. The operator A,,, m € Ny, defined via (10.35) is self-
adjoint. Its spectrum is purely discrete, that is,
o(Apm) = 04(Am) = {l(l+ 1)|l € Ng,1 > m}, (10.36)

and the corresponding eigenfunctions

2041 (1 —m)!

P > 10.
> (+m) (), l € Ng,l>m, (10.37)

Ul,m (.CE) -

form an orthonormal basis for L?>(—1,1).

Proof. By Theorem 9.6, A,, is self-adjoint. Moreover, P/™ is an eigenfunc-
tion corresponding to the eigenvalue [(I + 1), and it suffices to show that
the P form a basis. To prove this, it suffices to show that the functions
P™(x) are dense. Since (1 —x?) > 0 for z € (—1,1), it suffices to show that
the functions (1 —22)~"/2P/™(z) are dense. But the span of these functions
contains every polynomial. Every continuous function can be approximated
by polynomials (in the sup norm, Theorem 0.20, and hence in the L? norm),
and since the continuous functions are dense, so are the polynomials.

For the normalization of the eigenfunctions, see Problem 10.7, respec-
tively, [44, (14.17.6)]. O

Returning to our original setting, we conclude that the

2+ 1 (1 +m)!

O =/ = (1 —m)!

P (cos(0)), |m|<lI, (10.38)

form an orthonormal basis for L?((0, ), sin()df) for every fixed m € Ny.

Theorem 10.8. The operator L? on L*((0,7),sin(6)df) @ L*((0,2x)) has
a purely discrete spectrum given

o(L?) = {I(I + 1)|l € No}. (10.39)
The spherical harmonics

2041 (1 —m)!
47 (I+m)!

Y"(0,¢) = 07" (0)Pm(p) = P (cos(0))e™?,  |m| <1,

(10.40)
form an orthonormal basis and satisfy L*Y,™ = (1 + 1)Y™ and L3Y;" =
l ! !
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Proof. Everything follows from our construction, if we can show that the
Y;™ form a basis. But this follows as in the proof of Lemma 1.10. O

Note that transforming the Y™ back to Cartesian coordinates gives

nimw>=<—nmvh211$;jZ&ﬁﬁ(?)(xli””) r=lo

r
(10.41)
where P/™ is a polynomial of degree | — m given by
N dHm
PMa) = (1= a?) 2P (z) = (=2 (10.42)

In particular, the Y;™ are smooth away from the origin, and by construction,

they satisfy

l(l+1)
r2

— A" = Y™, (10.43)

Problem 10.2. Show that the associated Legendre functions satisfy the
differential equation (10.30). (Hint: Start with the Legendre polynomials
(10.32) which correspond to m = 0. Set v(z) = (z% — 1)! and observe
(22 — 1)/ (z) = 2lzv(z). Then differentiate this identity | + 1 times using
Leibniz’s rule. For the case of the associated Legendre functions, substitute
v(z) = (1 — 22)™?u(zx) in (10.30) and differentiate the resulting equation
once.)

Problem 10.3. Show (10.33). (Hint: Write (2% — 1) = (z — D!z + 1)!
and use Leibniz’s rule.)

Problem 10.4 (Orthogonal polynomials). Suppose the monic polynomials
Pj(z) = 2l —I—@-:Ujfl + ... are orthogonal with respect to the weight function
w(z):

2

b a2 i=j
/ Pi(:r)Pj(:U)w(x)dx:{ i !

0, otherwise.

Note that they are uniquely determined by the Gram—Schmidt procedure.
Let Pj(z) = aj_lP(x) and show that they satisfy the three term recurrence
relation

ajpj+1(a:) + bjpj(a:) + aj_1pj_1(x) = xPj(:c),
where

b b
o= [ aP@P @@, b= [ oP@ s
Moreover, show

aj+1
a; = ) bj = Bj — Bj+1-
Qj

(Note that w(z)dz could be replaced by a measure du(x).)
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Problem 10.5. Consider the orthogonal polynomials with respect to the
weight function w(x) as in the previous problem. Suppose |w(z)| < Ce *=!
for some C,k > 0. Show that the orthogonal polynomials are dense in
L*(R,w(x)dz). (Hint: It suffices to show that [ f(z)z/w(z)dz = 0 for
all j € Ny implies f = 0. Consider the Fourier transform of f(x)w(z) and
note that it has an analytic extension by Problem 7.8. Hence this Fourier
transform will be zero if, e.g., all derivatives at p = 0 are zero (cf. Prob-

lem 7.3).)
Problem 10.6. Show

WL Cpkr =2k,
Piw) = Z:;) QZli!(l)—(lc)!(l —z)k)!”“"l =

Moreover, by Problem 10.4, there is a recurrence relation of the form
Py(z) = (ag+biz)P(x) + ¢ P—1(x). Find the coefficients by comparing the
highest powers in x and conclude

({+1)Pyi(z) = 2L+ 1)zP(z) — 1P ;.
Use this to prove
! 2
/1 P(z)?dx = a1
Problem 10.7. Prove

1
2 (I+m)!
PM(x)de = —— — .
/_1 @) = S )
(Hint: Use (10.33) to compute f_ll P (x) P ™ (x)dx by integrating by parts
until you can use the case m =0 from the previous problem.)

10.4. The eigenvalues of the hydrogen atom

Now we want to use the considerations from the previous section to decom-
pose the Hamiltonian of the hydrogen atom. In fact, we can even admit any
spherically symmetric potential V(z) = V(|z|) with

V(r) e L((0,00)) + LQ((O, 00), r2d'r) (10.44)
such that Theorem 10.2 holds.

The important observation is that the spaces
Sim = {1(x) = R(r)Y™(0, )| R(r) € L*((0,00),7°dr)} (10.45)

with corresponding projectors

27
P(r,0,0) = ( / / b0, Y, >sin<e'>d0’dso') Y7 (0, )
(10.46)
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reduce our operator H = Hy 4+ V. By Lemma 2.25 it suffices to check
this for H restricted to C2°(R?), which is straightforward. Hence, again by
Lemma 2.25,

H=Hy+V=H, (10.47)
lm
where
~ _ - 1d od I(l+1)
MR(r) = 7R(r), fi=— 5+ =5+ V),
D(H;) € L*((0,00), rdr). (10.48)
Using the unitary transformation
L%((0,00), r%dr) — L*((0, 00)), R(r) — u(r) =rR(r), (10.49)
our operator transforms to
d I(l+1)
Alf = Tlf) T = _W + T2 + V(T))
D(A;) = P"D(H) C L*((0,00)). (10.50)

It remains to investigate this operator (that its domain is indeed independent
of m follows from the next theorem).

Theorem 10.9. Suppose (10.44). The domain of the operator A; is given
by
D(A) = {f € L*((0,00))| [, f' € AC((0,00)),7f € L*((0,00)), ~ (10.51)
limy—o(f(r) —rf'(r)) =0 if | = 0},
where I = (0,00). Moreover,
Geanl(A1) = [0, 00). (10.52)
If, in addition, LL((0,00)) N AC([0, 00]) + L2((0, 00),72dr), then
Oess(A) = 0ac(Ar) = [0,00), o0sc(A) =0, op C (—00,0].  (10.53)

Proof. By construction of A;, we know that it is self-adjoint and satisfies
Oess(Ar) C [0,00) (Problem 10.8). So it remains to compute the domain. We
know at least ®(A4;) C D(7) and since D (H) = D(H), it suffices to consider
the case V = 0. In this case, the solutions of —u"(r) + l(l%l)u(r) = 0 are
given by u(r) = ar!™ + Br~l. Thus we are in the 1.p. case at co for every
I € Ng. However, at 0 we are in the l.p. case only if [ > 0; that is, we need
an additional boundary condition at 0 if [ = 0. Since we need R(r) = @ to
be bounded (such that (10.20) is in the domain of Hy, that is, continuous),

we have to take the boundary condition generated by u(r) = r.
Concerning the last claim, note that under this additional assumption we

can apply Lemma 9.37. Hence we have (0,00) C Noo(7;) and Theorem 9.31

implies 040(A;) = [0,00), 0sc(A4;) =0, and 0, C (—00,0]. O
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Finally, let us turn to some special choices for V', where the correspond-
ing differential equation can be explicitly solved. The simplest caseis V = 0.
In this case, the solutions of

— () + l(l; Y u(r) = u(r) (10.54)
are given by
u(r) = az 2 gi(Var) + 82D 2y (Var), (10.55)

where j;(r) and y;(r) are the spherical Bessel, respectively, spherical
Neumann, functions

i) = \/Z,Jm/z(?") — (=) <i;>l Siny)’

l
yi(r) = \/ZYZ-HM(T) = —(—r)! C;D Coi(r). (10.56)

Note that 2=/ j;(/zr) and z(41/2p4,(\/2r) are entire as functions of z
and their Wronskian is given by W (2127 j;(y/zr), 24020y (/2r)) = 1.
See [44, Chapter 10]. In particular,

2l
@+
up(z,1) = V=2 (i =2r) + ig(iv=ar) = e VIR 0())
(10.57)

ua(z,7) = i(Ver) = T+ o0®),

1

are the functions which are square integrable and satisfy the boundary con-
dition (if any) near a = 0 and b = oo, respectively.

The second case is that of our Coulomb potential
Vir)=—-, v >0, (10.58)

where we will try to compute the eigenvalues plus corresponding eigenfunc-
tions. It turns out that they can be expressed in terms of the Laguerre
polynomials ([44, (18.5.5)])
e &
() = = & aTyd
Lj(r)= 7 il (10.59)
and the generalized Laguerre polynomials ([44, (18.5.5)])

k
L) = () L), (10.60)
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Note that the Lgk) (r) are polynomials of degree j — k which are explicitly
given by

(k) L (iR
L)y => (-1 i) (10.61)
=0
and satisfy the differential equation (Problem 10.9)
ry’(r)+ (k+1—7r)y'(r) +jy(r) = 0. (10.62)

Moreover, they are orthogonal in the Hilbert space L2((0,00),r*e "dr)
(Problem 10.11):

ok k Gt = J
/ L yrkerdar = T i (10.63)
0 J 0, otherwise.
Theorem 10.10. The eigenvalues of HY) are explicitly given by
- 2
E,=——"—] , Np. 10.64
(%n+U) e o (10.64)

An orthonormal basis for the corresponding eigenspace is given by the (n-+1)?
functions

Unom(T) = Roy(r)Y"(x),  |m| <1<, (10.65)

where

73 (n—1)! or b (2141), T
Rair) =[5 e T L (),

n+D4n+1+1)! \n+1 n+1
(10.66)
2
In particular, the lowest eigenvalue Fy = —Vz 1s simple and the correspond-

ing eigenfunction oo () = 4/ ge*m”/z 18 positive.

Proof. Since all eigenvalues are negative, we need to look at the equation

Il+1) ~

"

_ _ 1 Y

o) + (Y D) = dugr)

for A < 0. Introducing new variables x = 2v/—\r and v(z) = ;lmﬁ u(2\/:”_—/\),
this equation transforms into Kummer’s equation

o’ (z) + (k+1—2)(x) +jv(x) =0, k=21+1,j= 7 —(l+1).

2v/ =X

Now let us search for a solution which can be expanded into a convergent
power series

v(z) = Zvixi, vo = 1. (10.67)
i=0
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The corresponding u(r) is square integrable near 0 and satisfies the boundary
condition (if any). Thus we need to find those values of A for which it is
square integrable near +oc0.

Substituting the ansatz (10.67) into our differential equation and com-
paring powers of x gives the following recursion for the coefficients:

(i-4)
G+1)G+k+1)"

Viy1 =

and thus

vi Z'H£+k+1

Now there are two cases to distinguish. If j € Ny, then v; =0 for ¢ > j and
v(z) is a polynomial; namely

o(@) = (j j k) _1L§’“> (2).

In this case, u(r) is square integrable and hence an eigenfunction correspond-
ing to the eigenvalue \; = —(ﬁ)z, n = j + 1. This proves the formula
for R, ;(r) except for the normalization which follows from (Problem 10.11)

) (2, e (J +k)!
/0 L7 (r)"r™ e dr = i (2 +k+1). (10.68)

It remains to show that we have found all eigenfunctions, that is, that there
are no other square integrable solutions. Otherwise, if j ¢ N, we have
oL > > U +E) for i sufficiently large. Hence by adding a polynomial to v(z )
(and perhaps flipping its sign), we can get a function o(x) such that v; >
a ZE) for all 7. But then o(z) > exp((1 — €)z) and thus the corresponding
u(r) is not square integrable near +oc. O

Finally, let us also look at an alternative algebraic approach for com-
puting the eigenvalues and eigenfunctions of A; based on the commutation
methods from Section 8.4. We begin by introducing

- i [+1 B ~y
Qlf__dr+ r 2(1+1)’
D(Q) = {f € L*((0,00))|f € AC((0,00)), Qif € L*((0,00))}.  (10.69)
Then (Problem 9.3) @ is closed, and its adjoint is given by

. d [+1 y
Qif =gt~ 2(1+ 1)
D(Q)) = {f € L*((0,00))| [ € AC((0,00)), Qi f € L*((0,00)),  (10.70)
limy 0,00 f(2)g(z) =0, Vg € D(Qy)}.




270 10. One-particle Schrédinger operators

It is straightforward to check
Ker(Q) = span{u;o},  Ker(Q) = {0}, (10.71)

where

1 (41)+1/2 - .
= T2 " 10.72
() @i o) <l+1> e (10.72)

is normalized.

Theorem 10.11. The radial Schrédinger operator A; with Coulomb poten-
tial (10.58) satisfies

A=QiQu—cf, A1 =QQ -, (10.73)
where
o =— (10.74)
2(1+1)

Proof. Equality is easy to check for f € AC? with compact support. Hence
QrQr — cl2 is a self-adjoint extension of 7; restricted to this set. If [ > 0,
there is only one self-adjoint extension and equality follows. If [ = 0, we
know g € D(Q;Q;), and since A is the only self-adjoint extension with
u0,0 € D(A;), equality follows in this case as well. O

Hence, as a consequence of Theorem 8.6 we see 0(4;) = o(A;11)U{—c?},
or, equivalently,
op(Ar) ={=c}lj = 1} (10.75)
if we use that o,(A4;) C (—00,0), which already follows from the virial the-
orem. Moreover, using (J);, we can turn any eigenfunction of H; into one
of Hj;1. However, we only know the lowest eigenfunction u;o, which is
mapped to 0 by @;. On the other hand, we can also use ()] to turn an
eigenfunction of H;; into one of H;. Hence Qju;410 will give the second
eigenfunction of H;. Proceeding inductively, the normalized eigenfunction
of H; corresponding to the eigenvalue —cl2 » is given by

-1

7—1
uyj = <H(Cl+j - Cl+k)) QI Qry1 Qi 1Ui4j0- (10.76)

k=0

The connection with Theorem 10.10 is given by
1
Ry(r) = ;Uz,n—z(r)- (10.77)

Problem 10.8. Let A = @, An. Then |J,, 0ess(An) C 0ess(A). Give an
example where equality does not hold.
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Problem 10.9. Show that the generalized Laguerre polynomials satisfy the
differential equation (10.62). (Hint: Start with the Laguerre polynomials
(10.59) which correspond to k = 0. Set v(r) = r7e™" and observe rv'(r) =
(j — r)v(r). Then differentiate this identity j + 1 times using Leibniz’s
rule. For the case of the generalized Laguerre polynomials, start with the
differential equation for L (r) and differentiate k times.)

Problem 10.10. Show that the differential equation (10.59) can be rewritten
in Sturm—Liouville form as
_T—kerirk—&—le—ri

dr ar I

We have found one entire solution in the proof of Theorem 10.10. Show that
any linearly independent solution behaves like log(r) if k = 0, respectively,
like r=F otherwise. Show that it is l.c. at the endpoint r = 0 if k = 0 and
l.p. otherwise.

Let $ = L%((0,00),7ke~"dr). The operator
d d
_ _ k. r k+1_—r
Apf=1f=—r e’ re —drf,

D(Ax) ={f € 9| f € ACH(0,00),71.f € %,
lim, o7 f'(r) =0 if k =0}

for k € Ny is self-adjoint. Its spectrum is purely discrete, that is,
o(Ay) = 04(Ar) = No, (10.78)
and the corresponding eigenfunctions
k .
L),  jeN, (10.79)

form an orthogonal base for $). (Hint: Compare the argument for the asso-
ciated Legendre equation and Problem 10.5.)

Problem 10.11. By Problem 10.4 there is a recurrence relation of the form
L;li)l (r) = (a; + l;jr)Lg.k) (r)+ EjL§-k_)1 (r). Find the coefficients by comparing
the highest powers in r and conclude

k 1 ) k . k
L) = 1 (@ k1= 0L ) = G+ RLE ).
Use this to prove (10.63) and (10.68). (Hint: Orthogonality follows from the
previous problem, and to see the normalization in (10.63), use orthogonality
and the above recursion (twice) to relate the integral for j to the one for

j—1.)
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10.5. Nondegeneracy of the ground state

The lowest eigenvalue (below the essential spectrum) of a Schrédinger op-
erator is called the ground state. Since the laws of physics state that a
quantum system will transfer energy to its surroundings (e.g., an atom emits
radiation) until it eventually reaches its ground state, this state is in some
sense the most important state. We have seen that the hydrogen atom has
a nondegenerate (simple) ground state with a corresponding positive eigen-
function. In particular, the hydrogen atom is stable in the sense that there
is a lowest possible energy. This is quite surprising since the corresponding
classical mechanical system is not — the electron could fall into the nucleus!

Our aim in this section is to show that the ground state is simple with a
corresponding positive eigenfunction. Note that it suffices to show that any
ground state eigenfunction is positive since nondegeneracy then follows for
free: two positive functions cannot be orthogonal.

To set the stage, let us introduce some notation. Let $ = L*(R™). We
call f € L%*(R") positive if f > 0 a.e. and f # 0. We call f strictly
positive if f > 0 a.e. A bounded operator A is called positivity preserv-
ing if f > 0 implies Af > 0 and positivity improving if f > 0 implies
Af > 0for f # 0. Clearly A is positivity preserving (improving) if and only
if (g, Af) >0 (>0) for f,g>0and f,g #0.

Example. Multiplication by a positive function is positivity preserving (but
not improving). Convolution with a strictly positive function is positivity
improving. o

We first show that positivity improving operators have positive eigen-
functions.

Theorem 10.12. Suppose A € L£(L*(R")) is a self-adjoint, positivity im-
proving and real (i.e., it maps real functions to real functions) operator. If
| Al is an eigenvalue, then it is simple and the corresponding eigenfunction
is strictly positive.

Proof. Let ¢ be an eigenfunction. It is no restriction to assume that v is
real (since A is real, both real and imaginary parts of ¢ are eigenfunctions

as well). We assume ||| = 1 and denote by ¢+ = W'% the positive and
negative parts of ¢». Then by |AY| = |[Ayy — AY_| < Ay + Ay = Al

we have

1A = (4, A) < (o, [Av]) < (ol Alpl) < 1A
that is, (4, A¢) = (||, Al]) and thus

(e, AY-) = (I ALl — (b, A)) =0,
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Consequently ¥_ = 0 or ¥+ = 0 since otherwise Ay_ > 0 and hence also
(Y4, Ap_) > 0. Without restriction, ) = ¢, > 0 and since A is positivity
increasing, we even have ¢ = ||A|| 71 Ay > 0.

If there were a second eigenfunction it could also be chosen positive by
the above argument and hence could not be orthogonal to the first. O

So we need a positivity improving operator. By (7.49) and (7.50) both
e to t > 0, and Ry(Hp), A < 0, are since they are given by convolution
with a strictly positive function. Our hope is that this property carries over
to H=Hy+V.

Theorem 10.13. Suppose H = Hy + V is self-adjoint and bounded from
below with C°(R™) as a core. If Ey = mino(H) is an eigenvalue, it is
simple and the corresponding eigenfunction is strictly positive.

Proof. We first show that e * ¢ > 0, is positivity preserving. If we set
Hy, = Hy + V,, with Vi, = VX{4/|v(2)|<n}, then V, is bounded and e™""r is
positivity preserving by the Trotter product formula (Theorem 5.12) since
both e~ and e~tV» are. Moreover, we have H,1 — H for 1) € C°(R")
2 ) and hence H, *% H in the strong resolvent
sense by Lemma 6.36. Hence e *#» 2 e~tH by Theorem 6.31, which shows
that e7* is at least positivity preserving (since 0 cannot be an eigenvalue

of e7*H it cannot map a positive function to 0).

(note that necessarily V € L

Next I claim that for v positive the closed set
N() = {p € LAR") | > 0, (p,e=H45) = 0¥s > 0}

is just {0}. If o € N(2), we have by e *#¢) > 0 that pe *H1) = 0. Hence
etVope st = 0; that is, eV € N(¢). In other words, both e!¥» and e~/
leave N(¢) invariant, and invoking Trotter’s formula again, the same is true
for
e tH=Vn) — ¢ lim (e_%Heév’L)k .
k—o0

Since e HH=Vn) 5 o=tHo we finally obtain that e *0 leaves N (v) invariant,
but this operator is positivity increasing and thus N(¢) = {0}.

Now it remains to use (7.48), which shows

@RMMWZAMW@£“%W>& )< B,

for ¢, ¥ positive. So Ry () is positivity increasing for A < Ej.
If 4 is an eigenfunction of H corresponding to Ej, it is an eigenfunction
of Ry (A) corresponding to ﬁ, and the claim follows since ||[Rg(\)|| =

1
Box (]
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The assumptions are, for example, satisfied for the potentials V' consid-
ered in Theorem 10.2.

Problem 10.12. Suppose A is a bounded integral operator in L*(R™). Show
that it is positivity preserving if and only if its kernel A(x,y) is positive.
(Hint: Problem 0.41.)



Chapter 11

Atomic Schrodinger
operators

11.1. Self-adjointness

In this section, we want to have a look at the Hamiltonian corresponding to
more than one interacting particle. It is given by

N N
H = —ZAJ'—FZV}Jg(ZL'j —xk). (11.1)
j=1 j<k

We first consider the case of two particles, which will give us a feeling
for how the many-particle case differs from the one-particle case and how
the difficulties can be overcome.

We denote the coordinates corresponding to the first particle by x; =
(21,1,21,2,21,3) and those corresponding to the second particle by zo =
(221,222, 223). If we assume that the interaction is again of the Coulomb
type, the Hamiltonian is given by

~

H=-A —Ny— — 1

D(H) = H*(R"). (11.2)

Since Theorem 10.2 does not allow singularities for n > 3, it does not tell
us whether H is self-adjoint. Let

(y1,92) = 12 < _HH % > (z1,22). (11.3)

275
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Then H reads in this new coordinate system as

v/V2
|2

In particular, it is the sum of a free particle plus a particle in an external
Coulomb field. From a physics point of view, the first part corresponds to
the center of mass motion and the second part to the relative motion.

Using that v/(v/2|y2|) has (—As)-bound 0 in L2(R?), it is not hard to
see that the same is true for the (—A; — Ag)-bound in L?(R%) (details will
follow in the next section). In particular, H is self-adjoint and semi-bounded
for every v € R. Moreover, you might suspect that v/(v/2]ys]|) is relatively
compact with respect to —Aj — Ay in L?(R%) since it is with respect to —A
in L?(R%). However, this is not true! This is due to the fact that v/(v/2|ya])
does not vanish as |y| — oc.

H = (—Al) + (—AQ — ) (11.4)

Let us look at this problem from the physical viewpoint. If A\ € o.s5(H),
this means that the movement of the whole system is somehow unbounded.
There are two possibilities for this.

First, both particles are far away from each other (such that we can
neglect the interaction) and the energy corresponds to the sum of the kinetic
energies of both particles. Since both can be arbitrarily small (but positive),
we expect [0,00) C oess(H).

Secondly, both particles remain close to each other and move together.
In the last set of coordinates, this corresponds to a bound state of the
second operator. Hence we expect [Ag,00) C 0ess(H), where \g = —72/8
is the smallest eigenvalue of the second operator if the forces are attracting
(v > 0) and Ay = 0 if they are repelling (y < 0).

It is not hard to translate this intuitive idea into a rigorous proof. Let
¥1(y1) be a Weyl sequence corresponding to A € [0,00) for —A; and let
Va2 (y2) be a Weyl sequence corresponding to Ao for —Ag —~/(v/2|y2|). Then,
¥1(y1)2(y2) is a Weyl sequence corresponding to A + Ao for H and thus
[Ag,00) C 0ess(H). Conversely, we have —A; > 0, respectively, —Ag —
v/(v/2|y2]) > Ao, and hence H > X\g. Thus we obtain

_/72/83 7 2 07

0 V<0 (11.5)

0(H) = 0ess(H) = [Ao,00), Ao = {
Clearly, the physically relevant information is the spectrum of the operator
—A2 —/(v/2|y2|) which is hidden by the spectrum of —A;. Hence, in order
to reveal the physics, one first has to remove the center of mass motion.

To avoid clumsy notation, we will restrict ourselves to the case of one
atom with N electrons whose nucleus is fixed at the origin. In particular,
this implies that we do not have to deal with the center of mass motion
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encountered in our example above. In this case, the Hamiltonian is given by

H(N ZA ZVne Zj +ZZ‘/66 —J}k

i=1j<k
DHW) = HZ(R?’N), (11.6)

where V,,. describes the interaction of one electron with the nucleus and V.
describes the interaction of two electrons. Explicitly, we have

Vij(x) = %, v >0, j=ne,ee. (11.7)

We first need to establish the self-adjointness of HN) = Hy + VIN). This
will follow from Kato’s theorem.

Theorem 11.1 (Kato). Let Vj, € LX(R?) + L2(R?), d < 3, be real-valued
and let Vi.(y™®) be the multiplication operator in L>(R™), n = Nd, obtained
by letting y*) be the first d coordinates of a unitary transform of R™. Then
Vi, is Hy bounded with Hy-bound 0. In particular,

H=Hy+> V@"), DH)=HR", (11.8)
k

is self-adjoint and C3°(R™) is a core.

Proof. It suffices to consider one k. After a unitary transform of R” we can
assume y) = (z1,...,24) since such transformations leave both the scalar
product of L?(R™) and Hy invariant. Now let ¢ € S(R™). Then

Wl <a® [ am@Pde+ 8 [ )P,

n

where A = Z;l:l 0%/9%xz;, by Theorem 10.2. Hence we obtain

d
Wl <a* [ AU+ Pl

/ |ij 2" + B[]

= aQIIHo@DIIQ +6%|9)1?,

which implies that V}, is relatively bounded with bound 0. The rest follows
from the Kato—Rellich theorem. ]

So V) is Hy bounded with Hy-bound 0 and thus H®Y) = Hy + V)
is self-adjoint on ®(HW)) = D(H,).
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11.2. The HVZ theorem

The considerations of the beginning of this section show that it is not so
casy to determine the essential spectrum of H®) since the potential does
not decay in all directions as |z| — oo. However, there is still something we
can do. Denote the infimum of the spectrum of H®) by AN. Then, let us
split the system into HN=1 plus a single electron. If the single electron is
far away from the remaining system such that there is little interaction, the
energy should be the sum of the kinetic energy of the single electron and
the energy of the remaining system. Hence, arguing as in the two-electron
example of the previous section, we expect

Theorem 11.2 (HVZ). Let HN) be the self-adjoint operator given in (11.6).
Then HN) is bounded from below and

Gess(HM) = M1 00), (11.9)
where AN =1 = ming(HN-1) < 0.

In particular, the ionization energy (i.e., the energy needed to remove
one electron from the atom in its ground state) of an atom with N electrons
is given by AV — AN-1,

Our goal for the rest of this section is to prove this result which is due
to Zhislin, van Winter, and Hunziker and is known as the HVZ theorem. In
fact there is a version which holds for general N-body systems. The proof
is similar but involves some additional notation.

The idea of proof is the following. To prove [AV=1 00) C gess(HM),
we choose Weyl sequences for HN=1) and —Ay and proceed according to
our intuitive picture from above. To prove oes(HMN)) C [AV=1 00), we
will localize HN) on sets where one electron is far away from the nucleus
whenever some of the others are. On these sets, the interaction term between
this electron and the nucleus is decaying and hence does not contribute to the
essential spectrum. So it remains to estimate the infimum of the spectrum
of a system where one electron does not interact with the nucleus. Since the
interaction term with the other electrons is positive, we can finally estimate
this infimum by the infimum of the case where one electron is completely
decoupled from the rest.

We begin with the first inclusion. Let oy~ (2q,...,2xy_1) € H2(R3 WD)
such that |[QVN=Y = 1, [[(HN-D — AN-1)yN=1| < ¢ and o' € H?(R3)
such that ||| = 1, ||[(=Ax — A)¥Y|| < € for some A > 0. Now consider
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Ur(z1,. .., 2n) = PN N ay, . an )Y (eN), v (zn) = (xn — 7). Then
ICHD = A= AV || <[ END = AVH Ny |
YT (AN = A

N—1
VN = Vivg)erl, (11.10)
j=1
where Vy = Vie(any) and Viy; = Vee(xny — x;). Using the fact that
(VN — Z;V:_ll V)Nt € L2(R3N) and |¢}| — 0 pointwise as |r| — oo
(by Lemma 10.1), the third term can be made smaller than ¢ by choosing
|r| large (dominated convergence). In summary,

JE™ = 3= ANy | < 3e, (1L.11)

proving [AV=1, 00) C oess(HIY)).
The second inclusion is more involved. We begin with a localization

formula.

Lemma 11.3 (IMS localization formula). Suppose ¢; € C*(R"), 1 < j <
m, is such that

S oi@)? =1, zeR™ (11.12)
i
Then
A =" (8;A(850) +[0¢51¢), & € HAR™). (11.13)
=1

Proof. The proof follows from a straightforward computation using the
identities }; ¢;0x¢; = 0 and Zj((8k¢j)2 + ¢;0%¢;) = 0, which follow by
differentiating (11.12). O

Now we will choose ¢j, 1 < j < N, in such a way that, for x outside
some ball, z € supp(¢;) implies that the j’th particle is far away from the
nucleus.

Lemma 11.4. Fiz some C € (0, Tlﬁ) There exist smooth functions ¢; €

C>®(R™,[0,1]), 1 < j < N, such that (11.12) holds,
supp(¢;) N {z| x| > 1} € {] [z;] > Cla}, (11.14)
and |0¢;(z)| — 0 as |x| = oo.
Proof. The open sets
Uy = {z € SN ;] > €}
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cover the unit sphere in RY; that is,
N
U . — G3N-1
= .
=1

By Lemma 0.17, there is a partition of unity @(m) subordinate to this cover.
Extend ¢;(z) to a smooth function from R3V\{0} to [0, 1] by

d;(\z) = ;(), ze SN N >0,

and pick a function ¢ € C>=(R3N,[0,1]) with support inside the unit ball
which is 1 in a neighborhood of the origin. Then the

b; = ¢+ (1-9)¢;
VEN (64 (- )’

are the desired functions. The gradient tends to zero since ¢;(Ax) = ¢;(x)
for A > 1 and |z| > 1 which implies (9¢;)(Az) = A71(d¢;)(x). O

By our localization formula, we have
N
HWY =3¢ HNg; + P — K,
j=1
N N N
K=Y ($Vi+100;1?), P=Y 7> Vi, (11.15)

=1 J=1

where

N N N
HND = =N A=Vt > Vi (11.16)
=1 (4] k<l, k(4]
is the Hamiltonian with the j’th electron decoupled from the rest of the
system. Here we have abbreviated V;(z) = Vye(x;) and V¢ = Vee(z; — x4).

Since K vanishes as |z| — 0o, we expect it to be relatively compact with
respect to the rest. By Lemma 6.23, it suffices to check that it is relatively
compact with respect to Hy. The terms |8¢j]2 are bounded and vanish at
o0; hence they are Hy compact by Lemma 7.21. However, the terms d)?V;
have singularities and will be covered by the following lemma.

Lemma 11.5. Let V' be a multiplication operator which is Hy bounded with
Ho-bound 0 and suppose that || X{z|jz|>r}V R, (2)|| = 0 as R — oo. Then
V' is relatively compact with respect to Hy.

Proof. Let v, converge to 0 weakly. Note that [[¢,] < M for some
M > 0. It suffices to show that ||V Rp,(z)n|| converges to 0. Choose
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¢ € C°(R™,[0,1]) such that it is one for |z| < R. Note ¢D(Hp) C D(Hp).
Then
IV Rizo(2)¢nll <[[(1 = @)V Ry (2)¢nll + IV ¢ Ry (2)1hn]|
<[ = )V Rz (2)[[[[¢nl
+ al[Hop Ry (2)nl| + bll ¢ Ry (2)n -
By assumption, the first term can be made smaller than ¢ by choosing R
large. Next, the same is true for the second term choosing a small since
HopRp,(z) is bounded (by Problem 2.9 and the closed graph theorem).

Finally, the last term can also be made smaller than € by choosing n large
since ¢ is Hyp compact. ([

So K is relatively compact with respect to HY). In particular, H®V) +
K is self-adjoint on H?(R3*V) and O'eSS(H(N)) = aeSS(H(N) + K). Since
the operators HN:9), 1 < j < N, are all of the form HN=1 plus one
particle which does not interact with the others and the nucleus, we have
HWN.JG) — \N-1 > 0,1 < j < N. Moreover, we have P > 0 and hence

N

(, [HN + K = M) =3 (s, (HND) = A1) g00)

=1
]+ (1, Py) > 0. (11.17)
Thus we obtain the remaining inclusion
Oess(HMN)) = 0o (HN) + K) Co(H™M + K) C AV 00),  (11.18)
which finishes the proof of the HVZ theorem.

Note that the same proof works if we add additional nuclei at fixed
locations. That is, we can also treat molecules if we assume that the nuclei
are fixed in space.

Finally, let us consider the example of helium-like atoms (N = 2). By
the HVZ theorem and the considerations of the previous section, we have

2
~
UGSS(H(2)) =[- Ze’
Moreover, if 7. = 0 (no electron interaction), we can take products of one-
particle eigenfunctions to show that

11
— Tne < + ) €op(HD(ye =0)), nmmeN  (11.20)

). (11.19)

4n? = 4m?2
In particular, there are eigenvalues embedded in the essential spectrum in
this case. Moreover, since the electron interaction term is positive, we see

2
H? > —’V;e. (11.21)
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Note that there can be no positive eigenvalues by the virial theorem. This
even holds for arbitrary N,

op(HMN)) c (—00,0). (11.22)



Chapter 12

Scattering theory

12.1. Abstract theory

In physical measurements, one often has the following situation. A particle
is shot into a region where it interacts with some forces and then leaves
the region again. Outside this region the forces are negligible and hence the
time evolution should be asymptotically free. Hence one expects asymptotic
states ¥4 (t) = exp(—itHp)1+(0) to exist such that

|l(t) —+(t)]| =0 as t— too. (12.1)

Rewriting this condition, we see

0= Tim [le7(0) — Moy (0)] = Tum_[5(0) — e~ oy (0)]

t—4o0
(12.2)
and motivated by this, we define the wave operators by
D) = {¢ € H|Flimy_ 1o eltTe oy},
i itH —itH (12.3)
QY = limyy0ee 0q).
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The set D (€24 ) is the set of all incoming/outgoing asymptotic states 14, and
Ran(Q4) is the set of all states which have an incoming/outgoing asymptotic
state. If a state ¢ has both, that is, ¢ € Ran(Q4) NRan(Q_), it is called a
scattering state.

By construction we have
_ itH —itHo, || — 1 _
[Qu] = lim [l e H oy = Tim ol = v, (124)

and it is not hard to see that © () is closed. Moreover, interchanging the
roles of Hy and H amounts to replacing Q4+ by Q3! and hence Ran(Qx) is
also closed. In summary,

Lemma 12.1. The sets ©(2+) and Ran(Q1) are closed and Q4 : D(Qy) —
Ran(Q4) is unitary.

Next, observe that

: itH ,—itHo (o—isHo,\ — 1; —isH (i(t+s)H ,~i(t+s)Ho
t_l}gloo ee (e ) ti}gloo e (e e ) (12.5)
and hence . .
Que oy = e7HHQ ) 1h € D(Q4). (12.6)

In addition, D (1) is invariant under exp(—itHp) and Ran(§24) is invariant
under exp(—itH). Moreover, if 1) € ®(Q+)*, then

(0, exp(—itHo)y) = (exp(itHo)p, ¢) =0, ¢ € D(2x). (12.7)
Hence ®(Q4)* is invariant under exp(—itHp) and Ran(Q4)* is invariant
under exp(—itH). Consequently, ©(£21) reduces exp(—itHp) and Ran(Qy)
reduces exp(—itH). Moreover, differentiating (12.6) with respect to ¢, we
obtain from Theorem 5.1 the intertwining property of the wave operators.

Theorem 12.2. The subspaces D (1), respectively, Ran(2y), reduce Hy,
respectively, H, and the operators restricted to these subspaces are unitarily
equivalent:

QL Hyp = HQ 49, Y €D(QL)ND(Hy). (12.8)

It is interesting to know the correspondence between incoming and out-
going states. Hence we define the scattering operator
S=0'0_, D(S)={y € D(Q)Q_1 € Ran(Q4)}. (12.9)

Note that we have D(S) = ®(Q_) if and only if Ran(Q2_) C Ran(€) and
Ran(S) = ©(Q4) if and only if Ran(Q24) € Ran(Q2_). Moreover, S is unitary
from ®(S) onto Ran(S) and we have

HoSv = SHy, D(Hy) ND(S). (12.10)

However, note that this whole theory is meaningless until we can show that
the domains ©(§21) are nontrivial. We first show a criterion due to Cook.
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Lemma 12.3 (Cook). Suppose D(Hy) C D(H). If

/0 |(H — Ho) exp(FitHo)|dt < o, 1 € D(Hy), (12.11)

then 1 € ©(Q4), respectively. Moreover, we even have
(22 =l < [ 10T — Ho) exp(itto ) (12.12)
in this case.
Proof. The result follows from
eltH e itHoy, — 4y 4 i/t exp(isH)(H — Ho) exp(—isHo)wds,  (12.13)
which holds for ¢ € ’D(Ho()). O

As a simple consequence, we obtain the following result for Schrédinger
operators in R3:

Theorem 12.4. Suppose Hgy is the free Schrodinger operator and H =
Ho+V with V € L2(R3). Then the wave operators exist and D(Q+) = .

Proof. Since we want to use Cook’s lemma, we need to estimate
VoI = [ 1V@tsa)Pdn, i) = explsHoy.
for given ¢ € ®(Hy). Invoking (7.42), we get
1
< < —
VYN < IVl < s WV >0
at least for ¢ € L'(R®). Moreover, this implies
o 1
[ veas < vy

1

and thus every such ¢ is in ©(24). Since such functions are dense, we
obtain ©(24) = $, and similarly for Q_. O

By the intertwining property, ¥ € ©(24) is an eigenfunction of Hy if
it is an eigenfunction of H corresponding to the same eigenvalue. Hence
for ¢ € $pp(Hop) it is easy to check whether it is in ©(€Q.4), and only the
continuous subspace is of interest. We will say that the wave operators
exist if all elements of $,.(Hp) are asymptotic states, that is,

57Jac(HO) - Q(Q:I:), (1214)

and that they are complete if, in addition, all elements of $,.(H) are
scattering states, that is,

Hac(H) € Ran(Qy). (12.15)
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If we even have
H.(H) € Ran(Qy), (12.16)
they are called asymptotically complete.

We will be mainly interested in the case where Hy is the free Schrodinger
operator and hence H4.(Hp) = . In this latter case, the wave operators
exist if D(24) = 9, they are complete if $H,.(H) = Ran(£21), and they are
asymptotically complete if $.(H) = Ran(Q+). In particular, asymptotic
completeness implies $s.(H) = {0} since H restricted to Ran(Q4) is uni-
tarily equivalent to Hy. Completeness implies that the scattering operator
is unitary. Hence, by the intertwining property, kinetic energy is preserved
during scattering:

(Y, Hop—) = (Sv—,SHorp—) = (S¢—, HoSp—) = (4, Hopy)  (12.17)
for 1 € D(Ho) and 1. = St_.

12.2. Incoming and outgoing states

In the remaining sections, we want to apply this theory to Schrédinger
operators. Our first goal is to give a precise meaning to some terms in
the intuitive picture of scattering theory introduced in the previous section.

This physical picture suggests that we should be able to decompose
1 € § into an incoming and an outgoing part. But how should incoming,
respectively, outgoing, be defined for ¢ € $H? Well, incoming (outgoing)
means that the expectation of #? should decrease (increase). Set x(t)? =
exp(iHot)z? exp(—iHogt). Then, abbreviating (t) = e~ tHoq),
%Ezb(ﬁv(t)Q) = (¥(1),i[Ho, ]9 (t)) = 4 (), Dy(t)), ¥ € S(R™),
(12.18)
where D is the dilation operator introduced in (10.9). Hence it is natural to
consider ¢ € Ran(Py),
Py = Pp((0,+00)), (12.19)

as outgoing, respectively, incoming, states. If we project a state in Ran(Py)
to energies in the interval (a2,b?), we expect that it cannot be found in a
ball of radius proportional to alt| as t — +o00 (a is the minimal velocity of
the particle, since we have assumed the mass to be two). In fact, we will
show below that the tail decays faster then any inverse power of |¢|.

We first collect some properties of D which will be needed later on. Note
FD=-DF (12.20)

and hence Ff(D) = f(—D)F. Additionally, we will look for a transforma-
tion which maps D to a multiplication operator.
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Since the dilation group acts on |z| only, it seems reasonable to switch to
polar coordinates x = rw, (t,w) € RT x §"~1. Since U(s) essentially trans-
forms r into rexp(s), we will replace r by p = log(r). In these coordinates
we have

U(s)p(ePw) = e /24 (elP=*)y) (12.21)
and hence U (s) corresponds to a shift of p (the constant in front is absorbed
by the volume element). Thus D corresponds to differentiation with respect
to this coordinate and all we have to do to make it a multiplication operator
is to take the Fourier transform with respect to p.

This leads us to the Mellin transform
M: L*R") — L*Rx S 1), (12.22)
1 < n
rw - MyY)(\w)=—= r M (rw)rz " dr.
W) = (MEOe) = o= [T )

By construction, M is unitary; that is,

/R/Sn1 (M), w) PN w = /IR+ /Snl o (re) 2L d L,

where d"~'w is the normalized surface measure on S"~!. Moreover, (122
MIU(IM = e (12.24)
and hence
MTIDM = ). (12.25)
From this it is straightforward to show that
0(D) =04e(D) =R,  05(D) = 0pp(D) = (12.26)

and that S(R™) is a core for D. In particular, we have Py + P_ =1L
Using the Mellin transform, we can now prove Perry’s estimate.

Lemma 12.5. Suppose f € C°(R) with supp(f) C (a?,b%) for some a,b >
0. For every R € R, N € N there is a constant C such that

y C
X (el 2l <2ale/ye 70 f (Ho) Pp((£R, +00)) | <

respectively.

Proof. We prove only the + case, the remaining one being similar. Consider
1 € S(R™). Introducing

b(t,x) = e 0 f(Hy) Pp((R, 00))1b(x) = (K, FPp((R, 00)))
= <Kt7$7 PD((_OO’ _R))@;%

where )
i(tp?—pz *
Kia(p) = G5 1 07)"
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we see that it suffices to show

”PD((_OOa _R))Kt,x”Q <

const
(14 [¢[)2N”

Now we invoke the Mellin transform to estimate this norm:

-R
[ Pp((—o0, —R))Kt,xH?:/ / 1|(MKt,x)(A,w)\2dAdn—1w.
—oo J SN

for |z| < 2alt|, t > 0.

Since
1 .
- io(r)
(MK )\ w) = (27r)<”“)/2/o f(r)e " dr (12.28)

with f(r) = f(r?)*r"/>=1 € C((a,b)), a(r) = tr? + rwz — Mlog(r). Esti-
mating the derivative of a, we see

(r)=2tr+wr—\r>0, rea,b),

for A < —R and t > —R(2ea) ™!, where ¢ is the distance of a to the support
of f. Hence we can find a constant such that

|o/(r)| > const(1 + |A[ +[t]), € supp(f),

for A\ < —R, t > —R(ea)~!. Now the method of stationary phase (Prob-
lem 12.1) implies

const
MK YA w)| € —
’( t,x)( )‘ = (1+’)\’+’t|)N
for A, t as before. By increasing the constant, we can even assume that it
holds for t > 0 and A < —R. This finishes the proof. O

Corollary 12.6. Suppose that f € C°((0,00)) and R € R. Then the
operator Pp((£R,+00))f(Hy)exp(—itHy) converges strongly to 0 as t —
TFoo.

Proof. Abbreviating Pp = Pp((£R,+o0)) and X = X {4 |z|<2af¢|}» We have

1P f(Ho)e™ 0| < [Ixe™™™ f(Ho) " Ppl| [l + f (Ho) (I = x)v|

since ||Al| = ||A*||. Taking t — Foo, the first term goes to zero by our
lemma and the second goes to zero since xy — . ([

Problem 12.1 (Method of stationary phase). Consider the integral

I(t) = / h f(r)et®Tar

with [ € CX(R) and a real-valued phase ¢ € C*°(R). Show that |I(t)| <
Cnt™ for every N € N if |¢/(r)] > 1 for r € supp(f). (Hint: Make a
change of variables p = ¢(r) and conclude that it suffices to show the case
¢(r) =r. Now use integration by parts.)
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12.3. Schrodinger operators with short range potentials

By the RAGE theorem we know that for i € 9., ¥(t) will eventually leave
every compact ball (at least on the average). Hence we expect that the
time evolution will asymptotically look like the free one for ¢ € $). if the
potential decays sufficiently fast. In other words, we expect such potentials
to be asymptotically complete.

Suppose V is relatively bounded with bound less than one. Introduce
hi(r) = [IVRu, (2)xr |l h2(r) = [x»VRu, (2)[l, 720, (12.29)
where
Xr = X{a| |a|>r}- (12.30)

The potential V' will be called short range if these quantities are integrable.
We first note that it suffices to check this for iy or hg and for one z € p(Hp).

Lemma 12.7. The function hy is integrable if and only if ho is. Moreover,
h; integrable for one zg € p(Hy) implies h; integrable for all z € p(Hy).

Proof. Pick ¢ € C*(R"™,[0,1]) such that ¢(x) = 0 for 0 < |z| < 1/2 and
¢(x) =1 for 1 < |z|. Then it is not hard to see that h; is integrable if and
only if h; is integrable, where

I (r) = IV Ru, ()], ha(r) = 6,V Ry, (2)ll, =1,
and ¢, (z) = ¢(z/r). Using
(R, (2), dr] = =R, (2)[Ho(2), ¢r| Ry (2)
= — R, (2)(Adr + 2(06r)0) Ry (2)

and Ady = ¢, oAby, |AGr[loo || AB||o /2, respectively, (Dpr) =, 2(dd,),
1001 |loo < ||00]|0c/T, We see

R (r) — ho(r)] < ;711(7’/2), r>1.

Hence hs is integrable if hi is. Conversely,

I (r) < ha(r) + Shn(r/2) < Fo(r) + Sha(r/2) + S5 (r/4)

shows that l~12 is integrable if izl is.

Invoking the first resolvent formula

160V Rizg (2)[| < (|60 V Rz (20) [T = (2 — 20) R (2) |
finishes the proof. O

As a first consequence, note

Lemma 12.8. If V is short range, then Ry (z) — Ru,(z) is compact.
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Proof. The operator Ry (z)V (I—x,)Rm,(2) is compact since (I—x,) R, (2)
is by Lemma 7.21 and Rp(2)V is bounded by Lemma 6.23. Moreover, by
our short range condition, it converges in norm to

Ru(2)VRu,(2) = Ru(2) — R, (2)

as r — oo (at least for some subsequence). O

In particular, by Weyl’s theorem, we have oess(H) = [0, 00). Moreover,
V short range implies that H and Hy look alike far outside.

Lemma 12.9. Suppose Ry (z)—Rp,(z) is compact. Then sois f(H)—f(Hp)
for every f € Coo(R) and

lim ||(f(H) = f(Ho))xr| = 0. (12.31)

T—00

Proof. The first part is Lemma 6.21 and the second part follows from part
(ii) of Lemma 6.9 since x, converges strongly to 0. O

However, this is clearly not enough to prove asymptotic completeness,
and we need a more careful analysis.

We begin by showing that the wave operators exist. By Cook’s criterion
(Lemma 12.3), we need to show that

IV exp(FitHo) || <[|V R (=DII[(T = X2qpe) exp(Fit Ho) (Ho + D)9 ||
+ IV Reo (1) X | (Ho + 1) (12.32)

is integrable for a dense set of vectors ). The second term is integrable by our
short range assumption. The same is true by Perry’s estimate (Lemma 12.5)
for the first term if we choose ) = f(Ho)Pp((£R,+00))p. Since vectors of
this form are dense, we see that the wave operators exist,

D(01) = H. (12.33)

Since H restricted to Ran(£2%}) is unitarily equivalent to Hy, we obtain
[0,00) = 04c(Ho) C 04c(H). Furthermore, by o4.(H) C 0ess(H) = [0,00),
we even have o4.(H) = [0, 00).

To prove asymptotic completeness of the wave operators, we will need
to show that the (4 —I)f(Ho)P+ are compact.

Lemma 12.10. Suppose V is short range. Let f € C°((0,00)) and suppose
1y, converges weakly to 0. Then

lim [|(2 — 1) f(Ho) Petpnl| = 0; (12.34)

n—o0

that is, (Qy — 1) f(Ho)Py is compact.



12.3. Schrodinger operators with short range potentials 291

Proof. By (12.13) we see

oo
1R (2)(Qx — 1) f (Ho) Pinl| < / [1Rr (2)V exp(—isHo) f(Ho) Pipn||dt.
0
Since Ry (z)V Rp, is compact, we see that the integrand

Ry (2)V exp(—isHo) f(Ho) P
= RH(Z)VRHO eXp(—isHo)(Ho + 1)f<H0)P:|:wn

converges pointwise to 0. Moreover, arguing as in (12.32), the integrand
is bounded by an L' function depending only on [|¢,||. Thus Ry (2)(Q+ —
I) f(Hp) P4+ is compact by the dominated convergence theorem. Furthermore,
using the intertwining property, we see that

(e — 1) f(Ho) Py =Ru(2)(Qx — 1) f(Ho) P

+ (Ru(2) — Ri,(2))f(Ho) Px
is compact by Lemma 12.8, where f(A) = (A — 2) f(A) € C2°((0,0)). O

Now we have gathered enough information to tackle the problem of
asymptotic completeness.

We first show that the singular continuous spectrum is absent. This
is not really necessary, but it avoids the use of Cesaro means in our main
argument.

Abbreviate P = PjfPg((a,b)), 0 < a < b. Since H restricted to
Ran(Q4) is unitarily equivalent to Hy (which has purely absolutely continu-
ous spectrum), the singular part must live on Ran(Q.)"; that is, PQy = 0.
Thus Pf(Hp) = P(I—-Q4)f(Ho) Py +P(I—Q_)f(Hp)P- is compact. Since
f(H) — f(Hp) is compact, it follows that Pf(H) is also compact. Choos-
ing f such that f(\) = 1 for A € [a,b], we see that P = Pf(H) is com-
pact and hence finite dimensional. In particular, os.(H) N (a,b) is a fi-
nite set. But a continuous measure cannot be supported on a finite set,
showing os.(H) N (a,b) = 0. Since 0 < a < b are arbitrary, we even
have os.(H) N (0,00) = 0 and by 05.(H) C 0ess(H) = [0,00), we obtain
ose(H) = 0.

Observe that by replacing P§f by Pj7, the same argument shows that all
nonzero eigenvalues are finite dimensional and cannot accumulate in (0, 00).

In summary, we have shown
Theorem 12.11. Suppose V' is short range. Then
Oac(H) = 0ess(H) = [0, 00), ose(H) = 0. (12.35)

All nonzero eigenvalues have finite multiplicity and cannot accumulate in
(0,00).
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Now we come to the anticipated asymptotic completeness result of Enf.
Choose
W € 9u(H) = Nac(H) such that = f(H)y  (12.36)
for some f € C2°((0,00)). By the RAGE theorem, the sequence (t) con-
verges weakly to zero as t — £oo. Abbreviate 1(t) = exp(—itH). Intro-
duce

px(t) = f(Ho)Pep(2), (12.37)
which satisfy
i (9 (8) = o+ (8) — - (] = 0. (12.38)
Indeed, this follows from
U(t) = o4 (t) + o (t) + (f(H) — f(Ho))(¢) (12.39)
and Lemma 6.21. Moreover, we even have
i[9~ Dgx (0] =0 (12.40)

by Lemma 12.10. Now suppose ¢ € Ran(€+)*. Then
2 _
12 = tim_ (), %(2)

= lim (¥(t),04+(t) + (1))

t—+o00

= lim_((0), Q04 (1) + Q- (1), (12.41)

By Theorem 12.2, Ran(Q4)* is invariant under H and thus v(t) €
Ran(Q4)* implying

[l* = dim (3(t), Qzx(1)) (12.42)
= lim (Py f(Ho) Q50 (t), (1))
Invoking the intertwining property, we see
ll* = lim (P f(Ho)"e 0 Q%4, (t)) = (12.43)
by Corollary 12.6. Hence Ran(21) = $4c(H) = $H.(H) and we thus have

shown

Theorem 12.12 (Enf). Suppose V is short range. Then the wave operators
are asymptotically complete.
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Appendix A

Almost everything
about Lebesgue
integration

In this appendix I give a brief introduction to measure theory. Good refer-
ences are (8], [39], or [56].

A.1. Borel measures in a nutshell

The first step in defining the Lebesgue integral is extending the notion of
size from intervals to arbitrary sets. Unfortunately, this turns out to be too
much, since a classical paradox by Banach and Tarski shows that one can
break the unit ball in R? into a finite number of wild (choosing the pieces
uses the Axiom of Choice and cannot be done with a jigsaw) pieces, rotate
and translate them, and reassemble them to get two copies of the unit ball
(compare Problem A.5). Hence any reasonable notion of size (i.e., one which
is translation and rotation invariant) cannot be defined for all sets!

A collection of subsets A of a given set X such that
e X cA,

e A is closed under finite unions,
e A is closed under complements,
is called an algebra. Note that ) € A and that A is also closed under finite

intersections and relative complements: ) = X', AN B = (A’ U B’) (de
Morgan), and A\B = AN B, where A’ = X\ A denotes the complement.

295
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If an algebra is closed under countable unions (and hence also countable
intersections), it is called a o-algebra.

Example. Let X = {1,2,3}; then A= {0,{1},{2,3}, X} is an algebra. o<

Moreover, the intersection of any family of (o-)algebras {A,} is again
a (o-)algebra, and for any collection S of subsets there is a unique smallest
(0-)algebra Y(S) containing S (namely the intersection of all (o-)algebras
containing S). It is called the (o-)algebra generated by S.

Example. For a given set X, the power set B(X) is clearly the largest
o-algebra and {0, X'} is the smallest. o

Example. Let X be some set with a o-algebra . Then every subset Y C X
has a natural o-algebra X NY = {ANY|A € £} (show that this is indeed a
o-algebra) known as the relative o-algebra.

Note that if S generates X, then SNY generates XNY: ¥(S)NY =
(S NY). Indeed, since ¥ NY is a o-algebra containing S NY, we have
2(SNY) C B(S)NY = ENY. Conversely, consider {A € X|ANY € X(SNY)}
which is a o-algebra (check this). Since this last o-algebra contains S it must
be equal to ¥ = X(5) and thus X NY C ¥(SNY). o

If X is a topological space, the Borel o-algebra B(X) of X is defined
to be the o-algebra generated by all open (respectively, all closed) sets. In
fact, if X is second countable, any countable base will suffice to generate
the Borel o-algebra (recall Lemma 0.1).

Sets in the Borel o-algebra are called Borel sets.
Example. In the case X = R"”, the Borel g-algebra will be denoted by B

and we will abbreviate B = B!. Note that in order to generate B, open (or
closed) intervals with rational boundary points suffice. o

Example. If X is a topological space, then any Borel set Y C X is also a
topological space equipped with the relative topology and its Borel o-algebra
is given by B(Y) =B(X)NY = {A4|A € B(X),A C Y} (show this). o

Now let us turn to the definition of a measure: A set X together with
a o-algebra Y is called a measurable space. A measure p is a map
w3 — [0,00] on a o-algebra ¥ such that

o n(UjZ) 4j) = Zl,u(Aj) if A;N A =0 forall j # k (o-additivity).
]:

Here the sum is set equal to co if one of the summands is oo or if it diverges.
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The measure y is called o-finite if there is a countable cover {X;}72; of
X such that X; € ¥ and p(X;) < oo for all j. (Note that it is no restriction
to assume X; C Xj41.) It is called finite if 4(X) < oo and a probability
measure if ;(X) = 1. The sets in ¥ are called measurable sets and the
triple (X, X, u) is referred to as a measure space.

Example. Take a set X and ¥ = PB(X) and set u(A) to be the number
of elements of A (respectively, oo if A is infinite). This is the so-called
counting measure. It will be finite if and only if X is finite and o-finite if
and only if X is countable. o

Example. Take a set X and ¥ = P(X). Fix a point x € X and set
w(A) =1if x € A and p(A) = 0 otherwise. This is the Dirac measure
centered at x. o

Example. Let pg, pe be two measures on (X,Y) and aj,ae > 0. Then
W= a1 + asps defined via

n(A) = arpa(A) + aopz(A)

is again a measure. Furthermore, given a countable number of measures u,
and numbers a;, > 0, p = > anit, is again a measure (show this). o

Example. Let u be a measure on (X,3) and Y C X a measurable subset.
Then

v(A) = p(ANY)

is again a measure on (X, ) (show this). o

Example. If Y € ¥, we can restrict the o-algebra |y = {A € £|A C Y}
such that (Y, Y|y, uly) is again a measurable space. It will be o-finite if
(X, %, p) is. o

If we replace the o-algebra by an algebra A, then p is called a premea-

sure. In this case, o-additivity clearly only needs to hold for disjoint sets
A, for which |J,, A, € A.

We will write 4,, /* Aif A, C Apq1 with A =, An, and A, N\, A if
App1 C A, with A=), 4,.
Theorem A.1. Any measure p satisfies the following properties:
(i) A C B implies p(A) < u(B) (monotonicity).
(ii) pu(Ap) — p(A) if A, A (continuity from below).
(iii) p(An) — p(A) if Ay \ A and pu(Aq) < oo (continuity from above).

Proof. The first claim is obvious from u(B) = pu(A) + p(B\A). To see the
second, define A; = Ay, A, = A,\A,,—1 and note that these sets are disjoint
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and satisty An = Ui, A;. Hence p(A,) = P n(A;) — P n(A;) =
(U2 Aj) = u(A) by o-additivity. The third follows from the second using

A, = A\A, 7 ANA implying p(A,) = p(Ar) — p(An) = p(Ai\A) =
(A1) — p(A). O

Example. Consider the counting measure on X = N and let A, =
{7 € N|j > n}. Then p(4,) = oo, but u(), An) = ©(@) = 0, which
shows that the requirement p(A;) < oo in item (iii) of Theorem A.1 is not
superfluous. o

A measure on the Borel o-algebra is called a Borel measure if ;(K) <
oo for every compact set K. Note that some authors do not require this last
condition.
Example. Let X =R and ¥ = B. The Dirac measure is a Borel measure.
The counting measure is no Borel measure since p([a,b]) = oo for a <b. <

A measure on the Borel o-algebra is called outer regular if

mA) = A,%lfopen“(O) (A1)

and inner regular if

n(A) = sup u(K). (A2)
KCA,K compact

It is called regular if it is both outer and inner regular.

Example. Let X =R and ¥ = 8. The counting measure is inner regular
but not outer regular (every nonempty open set has infinite measure). The
Dirac measure is a regular Borel measure. o

But how can we obtain some more interesting Borel measures? We
will restrict ourselves to the case of X = R for simplicity, in which case
Borel measures are also known as Lebesgue—Stieltjes measures. Then
the strategy is as follows: Start with the algebra of finite unions of disjoint
intervals and define u for those sets (as the sum over the intervals). This
yields a premeasure. Extend this to an outer measure for all subsets of R.
Show that the restriction to the Borel sets is a measure.

Let us first show how we should define p for intervals: To every Borel
measure on B we can assign its distribution function

_H((mvo])v x <0,
u(x) =140, x =0, (A.3)
u((0,2]), x>0,

which is right continuous and nondecreasing.
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Example. The distribution function of the Dirac measure centered at 0 is

() = {—1, x <0,

0, x> 0.

<&

For a finite measure, the alternate normalization f(x) = p((—oo,x])
can be used. The resulting distribution function differs from our above
definition by a constant u(x) = fi(x) — pu((—o0,0]). In particular, this is the
normalization used in probability theory.

Conversely, to obtain a measure from a nondecreasing function m : R —
R, we proceed as follows: Recall that an interval is a subset of the real line
of the form

I=(a,b], I=]a,b], I=/(ab), or I=]a,b), (A4)

with a < b, a,b € RU{—00,00}. Note that (a,a), [a,a), and (a, a] denote the
empty set, whereas [a, a] denotes the singleton {a}. For any proper interval
with different endpoints (i.e. a < b), we can define its measure to be

m(b+) —m(a+), I = (a,bl,
_ Jm(+) —m(a—), I=]a,b],
MO =94 0m) —m(as), T=(a.b). (A.5)
m(b—) —m(a—), I=]a,b),
where m(at) = lim.jom(a = €) (which exist by monotonicity). If one of

the endpoints is infinite we agree to use m(£oc0) = lim,_ 1o, m(z). For the
empty set we of course set p(()) = 0 and for the singletons we set

p({a}) = m(at) —m(a—) (A.6)

(which agrees with (A.5) except for the case I = (a,a), which would give a
negative value for the empty set if © jumps at a). Note that pu({a}) = 0 if
and only if m(z) is continuous at a and that there can be only countably
many points with p({a}) > 0 since a nondecreasing function can have at
most countably many jumps. Moreover, observe that the definition of u
does not involve the actual value of m at a jump. Hence any function m
with m(z—) < m(x) < m(z+) gives rise to the same u. We will frequently
assume that m is right continuous such that it coincides with the distribu-
tion function up to a constant, u(z) = m(x+) — m(0+). In particular, u
determines m up to a constant and the value at the jumps.

Now we can consider the algebra of finite unions of disjoint intervals
(check that this is indeed an algebra) and extend (A.5) to finite unions of
disjoint intervals by summing over all intervals. It is straightforward to
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verify that u is well defined (one set can be represented by different unions
of intervals) and by construction additive. In fact, it is even a premeasure.

Lemma A.2. The interval function p defined in (A.5) gives rise to a unique
o-finite premeasure on the algebra A of finite unions of disjoint intervals.

Proof. It remains to verify o-additivity. We need to show that, for any

disjoint union,
p(J 1) = _nll)
k k

whenever I, € A and I = |J, I, € A. Since each I}, is a finite union of in-
tervals, we can as well assume each I is just one interval (just split [} into
its subintervals and note that the sum does not change by additivity). Sim-
ilarly, we can assume that I is just one interval (just treat each subinterval
separately).

By additivity, p is monotone and hence

which shows
S i) < (D).
k=1

To get the converse inequality, we need to work harder.

We can cover each I by some slightly larger open interval Jj such that
w(Jx) < p(ly) + 57 (only closed endpoints need extension). First suppose
I is compact. Then finitely many of the Jg, say the first n, cover I and we
have

p(D) < (| Je) <D nlh) <> nl) +e.
k=1 k=1 k=1

Since € > 0 is arbitrary, this shows o-additivity for compact intervals. By
additivity we can always add/subtract the endpoints of I and hence o-
additivity holds for any bounded interval. If I is unbounded we can again
assume that it is closed by adding an endpoint if necessary. Then for any
x > 0 we can find an n such that {J;}}_, cover at least I N [—x, ] and
hence

S uI) = ulle) =D u(Jk) —e > pl(l—2,2)N 1) —c.
k=1 k=1 k=1
Since z > 0 and € > 0 are arbitrary, we are done. ([

In particular, this is a premeasure on the algebra of finite unions of
intervals which can be extended to a measure:
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Theorem A.3. For every nondecreasing function m : R — R there exists
a unique Borel measure p which extends (A.5). Two different functions
generate the same measure if and only if the difference is a constant away
from the discontinuities.

Since the proof of this theorem is rather involved, we defer it to the next
section and look at some examples first.

Example. Suppose O(z) =0 for x < 0 and ©(z) = 1 for > 0. Then we
obtain the so-called Dirac measure at 0, which is given by O(A) = 1 if
0€ Aand ©(A) =0if 0 € A. o

Example. Suppose A(z) = z. Then the associated measure is the ordinary
Lebesgue measure on R. We will abbreviate the Lebesgue measure of a
Borel set A by A(A4) = |A]. o

A set A € ¥ is called a support for p if u(X\A) = 0. Note that a
support is not unique (see the examples below). If X is a topological space
and 3 = B(X), one defines the support (also topological support) of u
via

supp(p) = {x € X|u(O) > 0 for every open neighborhood O of x}. (A.7)

Equivalently, one obtains supp(u) by removing all points which have an
open neighborhood of measure zero. In particular, this shows that supp(u)
is closed. If X is second countable, then supp(u) is indeed a support for pu:
For every point x ¢ supp(u), let O, be an open neighborhood of measure
zero. These sets cover X\ supp(u) and by the Lindel6f theorem there is a
countable subcover, which shows that X\ supp(x) has measure zero.

Example. Let X = R, ¥ = 9. The support of the Lebesgue measure A
is all of R. However, every single point has Lebesgue measure zero and so
has every countable union of points (by o-additivity). Hence any set whose
complement is countable is a support. There are even uncountable sets of
Lebesgue measure zero (see the Cantor set below) and hence a support might
even lack an uncountable number of points.

The support of the Dirac measure centered at 0 is the single point 0.
Any set containing 0 is a support of the Dirac measure.

In general, the support of a Borel measure on R is given by
supp(dp) = {z € Rlu(z — ) < p(x + ), Ve > 0}.

Here we have used du to emphasize that we are interested in the support
of the measure du which is different from the support of its distribution
function p(x). o
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A property is said to hold p-almost everywhere (a.e.) if it holds on a
support for u or, equivalently, if the set where it does not hold is contained
in a set of measure zero.

Example. The set of rational numbers is countable and hence has Lebesgue
measure zero, A(Q) = 0. So, for example, the characteristic function of the
rationals Q is zero almost everywhere with respect to Lebesgue measure.

Any function which vanishes at 0 is zero almost everywhere with respect
to the Dirac measure centered at 0. o

Example. The Cantor set is an example of a closed uncountable set of
Lebesgue measure zero. It is constructed as follows: Start with Cy = [0, 1]
and remove the middle third to obtain C; = [0, 1]U[2, 1]. Next, again remove
the middle thirds of the remaining sets to obtain Cy = [0, §]U[2, $]U[2, LU

973 379
[5,1]:
Co
Ch
o -

R R : R **Cg

Proceeding like this, we obtain a sequence of nesting sets C), and the limit
C =), Cy is the Cantor set. Since C,, is compact, so is C. Moreover,
C, consists of 2" intervals of length 37", and thus its Lebesgue measure
is A(Cp) = (2/3)". In particular, A(C') = limp—00 A(C,) = 0. Using the
ternary expansion, it is extremely simple to describe: C is the set of all
x € [0, 1] whose ternary expansion contains no ones, which shows that C' is
uncountable (why?). It has some further interesting properties: it is totally
disconnected (i.e., it contains no subintervals) and perfect (it has no isolated
points). o

Problem A.1. Find all algebras over X = {1,2,3}.

Problem A.2. Show that A = {A C X|A or X\A is finite} is an algebra
(with X some fized set). Show that ¥ = {A C X|A or X\A is countable}
is a o-algebra. (Hint: To verify closedness under unions, consider the cases
where all sets are finite and where one set has finite complement.)

Problem A.3. Take some set X and ¥ = {A C X|A or X\ A is countable}.
Show that
V(A) = 0, if A is countable,
1, otherwise

1S a measure.

Problem A.4. Show that if X is finite, then every algebra is a o-algebra.
Show that this is not true in general if X is countable.
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Problem A.5 (Vitali set). Call two numbers x,y € [0,1) equivalent if v —y
is rational. Construct the set V' by choosing one representative from each
equivalence class. Show that V' cannot be measurable with respect to any
nontrivial finite translation invariant measure on [0,1). (Hint: How can
you build up [0,1) from translations of V ¢)

A.2. Extending a premeasure to a measure

The purpose of this section is to prove Theorem A.3. It is rather technical and can
be skipped on first reading.

In order to prove Theorem A.3, we need to show how a premeasure
can be extended to a measure. To show that the extension is unique, we
need a better criterion to check when a given system of sets is in fact a
o-algebra. In many situations it is easy to show that a given set is closed
under complements and under countable unions of disjoint sets. Hence we
call a collection of sets D with these properties a Dynkin system (also
A-system) if it also contains X.

Note that a Dynkin system is closed under proper relative complements
since A, B € D implies B\A = (B’ U A)' € D provided A C B. Moreover, if
it is also closed under finite intersections (or arbitrary finite unions), then
it is an algebra and hence also a g-algebra. To see the last claim, note that
if A= {J;A; then also A = (J; B; where the sets B; = A;\,; Ay are
disjoint.

As with g-algebras, the intersection of Dynkin systems is a Dynkin sys-
tem and every collection of sets S generates a smallest Dynkin system D(S).
The important observation is that if S is closed under finite intersections (in
which case it is sometimes called a w-system), then so is D(S) and hence
it will be a o-algebra.

Lemma A.4 (Dynkin’s m-A theorem). Let S be a collection of subsets of X
which is closed under finite intersections (or unions). Then D(S) = X(95).

Proof. It suffices to show that D = D(.S) is closed under finite intersections.
To this end, consider the set D(A) = {B € DJANB € D} for A€ D. 1
claim that D(A) is a Dynkin system.

First of all, X € D(A) since ANX = A € D. Next, if B € D(A)
then AN B = A\(BN A) € D (since D is closed under proper relative
complements) implying B" € D(A). Finally, if B = |J; B; with B; € D(A)
disjoint, then AN B = |J;(AN B;) € D with B; € D disjoint, implying
B e D(A).

Now if A € S, we have S C D(A), implying D(A) = D. Consequently
AN B € D if at least one of the sets is in S. But this shows S C D(A) and



304 A. Almost everything about Lebesgue integration

hence D(A) = D for every A € D. So D is closed under finite intersections
and thus is a o-algebra. The case of unions is analogous. ([

The typical use of this lemma is as follows: First verify some property
for sets in a set S which is closed under finite intersections and generates
the o-algebra. In order to show that it holds for every set in 3(S), it suffices
to show that the collection of sets for which it holds is a Dynkin system.

As an application, we show that a premeasure determines the corre-
sponding measure p uniquely (if there is one at all):

Theorem A.5 (Uniqueness of measures). Let S C ¥ be a collection of
sets which generates X2, which is closed under finite intersections, and which
contains a sequence of increasing sets X, /* X of finite measure u(X,) <
o0o. Then p is uniquely determined by the values on S.

Proof. Let fi be a second measure and note p(X) = limy, oo pu(X,) =
limy, 00 1(X5) = (X). We first suppose u(X) < oo.
Then

D ={A € X[u(4) = n(A)}
is a Dynkin system. In fact, by u(A’) = u(X)—p(A) = p(X)—a(A) = a(A)
for A € D, we see that D is closed under complements. Furthermore, by
continuity of measures from below, it is also closed under countable disjoint
unions. Since D contains S by assumption, we conclude D = ¥(S) = X
from Lemma A.4. This finishes the finite case.

To extend our result to the general case, observe that the finite case
implies (AN X;) = p(AN X;) (just restrict p, i to X;). Hence

p(A) = lim p(ANX;) = lim a(ANX;) = a(A)
j—o0 Jj—o00
and we are done. O

Corollary A.6. Let u be a o-finite premeasure on an algebra A. Then there
is at most one extension to X(A).

So it remains to ensure that there is an extension at all. For any pre-
measure p we define

ut(4) = inf {37 4n)

AC G Ay, Ay € A} (A.8)
n=1

where the infimum extends over all countable covers from A. Then the
function p* : P(X) — [0,00] is an outer measure; that is, it has the
properties (Problem A.6)

o p*(0) =0,

[ A1 - A2 = [L*(Al) < ,LL*(AQ), and
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b N*(UZO:1 Ap) < Zzozl p*(A,)  (subadditivity).
Note that p*(A) = p(A) for A € A (Problem A.7).

Theorem A.7 (Extensions via outer measures). Let u* be an outer measure.
Then the set % of all sets A satisfying the Carathéodory condition

pHE) = p (ANE) + (A NE), VECX (A.9)

(where A" = X\ A is the complement of A) forms a o-algebra and p* re-
stricted to this o-algebra is a measure.

Proof. We first show that X is an algebra. It clearly contains X and is
closed under complements. Concerning unions, let A, B € . Applying
Carathéodory’s condition twice shows

p(E) =p*(ANBNE)+ u*(AANBNE)+u*(ANB'NE)
+u*(ANB'NE)
>u*((AUB) N E) + " (AU B)'N ),
where we have used de Morgan and
W(ANBNE)+u (ANBNE)+p (ANBNE) > ((AUB)NE),

which follows from subadditivity and (AUB)NE = (ANBNE)U (AN
BNE)U(ANB'NE). Since the reverse inequality is just subadditivity, we
conclude that ¥ is an algebra.

Next, let A, be a sequence of sets from 3. Without restriction we can
assume that they are disjoint (compare the argument for item (ii) in the
proof of Theorem A.1). Abbreviate A, = -, Ak, A = U, An. Then for
every set F/ we have B

(A, NE) = p* (A, N A, NE) + p*(A,NA,NE)

= 1" (Ap N E) + " (Ay_1 N E)

=... =) u(ANE).
k=1

Using A4, € ¥ and monotonicity of x*, we infer

pH(E) = " (A, N E) + p*(A,N E)
> (A NE)+ pt (AN E).
k=1
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Letting n — oo and using subadditivity finally gives

pr(E) = > pf (AN E) + p (AN E)
k=1
> (AN E) +p" (AN E) > p*(E) (A.10)

and we infer that ¥ is a o-algebra.
Finally, setting £ = A in (A.10), we have

pHA) =D (A N A) + (AN A) = i (Ay)
k=1 k=1
and we are done. O

Remark: The constructed measure p is complete; that is, for every
measurable set A of measure zero, every subset of A is again measurable
(Problem A.8).

The only remaining question is whether there are any nontrivial sets
satisfying the Carathéodory condition.

Lemma A.8. Let i be a premeasure on A and let u* be the associated outer
measure. Then every set in A satisfies the Carathéodory condition.

Proof. Let A, € A be a countable cover for E. Then for every A € A we
have

> (An) =D u(AnNA) + D (AN A) > g (ENA) + (BN A)
n=1 n=1 n=1

since A, NA € Ais a cover for ENAand A,NA" € Ais a cover for ENA’.

Taking the infimum, we have p*(E) > p*(ENA)+p*(ENA’), which finishes

the proof. O

Concerning regularity, we note:

Lemma A.9. Suppose outer reqularity (A.1) holds for every set in the al-
gebra; then p is outer reqular.

Proof. By assumption, we can replace each set A, in (A.8) by a possibly
slightly larger open set and hence the infimum in (A.8) can be realized with
open sets. U

Thus, as a consequence we obtain Theorem A.3 except for regular-
ity.  Outer regularity is easy to see for a finite union of intervals since
we can replace each interval by a possibly slightly larger open interval
with only slightly larger measure. Inner regularity will be postponed un-
til Lemma A.14.
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Problem A.6. Show that p* defined in (A.8) is an outer measure. (Hint
for the last property: Take a cover {Bpni}o, for Ay, such that p*(Ay,) =
gw + gy #(Bnk) and note that {Bpy}30.—, is a cover for |, An.)

Problem A.7. Show that p* defined in (A.8) extends u. (Hint: For the
cover Ay, it is no restriction to assume A, N Ay =0 and A, C A.)

Problem A.8. Show that the measure constructed in Theorem A.7 is com-
plete.

Problem A.9. Let i be a finite measure. Show that
d(A, B) = n(AAB), AAB = (AUB)\(AN B) (A.11)

is a metric on X if we identify sets of measure zero. Show that if A is an
algebra, then it is dense in X(A). (Hint: Show that the sets which can be
approximated by sets in A form a Dynkin system.)

A.3. Measurable functions

The Riemann integral works by splitting the x coordinate into small intervals
and approximating f(z) on each interval by its minimum and maximum.
The problem with this approach is that the difference between maximum
and minimum will only tend to zero (as the intervals get smaller) if f(x) is
sufficiently nice. To avoid this problem, we can force the difference to go to
zero by considering, instead of an interval, the set of = for which f(z) lies
between two given numbers a < b. Now we need the size of the set of these
x, that is, the size of the preimage f~!((a,b)). For this to work, preimages
of intervals must be measurable.

Let (X,Yx) and (Y, Xy) be measurable spaces. A function f: X — Y
is called measurable if f~!1(A) € ©x for every A € Sy. Clearly it suffices
to check this condition for every set A in a collection of sets which generate
Yy, since the collection of sets for which it holds forms a o-algebra by
FHONA) = X\f7H(A) and fH(U; 45) = U; fH(4))-

We will be mainly interested in the case where (Y, Xy ) = (R",B").

Lemma A.10. A function f: X — R" is measurable if and only if

n
i ex  vI=]](aj,00). (A.12)
j=1
In particular, a function f : X — R™ is measurable if and only if every
component is measurable, and a complez-valued function f : X — C" is
measurable if and only if both its real and imaginary parts are.

Proof. We need to show that 8™ is generated by rectangles of the above
form. The o-algebra generated by these rectangles also contains all open
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rectangles of the form I = H;‘Zl(aj, b;), which form a base for the topology.
O

Clearly the intervals (aj,00) can also be replaced by [a;, c0), (—o0, a;),
or (—o0, ajl.

If X is a topological space and ¥ the corresponding Borel o-algebra,
we will also call a measurable function a Borel function. Note that, in
particular,

Lemma A.11. Let (X,Xx), (Y,Xy), (Z,X2) be topological spaces with
their corresponding Borel o-algebras. Any continuous function f : X —'Y
is measurable. Moreover, if f : X — Y and g : Y — Z are measurable
functions, then the composition g o f is again measurable.

The set of all measurable functions forms an algebra.

Lemma A.12. Let X be a topological space and % its Borel o-algebra.
Suppose f,g : X — R are measurable functions. Then the sum f 4+ g and
the product fg are measurable.

Proof. Note that addition and multiplication are continuous functions from
R? — R and hence the claim follows from the previous lemma. O

Sometimes it is also convenient to allow 400 as possible values for f,
that is, functions f : X — R, R = RU {—o0,00}. In this case, A C R is
called Borel if ANR is. This implies that f : X — R will be Borel if and
only if f~!(£o00) are Borel and f: X\ f~!({—o00,00}) — R is Borel. Since

{+o0} =, +oq],  {—o0} =R\ J(-n,+o0], (A.13)

we see that f : X — R is measurable if and only if
f((a,x]) €2 VaeR. (A.14)

Again the intervals (a, oo] can also be replaced by [a, 00|, [0, a), or [—00, a].
Hence it is not hard to check that the previous lemma still holds if one
either avoids undefined expressions of the type oo — oo and +o00 -0 or makes
a definite choice, e.g., oo — 00 =0 and o0 -0 = 0.
Moreover, the set of all measurable functions is closed under all impor-
tant limiting operations.

Lemma A.13. Suppose f,: X — R is a sequence of measurable functions.
Then

inf f,, supfp, liminff,, limsupf, (A.15)
neN n—o00

neN n—00

are measurable as well.



A.4. How wild are measurable objects? 309

Proof. It suffices to prove that sup f,, is measurable since the rest follows

from inf f,, = —sup(—fy,), liminf f,, = sup, infy>, fr, and limsup f, =
inf,, supys,, fi. But (sup fn)"'((a,00]) = U, f, ' ((a,0]) are Borel and we
are done. O

A few immediate consequences are worthwhile noting: It follows that
if f and g are measurable functions, so are min(f,g), max(f,g), |f| =
max(f, —f), and f¥ = max(&f,0). Furthermore, the pointwise limit of
measurable functions is again measurable.

Sometimes the case of arbitrary suprema and infima is also of interest.
In this respect, the following observation is useful: Recall that a function
f: X — R is lower semicontinuous if the set f~!((a, o0]) is open for every
a € R. Then it follows from the definition that the sup over an arbitrary
collection of lower semicontinuous functions

flz) = sup fa(z) (A.16)

is again lower semicontinuous. Similarly, f is upper semicontinuous if
the set f~1([~o0,a)) is open for every a € R. In this case the infimum

f(x) = inf fu() (A.17)
is again upper semicontinuous. Note that f is lower semicontinuous if and
only if —f is upper semicontinuous.

Problem A.10. Show that the supremum over lower semicontinuous func-
tions is again lower semicontinuous.

Problem A.11. Let X be a metric space. Show that f is lower semicon-
tinuous if and only if

liminf f(z) > f(x0), zo € X.
T—T0
Similarly, f is upper semicontinuous if and only if

limsup f(z) < f(zo), @0 € X.

T—T0
A.4. How wild are measurable objects?

In this section, we want to investigate how far measurable objects are away
from well-understood ones. As our first task, we want to show that measur-
able sets can be well approximated by using closed sets from the inside and
open sets from the outside in nice spaces like R”.

Lemma A.14. Let X be a metric space and p a Borel measure which is
finite on finite balls. Then p is o-finite and for every A € B(X) and any
given € > 0 there exists an open set O and a closed set F' such that

FCACO and p(O\F)<e. (A.18)
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Proof. That p is o-finite is immediate from the definitions since for any
fixed ¢ € X, the open balls X,, = B, (z¢) have finite measure and satisfy
X, " X.

To see that (A.18) holds, we begin with the case when p is finite. Denote
by A the set of all Borel sets satisfying (A.18). Then A contains every closed
set F: Given F, define O, = {z € X|d(x, F) < 1/n} and note that O,, are
open sets which satisfy O,, \( F'. Thus, by Theorem A.1 (iii), u(O,\F) — 0
and hence F € A.

Moreover, A is even a g-algebra. That it is closed under complements
is easy to see (note that O = X\F and F = X\O are the required sets
for A = X\A). To see that it is closed under countable unions, consider
A =J>7, A, with A, € A. Then there are F,,, O,, such that u(O,\F,) <
e27" 1. Now O = [J02, O, is open and F = Uﬁ[:l F, is closed for any
finite N. Since pu(A) is finite, we can choose N sufficiently large such that
(UN41 Fn\F) < /2. Then we have found two sets of the required type:
p(O\F) <307 (O \Fp) + (UpZn i1 Fn\F) < e. Thus A is a o-algebra
containing the open sets, and hence it is the entire Borel algebra.

Now suppose p is not finite. Pick some 29 € X and set Xo = By/3(o)
and X, = By49/3(20)\Bn—2/3(70), n € N. Let A, = AN X,, and note that
A= U;'LOZO A,. By the finite case we can choose F,, C A, C O, C X,, such
that (0, \F,) <271 Now set F =, F;, and O = J,, O,, and observe
that F is closed. Indeed, let € F and let z; be some sequence from F'
converging to . Since d(zo,x;) — d(xo,x) this sequence must eventually
lie in F}, U F}, 41 for some fixed n, implying x € F,, U Fj,41 = F,UF,,4+1 C F.
Finally, p(O\F) < Y02, (O \Fy) < € as required. O

This result immediately gives us outer regularity and, if we strengthen
our assumption, also inner regularity.

Corollary A.15. Under the assumptions of the previous lemma,

pw(A)=__ inf  p(O)=  sup  p(F) (A.19)
024,0 open FCA,F closed

and p is outer reqular. If X is proper (i.e., every closed ball is compact),
then p is also inner regular.

u(A) = sup 1(K). (A.20)
KCA,K compact

Proof. Finally, (A.19) follows from u(A) = p(O) — u(O\A) = u(F) +
u(A\F) and if every finite ball is compact, for every sequence of closed sets
F,, with u(F,) — p(A) we also have compact sets K,, = F,, N By, (xg) with
1K) = p(A). O
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By the Heine—Borel theorem, every bounded closed ball in R™ (or C™)
is compact and thus has finite measure by the very definition of a Borel

measure. Hence every Borel measure on R" (or C") satisfies the assumptions
of Lemma A.14.

An inner regular measure on a Hausdorfl space which is locally finite
(every point has a neighborhood of finite measure) is called a Radon mea-
sure. Accordingly, every Borel measure on R" (or C") is automatically a
Radon measure.

Example. Since Lebesgue measure on R is regular, we can cover the rational
numbers by an open set of arbitrary small measure (it is also not hard to find
such a set directly) but we cannot cover it by an open set of measure zero
(since any open set contains an interval and hence has positive measure).
However, if we slightly extend the family of admissible sets, this will be
possible. o

Looking at the Borel o-algebra, the next general sets after open sets
are countable intersections of open sets, known as Gs sets (here G and ¢
stand for the German words Gebiet and Durchschnitt, respectively). The
next general sets after closed sets are countable unions of closed sets, known
as F, sets (here F' and o stand for the French words fermé and somme,
respectively).

Example. The irrational numbers are a G set in R. To see this, let x,, be
an enumeration of the rational numbers and consider the intersection of the
open sets O,, = R\{z,}. The rational numbers are hence an F; set. o

Corollary A.16. A set in R™ is Borel if and only if it differs from a Gs set
by a Borel set of measure zero. Similarly, a set in R™ is Borel if and only if
it differs from an F, set by a Borel set of measure zero.

Proof. Since G sets are Borel, only the converse direction is nontrivial.
By Lemma A.14 we can find open sets O,, such that p(O,\A4) < 1/n. Now
let G = (),0n. Then p(G\A) < u(O\A) < 1/n for any n and thus
u(G\A) = 0. The second claim is analogous. O

Problem A.12. Show directly (without using reqularity) that for everye > 0
there is an open set O of Lebesgue measure |O| < € which covers the rational
numbers.

Problem A.13. Show that a Borel set A C R has Lebesque measure zero
if and only if for every € there exists a countable set of intervals I; which
cover A and satisfy >, |1;| <e.
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A.5. Integration — Sum me up, Henri

Throughout this section, (X, X, u) will be a measure space. A measurable
function s : X — R is called simple if its image is finite; that is, if

§= Z%' Xa; s(X)={a}_y, Aj=s"ay) €2, (A.21)

Here x4 is the characteristic function of A; that is, xa(z) =1ifz € A
and x4(z) = 0 otherwise. Note that the set of simple functions is a vector
space, and while there are different ways of writing a simple function as a
linear combination of characteristic functions, the representation (A.21) is
unique.

For a nonnegative simple function s as in (A.21) we define its integral
as

P
/ sdp =" a;u(A;NA). (A.22)
A =
Here we use the convention 0 - co = 0.
Lemma A.17. The integral has the following properties:
i) Jasdu= [xxasdu.
onoAsdu > 1fA sdpu, AN A, =0 forj #k.
(iii ansd,u—ozfAsd,u, a>0.

)
i)
(iv) [q(s+t)dp= [,sdu+ [4tdu.
(v) ACB = [,sdu< [gsdpu.
(vi) s<t = [,sdu < [ tdpu.

Proof. (i) is clear from the definition. (ii) follows from o-additivity of pu.
t

(iii) is obvious. (iv) Let s = > . ajxa;, t = >, Bjxp, as in (A.21) and
abbreviate Cj, = (A; N By,) N A. Then, by (ii),

/s+tdu Z/ (s+t)dp = Z(aﬁ-ﬁk)( k)

:Z</ sd,u+/ tdu) :/sdu+/tdu.
T \/Ci Cjk A A

(v) follows from monotonicity of . (vi) follows since by (iv) we can write
5= Zj ajxo;, t= Zj Bj Xc; where, by assumption, a; < ;. O
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Our next task is to extend this definition to nonnegative measurable
functions by
/ fdu= sup/ sdj, (A.23)
A s<fJA
where the supremum is taken over all simple functions s < f. Note that,
except for possibly (ii) and (iv), Lemma A.17 still holds for arbitrary non-
negative functions s, t.

Theorem A.18 (Monotone convergence, Beppo Levi’s theorem). Let f,
be a monotone nondecreasing sequence of nonnegative measurable functions,

fn A f. Then
/fndu—>/fd,u. (A.24)
A A

Proof. By property (vi), [, fn dp is monotone and converges to some num-
ber a. By f,, < f and again (vi) we have

a§/14fdp.

To show the converse, let s be simple such that s < f and let 6 € (0,1). Put
A, ={z € Alfn(x) > 0s(z)} and note A4,, /A (show this). Then

/fndu>/ fndu>9/ sdp.

Letting n — oo, we see that

a>0 / sdpu.
A
Since this is valid for every 6 < 1, it still holds for 8 = 1. Finally, since
s < f is arbitrary, the claim follows. O
In particular,
/fd,u: lim /sn du (A.25)
A n—oo A

for every monotone sequence s,  f of simple functions. Note that there is
always such a sequence, for example,
n2m
k kE k+1
sn(z) =) gXrian (@), Ax =g, =5), Anan = [n,00). (A.26)
k=0

By construction, s, converges uniformly if f is bounded, since 0 < f(x) —
sn(2) < 5 if f(z) < n.

Now what about the missing items (ii) and (iv) from Lemma A.177 Since
limits can be spread over sums, item (iv) holds, and (ii) also follows directly
from the monotone convergence theorem. We even have the following result:
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Lemma A.19. If f > 0 is measurable, then dv = f du defined via

I/(A)—/Afd,u (A.27)

/gduz /gfdu (A.28)

for every measurable function g.

1s a measure such that

Proof. As already mentioned, additivity of v is equivalent to linearity of
the integral and o-additivity follows from Theorem A.18:

v(|J An) = /(Z Xa,)f dp = Z/XAnf dp =" v(Ay).
n=1 n=1 n=1 n=1

The second claim holds for simple functions and hence for all functions by
construction of the integral. O

If f, is not necessarily monotone, we have at least

Theorem A.20 (Fatou’s lemma). If f, is a sequence of nonnegative mea-
surable function, then

/ liminf f,, du < lim inf/ frndp. (A.29)
A n—o0 A

n—oo

Proof. Set g, = inf;>, fi. Then g, < f,, implying

/%ws/ﬁm
A A

Now take the liminf on both sides and note that by the monotone conver-
gence theorem,

liminf/ gndp = lim gn dp :/ lim g,dp = / liminf f, du,

n—oo n—oo

proving the claim. O

Example. Consider f, = X[ n+1]- Then lim,, o0 fn(x) = 0 for every x € R.
However, [o fn(2)dz = 1. This shows that the inequality in Fatou’s lemma
cannot be replaced by equality in general. o

If the integral is finite for both the positive and negative part f* =
max(+f,0) of an arbitrary measurable function f, we call f integrable

and set
Afdu—Af+du—Afdu. (A.30)
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Similarly, we handle the case where f is complex-valued by calling f inte-
grable if both the real and imaginary parts are and setting

/A fdu= /A Re(f)dju +i /A () d. (A.31)

Clearly, f is integrable if and only if | f| is. The set of all integrable functions
is denoted by £(X, du).

Lemma A.21. The integral is linear and Lemma A.17 holds for integrable
functions s, t.

Furthermore, for all integrable functions f, g, we have

| /A e /A Fldy (A.32)

and (triangle inequality)

/A|f+9!du§/A|f!du+/A!9!du- (A.33)

Proof. Linearity and Lemma A.17 are straightforward to check. To see
(A.32) put @ = %, where z = [, f du (without restriction z # 0). Then

I/AfdﬂlZa/Afdu:/Aafdﬂz/ARe(Oéf)dué/A!fdu,

proving (A.32). The last claim follows from |f + g| < |f] + |g|- O
Lemma A.22. Let f be measurable. Then

/X|f|du:O & flx)=0 w—a.e. (A.34)

Moreover, suppose f is nonnegative or integrable. Then
WA =0 = / fdu=0. (A.35)
A

Proof. Observe that we have A = {z|f(z) # 0} = U,, An, where 4, =
{||f(z)| > 2}, If [ |fldpw = O, we must have p(A,) = 0 for every n and
hence p(A) = lim, o0 p(A45) = 0.

The converse will follow from (A.35) since u(A) = 0 (with A as before)
implies [ |fldp = [, |fldp = 0.

Finally, to see (A.35) note that by our convention 0 - oo = 0 it holds for
any simple function and hence for any nonnegative f by definition of the
integral (A.23). Since any function can be written as a linear combination of

four nonnegative functions, this also implies the case when f is integrable.
O
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Note that the proof also shows that if f is not 0 almost everywhere,
there is an € > 0 such that u({z||f(z)| > €}) > 0.

In particular, the integral does not change if we restrict the domain of
integration to a support of u or if we change f on a set of measure zero. In
particular, functions which are equal a.e. have the same integral.

Finally, our integral is well behaved with respect to limiting operations.
We first state a simple generalization of Fatou’s lemma.

Lemma A.23 (generalized Fatou lemma). If f,, is a sequence of real-valued
measurable functions and g some integrable function, then

/ liminf f,, dp < lim inf/ frndu (A.36)
if g < fn and
lim Sup/ frndp < / lim sup f,, dpu (A.37)
n—oo A A m—oo
if fn<g.

Proof. To see the first, apply Fatou’s lemma to f,, — ¢ and subtract fA gdu
on both sides of the result. The second follows from the first using
liminf(—f,) = — limsup f,. O

If in the last lemma we even have |f,| < g, we can combine both esti-
mates to obtain

/ liminf f, du < lim inf/ fndp <lim sup/ fndu < / limsup f, du,
A N JA A A

n—oo n—00 n—00
(A.38)

which is known as the Fatou—Lebesgue theorem. In particular, in the
special case where f,, converges, we obtain

Theorem A.24 (Dominated convergence). Let f,, be a convergent sequence
of measurable functions and set f = limy_,00 fr. Suppose there is an inte-
grable function g such that |f,| < g. Then f is integrable and

nh_}rgo fnd,u:/fd,u. (A.39)

Proof. The real and imaginary parts satisfy the same assumptions, and
hence it suffices to prove the case where f,, and f are real-valued. Moreover,
since liminf f,, = limsup f,, = f, equation (A.38) establishes the claim. [

Remark: Since sets of measure zero do not contribute to the value of the
integral, it clearly suffices if the requirements of the dominated convergence
theorem are satisfied almost everywhere (with respect to p).

Example. Note that the existence of g is crucial: The functions f,(z) =
ﬁX[—n,n] (z) on R converge uniformly to 0 but [, fn(z)dz = 1. o
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Example. If ;(z) = O(z) is the Dirac measure at 0, then

/ f(@)dp(x) = £(0).
R

In fact, the integral can be restricted to any support and hence to {0}.

If pu(z) = >, an®(z — z,) is a sum of Dirac measures, then (Prob-
lem A.14)

[ au@) = Y ans ().
R n
Hence our integral contains sums as special cases. 3

Finally, let me conclude this section with a remark on how to compute
Lebesgue integrals in the classical case of Lebesgue measure on some interval
(a,b) C R. Given a continuous function f € C(a,b) which is integrable over
(a,b), we can introduce

F(z)= : }f(y)dy, x € (a,b). (A.40)
Then one has
Flx+e)—F(x) . 1 g
s [ (- @)y

(where (z,z + €] has to be understood as (x + ¢, z] if € < 0) and
: 1 .
timsup > [ |f) - fe)ldy < lmswp sup[7(y) ~ ()] =0
e—=0 € J(zzte] =0 ye(z,ate]

by the continuity of f at . Thus F € C!(a,b) and
Fl(z) = f(),

which is a variant of the fundamental theorem of calculus. This tells us
that the integral of a continuous function f can be computed in terms of its
antiderivative and, in particular, all tools from calculus like integration by
parts or integration by substitution are readily available for the Lebesgue
integral on R. Moreover, the Lebesgue integral must coincide with the Rie-
mann integral for (piecewise) continuous functions.

Problem A.14. Consider a countable set of measures p, and numbers oy, >
0. Let p =7, anpty, and show

/Afdﬂ . Z%/Afdun (A.41)

for any measurable function which is either nonnegative or integrable.
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Problem A.15. Show that the set B(X) of bounded measurable functions
with the sup norm is a Banach space. Show that the set S(X) of simple
functions is dense in B(X). Show that the integral is a bounded linear
functional on B(X) if u(X) < oo. (Hence Theorem 0.29 could be used to
extend the integral from simple to bounded measurable functions.)

Problem A.16. Show that the monotone convergence holds for nondecreas-
ing sequences of real-valued measurable functions f,  f provided fy is
integrable.

Problem A.17. Show that the dominated convergence theorem implies (un-
der the same assumptions)

7}3.10/ |fn = fldp=0.

Problem A.18. Let f be an integrable function satisfying f(z) < M. Show
that

[ faw < atuca
A
with equality if and only if f(x) = M for a.e. x € A.

Problem A.19. Let X C R, Y be some measure space, and f : X xY — C.
Suppose y — f(x,y) is measurable for every x and x — f(x,y) is continuous
for every y. Show that

F(z) = /A f(.y) du(y) (A42)

is continuous if there is an integrable function g(y) such that | f(z,y)| < g(y).

Problem A.20. Let X C R, Y be some measure space, and f : X xY — C.
Suppose y — f(x,y) is integrable for all x and x — f(x,y) is differentiable
for a.e. y. Show that

F(z) = /A F () duy) (A.43)

is differentiable if there is an integrable function g(y) such that \%f(x, y)| <
9(y). Moreover, y — a%f(:l:, y) is measurable and

F@)= [ 5 i(e0) duty) (A.44)

in this case.
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A.6. Product measures

Let pq and po be two measures on X and Yo, respectively. Let 31 ® ¥o be
the o-algebra generated by rectangles of the form A; x As.

Example. Let B be the Borel sets in R. Then B2 = B ® B are the Borel
sets in R? (since the rectangles are a basis for the product topology). o

Any set in X1 ® Yo has the section property; that is,
Lemma A.25. Suppose A € ¥1 ® ¥a. Then its sections
Ai(x9) = {x1|(z1,22) € A} and Ax(z1) = {x2|(x1,22) € A}  (A45)

are measurable.

Proof. Denote all sets A € ¥1 ® X9 with the property that A;(x2) € 31 by
S. Clearly all rectangles are in S and it suffices to show that S is a o-algebra.
Now, if A € S, then (A")1(x2) = (A1(x2))’ € 31 and thus S is closed under
complements. Similarly, if A, € S, then (|J,, An)1(22) = U,,(An)1(22) shows
that S is closed under countable unions. ([

This implies that if f is a measurable function on X; x Xy, then f(., z2) is
measurable on X for every z9 and f(x1,.) is measurable on X, for every x;
(observe Ay (z2) = {x1|f(x1,22) € B}, where A = {(x1,z2)|f(x1,x2) € B}).

Given two measures g1 on 31 and ps on Yo, we now want to construct
the product measure p; ® po on 31 ® g such that

1 @ pa(Ar X Ag) = ui(Ar)pa(Az), Aj;€%j, j=1,2. (A.46)

Since the rectangles are closed under intersection, Theorem A.5 implies that
there is at most one measure on ;1 ® ¥ provided p; and pg are o-finite.

Theorem A.26. Let uy and ps be two o-finite measures on %1 and Yo,
respectively. Let A € X1 @ Xo. Then ua(Aa(z1)) and pi(Ai(z2)) are mea-
surable and

/ pio(Ao(r))dpn (1) = / i (Ay(@o))dpa(es). (AAT)
X1

Xo

Proof. As usual, we begin with the case where p; and ps are finite. Let
D be the set of all subsets for which our claim holds. Note that D contains
at least all rectangles. Thus it suffices to show that D is a Dynkin system
by Lemma A.4. To see this, note that measurability and equality of both
integrals follow from A;(x2)" = Aj(x2) (implying pi(A](z2)) = w1 (X1) —
11 (A1 (x2))) for complements and from the monotone convergence theorem
for disjoint unions of sets.
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If 1 and po are o-finite, let X;; 7 X; with p1;(X; ;) < oo for i = 1,2.
Now /,LQ((A N XL]' X XQJ‘)Q(xl)) = /LQ(AQ(xl) N XQJ‘)XXLJ- (1‘1) and similarly
with 1 and 2 exchanged. Hence by the finite case,

/ p2(A2 N Xoj)xx, dp1 = / pa (A N X7 5)X X, dpe, (A.48)
X1 X2

and the o-finite case follows from the monotone convergence theorem. [

Hence for given A € 31 ® Yo, we can define

1 @ p2(A) = / p2(Az(z1))dpa (z1) = / (A (z2))dpa(z2)  (A.49)
X1 X2

or equivalently, since X 4, (z,)(%1) = X4, (z)(72) = xa(T1, 72),

mom@ = [ ([ 2 Ao aldia(es) ) dia ()

X1

-/ (/ | e el ) i), (450

Then 111 ® s gives rise to a unique measure on A € Y1 ®9 since o-additivity
follows from the monotone convergence theorem.

Finally we have

Theorem A.27 (Fubini). Let f be a measurable function on X; x Xs and
let w1, po be o-finite measures on X1, Xo, respectively.

(i) If f > 0, then [ f(.,w2)dpa(w2) and [ f(x1,.)dui(x1) are both

measurable and

J[ s amiam @ patara) = [ ( / f(xl,@)dm(xl)) dys()

= / </f(f€1,932)dlt2(902)) dpq(x1). (A.51)
(ii) If f is complex-valued, then
[ 1wl (@) € £ (), (A5
respectively,
/ F (21, )| dpia(@s) € LY(X1, dpir), (A.53)
if and only if f € LY(X1 x Xo,duy ® dus). In this case, (A.51)
holds.

Proof. By Theorem A.26 and linearity, the claim holds for simple functions.
To see (i), let s,  f be a sequence of nonnegative simple functions. Then it
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follows by applying the monotone convergence theorem (twice for the double
integrals).

For (ii) we can assume that f is real-valued by considering its real and
imaginary parts separately. Moreover, splitting f = fT— f~ into its positive
and negative parts, the claim reduces to (i). O

In particular, if f(x1,x2) is either nonnegative or integrable, then the
order of integration can be interchanged. The case of nonnegative func-
tions is also called Tonelli’s theorem. In the general case the integrability
condition is crucial, as the following example shows.

Example. Let X = [0, 1] x [0, 1] with Lebesgue measure and consider

__r7y
f(x,y) - (m+y)3

Al/olf(x,y)dxdyz—/olwdy:—;

but (by symmetry)

/01 /Olf(m,y)dydx :/01 mlx)zda;: %

Consequently, f cannot be integrable over X (verify this directly). o

Then

Lemma A.28. If u1 and po are outer reqular measures, then so is p1 & fio.

Proof. Outer regularity holds for every rectangle and hence also for the
algebra of finite disjoint unions of rectangles (Problem A.21). Thus the
claim follows from Lemma A.9. ([

In connection with Theorem A.5, the following observation is of interest:

Lemma A.29. If Sy generates X1 and So generates s, then S1 X Sy =
{A1 x A3]Aj € S5, 7 = 1,2} generates 1 @ Xa.

Proof. Denote the g-algebra generated by S7 x Ss by ¥. Consider the set
{A; € ¥1]A; x X9 € ¥} which is clearly a o-algebra containing S; and thus
equal to ¥1. In particular, ¥; x Xo C ¥ and similarly X7 x o C . Hence
also (X1 x Xo) N (X7 x Xg) =%1 x 39 C X. O

Finally, note that we can iterate this procedure.

Lemma A.30. Suppose (X;,%;, 115), j = 1,2, 3, are o-finite measure spaces.
Then (21 & 22) ®I3 =21 ® (EQ & 23) and

(11 @ p2) @ pz = p1 @ (2 @ p3). (A.54)
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Proof. First of all, note that (X1 ® X2) ® X3 = ¥ ® (X2 ® ¥3) is the sigma
algebra generated by the rectangles A x Ay x A3 in X1 x X9 x X3. Moreover,
since

(11 ® p2) @ ps)(Ar x Az x Az) = p1(Ar)pa(A2)ps(As)
= (1 ® (p2 ® p3))(Ar x Az x As),

the two measures coincide on rectangles and hence everywhere by Theo-
rem A.5. O

Example. If ) is Lebesgue measure on R, then A" = A®---® X is Lebesgue
measure on R™. Since A is outer regular, so is A". Of course regularity also
follows from Corollary A.15.

Moreover, Lebesgue measure is translation invariant and up to normal-
ization the only measure with this property. To see this, let u be a second
translation invariant measure. Denote by @), a cube with side length r > 0.
Without loss, we can assume p(Q1) = 1. Since we can split Q1 into m'™
cubes of side length 1/m, we see that u(Qi/,) = m™" by translation in-
variance and additivity. Hence we obtain u(Q,) = r™ for every rational r
and thus for every r by continuity from below. Proceeding like this, we see
that \™ and u coincide on all rectangles which are products of bounded open
intervals. Since this set is closed under intersections and generates the Borel
algebra B" by Lemma A.29, the claim follows again from Theorem A.5. <

Problem A.21. Show that the set of all finite unions of rectangles A1 X Ag
forms an algebra. Moreover, every set in this algebra can be written as a
finite union of disjoint rectangles.

Problem A.22. Let U C C be a domain, Y be some measure space, and
f:UxY — C. Suppose y — f(z,y) is measurable for every z and z —
f(z,y) is holomorphic for every y. Show that

F(z) = /A F(z ) dpu(y) (A.55)

is holomorphic if for every compact subset V. C U there is an integrable
function g(y) such that |f(z,y)| < g(y), z € V. (Hint: Use Fubini and
Morera.)

A.7. Transformation of measures and integrals

Finally, we want to transform measures. Let f : X — Y be a measurable
function. Given a measure p on X we can introduce a measure fypu on Y
via

(fur) (A) = p(fH(A)). (A.56)
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It is straightforward to check that fiu is indeed a measure. Moreover, note
that f,u is supported on the range of f.

Theorem A.31. Let f : X — Y be measurable and let g :' Y — C be a
Borel function. Then the Borel function go f : X — C is a.e. nonnegative
or integrable if and only if g is, and in both cases,

/Ygd(f*u) = /Xgo fdp. (A.57)

Proof. In fact, it suffices to check this formula for simple functions g, which
follows since x4 o f = xf-1(4)- U

Example. Let f(z) = Mxz+a be an affine transformation, where M : R” —
R"™ is some invertible matrix. Then Lebesgue measure transforms according

to

feAt = _ A"

. | det(M)]"
In fact, it suffices to check fuA"(R) = | det(M)|~'A\"(R) for finite rectangles
R by Theorem A.5. To see this, note that f, A" is translation invariant and
hence must be a multiple of \”. Moreover, for an orthogonal matrix, this
multiple is one (since an orthogonal matrix leaves the unit ball invariant)
and for a diagonal matrix it must be the absolute value of the product
of the diagonal elements. Finally, since every matrix can be written as
M = 01DO», where O; are orthogonal and D is diagonal (Problem A.24),
the claim follows.

As a consequence we obtain

1
gMx +a)d"r = ———— g(y)d™y,
Jysr s = oy [, 90
which applies, for example, to shifts f(z) = = + a or scaling transforms
f(z) = az. o

This result can be generalized to diffeomorphisms (one-to-one C'! maps
with inverse again C1):

Lemma A.32. Let U,V C R" and suppose f € C*(U,V) is a diffeomor-
phism. Then

(f Dud"z = |Jy(x)|d"z, (A.58)

where Jp = det(%) is the Jacobi determinant of f. In particular,

/gU@MQ@MWx—/g@M%- (A.59)
U Vv
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Proof. It suffices to show

[ ay= [ @l
f(R) R

for every bounded open rectangle R C U. By Theorem A.5 it will then
follow for characteristic functions and thus for arbitrary functions by the
very definition of the integral.

To this end we consider the integral

1. _-j/R)/f|J; W)lee(f(2) — y)d"z "y

-n 1

Here ¢ =V, 'xp,(0) and ¢(y) = gp(e_ y), where V,, is the volume of
the unit ball (cf. below), such that [ ¢.(z)d"z = 1.

We will evaluate this integral in two ways. To begin with we consider
the inner integral

m@%jéwAﬂ@—yM%

For £ < g¢ the integrand is nonzero only for z € K = f~1(B.,(y)), where
K is some compact set containing 2 = f~!(y). Using the affine change of
coordinates z = x 4+ ew we obtain

m@»—/dmw(ﬂx+“?‘f@0d%m Weo) = H(K — ).

3

By

the integrand is nonzero only for w € B¢(0). Hence, as € — 0 the domain
We(z) will eventually cover all of Bo(0) and dominated convergence implies

: - z)w)dw = z)| ™!
%%@—LmﬂW)M (@)

e

‘ﬂw+ﬂ@—f®)

1 _
> 2w, C=suplldf
K

Consequently, lim, g I. = |[f(R)| again by dominated convergence. Now we
use Fubini to interchange the order of integration

L ‘,/ /1 (L)l (F(2) — p)diy dvz.

Since f(z) is an interior point of f(R) continuity of |J¢(f~!(y))| implies

tim [ I W) = )y = (D] = 14(G)]
eV Jf(R)

and hence dominated convergence shows lim. o I = [ |J;(2)|d"z. O
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Example. For example we can consider polar coordinates T : [0,00) X
[0,27) — R? defined by

Ts(p, ) = (pcos(i), psin(p)).

Then
0Ts

det ——2_ —
app) "

and one has
[ focoste)psintepd(og) = [ fale
U Ty(U)

Note that T% is only bijective when restricted to (0,00) x [0,27). However,
since the set {0} x [0,2m) is of measure zero, it does not contribute to the
integral on the left. Similarly, its image T»({0} x [0,27)) = {0} does not
contribute to the integral on the right. o

Example. We can use the previous example to obtain the transformation
formula for spherical coordinates in R" by induction. We illustrate the
process for n = 3. To this end, let x = (x1,x2,x3) and start with spher-
ical coordinates in R? (which are just polar coordinates) for the first two
components:

z = (pcos(p), psin(p),x3),  p € [0,00), ¢ € [0,2m).
Next, use polar coordinates for (p, x3):
(p,x3) = (rsin(), rcos(h)), r € [0,00), 0 €0, ]

Note that the range for € follows since p > 0. Moreover, observe that
1?2 = p? + 23 = 23 + 23 + 2% = |z|? as already anticipated by our notation.

In summary,
x = T3(r,p,0) = (rsin(f) cos(p), rsin(f) sin(p), r cos(9)).

Furthermore, since T3 is the composition with 75 acting on the first two
coordinates with the last unchanged and polar coordinates P acting on the
first and last coordinate, the chain rule implies

013 0Ty oP 9 .
—— =det ——— . det ———— = r*sin(0).
A(r, ¢, 0) Ap, o, w3) | oo O(r, 0, 0) ©)

Hence one has

/ F(Ts(r, 0. 0))r2 sin(8)d(r, . 0) = / Fo)da
U T3(U)

det

Again T3 is only bijective on (0, 00) x [0,27) x (0, 7).
It is left as an exercise to check that the extension 7}, : [0, 00) x [0, 27) X
[0, 7]""2 — R™ is given by

r= Tn(T, ®, ela s 797172)
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with
x1 = rcos(yp)sin(f;)sin(f2) sin(f3) - - - sin(6,—2),
To = rsin(yp)sin(f;) sin(f2) sin(f3) - - - sin(6,—2),
T3 = 7 cos(0;) sin(fz) sin(#3) - - - sin(6,—2),
x4 = 1 cos(f2) sin(f3) - - - sin(f,—2),
Tpo1 = 7 cos(fp,—3) sin(0,—2),
T = rcos(fp—2).

The Jacobi determinant is given by
a1,

det
8(7", ®, 017 s 7077,—2)

= " Lsin(6y) sin(ha)? - - - sin(f,_o)" 2.
o
Another useful consequence of Theorem A.31 is the following rule for
integrating radial functions.
1

Lemma A.33. There is a measure 0"~ ' on the unit sphere S"~! =
0B1(0) = {x € R"| || = 1}, which is rotation invariant and satisfies

[otwe= [7 [ s ar o o

for every integrable (or positive) function g.
Moreover, the surface area of S™~! is given by
S, = o" 1S =V, (A.61)

where V,, = N"(B1(0)) is the volume of the unit ball in R™, and if g(x) =
g(|x|) is radial, we have

/n g(|z])d"x = S, /000 g(r)r”_ldr. (A.62)

Proof. Consider the transformation f : R™ — [0,00) x S*7 1, 2+ (||, é—‘)
(with % =1). Let du(r) = r" tdr and

o 1(A) = X (1[0, 1) x A) (A.63)
for every A € B(S"1) = B" N S L. Note that o™~ ! inherits the rotation
invariance from A\". By Theorem A.31 it suffices to show fi\" = u® o™~ 1.
This follows from

(FX)([0,7) x A) = N*(F7H([0,7) x A)) = r"A"(f71([0, 1) x A))
= u([0,7))a"(A),

since these sets determine the measure uniquely. U
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Example. Let us compute the volume of a ball in R":

Vn(’]“) = / XB,.(O)dnx'

By the simple scaling transform f(z) = rz we obtain V;,(r) = V,,(1)r"™ and
hence it suffices to compute V,, = V,,(1).

To this end we use (Problem A.26)

2 o nV, [

_ _ _ n _ _

71":/ S d”m:nVn/ e " 1dr:2/ e 55271
n 0 0

nV, _..n Vi.n
= )=t
where I' is the gamma function (Problems A.27). Hence
n/2
™
Vo=—=>r—. A.64

I +1) ( )
By I'(3) = /7 (see Problem A.28), this coincides with the well-known values
forn=1,2,3. o

Example. The above lemma can be used to determine when a radial func-
tion is integrable. For example, we obtain

lz|* € LY(B1(0)) & a> —n, |z|* € LY(R™\B1(0)) & a < —n.

<

Problem A.23. Let A be Lebesgue measure on R. Show that if f € C*(R)
with f' >0, then
1
)= Fi)

Problem A.24. Show that every invertible matriz M can be written as
M = 01DO,, where D is diagonal and O; are orthogonal. (Hint: The
matric M*M is nonnegative and hence there is an orthogonal matrix U
which diagonalizes M*M = U*D?U. Then one can choose Oy = MUD™!
and Oy =U*.)

Problem A.25. Compute V, using spherical coordinates.
(Hint: [ sin(z)"dzx = —% sin(z)" ! cos(z) + =2 [ sin(z)"2dz.)

Problem A.26. Show
I, = / el gng = 72,

(Hint: Use Fubini to show I, = I and compute Iy using polar coordinates.)
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Problem A.27. The gamma function is defined via
I'(2) :/ ¥ e % dg, Re(z) > 0. (A.65)
0
Verify that the integral converges and defines an analytic function in the
indicated half-plane (cf. Problem A.22). Use integration by parts to show
[(z+1) =z2I(2), ) =1. (A.66)
Conclude T'(n) = (n — 1)! for n € N.

Problem A.28. Show that I'(}) = \/z. (Hint: Use the change of coordi-
nates © = t> and then use Problem A.26.)

Problem A.29. Let U C R™ be open and let f : U — R"™ be locally Lipschitz
(i.e., for every compact set K C U there is some constant L such that
|f(x) — f(y)| < Llx —y| for all x,y € K ). Show that if A C U has Lebesgue
measure zero, then f(A) is contained in a set of Lebesque measure zero.
(Hint: By Lindelof it is no restriction to assume that A is contained in a
compact ball contained in U.)

A.8. Vague convergence of measures

Let u, be a sequence of Borel measures. We will say that u, converges to
1 vaguely if
[ s~ | s (A67)
X e

We are only interested in the case of Borel measures on R. In this case,
we have the following equivalent characterization of vague convergence.

for every f € C.(X).

Lemma A.34. Let pu, be a sequence of Borel measures on R. Then p, —
vaguely if and only if the distribution functions (normalized at a point of
continuity of ) converge at every point of continuity of p.

Proof. Suppose i, — p vaguely. Let I be any bounded interval (closed, half
closed, or open) with boundary points xg,x1. Moreover, choose continuous
functions f, g with compact support such that f < x; < ¢g. Then we have
J fdp < u(I) < [ gdp and similarly for u,,. Hence

u(f)—un(f)S/gdu—/fdunS/(g—f)dwr'/fdu—/fdﬂn

and

u(f)—ﬂn(f)Z/fdu—/gdun2/(f—9)du—‘/gdu—/gdun :
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Combining both estimates, we see

(D) — ()] < / (0= F)du+

and so

/fdu—/fdﬂn +'/gdu—/gdun

limn sup () = pn(I)] < /(9 = f)dp.

Choosing f, g such that g — f — Xz} + X{z,} POIntwise, we even get from
dominated convergence that

limsup |p(I) = pn(D)| < p({z0}) + p({z1}),

n—o0

which proves that the distribution functions converge at every point of con-
tinuity of p.

Conversely, suppose that the distribution functions converge at every
point of continuity of u. To see that in fact u, — p vaguely, let f € C.(R).
Fix some € > 0 and note that, since f is uniformly continuous, there is a
d > 0 such that |f(x) — f(y)| < & whenever |z — y| < §. Next, choose some
points xg < x1 < -+ < x such that supp(f) C (xg,x), p is continuous at
xj, and xj—xj_1 < 0 (recall that a monotone function has at most countable
discontinuities). Furthermore, there is some N such that |, (x;) — p(z;)| <
57 for all j and n > N. Then

‘/fdun - /fdu‘ Sé/(wj_hm [f (@) = f(2))|dpn(2)

k

+ 3 1@l 25]) = pn (-1, 25)|
j=1
k

+Z/ _ |f(z) — f(x))|du(z).

Now, for n > N, the first and the last terms on the right-hand side are both
bounded by (u((zo, zx]) + %)e and the middle term is bounded by max |f|e.
Thus the claim follows. 0

Moreover, every bounded sequence of measures has a vaguely convergent
subsequence.

Lemma A.35. Suppose 1, is a sequence of finite Borel measures on R such
that pn(R) < M. Then there exists a subsequence which converges vaguely
to some measure p with u(R) < M.

Proof. Let p,(x) = pn((—00,x]) be the corresponding distribution func-
tions. By 0 < pn(z) < M there is a convergent subsequence for fixed z.
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Moreover, by the standard diagonal series trick, we can assume that u,(z)
converges to some number u(x) for each rational z. For irrational = we set
w(z) = infy sz {u(xo)|zo rational}. Then p(z) is monotone, 0 < p(zy) <
w(za) < M for 1 < x9. Furthermore,

p(z—) < liminf pu, (2) < limsup pn(z) < p(z)

shows that p,(z) — wp(x) at every point of continuity of p. So we can
redefine u to be right continuous without changing this last fact. O

In the case where the sequence is bounded, (A.67) even holds for a larger
class of functions.

Lemma A.36. Suppose p, — p vaguely and p,(R) < M. Then (A.67)
holds for every f € Coo(R). If in addition un(R) — p(R), then (A.67) holds
for every f € Cy(R).

Proof. Split f = f1+ f2, where f; has compact support and |f2| < e. Then
| [ fdu— [ fdun| <|[ fidp— [ fidus| + 2eM and the first claim follows.

Similarly, for the second claim, let |f| < C and choose R such that
u(R\[=R, R]) < e. Then we have u,(R\[-R, R]) < ¢ for n > N. Now set
p(x)=1for || <R, p(z) =1—|z| —Rfor R<|z| < R+1,and p(z) =0
for [x| > R. Then | [ fdpu — [ fdpn| < | [ @fdu— [ @fduy| +2eC and the
second claim follows. g

Example. The example dpu,()\) = dO(A —n) shows that in the above claim
f cannot be replaced by a bounded continuous function. Moreover, the
example dpu,(\) = ndO(A — n) also shows that the uniform bound cannot
be dropped. o

Problem A.30. Suppose u, — u vaguely and let I be a bounded interval
with boundary points xg and x1. Then

[ s~ [ fdu‘ < |f@)ln({z}) + 1) u({zo})
I I

for any f € C([xo,z1]).

Problem A.31. Let pu,(X) < M and suppose (A.67) holds for all f € U C
C(X). Then (A.67) holds for all f in the closed span of U.

lim sup
n

Problem A.32. Suppose (A.67) holds for all f € C.(R) as well as p,(R) —
u(R) < oo. Then (A.67) holds for all f € Cy(R). (Hint: Choose some r > 0
such that u([—r — 1,7+ 1]) < e and let ¢ € C(R) be one for |z| > r+1 and
zero for |z| < r. Now show that limsup p,([—r,7]) <e.)
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A.9. Decomposition of measures

Let u, v be two measures on a measurable space (X,X). They are called
mutually singular (in symbols p L v) if they are supported on disjoint
sets. That is, there is a measurable set NV such that u(N) = 0 and v(X\N) =
0.

Example. Let A be the Lebesgue measure and © the Dirac measure (cen-
tered at 0). Then A L ©: Just take N = {0}; then A({0}) = 0 and
O(R\{0}) =0. o

On the other hand, v is called absolutely continuous with respect to
p (in symbols v < p) if u(A) = 0 implies v(A) = 0.

Example. The prototypical example is the measure dv = fdu (compare
Lemma A.19). Indeed, by Lemma A.22, u(A) = 0 implies

v(A) = /Afdu =0 (A.68)

and shows that v is absolutely continuous with respect to . In fact, we will
show below that every absolutely continuous measure is of this form. o

The two main results will follow as simple consequence of the following
result:

Theorem A.37. Let pu, v be o-finite measures. Then there exists a non-
negative function f and a set N of u measure zero, such that

v(A)=v(ANN) + /Afd,u. (A.69)

Proof. We first assume p, v to be finite measures. Let o = p + v and
consider the Hilbert space L?(X,da). Then

o(h) = /thy

is a bounded linear functional on L?(X, da) by Cauchy—Schwarz:

(R = ‘/Xl~hdu2 < </|1|2du> </|h|2du>
<v(x) ( [ InPaa) = vl

Hence by the Riesz lemma (Theorem 1.8), there exists a g € L?(X, da) such
that

oh) = /X hg da.
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By construction,

V(A):/XAdV:/XAgda:/Agda. (A.70)

In particular, g must be positive a.e. (take A the set where g is negative).
Moreover,

H(A) = a(A) — v(4) = /A (1 g)da

which shows that g < 1 a.e. Now choose N = {z|g(x) = 1} such that
u(N) =0 and set

f= LXN,, N’ = X\N.
g

Then, since (A.70) implies dv = g da, respectively, du = (1 — g)da, we have

/fdu / /XAangda =v(ANN')

as desired.

To see the o-finite case, observe that Y;, /X, u(Y,) < oo and Z,, /' X,
v(Zy) < oo implies X,, = Y, NZ, /X and a(X,) < co. Now we set
X, = X,\Xn_1 (where Xg = §) and consider u,(A) = u(AN X,) and
Un(A) = (AN X,,). Then there exist corresponding sets N,, and functions

fn such that

vn(A) = v (AN N,) —I—/ fndin, = v(ANN,) -l—/ fndp,
A A

Wherg for the last equality we have assumed N,, C Xn and f,(z) = 0 for
z € X, without loss of generality. Now set N = J,, N, aswellas f =) fn.
Then u(N) =0 and

= (A =) v(ANN,) + 2/ fndp =v(ANN) +/ fdpu,
which finishes the proof. ([

Now the anticipated results follow with no effort:

Theorem A.38 (Radon-Nikodym). Let p, v be two o-finite measures on a
measurable space (X,X). Then v is absolutely continuous with respect to
if and only if there is a nonnegative measurable function f such that

:/fd,u (A.71)
A

for every A € 3. The function f is determined uniquely a.e. with respect to

uoand is called the Radon—Nikodym derivative d—” of v with respect to

7
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Proof. Just observe that in this case ¥(ANN) = 0 for every A. Uniqueness
will be shown in the next theorem. (]

Example. Take X = R. Let p be the counting measure and v Lebesgue
measure. Then v < p but there is no f with dv = fdu. If there were
such an f, there must be a point zyp € R with f(z¢) > 0 and we have
0=v({xo}) = f{mo} fdu = f(xg) > 0, a contradiction. Hence the Radon—
Nikodym theorem can fail if y is not o-finite. o

Theorem A.39 (Lebesgue decomposition). Let u, v be two o-finite mea-
sures on a measurable space (X,3). Then v can be uniquely decomposed as
V = Vge+Vsing, where i and vging are mutually singular and ve. is absolutely
continuous with respect to .

Proof. Taking vgng(A) = (AN N) and dvg. = fdp from the previous
theorem, there is at least one such decomposition. To show uniqueness
assume there is another one, v = U4 +7sing, and let N be such that (N) =0
and ﬁsing(]\N/’) = 0. Then Vsjng(A) — Using(A) = fA(f — f)dp. In particular,
fAmN’mN/(f — f)dp = 0 and hence f = f a.e. away from N U N. Since
p(NUN) =0, we have f = f a.e. and hence Uge = vge as well as Dgjng =
V —Uge = V — Vge = Vsing- O

Problem A.33. Let p be a Borel measure on B and suppose its distribution
function u(x) is continuously differentiable. Show that the Radon—Nikodym
derivative equals the ordinary derivative p'(z).

Problem A.34. Suppose p is a Borel measure on R and f : R — R is
continuous. Show that fyp is absolutely continuous if p is. (Hint: Prob-
lem A.13.)

Problem A.35. Suppose p and v are inner regular measures. Show that
v < pif and only if u(C) = 0 implies v(C) = 0 for every compact set.

Problem A.36. Suppose v(A) < Cu(A) for all A € ¥. Then dv = fdu
with 0 < f < C a.e.

Problem A.37. Letdv = fdu. Suppose f > 0 a.e. with respect to . Then
p<vanddy= ftdv.

Problem A.38 (Chain rule). Show that v < p is a transitive relation. In
particular, if w <K v < u, show that

do _ dodv
dp — dvdp’
Problem A.39. Suppose v < p. Show that for every measure w we have
dw dw

—dp = —dv+d
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where ¢ s a positive measure (depending on w) which is singular with respect
to v. Show that ¢ = 0 if and only if p < v.

A.10. Derivatives of measures

If 11 is a Borel measure on B and its distribution function pu(x) is continu-
ously differentiable, then the Radon—-Nikodym derivative is just the ordinary
derivative p/(x) (Problem A.33). Our aim in this section is to generalize this
result to arbitrary Borel measures on 8.

Let p be a Borel measure on R™. We call
. p(B:(z))
Dp)(z) = lim A.72
(Dp)(w) = tim T (A.72)

the derivative of u at € R™ provided the above limit exists. (Here B,.(z) C
R™ is a ball of radius r centered at x € R™ and |A| denotes the Lebesgue
measure of A € B".)

Example. Consider a Borel measure on %6 and suppose its distribution
p(x) (as defined in (A.3)) is differentiable at z. Then

= /().

(Dp)(w) = lim pl( +;€“ —€) _ im p(x +e) 2—€u(x — o)

To compute the derivative of p, we introduce the upper and lower
derivative,

D, = limsu #(B:(z)) an ) = limin 1(Be(2))
(Dp)(z) =1 EwP Bo()] d (Dp)(z) lgwf (o) (A.73)

Clearly, u is differentiable at = if (Du)(z) = (Dp)(z) < co. Next, note that
they are measurable: In fact, this follows from
2] : (Be(z))
(Dp)(z) = lim  sup —=—+ (A.74)
0= B 2, B

since the supremum on the right-hand side is lower semicontinuous with
respect to = (cf. Problem A.10) as x — u(B:(z)) is lower semicontinuous
(Problem A.40). Similarly for (Du)(z).

Next, the following geometric fact of R™ will be needed.

Lemma A.40 (Wiener covering lemma). Given open balls By = B, (1),
..y B = By, (zm) in R", there is a subset of disjoint balls Bj,, ..., Bj

such that
m
UsBic
j=1 ¢

B

B3sz (xje)- (A75)
1
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Proof. Assume that the balls B; are ordered by decreasing radius. Start
with Bj, = B; and remove all balls from our list which intersect Bj,. Ob-
serve that the removed balls are all contained in Bs,, (x1). Proceeding like
this, we obtain the required subset. O

The upshot of this lemma is that we can select a disjoint subset of balls
which still controls the Lebesgue volume of the original set up to a universal
constant 3" (recall |Bs,.(x)| = 3"|B,(x)]).

Now we can show

Lemma A.41. Let o > 0. For every Borel set A we have

o€ A|(Du(a) > a}| < 32 (A.76)
and
{z € A| (Dp)(z) > 0} =0, whenever u(A) = 0. (A.T7)
Proof. Let A, = {z € A|(Dp)(z) > a}. We will show

for every open set O with A C O and every compact set K C A,. The
first claim then follows from outer regularity of u and inner regularity of the
Lebesgue measure.

Given fixed K, O, for every z € K there is some r, such that B, (z) C O
and |B,,(z)] < a 'u(B,,(z)). Since K is compact, we can choose a finite
subcover of K from these balls. Moreover, by Lemma A.40 we can refine
our set of balls such that

k k
3" (0]
K| <3 Y 1B (@)l < 23 uBe () < 349
i=1 =1

To see the second claim, observe that Ag = U2, A,/; and by the first part
|Ay/| = 0 for every j if u(A) = 0. O

Theorem A.42 (Lebesgue). Let f be (locally) integrable. Then for a.e.

T € R"™ we h/ave
'riO |B ‘ / )’ y= ( )

The points where (A.78) holds are called Lebesgue points of f.

Proof. Decompose f as f = g + h, where g is continuous and ||kl < €
(Theorem 0.38) and abbreviate

D(f)(x) = o

Bo@)] S, W)~ I @y
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Then, since lim D, (g)(xz) = 0 (for every z) and D,(f) < D,(g) + D,(h), we
have

lim sup D, (f)(2) < limsup Dy (h)(z) < (Dp)(x) + |h(z)],
rl0 rl0

where dp = |h|d™z. This implies
(x| timsup D,(£)(x) > 20] € (+l(D)(e) 2 0} U fo | (e)] >

and using the first part of Lemma A.41 plus [{z||h(z)| > a}| < a7 YR
(Problem A.43), we see

{z | limsup D, (f)(z) > 2a}| < (3" + 1)E
rl0 (%

Since ¢ is arbitrary, the Lebesgue measure of this set must be zero for every
«. That is, the set where the limsup is positive has Lebesgue measure
Z€ero. U

Note that the balls can be replaced by more general sets: A sequence of
sets Aj(x) is said to shrink to x nicely if there are balls B, (x) with r; — 0
and a constant € > 0 such that A;(z) C B, (x) and |4;| > ¢|B,,(v)|. For
example, A;(z) could be some balls or cubes (not necessarily containing x).
However, the portion of B, (z) which they occupy must not go to zero! For
example, the rectangles (0, %) x (0, %) C R? do shrink nicely to 0, but the

rectangles (0, %) x (0, J%) do not.
Lemma A.43. Let f be (locally) integrable. Then at every Lebesgque point
we have

1
f(z) = lim / fly)dy A.79
= B @] ae T A
whenever A;(x) shrinks to x nicely.

Proof. Let = be a Lebesgue point and choose some nicely shrinking sets
Aj(x) with corresponding B, (x) and . Then

1 1
[4;@)] /Aj(z) 1) = Felldy < G570 [, V@~ @y

and the claim follows. O

Corollary A.44. Let p be a Borel measure on R which is absolutely con-
tinuous with respect to Lebesgue measure. Then its distribution function is
differentiable a.e. and du(x) = p/(x)dx.

Proof. By assumption, du(x) = f(x)dx for some locally integrable function
f. In particular, the distribution function u(z) = [; f(y)dy is continuous.
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Moreover, since the sets (x, 2z + r) shrink nicely to x as r — 0, Lemma A.43
implies

g 2+ ) —pa)

r—0 r r—0 T
at every Lebesgue point of f. Since the same is true for the sets (x — r, z),
w(x) is differentiable at every Lebesgue point and p/(z) = f(z). O

As another consequence we obtain

Theorem A.45. Let p be a Borel measure on R™. The derivative Dy
exists a.e. with respect to Lebesgue measure and equals the Radon—Nikodym
derivative of the absolutely continuous part of p with respect to Lebesgue
measure; that is,

poeA) = [ (D)@', (A.80)

Proof. If du = fd"z is absolutely continuous with respect to Lebesgue
measure, then (Du)(z) = f(z) at every Lebesgue point of f by Lemma A.43
and the claim follows from Theorem A.42. To see the general case, use the
Lebesgue decomposition of p and let IV be a support for the singular part
with |[N| = 0. Then (Dpsing)(z) = 0 for a.e. z € R™\N by the second part
of Lemma A.41. (I

In particular, p is singular with respect to Lebesgue measure if and only
if Dy = 0 a.e. with respect to Lebesgue measure.

Using the upper and lower derivatives, we can also give supports for the
absolutely and singularly continuous parts.

Theorem A.46. The set {z|0 < (Du)(z) < oo} is a support for the abso-
lutely continuous and {x|(Du)(x) = oo} is a support for the singular part.

Proof. The first part is immediate from the previous theorem. For the
second part, first note that by (Du)(z) > (Dpsing)(z) we can assume that
 is purely singular. It suffices to show that the set Ay = {x| (Dp)(z) < k}
satisfies u(Ay) = 0 for every k € N.

Let K C Aj be compact, and let V; D K be some open set such that
[VI\K| < % For every x € K there is some € = ¢(x) such that B.(z) C V;
and pu(Bs:(z)) < k|Bs:(z)|. By compactness, finitely many of these balls
cover K and hence

W) <3 p(Bey ().
i
Selecting disjoint balls as in Lemma A.40 further shows

WE) <Y n(Bse,, (21,)) < k3" Y |Be, (wi,)| < k3" [Vj.
¢ L
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Letting j — oo, we see u(K) < k3"|K| and by regularity we even have
w(A) < k3"|A| for every A C Ag. Hence p is absolutely continuous on Ay
and since we assumed p to be singular, we must have p(Ag) = 0. (]

Finally, we note that these supports are minimal. Here a support M of

some measure p is called a minimal support (it is sometimes also called
an essential support) if every subset My C M which does not support p
(i.e., u(Mp) = 0) has Lebesgue measure zero.
Example. Let X = R, ¥ = B. If du(z) = ), apdf(z — x,,) is a sum
of Dirac measures, then the set {x,} is clearly a minimal support for pu.
Moreover, it is clearly the smallest support as none of the z,, can be removed.
If we choose {z,,} to be the rational numbers, then supp(u) = R, but R is
not a minimal support, as we can remove the irrational numbers.

On the other hand, if we consider the Lebesgue measure A, then R is
a minimal support. However, the same is true if we remove any set of
measure zero, for example, the Cantor set. In particular, since we can
remove any single point, we see that, just like supports, minimal supports
are not unique. o

Lemma A.47. The set My = {z|0 < (Dp)(x) < oo} is a minimal support
for piqc.

Proof. Suppose My C M,. and pq.(Mo) = 0. Set M, = {z € Myle <
(Dp)(z)} for e > 0. Then M. ~ My and

1 1 1
M= [ drw< D [ (D)) = SuaclMo) < ZaacMo) =0
M. 3 € 5

£

shows | My| = lim. o | M| = 0. O

Note that the set M = {z|0 < (Dp)(z)} is a minimal support of u.

Example. The Cantor function is constructed as follows. Take the sets
C, used in the construction of the Cantor set C': C,, is the union of 2" closed
intervals with 2 — 1 open gaps in between. Set f,, equal to j/2" on the j’th
gap of ), and extend it to [0, 1] by linear interpolation. Note that, since we
are creating precisely one new gap between every old gap when going from
C, to Cpy1, the value of f,,11 is the same as the value of f,, on the gaps of
Cy. Explicitly, we have fyo(x) = x and f,41 = K(fn), where

3/ (32),
K(f)(x) = { 5(3),
3(1+ f(3z —2)),

Since || fo41 — fullo < 2lIfat1 — fllo We can define the Cantor function
as f = lim, .o fn. By construction, f is a continuous function which is

Wi wli= O
ININ A
8 8 8
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constant on every subinterval of [0,1]\C. Since C is of Lebesgue measure
zero, this set is of full Lebesgue measure and hence f' = 0 a.e. in [0,1]. In
particular, the corresponding measure, the Cantor measure, is supported
on C and is purely singular with respect to Lebesgue measure. o

Problem A.40. Show that
p(B2(2) < lininf (B ) < lim sup (B ) < u(Bo(e).

Yy—x

In particular, conclude that x — pu(Be(x)) is lower semicontinuous fore > 0.
Problem A.41. Show that M = {z|0 < (Dp)(z)} is a minimal support of
L

Problem A.42. Suppose Dy < a. Show that du = f d"x with || f|le < .
Problem A.43 (Chebyshev inequality). For f € L'(R"), show

o € Allf(@) >}l < 2 [ I,

Problem A.44. Show that the Cantor function is Hélder continuous,
|f(x) — f(y)] < |z — y|*, with exponent a = logs(2). (Hint: Show that
if g satisfies a Holder estimate |g(x) — g(y)| < M|z — y|*, then so does
K(g): |K(g9)(x) — K(9)(y)] < 5 Mz —y|*.)






Bibliographical notes

The aim of this section is not to give a comprehensive guide to the literature,
but to document the sources from which I have learned the materials and
which I have used during the preparation of this text. In addition, I will
point out some standard references for further reading. In some sense, all
books on this topic are inspired by von Neumann’s celebrated monograph
[74] and the present text is no exception.

General references for the first part are Akhiezer and Glazman [1],
Berthier (Boutet de Monvel) [10], Blank, Exner, and Havlicek [11], Ed-
munds and Evans [18], Lax [32], Reed and Simon [49], Weidmann [70],
[72], or Yosida [76].

Chapter 0: A first look at Banach and Hilbert spaces

As a reference for general background I can warmly recommend Kelly’s
classical book [33]. The rest is standard material and can be found in any
book on functional analysis.

Chapter 1: Hilbert spaces

The material in this chapter is again classical and can be found in any book
on functional analysis. I mainly follow Reed and Simon [49], respectively,
Weidmann [70], with the main difference being that I use orthonormal sets
and their projections as the central theme from which everything else is
derived. For an alternate problem-based approach, see Halmos’ book [27].

Chapter 2: Self-adjointness and spectrum

This chapter is still similar in spirit to [49], [70] with some ideas taken from
Schechter [57].

341



342 Bibliographical notes

Chapter 3: The spectral theorem

The approach via the Herglotz representation theorem follows Weidmann
[70]. However, I use projection-valued measures as in Reed and Simon [49]
rather than the resolution of the identity. Moreover, I have augmented the
discussion by adding material on spectral types and the connections with
the boundary values of the resolvent. For a survey containing several recent
results, see [35].

Chapter 4: Applications of the spectral theorem

This chapter collects several applications from various sources which I have
found useful or which are needed later on. Again, Reed and Simon [49] and
Weidmann [70], [73] are the main references here.

Chapter 5: Quantum dynamics

The material is a synthesis of the lecture notes by Enf [20], Reed and Simon
[49], [51], and Weidmann [73]. See also the book by Amrein [3]. There are
also close connections with operator semigroups and we refer to the classical
monograph by Goldstein [25] for further information.

Chapter 6: Perturbation theory for self-adjoint operators

This chapter is similar to [70] (which contains more results) with the main
difference being that I have added some material on quadratic forms. In
particular, the section on quadratic forms contains, in addition to the clas-
sical results, some material which I consider useful but was unable to find
(at least not in the present form) in the literature. The prime reference
here is Kato’s monumental treatise [29] and Simon’s book [58]. For fur-
ther information on trace class operators, see Simon’s classic [61]. The idea
to extend the usual notion of strong resolvent convergence by allowing the
approximating operators to live on subspaces is taken from Weidmann [72].

Chapter 7: The free Schrodinger operator

Most of the material is classical. Much more on the Fourier transform can
be found in Reed and Simon [50] or Grafakos [23].

Chapter 8: Algebraic methods

This chapter collects some material which can be found in almost any physics
textbook on quantum mechanics. My only contribution is to provide some
mathematical details. I recommend the classical book by Thirring [68] and
the visual guides by Thaller [66], [67].

Chapter 9: One-dimensional Schrédinger operators

One-dimensional models have always played a central role in understand-
ing quantum mechanical phenomena. In particular, general wisdom used to
say that Schrdodinger operators should have absolutely continuous spectrum
plus some discrete point spectrum, while singular continuous spectrum is a
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pathology that should not occur in examples with bounded V [16, Sect. 10.4].
In fact, a large part of [52] is devoted to establishing the absence of sin-
gular continuous spectrum. This was proven wrong by Pearson, who con-
structed an explicit one-dimensional example with singular continuous spec-
trum. Moreover, after the appearance of random models, it became clear
that such types of exotic spectra (singular continuous or dense pure point)
are frequently generic. The starting point is often the boundary behaviour
of the Weyl m-function and its connection with the growth properties of
solutions of the underlying differential equation, the latter being known as
Gilbert and Pearson or subordinacy theory. One of my main goals is to give
a modern introduction to this theory. The section on inverse spectral theory
presents a simple proof for the Borg—Marchenko theorem (in the local ver-
sion of Simon) from Bennewitz [9]. Again, this result is the starting point of
almost all other inverse spectral results for Sturm—Liouville equations and
should enable the reader to start reading research papers in this area.

Other references with further information are the lecture notes by Weid-
mann [71] or the classical books by Coddington and Levinson [15], Levitan
[36], Levitan and Sargsjan [37], [38], Marchenko [40], Naimark [42], Pear-
son [46]. See also the recent monographs by Rofe-Betekov and Kholkin [55],
Zettl [77] or the recent collection of historic and survey articles [4]. A com-
pilation of exactly solvable potentials can be found in Bagrov and Gitman
[6, App. I]. For a nice introduction to random models I can recommend
the recent notes by Kirsch [34] or the classical monographs by Carmona
and Lacroix [13] or Pastur and Figotin [45]. For the discrete analog of
Sturm—Liouville and Jacobi operators, see my monograph [64].

Chapter 10: One-particle Schrodinger operators

The presentation in the first two sections is influenced by Enf [20] and
Thirring [68]. The solution of the Schrodinger equation in spherical coordi-
nates can be found in any textbook on quantum mechanics. Again I tried
to provide some missing mathematical details. Several other explicitly solv-
able examples can be found in the books by Albeverio et al. [2] or Fliigge
[22]. For the formulation of quantum mechanics via path integrals I suggest
Roepstorff [54] or Simon [59].

Chapter 11: Atomic Schrodinger operators

This chapter essentially follows Cycon, Froese, Kirsch, and Simon [16]. For
a recent review, see Simon [60]. For multi-particle operators from the view-
point of stability of matter, see Lieb and Seiringer [41].

Chapter 12: Scattering theory

This chapter follows the lecture notes by Enf [20] (see also [19]) using some
material from Perry [47]. Further information on mathematical scattering
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theory can be found in Amrein, Jauch, and Sinha [5], Baumgaertel and
Wollenberg [7], Chadan and Sabatier [14], Cycon, Froese, Kirsch, and Simon
[16], Komech and Kopylova [31], Newton [43], Pearson [46], Reed and
Simon [51], or Yafaev [75].

Appendix A: Almost everything about Lebesgue integration

Most parts follow Rudin’s book [56], respectively, Bauer [8], with some ideas
also taken from Weidmann [70]. I have tried to strip everything down to the
results needed here while staying self-contained. Another useful reference
is the book by Lieb and Loss [39]. A comprehensive source are the two
volumes by Bogachev [12].
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Glossary of notation

AC(I) ... absolutely continuous functions, 95

B, (x) ...open ball of radius r around z, 4

B = B!

B ... Borel o-field of R", 296

¢(H) ...set of compact operators, 151

C ...the set of complex numbers

c(U) ...set of continuous functions from U to C
Coo(U) ...set of functions in C(U) which vanish at oo
C(U,V) ...set of continuous functions from U to V
C.(U,V) ...set of compactly supported continuous functions
C>(U,V) ...set of smooth functions

Cy(U,V) ...set of bounded continuous functions
xa(.) ... characteristic function of the set

dim ...dimension of a vector space

dist(x,Y) =infyey ||z — y||, distance between x and Y’
D(.) ...domain of an operator

e ...exponential function, e* = exp(z)

E(A) ...expectation of an operator A, 63

F ... Fourier transform, 187

H ... Schrodinger operator, 257

H, ...free Schrodinger operator, 197

H™(a,b) ...Sobolev space, 95

H{"(a,b) ...Sobolev space, 96

H™(R™) ...Sobolev space, 194

hull(.) ..convex hull

3] ...a separable Hilbert space
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i ... complex unity, i2 = —1

I ...1identity operator

Im(.) ...imaginary part of a complex number

inf ... infimum

Ker(A) ... kernel of an operator A, 27

£(X,Y) ...set of all bounded linear operators from X to Y, 29
£(X) = £(X, X)

LP(X,dp)  ...Lebesgue space of p integrable functions, 31
LfOC(X, du) ...locally p integrable functions, 36

LE(X,du)  ...compactly supported p integrable functions
L>®°(X,du) ...Lebesgue space of bounded functions, 32

LE(R™) ... Lebesgue space of bounded functions vanishing at oo
P(N) ... Banach space of p summable sequences, 15

72(N) ... Hilbert space of square summable sequences, 21
> (N) ... Banach space of bounded summable sequences, 16
A ...a real number

me(2) ... Weyl m-function, 235

M(z) ... Weyl M-matrix, 246

max ... maximum

M ... Mellin transform, 287

o ...spectral measure, 108

N ... the set of positive integers

Ng =NU {0}

o(x) ... Landau symbol little-o

O(x) ... Landau symbol big-O

Q ...a Borel set

Q4 ... wave operators, 283

Pa(.) ... family of spectral projections of an operator A, 108
Py ...projector onto outgoing/incoming states, 286

Q ...the set of rational numbers

() ...form domain of an operator, 109

R(I,X) ...set of regulated functions, 132

RA(z) ...resolvent of A, 83

Ran(A) ...range of an operator A, 27

rank(A) = dim Ran(A), rank of an operator A, 151

Re(.) ...real part of a complex number

p(A) ...resolvent set of A, 83

R ...the set of real numbers

S(I,X) ...set of simple functions, 132

S(R™) ...set of smooth functions with rapid decay, 187

sign(x) = z/|z| for x # 0 and 0 for z = 0; sign function
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o(A) ..spectrum of an operator A, 83

Tac(A) ... absolutely continuous spectrum of A, 119
osc(A) ...singular continuous spectrum of A, 119
opp(A) ...pure point spectrum of A, 119

op(A) ...point spectrum (set of eigenvalues) of A, 115
oqa(A) ... discrete spectrum of A, 170

Oess(A) .. .essential spectrum of A, 170

span(M) ...set of finite linear combinations from M, 17
sup ... supremum

supp(f) ...support of a function f, 8

supp(u) ...support of a measure p, 301

Z ...the set of integers

z ...a complex number

NE ...square root of z with branch cut along (—oo, 0]
z* ...complex conjugation

A* ...adjoint of A, 67

A ...closure of A, 72

f = F f, Fourier transform of f, 187

f = F~1f, inverse Fourier transform of f, 189

|| = /> i~ |z;|* Euclidean norm in R™ or C”
19 ... Lebesgue measure of a Borel set 2

Il ...norm in the Hilbert space $, 21

Il.11p ...norm in the Banach space LP, 30

(). ...scalar product in 9, 21

Ey(A) = (¢, A), expectation value, 64

Ay(4)  =Eyu(A4%) — Ey(A)?, variance, 64

A ... Laplace operator, 197

0 .. gradient, 188

O ... derivative, 187

@ ...orthogonal sum of vector spaces or operators, 52, 89
® .. tensor product, 53, 143

M ..orthogonal complement, 49

A ...complement of a set

(A1, A2)  ={A € R| A <X < A2}, open interval
A, 2] ={AeR| A <A < A}, closed interval
¥p — Y ...norm convergence, 14

v, — Y ...weak convergence, 55
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A, — A ...norm convergence

A, > A ...strong convergence, 57

A, — A ...weak convergence, 56

A, ™ A ... norm resolvent convergence, 179
A, 2 A ... strong resolvent convergence, 179
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a.e., see also almost everywhere
absolue value of an operator, 138
absolute convergence, 20
absolutely continuous

function, 95

measure, 331

spectrum, 119
accumulation point, 4
adjoint operator, 54, 67
algebra, 295
almost everywhere, 302
angular momentum operator, 210

B.L.T. theorem, 28
Baire category theorem, 38
ball

closed, 6

open, 4
Banach algebra, 29
Banach space, 14
Banach—Steinhaus theorem, 39
base, 5
basis, 17

orthonormal, 47

spectral, 106
Bessel function, 204

modified, 202

spherical, 267
Bessel inequality, 45
bijective, 7
Bolzano—Weierstrafl theorem, 11
Borel

function, 308

measure, 298

regular, 298
set, 296

o-algebra, 296
transform, 107, 112
boundary condition
Dirichlet, 224
Neumann, 224
periodic, 224
boundary point, 4
bounded
operator, 27
sesquilinear form, 26
set, 11

C-real, 93
canonical form of compact operators, 161
Cantor

function, 338

measure, 339

set, 302
Cauchy sequence, 6
Cauchy—Schwarz—Bunjakowski inequality,

22

Cayley transform, 91
Cesaro average, 150
characteristic function, 312
Chebyshev inequality, 339
closable

form, 80

operator, 72
closed

ball, 6

form, 80

operator, 72

set, 5
closed graph theorem, 75
closure, 6

essential, 116
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cluster point, 4
commute, 136
compact, 9
locally, 12
sequentially, 10
complete, 7, 14
completion, 26
configuration space, 64
conjugation, 93
conserved quantity, 138
continuous, 8
convergence, 6
convolution, 191
core, 71
cover, 9
C* algebra, 55
cyclic vector, 106

dense, 7

dilation group, 259

Dirac measure, 301, 317

Dirac operator, 149, 215
Dirichlet boundary condition, 224
discrete set, 4

discrete topology, 4

distance, 3, 12

distribution function, 298

Dollard theorem, 200

domain, 27, 64, 66

dominated convergence theorem, 316
Dynkin system, 303

Dynkin’s 7-X theorem, 303

eigenspace, 132
eigenvalue, 83
multiplicity, 132
eigenvector, 83
element
adjoint, 55
normal, 55
positive, 55
self-adjoint, 55
unitary, 55
equivalent norms, 24
essential
closure, 116
range, 84
spectrum, 170
supremum, 32
expectation, 63

Exponential Herglotz representation, 129

extension, 67
Extreme value theorem, 12

finite intersection property, 9
first resolvent formula, 85
form, 80

bound, 175

bounded, 26, 82

closable, 80

closed, 80

core, 81

domain, 77, 109

hermitian, 80

nonnegative, 80

semi-bounded, 80
Fourier

series, 47

transform, 150, 187
Friedrichs extension, 80
Fubini theorem, 320
function

absolutely continuous, 95

open, 8

fundamental theorem of calculus, 135, 317

gamma function, 328

Gaussian wave packet, 209

gradient, 188

Gram—Schmidt orthogonalization, 48
graph, 72

graph norm, 72

Green’s function, 202

ground state, 272

Hamiltonian, 65
Hankel operator, 169
Hankel transform, 203
harmonic oscillator, 212
Hausdorff space, 5
Heine—Borel theorem, 11
Heisenberg picture, 153
Heisenberg uncertainty principle, 193
Hellinger—Toeplitz theorem, 76
Herglotz
function, 107
representation theorem, 120
Hermite polynomials, 213
hermitian
form, 80
operator, 67
Hilbert space, 21, 43
separable, 47
Hoélder’s inequality, 15, 32
homeomorphism, 8
HVZ theorem, 278
hydrogen atom, 258

ideal, 55

identity, 29

induced topology, 5
injective, 7

inner product, 21

inner product space, 21
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integrable, 314

integral, 312

interior, 6

interior point, 4
intertwining property, 284
involution, 55

ionization, 278

isolated point, 4

Jacobi operator, 76

Kato—Rellich theorem, 159
kernel, 27

KLMN theorem, 175
Kuratowski closure axioms, 6

A-system, 303
l.c., see also limit circle
L.p., see also limit point
Lagrange identity, 218
Laguerre polynomial, 267
generalized, 267
Lebesgue
decomposition, 333
measure, 301
point, 335

Lebesgue—Stieltjes measure, 298

Legendre equation, 262
lemma
Riemann-Lebesgue, 191
Lidskij trace theorem, 168
limit circle, 223
limit point, 4, 223
Lindel6f theorem, 9
linear
functional, 29, 50
operator, 27
linearly independent, 17
Liouville normal form, 222
localization formula, 279
lower semicontinuous, 309

maximum norm, 14
Mean ergodic theorem, 154
mean-square deviation, 64
measurable
function, 307
set, 297
space, 296
measure, 296
absolutely continuous, 331
complete, 306
finite, 297
growth point, 112
Lebesgue, 301
minimal support, 338
mutually singular, 331

product, 319

projection-valued, 100

space, 297

spectral, 108

support, 301

topological support, 301
Mellin transform, 287
metric space, 3
Minkowski’s inequality, 32
mollifier, 35
momentum operator, 208
monotone convergence theorem, 313
Morrey inequality, 196
multi-index, 187

order, 187
multiplicity

spectral, 107
mutually singular measures, 331

neighborhood, 4
Neumann

boundary condition, 224

function

spherical, 267

series, 85
Nevanlinna function, 107
Noether theorem, 208
norm, 14

operator, 27
norm resolvent convergence, 179
normal, 12, 55, 69, 76, 104
normalized, 22, 44
normed space, 14
nowhere dense, 38
null space, 27

observable, 63
ONB, see also orthonormal basis
one-parameter unitary group, 65
ONS, see also orthonormal set
onto, 7
open
ball, 4
function, 8
set, 4
operator
adjoint, 54, 67
bounded, 27
bounded from below, 79
closable, 72
closed, 72
closure, 72
compact, 151
domain, 27, 66
finite rank, 151
hermitian, 67
Hilbert—Schmidt, 163
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linear, 27, 66
nonnegative, 77
normal, 69, 76, 104
positive, 77
relatively bounded, 157
relatively compact, 151
self-adjoint, 68
semi-bounded, 79
strong convergence, 56
symmetric, 67
unitary, 45, 65
weak convergence, 57
orthogonal, 22, 44
complement, 49
polynomials, 264
projection, 50
sum, 52
orthonormal
basis, 47
set, 44
orthonormal basis, 47
oscillating, 254
outer measure, 304

parallel, 22, 44
parallelogram law, 23
parity operator, 111
Parseval relation, 47
partial isometry, 139
partition of unity, 13
perpendicular, 22, 44
phase space, 64
m-system, 303
Pliicker identity, 222
Plancherel identity, 190
polar coordinates, 325
polar decomposition, 139
polarization identity, 23, 45, 67
position operator, 207
positivity

improving, 272

preserving, 272
premeasure, 297
probability density, 63
probability measure, 297
product measure, 319
product topology, 9
projection, 55
proper metric space, 12
pseudometric, 3
pure point spectrum, 119
Pythagorean theorem, 22, 44

quadrangle inequality, 13
quadratic form, 67, see also form
quasinorm, 20

Radon measure, 311
Radon—Nikodym
derivative, 332
theorem, 332
RAGE theorem, 152
Rajchman measure, 155
range, 27
essential, 84
rank, 151
Rayleigh—Ritz method, 140
reducing subspace, 90
regulated function, 132
relative o-algebra, 296
relative topology, 5
relatively compact, 9, 151
resolution of the identity, 101
resolvent, 83
convergence, 179
formula
first, 85
second, 159
Neumann series, 85
set, 83
Riesz lemma, 50
Ritz method, 140

scalar product, 21
scattering operator, 284
scattering state, 284
Schatten p-class, 165
Schauder basis, 17
Schrodinger equation, 65
Schur criterion, 34
Schwartz space, 187
second countable, 5
second resolvent formula, 159
self-adjoint, 55
essentially, 71
seminorm, 14
separable, 7, 18
series
absolutely convergent, 20
sesquilinear form, 21
bounded, 26
parallelogram law, 25
polarization identity, 25
short range, 289
o-algebra, 296
o-finite, 297
simple function, 132, 312
simple spectrum, 107
singular values, 161
singularly continuous
spectrum, 119
Sobolev space, 95, 194
span, 17
spectral
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basis, 106
ordered, 118
mapping theorem, 118
measure
maximal, 117
theorem, 109
compact operators, 160
vector, 106
maximal, 117
spectrum, 83
absolutely continuous, 119
discrete, 170
essential, 170
pure point, 119
singularly continuous, 119
spherical coordinates, 260, 325
spherical harmonics, 263
spherically symmetric, 194
x-ideal, 55
*-subalgebra, 55
stationary phase, 288
Stieltjes inversion formula, 107, 134
Stone theorem, 147
Stone’s formula, 134
Stone—Weierstrafl theorem, 60
strong convergence, 56
strong resolvent convergence, 179
Sturm comparison theorem, 253
Sturm—Liouville equation, 217
regular, 218
subcover, 9
subordinacy, 243
subordinate solution, 243
subspace
reducing, 90
subspace topology, 5
superposition, 64
supersymmetric quantum mechanics, 215
support, 8
measure, 301
surjective, 7

Temple’s inequality, 142
tensor product, 53
theorem
B.L.T., 28
Bair, 38
Banach—Steinhaus, 39
Bolzano—Weierstraf3, 11
closed graph, 75
Dollard, 200
dominated convergence, 316
Dynkin’s 7-A, 303
Fatou, 314, 316
Fatou-Lebesgue, 316
Fubini, 320
fundamental thm. of calculus, 317

Heine—Borel, 11
Hellinger—Toeplitz, 76
Herglotz, 120
HVZ, 278
Jordan—von Neumann, 23
Kato—Rellich, 159
KLMN, 175
Kneser, 254
Lebesgue, 316
Lebesgue decomposition, 333
Levi, 313
Lindelof, 9
monotone convergence, 313
Noether, 208
Plancherel, 190
Pythagorean, 22, 44
Radon-Nikodym, 332
RAGE, 152
Riesz, 50
Schur, 34
Sobolev embedding, 196
spectral, 109
spectral mapping, 118
Stone, 147
Stone—Weierstrafl, 60
Sturm, 253
Tonelli, 321
Urysohn, 12
virial, 259
Weidmann, 253
Weierstraf3, 12, 19
Weyl, 171
Wiener, 150, 194
Tonelli theorem, 321
topological space, 4
topology
base, 5
product, 9
total, 18
trace, 167
class, 167
trace operator, 96
trace topology, 5
triangle inequality, 3, 14
inverse, 3, 14
trivial topology, 4
Trotter product formula, 155

uncertainty principle, 192, 208
uniform boundedness principle, 39
uniformly convex space, 25
unit sphere, 326
unit vector, 22, 44
unitary, 55, 65
unitary group, 65
generator, 65
strongly continuous, 65
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weakly continuous, 147
upper semicontinuous, 309
Urysohn lemma, 12

Vandermonde determinant, 20
variance, 64

virial theorem, 259

Vitali set, 303

wave

function, 63

operators, 283
wave equation, 148
weak

Cauchy sequence, 56

convergence, 55

derivative, 96, 195
Weierstrafl approximation, 19
Weierstrafl theorem, 12
‘Weyl

M-matrix, 246

circle, 230

relations, 208

sequence, 86

singular, 171

theorem, 171
Weyl-Titchmarsh m-function, 235
Wiener covering lemma, 334
Wiener theorem, 150
‘Wronskian, 218

Young inequality, 191
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