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Preface

Overview

The present text was written for my course Schrödinger Operators held
at the University of Vienna in winter 1999, summer 2002, summer 2005,
and winter 2007. It gives a brief but rather self-contained introduction
to the mathematical methods of quantum mechanics with a view towards
applications to Schrödinger operators. The applications presented are highly
selective; as a result, many important and interesting items are not touched
upon.

Part 1 is a stripped-down introduction to spectral theory of unbounded
operators where I try to introduce only those topics which are needed for
the applications later on. This has the advantage that you will (hopefully)
not get drowned in results which are never used again before you get to
the applications. In particular, I am not trying to present an encyclopedic
reference. Nevertheless I still feel that the first part should provide a solid
background covering many important results which are usually taken for
granted in more advanced books and research papers.

My approach is built around the spectral theorem as the central object.
Hence I try to get to it as quickly as possible. Moreover, I do not take the
detour over bounded operators but I go straight for the unbounded case. In
addition, existence of spectral measures is established via the Herglotz rather
than the Riesz representation theorem since this approach paves the way for
an investigation of spectral types via boundary values of the resolvent as the
spectral parameter approaches the real line.

xi



xii Preface

Part 2 starts with the free Schrödinger equation and computes the free
resolvent and time evolution. In addition, I discuss position, momentum,
and angular momentum operators via algebraic methods. This is usu-
ally found in any physics textbook on quantum mechanics, with the only
difference being that I include some technical details which are typically
not found there. Then there is an introduction to one-dimensional mod-
els (Sturm–Liouville operators) including generalized eigenfunction expan-
sions (Weyl–Titchmarsh theory) and subordinacy theory from Gilbert and
Pearson. These results are applied to compute the spectrum of the hy-
drogen atom, where again I try to provide some mathematical details not
found in physics textbooks. Further topics are nondegeneracy of the ground
state, spectra of atoms (the HVZ theorem), and scattering theory (the Enß
method).

Prerequisites

I assume some previous experience with Hilbert spaces and bounded
linear operators which should be covered in any basic course on functional
analysis. However, while this assumption is reasonable for mathematics
students, it might not always be for physics students. For this reason there
is a preliminary chapter reviewing all necessary results (including proofs).
In addition, there is an appendix (again with proofs) providing all necessary
results from measure theory.

Literature

The present book is highly influenced by the four volumes of Reed and
Simon [49]–[52] (see also [16]) and by the book by Weidmann [70] (an ex-
tended version of which has recently appeared in two volumes [72], [73],
however, only in German). Other books with a similar scope are, for ex-
ample, [16], [17], [21], [26], [28], [30], [48], [57], [63], and [65]. For those
who want to know more about the physical aspects, I can recommend the
classical book by Thirring [68] and the visual guides by Thaller [66], [67].
Further information can be found in the bibliographical notes at the end.

Reader’s guide

There is some intentional overlap among Chapter 0, Chapter 1, and
Chapter 2. Hence, provided you have the necessary background, you can
start reading in Chapter 1 or even Chapter 2. Chapters 2 and 3 are key
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chapters, and you should study them in detail (except for Section 2.6 which
can be skipped on first reading). Chapter 4 should give you an idea of how
the spectral theorem is used. You should have a look at (e.g.) the first
section, and you can come back to the remaining ones as needed. Chapter 5
contains two key results from quantum dynamics: Stone’s theorem and the
RAGE theorem. In particular, the RAGE theorem shows the connections
between long-time behavior and spectral types. Finally, Chapter 6 is again
of central importance and should be studied in detail.

The chapters in the second part are mostly independent of each other
except for Chapter 7, which is a prerequisite for all others except for Chap-
ter 9.

If you are interested in one-dimensional models (Sturm–Liouville equa-
tions), Chapter 9 is all you need.

If you are interested in atoms, read Chapter 7, Chapter 10, and Chap-
ter 11. In particular, you can skip the separation of variables (Sections 10.3
and 10.4, which require Chapter 9) method for computing the eigenvalues of
the hydrogen atom, if you are happy with the fact that there are countably
many which accumulate at the bottom of the continuous spectrum.

If you are interested in scattering theory, read Chapter 7, the first two
sections of Chapter 10, and Chapter 12. Chapter 5 is one of the key prereq-
uisites in this case.

2nd edition

Several people have sent me valuable feedback and pointed out misprints
since the appearance of the first edition. All of these comments are of course
taken into account. Moreover, numerous small improvements were made
throughout. Chapter 3 has been reworked, and I hope that it is now more
accessible to beginners. Also some proofs in Section 9.4 have been simplified
(giving slightly better results at the same time). Finally, the appendix on
measure theory has also grown a bit: I have added several examples and
some material around the change of variables formula and integration of
radial functions.

Updates

The AMS is hosting a web page for this book at

http://www.ams.org/bookpages/gsm-157/

http://www.ams.org/bookpages/gsm-157/


xiv Preface

where updates, corrections, and other material may be found, including a
link to material on my own web site:

http://www.mat.univie.ac.at/~gerald/ftp/book-schroe/
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Preliminaries





Chapter 0

A first look at Banach
and Hilbert spaces

I assume that the reader has some basic familiarity with measure theory and func-

tional analysis. For convenience, some facts needed from Banach and Lp spaces

are reviewed in this chapter. A crash course in measure theory can be found in

Appendix A. If you feel comfortable with terms like Lebesgue Lp spaces, Banach

space, or bounded linear operator, you can skip this entire chapter. However, you

might want to at least browse through it to refresh your memory.

0.1. Warm up: Metric and topological spaces

Before we begin, I want to recall some basic facts from metric and topological
spaces. I presume that you are familiar with these topics from your calculus
course. As a general reference I can warmly recommend Kelly’s classical
book [33].

A metric space is a space X together with a distance function d :
X ×X → R such that

(i) d(x, y) ≥ 0,

(ii) d(x, y) = 0 if and only if x = y,

(iii) d(x, y) = d(y, x),

(iv) d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality).

If (ii) does not hold, d is called a pseudometric. Moreover, it is straight-
forward to see the inverse triangle inequality (Problem 0.1)

|d(x, y)− d(z, y)| ≤ d(x, z). (0.1)

3



4 0. A first look at Banach and Hilbert spaces

Example. Euclidean space Rn together with d(x, y) = (
∑n

k=1(xk−yk)2)1/2

is a metric space and so is Cn together with d(x, y) = (
∑n

k=1 |xk−yk|2)1/2. �

The set

Br(x) = {y ∈ X|d(x, y) < r} (0.2)

is called an open ball around x with radius r > 0. A point x of some set
U is called an interior point of U if U contains some ball around x. If x
is an interior point of U , then U is also called a neighborhood of x. A
point x is called a limit point of U (also accumulation or cluster point)
if (Br(x)\{x}) ∩ U 6= ∅ for every ball around x. Note that a limit point
x need not lie in U , but U must contain points arbitrarily close to x. A
point x is called an isolated point of U if there exists a neighborhood of x
not containing any other points of U . A set which consists only of isolated
points is called a discrete set. If any neighborhood of x contains at least
one point in U and at least one point not in U , then x is called a boundary
point of U . The set of all boundary points of U is called the boundary of
U and denoted by ∂U .

Example. Consider R with the usual metric and let U = (−1, 1). Then
every point x ∈ U is an interior point of U . The points [−1, 1] are limit
points of U , and the points {−1,+1} are boundary points of U . �

A set consisting only of interior points is called open. The family of
open sets O satisfies the properties

(i) ∅, X ∈ O,

(ii) O1, O2 ∈ O implies O1 ∩O2 ∈ O,

(iii) {Oα} ⊆ O implies
⋃
αOα ∈ O.

That is, O is closed under finite intersections and arbitrary unions.

In general, a space X together with a family of sets O, the open sets,
satisfying (i)–(iii), is called a topological space. The notions of interior
point, limit point, and neighborhood carry over to topological spaces if we
replace open ball by open set.

There are usually different choices for the topology. Two not too inter-
esting examples are the trivial topology O = {∅, X} and the discrete
topology O = P(X) (the powerset of X). Given two topologies O1 and O2

on X, O1 is called weaker (or coarser) than O2 if and only if O1 ⊆ O2.

Example. Note that different metrics can give rise to the same topology.
For example, we can equip Rn (or Cn) with the Euclidean distance d(x, y)
as before or we could also use

d̃(x, y) =

n∑
k=1

|xk − yk|. (0.3)
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Then

1√
n

n∑
k=1

|xk| ≤

√√√√ n∑
k=1

|xk|2 ≤
n∑
k=1

|xk| (0.4)

shows Br/
√
n(x) ⊆ B̃r(x) ⊆ Br(x), where B, B̃ are balls computed using d,

d̃, respectively. �

Example. We can always replace a metric d by the bounded metric

d̃(x, y) =
d(x, y)

1 + d(x, y)
(0.5)

without changing the topology (since the family of open balls does not

change: Bδ(x) = B̃δ/(1+δ)(x)). �

Every subspace Y of a topological space X becomes a topological space
of its own if we call O ⊆ Y open if there is some open set Õ ⊆ X such
that O = Õ ∩ Y . This natural topology O ∩ Y is known as the relative
topology (also subspace, trace or induced topology).

Example. The set (0, 1] ⊆ R is not open in the topology of X = R, but it is
open in the relative topology when considered as a subset of Y = [−1, 1]. �

A family of open sets B ⊆ O is called a base for the topology if for each
x and each neighborhood U(x), there is some set O ∈ B with x ∈ O ⊆ U(x).
Since an open set O is a neighborhood of every one of its points, it can be
written as O =

⋃
O⊇Õ∈B Õ and we have

Lemma 0.1. If B ⊆ O is a base for the topology, then every open set can
be written as a union of elements from B.

If there exists a countable base, then X is called second countable.

Example. By construction, the open balls B1/n(x) are a base for the topol-
ogy in a metric space. In the case of Rn (or Cn) it even suffices to take balls
with rational center, and hence Rn (as well as Cn) is second countable. �

A topological space is called a Hausdorff space if for two different
points there are always two disjoint neighborhoods.

Example. Any metric space is a Hausdorff space: Given two different
points x and y, the balls Bd/2(x) and Bd/2(y), where d = d(x, y) > 0, are
disjoint neighborhoods (a pseudometric space will not be Hausdorff). �

The complement of an open set is called a closed set. It follows from
de Morgan’s rules that the family of closed sets C satisfies

(i) ∅, X ∈ C,
(ii) C1, C2 ∈ C implies C1 ∪ C2 ∈ C,
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(iii) {Cα} ⊆ C implies
⋂
αCα ∈ C.

That is, closed sets are closed under finite unions and arbitrary intersections.

The smallest closed set containing a given set U is called the closure

U =
⋂

C∈C,U⊆C
C, (0.6)

and the largest open set contained in a given set U is called the interior

U◦ =
⋃

O∈O,O⊆U
O. (0.7)

It is not hard to see that the closure satisfies the following axioms (Kura-
towski closure axioms):

(i) ∅ = ∅,
(ii) U ⊂ U ,

(iii) U = U ,

(iv) U ∪ V = U ∪ V .

In fact, one can show that they can equivalently be used to define the topol-
ogy by observing that the closed sets are precisely those which satisfy A = A.

We can define interior and limit points as before by replacing the word
ball by open set. Then it is straightforward to check

Lemma 0.2. Let X be a topological space. Then the interior of U is the set
of all interior points of U , and the closure of U is the union of U with all
limit points of U .

Example. The closed ball

B̄r(x) = {y ∈ X|d(x, y) ≤ r} (0.8)

is a closed set (check that its complement is open). But in general we have
only

Br(x) ⊆ B̄r(x) (0.9)

since an isolated point y with d(x, y) = r will not be a limit point. In Rn
(or Cn) we have of course equality. �

A sequence (xn)∞n=1 ⊆ X is said to converge to some point x ∈ X if
d(x, xn) → 0. We write limn→∞ xn = x as usual in this case. Clearly the
limit is unique if it exists (this is not true for a pseudometric).

Every convergent sequence is a Cauchy sequence; that is, for every
ε > 0 there is some N ∈ N such that

d(xn, xm) ≤ ε, n,m ≥ N. (0.10)
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If the converse is also true, that is, if every Cauchy sequence has a limit,
then X is called complete.

Example. Both Rn and Cn are complete metric spaces. �

Note that in a metric space x is a limit point of U if and only if there
exists a sequence (xn)∞n=1 ⊆ U\{x} with limn→∞ xn = x. Hence U is closed
if and only if for every convergent sequence the limit is in U . In particular,

Lemma 0.3. A closed subset of a complete metric space is again a complete
metric space.

Note that convergence can also be equivalently formulated in topological
terms: A sequence xn converges to x if and only if for every neighborhood
U of x there is some N ∈ N such that xn ∈ U for n ≥ N . In a Hausdorff
space the limit is unique.

A set U is called dense if its closure is all of X, that is, if U = X. A
metric space is called separable if it contains a countable dense set.

Lemma 0.4. A metric space is separable if and only if it is second countable
as a topological space.

Proof. From every dense set we get a countable base by considering open
balls with rational radii and centers in the dense set. Conversely, from every
countable base we obtain a dense set by choosing an element from each
element of the base. �

Lemma 0.5. Let X be a separable metric space. Every subset Y of X is
again separable.

Proof. Let A = {xn}n∈N be a dense set in X. The only problem is that
A∩ Y might contain no elements at all. However, some elements of A must
be at least arbitrarily close: Let J ⊆ N2 be the set of all pairs (n,m) for
which B1/m(xn) ∩ Y 6= ∅ and choose some yn,m ∈ B1/m(xn) ∩ Y for all
(n,m) ∈ J . Then B = {yn,m}(n,m)∈J ⊆ Y is countable. To see that B is
dense, choose y ∈ Y . Then there is some sequence xnk with d(xnk , y) < 1/k.
Hence (nk, k) ∈ J and d(ynk,k, y) ≤ d(ynk,k, xnk) + d(xnk , y) ≤ 2/k → 0. �

Next, we come to functions f : X → Y , x 7→ f(x). We use the usual
conventions f(U) = {f(x)|x ∈ U} for U ⊆ X and f−1(V ) = {x|f(x) ∈ V }
for V ⊆ Y . The set Ran(f) = f(X) is called the range of f , and X is called
the domain of f . A function f is called injective if for each y ∈ Y there
is at most one x ∈ X with f(x) = y (i.e., f−1({y}) contains at most one
point) and surjective or onto if Ran(f) = Y . A function f which is both
injective and surjective is called bijective.
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A function f between metric spaces X and Y is called continuous at a
point x ∈ X if for every ε > 0 we can find a δ > 0 such that

dY (f(x), f(y)) ≤ ε if dX(x, y) < δ. (0.11)

If f is continuous at every point, it is called continuous.

Lemma 0.6. Let X be a metric space. The following are equivalent:

(i) f is continuous at x (i.e., (0.11) holds).

(ii) f(xn)→ f(x) whenever xn → x.

(iii) For every neighborhood V of f(x), f−1(V ) is a neighborhood of x.

Proof. (i) ⇒ (ii) is obvious. (ii) ⇒ (iii): If (iii) does not hold, there is
a neighborhood V of f(x) such that Bδ(x) 6⊆ f−1(V ) for every δ. Hence
we can choose a sequence xn ∈ B1/n(x) such that f(xn) 6∈ f−1(V ). Thus
xn → x but f(xn) 6→ f(x). (iii) ⇒ (i): Choose V = Bε(f(x)) and observe
that by (iii), Bδ(x) ⊆ f−1(V ) for some δ. �

The last item implies that f is continuous if and only if the inverse
image of every open set is again open (equivalently, the inverse image of
every closed set is closed). If the image of every open set is open, then f
is called open. A bijection f is called a homeomorphism if both f and
its inverse f−1 are continuous. Note that if f is a bijection, then f−1 is
continuous if and only if f is open.

In a topological space, (iii) is used as the definition for continuity. How-
ever, in general (ii) and (iii) will no longer be equivalent unless one uses
generalized sequences, so-called nets, where the index set N is replaced by
arbitrary directed sets.

The support of a function f : X → Cn is the closure of all points x for
which f(x) does not vanish; that is,

supp(f) = {x ∈ X|f(x) 6= 0}. (0.12)

If X and Y are metric spaces, then X × Y together with

d((x1, y1), (x2, y2)) = dX(x1, x2) + dY (y1, y2) (0.13)

is a metric space. A sequence (xn, yn) converges to (x, y) if and only if
xn → x and yn → y. In particular, the projections onto the first (x, y) 7→ x,
respectively, onto the second (x, y) 7→ y, coordinate are continuous. More-
over, if X and Y are complete, so is X × Y .

In particular, by the inverse triangle inequality (0.1),

|d(xn, yn)− d(x, y)| ≤ d(xn, x) + d(yn, y), (0.14)

we see that d : X ×X → R is continuous.
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Example. If we consider R × R, we do not get the Euclidean distance of
R2 unless we modify (0.13) as follows:

d̃((x1, y1), (x2, y2)) =
√
dX(x1, x2)2 + dY (y1, y2)2. (0.15)

As noted in our previous example, the topology (and thus also conver-
gence/continuity) is independent of this choice. �

If X and Y are just topological spaces, the product topology is defined
by calling O ⊆ X × Y open if for every point (x, y) ∈ O there are open
neighborhoods U of x and V of y such that U ×V ⊆ O. In other words, the
products of open sets form a basis of the product topology. In the case of
metric spaces this clearly agrees with the topology defined via the product
metric (0.13).

A cover of a set Y ⊆ X is a family of sets {Uα} such that Y ⊆
⋃
α Uα.

A cover is called open if all Uα are open. Any subset of {Uα} which still
covers Y is called a subcover.

Lemma 0.7 (Lindelöf). If X is second countable, then every open cover
has a countable subcover.

Proof. Let {Uα} be an open cover for Y , and let B be a countable base.
Since every Uα can be written as a union of elements from B, the set of all
B ∈ B which satisfy B ⊆ Uα for some α form a countable open cover for Y .
Moreover, for every Bn in this set we can find an αn such that Bn ⊆ Uαn .
By construction, {Uαn} is a countable subcover. �

A subset K ⊂ X is called compact if every open cover has a finite
subcover. A set is called relatively compact if its closure is compact.

Lemma 0.8. A topological space is compact if and only if it has the finite
intersection property: The intersection of a family of closed sets is empty
if and only if the intersection of some finite subfamily is empty.

Proof. By taking complements, to every family of open sets there is a cor-
responding family of closed sets and vice versa. Moreover, the open sets
are a cover if and only if the corresponding closed sets have empty intersec-
tion. �

Lemma 0.9. Let X be a topological space.

(i) The continuous image of a compact set is compact.

(ii) Every closed subset of a compact set is compact.

(iii) If X is Hausdorff, every compact set is closed.

(iv) The product of finitely many compact sets is compact.

(v) The finite union of compact sets is again compact.
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(vi) If X is Hausdorff, any intersection of compact sets is again com-
pact.

Proof. (i) Observe that if {Oα} is an open cover for f(Y ), then {f−1(Oα)}
is one for Y .

(ii) Let {Oα} be an open cover for the closed subset Y (in the induced

topology). Then there are open sets Õα withOα = Õα∩Y and {Õα}∪{X\Y }
is an open cover for X which has a finite subcover. This subcover induces a
finite subcover for Y .

(iii) Let Y ⊆ X be compact. We show that X\Y is open. Fix x ∈ X\Y
(if Y = X, there is nothing to do). By the definition of Hausdorff, for
every y ∈ Y there are disjoint neighborhoods V (y) of y and Uy(x) of x. By
compactness of Y , there are y1, . . . , yn such that the V (yj) cover Y . But
then U(x) =

⋂n
j=1 Uyj (x) is a neighborhood of x which does not intersect

Y .

(iv) Let {Oα} be an open cover for X × Y . For every (x, y) ∈ X × Y
there is some α(x, y) such that (x, y) ∈ Oα(x,y). By definition of the product
topology there is some open rectangle U(x, y)×V (x, y) ⊆ Oα(x,y). Hence for
fixed x, {V (x, y)}y∈Y is an open cover of Y . Hence there are finitely many
points yk(x) such that the V (x, yk(x)) cover Y . Set U(x) =

⋂
k U(x, yk(x)).

Since finite intersections of open sets are open, {U(x)}x∈X is an open cover
and there are finitely many points xj such that the U(xj) cover X. By
construction, the U(xj)× V (xj , yk(xj)) ⊆ Oα(xj ,yk(xj)) cover X × Y .

(v) Note that a cover of the union is a cover for each individual set and
the union of the individual subcovers is the subcover we are looking for.

(vi) Follows from (ii) and (iii) since an intersection of closed sets is
closed. �

As a consequence we obtain a simple criterion when a continuous func-
tion is a homeomorphism.

Corollary 0.10. Let X and Y be topological spaces with X compact and
Y Hausdorff. Then every continuous bijection f : X → Y is a homeomor-
phism.

Proof. It suffices to show that f maps closed sets to closed sets. By (ii)
every closed set is compact, by (i) its image is also compact, and by (iii) it
is also closed. �

A subset K ⊂ X is called sequentially compact if every sequence
from K has a convergent subsequence. In a metric space, compact and
sequentially compact are equivalent.
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Lemma 0.11. Let X be a metric space. Then a subset is compact if and
only if it is sequentially compact.

Proof. Suppose X is compact and let xn be a sequence which has no conver-
gent subsequence. Then K = {xn} has no limit points and is hence compact
by Lemma 0.9 (ii). For every n there is a ball Bεn(xn) which contains only
finitely many elements of K. However, finitely many suffice to cover K, a
contradiction.

Conversely, suppose X is sequentially compact and let {Oα} be some
open cover which has no finite subcover. For every x ∈ X we can choose
some α(x) such that if Br(x) is the largest ball contained in Oα(x), then
either r ≥ 1 or there is no β with B2r(x) ⊂ Oβ (show that this is possible).
Now choose a sequence xn such that xn 6∈

⋃
m<nOα(xm). Note that by

construction the distance d = d(xm, xn) to every successor of xm is either
larger than 1 or the ball B2d(xm) will not fit into any of the Oα.

Now let y be the limit of some convergent subsequence and fix some r ∈
(0, 1) such that Br(y) ⊆ Oα(y). Then this subsequence must eventually be in
Br/5(y), but this is impossible since if d = d(xn1 , xn2) is the distance between
two consecutive elements of this subsequence, then B2d(xn1) cannot fit into
Oα(y) by construction whereas on the other hand B2d(xn1) ⊆ B4r/5(a) ⊆
Oα(y). �

In a metric space, a set is called bounded if it is contained inside some
ball. Note that compact sets are always bounded since Cauchy sequences
are bounded (show this!). In Rn (or Cn) the converse also holds.

Theorem 0.12 (Heine–Borel). In Rn (or Cn) a set is compact if and only
if it is bounded and closed.

Proof. By Lemma 0.9 (ii) and (iii) it suffices to show that a closed interval
in I ⊆ R is compact. Moreover, by Lemma 0.11, it suffices to show that
every sequence in I = [a, b] has a convergent subsequence. Let xn be our
sequence and divide I = [a, a+b

2 ] ∪ [a+b
2 , b]. Then at least one of these two

intervals, call it I1, contains infinitely many elements of our sequence. Let
y1 = xn1 be the first one. Subdivide I1 and pick y2 = xn2 , with n2 > n1 as
before. Proceeding like this, we obtain a Cauchy sequence yn (note that by
construction In+1 ⊆ In and hence |yn − ym| ≤ b−a

n for m ≥ n). �

By Lemma 0.11 this is equivalent to

Theorem 0.13 (Bolzano–Weierstraß). Every bounded infinite subset of Rn
(or Cn) has at least one limit point.

Combining Theorem 0.12 with Lemma 0.9 (i) we also obtain the ex-
treme value theorem.
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Theorem 0.14 (Weierstraß). Let X be compact. Every continuous function
f : X → R attains its maximum and minimum.

A metric space for which the Heine–Borel theorem holds is called proper.
Lemma 0.9 (ii) shows that X is proper if and only if every closed ball is com-
pact. Note that a proper metric space must be complete (since every Cauchy
sequence is bounded). A topological space is called locally compact if ev-
ery point has a compact neighborhood. Clearly a proper metric space is
locally compact.

The distance between a point x ∈ X and a subset Y ⊆ X is

dist(x, Y ) = inf
y∈Y

d(x, y). (0.16)

Note that x is a limit point of Y if and only if dist(x, Y ) = 0.

Lemma 0.15. Let X be a metric space. Then

| dist(x, Y )− dist(z, Y )| ≤ d(x, z). (0.17)

In particular, x 7→ dist(x, Y ) is continuous.

Proof. Taking the infimum in the triangle inequality d(x, y) ≤ d(x, z) +
d(z, y) shows dist(x, Y ) ≤ d(x, z)+dist(z, Y ). Hence dist(x, Y )−dist(z, Y ) ≤
d(x, z). Interchanging x and z shows dist(z, Y )− dist(x, Y ) ≤ d(x, z). �

Lemma 0.16 (Urysohn). Suppose C1 and C2 are disjoint closed subsets of
a metric space X. Then there is a continuous function f : X → [0, 1] such
that f is zero on C2 and one on C1.

If X is locally compact and C1 is compact, one can choose f with compact
support.

Proof. To prove the first claim, set f(x) = dist(x,C2)
dist(x,C1)+dist(x,C2) . For the

second claim, observe that there is an open set O such that O is compact
and C1 ⊂ O ⊂ O ⊂ X\C2. In fact, for every x ∈ C1, there is a ball Bε(x)

such that Bε(x) is compact and Bε(x) ⊂ X\C2. Since C1 is compact, finitely
many of them cover C1 and we can choose the union of those balls to be O.
Now replace C2 by X\O. �

Note that Urysohn’s lemma implies that a metric space is normal; that
is, for any two disjoint closed sets C1 and C2, there are disjoint open sets
O1 and O2 such that Cj ⊆ Oj , j = 1, 2. In fact, choose f as in Urysohn’s
lemma and set O1 = f−1([0, 1/2)), respectively, O2 = f−1((1/2, 1]).

Lemma 0.17. Let X be a locally compact metric space. Suppose K is a
compact set and {Oj}nj=1 is an open cover. Then there is a partition of
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unity for K subordinate to this cover; that is, there are continuous functions
hj : X → [0, 1] such that hj has compact support contained in Oj and

n∑
j=1

hj(x) ≤ 1 (0.18)

with equality for x ∈ K.

Proof. For every x ∈ K there is some ε and some j such that Bε(x) ⊆ Oj .
By compactness of K, finitely many of these balls cover K. Let Kj be the
union of those balls which lie inside Oj . By Urysohn’s lemma there are
continuous functions gj : X → [0, 1] such that gj = 1 on Kj and gj = 0 on
X\Oj . Now set

hj = gj

j−1∏
k=1

(1− gk).

Then hj : X → [0, 1] has compact support contained in Oj and

n∑
j=1

hj(x) = 1−
n∏
j=1

(1− gj(x))

shows that the sum is one for x ∈ K, since x ∈ Kj for some j implies
gj(x) = 1 and causes the product to vanish. �

Problem 0.1. Show that |d(x, y)− d(z, y)| ≤ d(x, z).

Problem 0.2. Show the quadrangle inequality |d(x, y) − d(x′, y′)| ≤
d(x, x′) + d(y, y′).

Problem 0.3. Show that the closure satisfies the Kuratowski closure axioms.

Problem 0.4. Show that the closure and interior operators are dual in the
sense that

X\A = (X\A)◦ and X\A◦ = (X\A).

(Hint: De Morgan’s laws.)

Problem 0.5. Let U ⊆ V be subsets of a metric space X. Show that if U
is dense in V and V is dense in X, then U is dense in X.

Problem 0.6. Show that every open set O ⊆ R can be written as a countable
union of disjoint intervals. (Hint: Let {Iα} be the set of all maximal open
subintervals of O; that is, Iα ⊆ O and there is no other subinterval of O
which contains Iα. Then this is a cover of disjoint open intervals which has
a countable subcover.)

Problem 0.7. Show that the boundary of A is given by ∂A = A\A◦.
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0.2. The Banach space of continuous functions

Now let us have a first look at Banach spaces by investigating the set of
continuous functions C(I) on a compact interval I = [a, b] ⊂ R. Since we
want to handle complex models, we will always consider complex-valued
functions!

One way of declaring a distance, well-known from calculus, is the max-
imum norm:

‖f‖∞ = max
x∈I
|f(x)|. (0.19)

It is not hard to see that with this definition C(I) becomes a normed vector
space:

A normed vector space X is a vector space X over C (or R) with a
nonnegative function (the norm) ‖.‖ such that

• ‖f‖ > 0 for f 6= 0 (positive definiteness),

• ‖α f‖ = |α| ‖f‖ for all α ∈ C, f ∈ X (positive homogeneity),
and

• ‖f + g‖ ≤ ‖f‖+ ‖g‖ for all f, g ∈ X (triangle inequality).

If positive definiteness is dropped from the requirements, one calls ‖.‖ a
seminorm.

From the triangle inequality we also get the inverse triangle inequal-
ity (Problem 0.8)

|‖f‖ − ‖g‖| ≤ ‖f − g‖. (0.20)

Once we have a norm, we have a distance d(f, g) = ‖f − g‖ and hence
we know when a sequence of vectors fn converges to a vector f . We
will write fn → f or limn→∞ fn = f , as usual, in this case. Moreover, a
mapping F : X → Y between two normed spaces is called continuous if
fn → f implies F (fn) → F (f). In fact, the norm, vector addition, and
multiplication by scalars are continuous (Problem 0.9).

In addition to the concept of convergence we have also the concept of
a Cauchy sequence and hence the concept of completeness: A normed
space is called complete if every Cauchy sequence has a limit. A complete
normed space is called a Banach space.

Example. The space `1(N) of all complex-valued sequences a = (aj)
∞
j=1 for

which the norm

‖a‖1 =
∞∑
j=1

|aj | (0.21)

is finite is a Banach space.
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To show this, we need to verify three things: (i) `1(N) is a vector space
that is closed under addition and scalar multiplication, (ii) ‖.‖1 satisfies the
three requirements for a norm, and (iii) `1(N) is complete.

First of all, observe

k∑
j=1

|aj + bj | ≤
k∑
j=1

|aj |+
k∑
j=1

|bj | ≤ ‖a‖1 + ‖b‖1 (0.22)

for every finite k. Letting k → ∞, we conclude that `1(N) is closed under
addition and that the triangle inequality holds. That `1(N) is closed under
scalar multiplication together with homogeneity as well as definiteness are
straightforward. It remains to show that `1(N) is complete. Let an = (anj )∞j=1

be a Cauchy sequence; that is, for given ε > 0 we can find an Nε such that
‖am − an‖1 ≤ ε for m,n ≥ Nε. This implies in particular |amj − anj | ≤ ε for
every fixed j. Thus anj is a Cauchy sequence for fixed j and, by completeness
of C, it has a limit: limn→∞ a

n
j = aj . Now consider

k∑
j=1

|amj − anj | ≤ ε (0.23)

and take m→∞:
k∑
j=1

|aj − anj | ≤ ε. (0.24)

Since this holds for all finite k, we even have ‖a−an‖1 ≤ ε. Hence (a−an) ∈
`1(N) and since an ∈ `1(N), we finally conclude a = an + (a − an) ∈ `1(N).
By our estimate ‖a− an‖1 ≤ ε, our candidate a is indeed the limit of an. �

Example. The previous example can be generalized by considering the
space `p(N) of all complex-valued sequences a = (aj)

∞
j=1 for which the norm

‖a‖p =

 ∞∑
j=1

|aj |p
1/p

, p ∈ [1,∞), (0.25)

is finite. By |aj + bj |p ≤ 2p max(|aj |, |bj |)p = 2p max(|aj |p, |bj |p) ≤ 2p(|aj |p +
|bj |p) it is a vector space, but the triangle inequality is only easy to see in
the case p = 1. (It is also not hard to see that it fails for p < 1, which
explains our requirement p ≥ 1. See also Problem 0.17.)

To prove it we need the elementary inequality (Problem 0.12)

α1/pβ1/q ≤ 1

p
α+

1

q
β,

1

p
+

1

q
= 1, α, β ≥ 0, (0.26)

which implies Hölder’s inequality

‖ab‖1 ≤ ‖a‖p‖b‖q (0.27)
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for x ∈ `p(N), y ∈ `q(N). In fact, by homogeneity of the norm it suffices to
prove the case ‖a‖p = ‖b‖q = 1. But this case follows by choosing α = |aj |p
and β = |bj |q in (0.26) and summing over all j.

Now using |aj + bj |p ≤ |aj | |aj + bj |p−1 + |bj | |aj + bj |p−1, we obtain from
Hölder’s inequality (note (p− 1)q = p)

‖a+ b‖pp ≤ ‖a‖p‖(a+ b)p−1‖q + ‖b‖p‖(a+ b)p−1‖q
= (‖a‖p + ‖b‖p)‖(a+ b)‖p−1

p .

Hence `p is a normed space. That it is complete can be shown as in the case
p = 1 (Problem 0.13). �

Example. The space `∞(N) of all complex-valued bounded sequences a =
(aj)

∞
j=1 together with the norm

‖a‖∞ = sup
j∈N
|aj | (0.28)

is a Banach space (Problem 0.14). Note that with this definition, Hölder’s
inequality (0.27) remains true for the cases p = 1, q =∞ and p =∞, q = 1.
The reason for the notation is explained in Problem 0.16. �

Example. Every closed subspace of a Banach space is again a Banach space.
For example, the space c0(N) ⊂ `∞(N) of all sequences converging to zero is
a closed subspace. In fact, if a ∈ `∞(N)\c0(N), then lim infj→∞ |aj | ≥ ε > 0
and thus ‖a− b‖∞ ≥ ε for every b ∈ c0(N). �

Now what about convergence in the space C(I)? A sequence of functions
fn(x) converges to f if and only if

lim
n→∞

‖f − fn‖∞ = lim
n→∞

sup
x∈I
|fn(x)− f(x)| = 0. (0.29)

That is, in the language of real analysis, fn converges uniformly to f . Now
let us look at the case where fn is only a Cauchy sequence. Then fn(x)
is clearly a Cauchy sequence of real numbers for every fixed x ∈ I. In
particular, by completeness of C, there is a limit f(x) for each x. Thus we
get a limiting function f(x). Moreover, letting m→∞ in

|fm(x)− fn(x)| ≤ ε ∀m,n > Nε, x ∈ I, (0.30)

we see

|f(x)− fn(x)| ≤ ε ∀n > Nε, x ∈ I; (0.31)

that is, fn(x) converges uniformly to f(x). However, up to this point we do
not know whether it is in our vector space C(I), that is, whether it is con-
tinuous. Fortunately, there is a well-known result from real analysis which
tells us that the uniform limit of continuous functions is again continuous:
Fix x ∈ I and ε > 0. To show that f is continuous we need to find a δ such
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that |x− y| < δ implies |f(x)− f(y)| < ε. Pick n so that ‖fn − f‖∞ < ε/3
and δ so that |x − y| < δ implies |fn(x) − fn(y)| < ε/3. Then |x − y| < δ
implies

|f(x)−f(y)| ≤ |f(x)−fn(x)|+|fn(x)−fn(y)|+|fn(y)−f(y)| < ε

3
+
ε

3
+
ε

3
= ε

as required. Hence f(x) ∈ C(I) and thus every Cauchy sequence in C(I)
converges. Or, in other words,

Theorem 0.18. C(I) with the maximum norm is a Banach space.

Next we want to look at countable bases. To this end we introduce a few
definitions first.

The set of all finite linear combinations of a set of vectors {un} ⊂ X is
called the span of {un} and denoted by span{un}. A set of vectors {un} ⊂ X
is called linearly independent if every finite subset is. If {un}Nn=1 ⊂ X,
N ∈ N ∪ {∞}, is countable, we can throw away all elements which can be
expressed as linear combinations of the previous ones to obtain a subset of
linearly independent vectors which have the same span.

We will call a countable set of vectors {un}Nn=1 ⊂ X a Schauder ba-
sis if every element f ∈ X can be uniquely written as a countable linear
combination of the basis elements:

f =

N∑
n=1

cnun, cn = cn(f) ∈ C, (0.32)

where the sum has to be understood as a limit if N = ∞ (the sum is not
required to converge unconditionally). Since we have assumed the coeffi-
cients cn(f) to be uniquely determined, the vectors are necessarily linearly
independent.

Example. The set of vectors δn, with δnn = 1 and δnm = 0, n 6= m, is a
Schauder basis for the Banach space `1(N).

Let a = (aj)
∞
j=1 ∈ `1(N) be given and set an =

∑n
j=1 ajδ

j . Then

‖a− an‖1 =
∞∑

j=n+1

|aj | → 0

since anj = aj for 1 ≤ j ≤ n and anj = 0 for j > n. Hence

a =

∞∑
j=1

ajδ
j

and {δn}∞n=1 is a Schauder basis (linear independence is left as an exer-
cise). �
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A set whose span is dense is called total, and if we have a countable total
set, we also have a countable dense set (consider only linear combinations
with rational coefficients — show this). A normed vector space containing
a countable dense set is called separable.

Example. Every Schauder basis is total and thus every Banach space with
a Schauder basis is separable (the converse is not true). In particular, the
Banach space `1(N) is separable. �

While we will not give a Schauder basis for C(I), we will at least show
that it is separable. In order to prove this, we need a lemma first.

Lemma 0.19 (Smoothing). Let un(x) be a sequence of nonnegative contin-
uous functions on [−1, 1] such that

∫
|x|≤1

un(x)dx = 1 and

∫
δ≤|x|≤1

un(x)dx→ 0, δ > 0. (0.33)

(In other words, un has mass one and concentrates near x = 0 as n→∞.)

Then for every f ∈ C[−1
2 ,

1
2 ] which vanishes at the endpoints, f(−1

2) =

f(1
2) = 0, we have that

fn(x) =

∫ 1/2

−1/2
un(x− y)f(y)dy (0.34)

converges uniformly to f(x).

Proof. Since f is uniformly continuous, for given ε we can find a δ <
1/2 (independent of x) such that |f(x) − f(y)| ≤ ε whenever |x − y| ≤ δ.
Moreover, we can choose n such that

∫
δ≤|y|≤1 un(y)dy ≤ ε. Now abbreviate

M = maxx∈[−1/2,1/2]{1, |f(x)|} and note

|f(x)−
∫ 1/2

−1/2
un(x− y)f(x)dy| = |f(x)| |1−

∫ 1/2

−1/2
un(x− y)dy| ≤Mε.

In fact, either the distance of x to one of the boundary points ±1
2 is smaller

than δ and hence |f(x)| ≤ ε or otherwise [−δ, δ] ⊂ [x− 1/2, x+ 1/2] and the
difference between one and the integral is smaller than ε.
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Using this, we have

|fn(x)− f(x)| ≤
∫ 1/2

−1/2
un(x− y)|f(y)− f(x)|dy +Mε

=

∫
|y|≤1/2,|x−y|≤δ

un(x− y)|f(y)− f(x)|dy

+

∫
|y|≤1/2,|x−y|≥δ

un(x− y)|f(y)− f(x)|dy +Mε

≤ε+ 2Mε+Mε = (1 + 3M)ε, (0.35)

which proves the claim. �

Note that fn will be as smooth as un, hence the title smoothing lemma.
Moreover, fn will be a polynomial if un is. The same idea is used to approx-
imate noncontinuous functions by smooth ones (of course the convergence
will no longer be uniform in this case).

Now we are ready to show:

Theorem 0.20 (Weierstraß). Let I be a compact interval. Then the set of
polynomials is dense in C(I).

Proof. Let f(x) ∈ C(I) be given. By considering f(x)−f(a)− f(b)−f(a)
b−a (x−

a) it is no loss to assume that f vanishes at the boundary points. Moreover,
without restriction, we only consider I = [−1

2 ,
1
2 ] (why?).

Now the claim follows from Lemma 0.19 using

un(x) =
1

In
(1− x2)n,

where

In =

∫ 1

−1
(1− x2)ndx =

n

n+ 1

∫ 1

−1
(1− x)n−1(1 + x)n+1dx

= · · · = n!

(n+ 1) · · · (2n+ 1)
22n+1 =

(n!)222n+1

(2n+ 1)!
=

n!
1
2(1

2 + 1) · · · (1
2 + n)

.

Indeed, the first part of (0.33) holds by construction, and the second part
follows from the elementary estimate

2

2n+ 1
≤ In < 2.

�

Corollary 0.21. C(I) is separable.

However, `∞(N) is not separable (Problem 0.15)!

Problem 0.8. Show that |‖f‖ − ‖g‖| ≤ ‖f − g‖.
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Problem 0.9. Let X be a Banach space. Show that the norm, vector ad-
dition, and multiplication by scalars are continuous. That is, if fn → f ,
gn → g, and αn → α, then ‖fn‖ → ‖f‖, fn + gn → f + g, and αngn → αg.

Problem 0.10. Let X be a Banach space. Show that
∑∞

j=1 ‖fj‖ < ∞
implies that

∞∑
j=1

fj = lim
n→∞

n∑
j=1

fj

exists. The series is called absolutely convergent in this case.

Problem 0.11. While `1(N) is separable, it still has room for an uncount-
able set of linearly independent vectors. Show this by considering vectors of
the form

aα = (1, α, α2, . . . ), α ∈ (0, 1).

(Hint: Take n such vectors and cut them off after n + 1 terms. If the cut-
off vectors are linearly independent, so are the original ones. Recall the
Vandermonde determinant.)

Problem 0.12. Prove (0.26). (Hint: Take logarithms on both sides.)

Problem 0.13. Show that `p(N) is a separable Banach space.

Problem 0.14. Show that `∞(N) is a Banach space.

Problem 0.15. Show that `∞(N) is not separable. (Hint: Consider se-
quences which take only the value one and zero. How many are there? What
is the distance between two such sequences?)

Problem 0.16. Show that if a ∈ `p0(N) for some p0 ∈ [1,∞), then a ∈ `p(N)
for p ≥ p0 and

lim
p→∞

‖a‖p = ‖a‖∞.

Problem 0.17. Formally extend the definition of `p(N) to p ∈ (0, 1). Show
that ‖.‖p does not satisfy the triangle inequality. However, show that it is
a quasinormed space; that is, it satisfies all requirements for a normed
space except for the triangle inequality which is replaced by

‖a+ b‖ ≤ K(‖a‖+ ‖b‖)

with some constant K ≥ 1. Show, in fact,

‖a+ b‖p ≤ 21/p−1(‖a‖p + ‖b‖p), p ∈ (0, 1).

Moreover, show that ‖.‖pp satisfies the triangle inequality in this case, but
of course it is no longer homogeneous (but at least you can get an honest
metric d(a, b) = ‖a−b‖pp which gives rise to the same topology). (Hint: Show

α+ β ≤ (αp + βp)1/p ≤ 21/p−1(α+ β) for 0 < p < 1 and α, β ≥ 0.)
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0.3. The geometry of Hilbert spaces

So it looks like C(I) has all the properties we want. However, there is
still one thing missing: How should we define orthogonality in C(I)? In
Euclidean space, two vectors are called orthogonal if their scalar product
vanishes, so we would need a scalar product:

Suppose H is a vector space. A map 〈., ..〉 : H × H → C is called a
sesquilinear form if it is conjugate linear in the first argument and linear
in the second; that is,

〈α1f1 + α2f2, g〉 = α∗1〈f1, g〉+ α∗2〈f2, g〉,
〈f, α1g1 + α2g2〉 = α1〈f, g1〉+ α2〈f, g2〉,

α1, α2 ∈ C, (0.36)

where ‘∗’ denotes complex conjugation. A sesquilinear form satisfying the
requirements

(i) 〈f, f〉 > 0 for f 6= 0 (positive definite),

(ii) 〈f, g〉 = 〈g, f〉∗ (symmetry)

is called an inner product or scalar product. Associated with every
scalar product is a norm

‖f‖ =
√
〈f, f〉. (0.37)

Only the triangle inequality is nontrivial. It will follow from the Cauchy–
Schwarz inequality below. Until then, just regard (0.37) as a convenient
short hand notation.

The pair (H, 〈., ..〉) is called an inner product space. If H is complete
(with respect to the norm (0.37)), it is called a Hilbert space.

Example. Clearly Cn with the usual scalar product

〈a, b〉 =
n∑
j=1

a∗jbj (0.38)

is a (finite dimensional) Hilbert space. �

Example. A somewhat more interesting example is the Hilbert space `2(N),
that is, the set of all complex-valued sequences{

(aj)
∞
j=1

∣∣∣ ∞∑
j=1

|aj |2 <∞
}

(0.39)

with scalar product

〈a, b〉 =

∞∑
j=1

a∗jbj . (0.40)

(Show that this is in fact a separable Hilbert space — Problem 0.13.) �
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A vector f ∈ H is called normalized or a unit vector if ‖f‖ = 1.
Two vectors f, g ∈ H are called orthogonal or perpendicular (f ⊥ g) if
〈f, g〉 = 0 and parallel if one is a multiple of the other.

If f and g are orthogonal, we have the Pythagorean theorem:

‖f + g‖2 = ‖f‖2 + ‖g‖2, f ⊥ g, (0.41)

which is one line of computation (do it!).

Suppose u is a unit vector. Then the projection of f in the direction of
u is given by

f‖ = 〈u, f〉u, (0.42)

and f⊥, defined via

f⊥ = f − 〈u, f〉u, (0.43)

is perpendicular to u since 〈u, f⊥〉 = 〈u, f−〈u, f〉u〉 = 〈u, f〉−〈u, f〉〈u, u〉 =
0.

f

f‖

f⊥

u��
�1

��
��

��
��
�1B
B
B
BBM

�
�
�
�
�
�
���

Taking any other vector parallel to u, we obtain from (0.41)

‖f − αu‖2 = ‖f⊥ + (f‖ − αu)‖2 = ‖f⊥‖2 + |〈u, f〉 − α|2 (0.44)

and hence f‖ = 〈u, f〉u is the unique vector parallel to u which is closest to
f .

As a first consequence we obtain the Cauchy–Schwarz–Bunjakowski
inequality:

Theorem 0.22 (Cauchy–Schwarz–Bunjakowski). Let H0 be an inner prod-
uct space. Then for every f, g ∈ H0 we have

|〈f, g〉| ≤ ‖f‖ ‖g‖ (0.45)

with equality if and only if f and g are parallel.

Proof. It suffices to prove the case ‖g‖ = 1. But then the claim follows
from ‖f‖2 = |〈g, f〉|2 + ‖f⊥‖2. �

Note that the Cauchy–Schwarz inequality implies that the scalar product
is continuous in both variables; that is, if fn → f and gn → g, we have
〈fn, gn〉 → 〈f, g〉.
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As another consequence we infer that the map ‖.‖ is indeed a norm. In
fact,

‖f + g‖2 = ‖f‖2 + 〈f, g〉+ 〈g, f〉+ ‖g‖2 ≤ (‖f‖+ ‖g‖)2. (0.46)

But let us return to C(I). Can we find a scalar product which has the
maximum norm as associated norm? Unfortunately the answer is no! The
reason is that the maximum norm does not satisfy the parallelogram law
(Problem 0.20).

Theorem 0.23 (Jordan–von Neumann). A norm is associated with a scalar
product if and only if the parallelogram law

‖f + g‖2 + ‖f − g‖2 = 2‖f‖2 + 2‖g‖2 (0.47)

holds.

In this case the scalar product can be recovered from its norm by virtue
of the polarization identity

〈f, g〉 =
1

4

(
‖f + g‖2 − ‖f − g‖2 + i‖f − ig‖2 − i‖f + ig‖2

)
. (0.48)

Proof. If an inner product space is given, verification of the parallelogram
law and the polarization identity is straightforward (Problem 0.22).

To show the converse, we define

s(f, g) =
1

4

(
‖f + g‖2 − ‖f − g‖2 + i‖f − ig‖2 − i‖f + ig‖2

)
.

Then s(f, f) = ‖f‖2 and s(f, g) = s(g, f)∗ are straightforward to check.
Moreover, another straightforward computation using the parallelogram law
shows

s(f, g) + s(f, h) = 2s(f,
g + h

2
).

Now choosing h = 0 (and using s(f, 0) = 0) shows s(f, g) = 2s(f, g2) and
thus s(f, g) + s(f, h) = s(f, g + h). Furthermore, by induction we infer
m
2n s(f, g) = s(f, m2n g); that is, α s(f, g) = s(f, αg) for every positive rational
α. By continuity (which follows from the triangle inequality for ‖.‖) this
holds for all α > 0 and s(f,−g) = −s(f, g), respectively, s(f, ig) = i s(f, g),
finishes the proof. �

Note that the parallelogram law and the polarization identity even hold
for sesquilinear forms (Problem 0.22).

But how do we define a scalar product on C(I)? One possibility is

〈f, g〉 =

∫ b

a
f∗(x)g(x)dx. (0.49)
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The corresponding inner product space is denoted by L2
cont(I). Note that

we have

‖f‖ ≤
√
|b− a|‖f‖∞ (0.50)

and hence the maximum norm is stronger than the L2
cont norm.

Suppose we have two norms ‖.‖1 and ‖.‖2 on a vector space X. Then
‖.‖2 is said to be stronger than ‖.‖1 if there is a constant m > 0 such that

‖f‖1 ≤ m‖f‖2. (0.51)

It is straightforward to check the following.

Lemma 0.24. If ‖.‖2 is stronger than ‖.‖1, then every ‖.‖2 Cauchy sequence
is also a ‖.‖1 Cauchy sequence.

Hence if a function F : X → Y is continuous in (X, ‖.‖1), it is also
continuous in (X, ‖.‖2), and if a set is dense in (X, ‖.‖2), it is also dense in
(X, ‖.‖1).

In particular, L2
cont is separable. But is it also complete? Unfortunately

the answer is no:

Example. Take I = [0, 2] and define

fn(x) =


0, 0 ≤ x ≤ 1− 1

n ,

1 + n(x− 1), 1− 1
n ≤ x ≤ 1,

1, 1 ≤ x ≤ 2.

(0.52)

Then fn(x) is a Cauchy sequence in L2
cont, but there is no limit in L2

cont!
Clearly the limit should be the step function which is 0 for 0 ≤ x < 1 and 1
for 1 ≤ x ≤ 2, but this step function is discontinuous (Problem 0.25)! �

This shows that in infinite dimensional vector spaces, different norms
will give rise to different convergent sequences! In fact, the key to solving
problems in infinite dimensional spaces is often finding the right norm! This
is something which cannot happen in the finite dimensional case.

Theorem 0.25. If X is a finite dimensional vector space, then all norms
are equivalent. That is, for any two given norms ‖.‖1 and ‖.‖2, there are
positive constants m1 and m2 such that

1

m2
‖f‖1 ≤ ‖f‖2 ≤ m1‖f‖1. (0.53)

Proof. Since equivalence of norms is an equivalence relation (check this!) we
can assume that ‖.‖2 is the usual Euclidean norm. Moreover, we can choose
an orthogonal basis uj , 1 ≤ j ≤ n, such that ‖

∑
j αjuj‖22 =

∑
j |αj |2. Let
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f =
∑

j αjuj . Then by the triangle and Cauchy–Schwarz inequalities,

‖f‖1 ≤
∑
j

|αj |‖uj‖1 ≤
√∑

j

‖uj‖21 ‖f‖2

and we can choose m2 =
√∑

j ‖uj‖1.

In particular, if fn is convergent with respect to ‖.‖2, it is also convergent
with respect to ‖.‖1. Thus ‖.‖1 is continuous with respect to ‖.‖2 and attains
its minimum m > 0 on the unit sphere (which is compact by the Heine–Borel
theorem, Theorem 0.12). Now choose m1 = 1/m. �

Problem 0.18. Show that the norm in a Hilbert space satisfies ‖f + g‖ =
‖f‖+ ‖g‖ if and only if f = αg, α ≥ 0, or g = 0.

Problem 0.19 (Generalized parallelogram law). Show that, in a Hilbert
space, ∑

1≤j<k≤n
‖xj − xk‖2 + ‖

∑
1≤j≤n

xj‖2 = n
∑

1≤j≤n
‖xj‖2.

The case n = 2 is (0.47).

Problem 0.20. Show that the maximum norm on C[0, 1] does not satisfy
the parallelogram law.

Problem 0.21. In a Banach space, the unit ball is convex by the triangle
inequality. A Banach space X is called uniformly convex if for every
ε > 0 there is some δ such that ‖x‖ ≤ 1, ‖y‖ ≤ 1, and ‖x+y

2 ‖ ≥ 1− δ imply
‖x− y‖ ≤ ε.

Geometrically this implies that if the average of two vectors inside the
closed unit ball is close to the boundary, then they must be close to each
other.

Show that a Hilbert space is uniformly convex and that one can choose

δ(ε) = 1 −
√

1− ε2

4 . Draw the unit ball for R2 for the norms ‖x‖1 =

|x1| + |x2|, ‖x‖2 =
√
|x1|2 + |x2|2, and ‖x‖∞ = max(|x1|, |x2|). Which of

these norms makes R2 uniformly convex?

(Hint: For the first part, use the parallelogram law.)

Problem 0.22. Suppose Q is a vector space. Let s(f, g) be a sesquilinear
form on Q and q(f) = s(f, f) the associated quadratic form. Prove the
parallelogram law

q(f + g) + q(f − g) = 2q(f) + 2q(g) (0.54)

and the polarization identity

s(f, g) =
1

4
(q(f + g)− q(f − g) + i q(f − ig)− i q(f + ig)) . (0.55)
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Show that s(f, g) is symmetric if and only if q(f) is real-valued.

Problem 0.23. A sesquilinear form is called bounded if

‖s‖ = sup
‖f‖=‖g‖=1

|s(f, g)|

is finite. Similarly, the associated quadratic form q is bounded if

‖q‖ = sup
‖f‖=1

|q(f)|

is finite. Show

‖q‖ ≤ ‖s‖ ≤ 2‖q‖.
(Hint: Use the parallelogram law and the polarization identity from the pre-
vious problem.)

Problem 0.24. Suppose Q is a vector space. Let s(f, g) be a sesquilinear
form on Q and q(f) = s(f, f) the associated quadratic form. Show that the
Cauchy–Schwarz inequality

|s(f, g)| ≤ q(f)1/2q(g)1/2 (0.56)

holds if q(f) ≥ 0.

(Hint: Consider 0 ≤ q(f + αg) = q(f) + 2 Re(α s(f, g)) + |α|2q(g) and
choose α = t s(f, g)∗/|s(f, g)| with t ∈ R.)

Problem 0.25. Prove the claims made about fn, defined in (0.52), in the
last example.

0.4. Completeness

Since L2
cont is not complete, how can we obtain a Hilbert space from it?

Well, the answer is simple: take the completion.

If X is an (incomplete) normed space, consider the set of all Cauchy

sequences X̃. Call two Cauchy sequences equivalent if their difference con-
verges to zero and denote by X̄ the set of all equivalence classes. It is easy
to see that X̄ (and X̃) inherit the vector space structure from X. Moreover,

Lemma 0.26. If xn is a Cauchy sequence, then ‖xn‖ converges.

Consequently, the norm of a Cauchy sequence (xn)∞n=1 can be defined
by ‖(xn)∞n=1‖ = limn→∞ ‖xn‖ and is independent of the equivalence class

(show this!). Thus X̄ is a normed space (X̃ is not! Why?).

Theorem 0.27. X̄ is a Banach space containing X as a dense subspace if
we identify x ∈ X with the equivalence class of all sequences converging to
x.
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Proof. (Outline) It remains to show that X̄ is complete. Let ξn = [(xn,j)
∞
j=1]

be a Cauchy sequence in X̄. Then it is not hard to see that ξ = [(xj,j)
∞
j=1]

is its limit. �

Let me remark that the completion X̄ is unique. More precisely, every
other complete space which contains X as a dense subset is isomorphic to
X̄. This can for example be seen by showing that the identity map on X
has a unique extension to X̄ (compare Theorem 0.29 below).

In particular, it is no restriction to assume that a normed vector space
or an inner product space is complete. However, in the important case
of L2

cont, it is somewhat inconvenient to work with equivalence classes of
Cauchy sequences and hence we will give a different characterization using
the Lebesgue integral later.

Problem 0.26. Provide a detailed proof of Theorem 0.27.

0.5. Bounded operators

A linear map A between two normed spaces X and Y will be called a (lin-
ear) operator

A : D(A) ⊆ X → Y. (0.57)

The linear subspace D(A) on which A is defined is called the domain of A
and is usually required to be dense. The kernel (also null space)

Ker(A) = {f ∈ D(A)|Af = 0} ⊆ X (0.58)

and range

Ran(A) = {Af |f ∈ D(A)} = AD(A) ⊆ Y (0.59)

are defined as usual. The operator A is called bounded if the operator
norm

‖A‖ = sup
f∈D(A),‖f‖X=1

‖Af‖Y (0.60)

is finite.

By construction, a bounded operator is Lipschitz continuous,

‖Af‖Y ≤ ‖A‖‖f‖X , f ∈ D(A), (0.61)

and hence continuous. The converse is also true:

Theorem 0.28. An operator A is bounded if and only if it is continuous.

Proof. Suppose A is continuous but not bounded. Then there is a sequence
of unit vectors un such that ‖Aun‖ ≥ n. Then fn = 1

nun converges to 0 but
‖Afn‖ ≥ 1 does not converge to 0. �
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In particular, if X is finite dimensional, then every operator is bounded.
Note that in general one and the same operation might be bounded (i.e.
continuous) or unbounded, depending on the norm chosen.

Example. Consider the vector space of differentiable functions X = C1[0, 1]
and equip it with the norm (cf. Problem 0.29)

‖f‖∞,1 = max
x∈[0,1]

|f(x)|+ max
x∈[0,1]

|f ′(x)|.

Let Y = C[0, 1] and observe that the differential operator A = d
dx : X → Y

is bounded since

‖Af‖∞ = max
x∈[0,1]

|f ′(x)| ≤ max
x∈[0,1]

|f(x)|+ max
x∈[0,1]

|f ′(x)| = ‖f‖∞,1.

However, if we consider A = d
dx : D(A) ⊆ Y → Y defined on D(A) =

C1[0, 1], then we have an unbounded operator. Indeed, choose

un(x) = sin(nπx)

which is normalized, ‖un‖∞ = 1, and observe that

Aun(x) = u′n(x) = nπ cos(nπx)

is unbounded, ‖Aun‖∞ = nπ. Note that D(A) contains the set of polyno-
mials and thus is dense by the Weierstraß approximation theorem (Theo-
rem 0.20). �

If A is bounded and densely defined, it is no restriction to assume that
it is defined on all of X.

Theorem 0.29 (B.L.T. theorem). Let A : D(A) ⊆ X → Y be a bounded
linear operator and let Y be a Banach space. If D(A) is dense, there is a
unique (continuous) extension of A to X which has the same operator norm.

Proof. Since a bounded operator maps Cauchy sequences to Cauchy se-
quences, this extension can only be given by

Af = lim
n→∞

Afn, fn ∈ D(A), f ∈ X.

To show that this definition is independent of the sequence fn → f , let
gn → f be a second sequence and observe

‖Afn −Agn‖ = ‖A(fn − gn)‖ ≤ ‖A‖‖fn − gn‖ → 0.

Since for f ∈ D(A) we can choose fn = f , we see that Af = Af in this case;
that is, A is indeed an extension. From continuity of vector addition and
scalar multiplication it follows that A is linear. Finally, from continuity of
the norm we conclude that the operator norm does not increase. �
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The set of all bounded linear operators from X to Y is denoted by
L(X,Y ). If X = Y , we write L(X,X) = L(X). An operator in L(X,C)
is called a bounded linear functional, and the space X∗ = L(X,C) is
called the dual space of X.

Example. Consider X = C(I). Then for every t0 ∈ I the point evaluation
`t0(x) = x(t0) is a bounded linear functional. �

Theorem 0.30. The space L(X,Y ) together with the operator norm (0.60)
is a normed space. It is a Banach space if Y is.

Proof. That (0.60) is indeed a norm is straightforward. If Y is complete and
An is a Cauchy sequence of operators, then Anf converges to an element
g for every f . Define a new operator A via Af = g. By continuity of
the vector operations, A is linear and by continuity of the norm ‖Af‖ =
limn→∞ ‖Anf‖ ≤ (limn→∞ ‖An‖)‖f‖, it is bounded. Furthermore, given
ε > 0, there is some N such that ‖An − Am‖ ≤ ε for n,m ≥ N and thus
‖Anf−Amf‖ ≤ ε‖f‖. Taking the limit m→∞, we see ‖Anf−Af‖ ≤ ε‖f‖;
that is, An → A. �

The Banach space of bounded linear operators L(X) even has a multi-
plication given by composition. Clearly this multiplication satisfies

(A+B)C = AC +BC, A(B+C) = AB+BC, A,B,C ∈ L(X) (0.62)

and

(AB)C = A(BC), α (AB) = (αA)B = A (αB), α ∈ C. (0.63)

Moreover, it is easy to see that we have

‖AB‖ ≤ ‖A‖‖B‖. (0.64)

In other words, L(X) is a so-called Banach algebra. However, note that
our multiplication is not commutative (unless X is one-dimensional). We
even have an identity, the identity operator I satisfying ‖I‖ = 1.

Problem 0.27. Consider X = Cn and let A : X → X be a matrix. Equip
X with the norm (show that this is a norm)

‖x‖∞ = max
1≤j≤n

|xj |

and compute the operator norm ‖A‖ with respect to this matrix in terms of
the matrix entries. Do the same with respect to the norm

‖x‖1 =
∑

1≤j≤n
|xj |.
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Problem 0.28. Show that the integral operator

(Kf)(x) =

∫ 1

0
K(x, y)f(y)dy,

where K(x, y) ∈ C([0, 1] × [0, 1]), defined on D(K) = C[0, 1], is a bounded
operator both in X = C[0, 1] (max norm) and X = L2

cont(0, 1).

Problem 0.29. Let I be a compact interval. Show that the set of dif-
ferentiable functions C1(I) becomes a Banach space if we set ‖f‖∞,1 =
maxx∈I |f(x)|+ maxx∈I |f ′(x)|.

Problem 0.30. Show that ‖AB‖ ≤ ‖A‖‖B‖ for every A,B ∈ L(X). Con-
clude that the multiplication is continuous: An → A and Bn → B imply
AnBn → AB.

Problem 0.31. Let A ∈ L(X) be a bijection. Show

‖A−1‖−1 = inf
f∈X,‖f‖=1

‖Af‖.

Problem 0.32. Let

f(z) =
∞∑
j=0

fjz
j , |z| < R,

be a convergent power series with convergence radius R > 0. Suppose A is
a bounded operator with ‖A‖ < R. Show that

f(A) =

∞∑
j=0

fjA
j

exists and defines a bounded linear operator (cf. Problem 0.10).

0.6. Lebesgue Lp spaces

For this section, some basic facts about the Lebesgue integral are required.
The necessary background can be found in Appendix A. To begin with,
Sections A.1, A.3, and A.5 will be sufficient.

We fix some σ-finite measure space (X,Σ, µ) and denote by Lp(X, dµ),
1 ≤ p, the set of all complex-valued measurable functions for which

‖f‖p =

(∫
X
|f |p dµ

)1/p

(0.65)

is finite. First of all, note that Lp(X, dµ) is a vector space, since |f + g|p ≤
2p max(|f |, |g|)p = 2p max(|f |p, |g|p) ≤ 2p(|f |p + |g|p). Of course our hope
is that Lp(X, dµ) is a Banach space. However, there is a small technical
problem (recall that a property is said to hold almost everywhere if the set
where it fails to hold is contained in a set of measure zero):
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Lemma 0.31. Let f be measurable. Then∫
X
|f |p dµ = 0 (0.66)

if and only if f(x) = 0 almost everywhere with respect to µ.

Proof. Observe that we have A = {x|f(x) 6= 0} =
⋃
nAn, where An =

{x| |f(x)| > 1
n}. If

∫
X |f |

pdµ = 0, we must have µ(An) = 0 for every n and
hence µ(A) = limn→∞ µ(An) = 0.

Conversely, we have
∫
X |f |

p dµ =
∫
A |f |

p dµ = 0 since µ(A) = 0 implies∫
A s dµ = 0 for every simple function and thus for any integrable function

by definition of the integral. �

Note that the proof also shows that if f is not 0 almost everywhere,
there is an ε > 0 such that µ({x| |f(x)| ≥ ε}) > 0.

Example. Let λ be the Lebesgue measure on R. Then the characteristic
function of the rationals χQ is zero a.e. (with respect to λ).

Let Θ be the Dirac measure centered at 0. Then f(x) = 0 a.e. (with
respect to Θ) if and only if f(0) = 0. �

Thus ‖f‖p = 0 only implies f(x) = 0 for almost every x, but not for all!
Hence ‖.‖p is not a norm on Lp(X, dµ). The way out of this misery is to
identify functions which are equal almost everywhere: Let

N (X, dµ) = {f |f(x) = 0 µ-almost everywhere}. (0.67)

Then N (X, dµ) is a linear subspace of Lp(X, dµ) and we can consider the
quotient space

Lp(X, dµ) = Lp(X, dµ)/N (X, dµ). (0.68)

If dµ is the Lebesgue measure on X ⊆ Rn, we simply write Lp(X). Observe
that ‖f‖p is well-defined on Lp(X, dµ).

Even though the elements of Lp(X, dµ) are, strictly speaking, equiva-
lence classes of functions, we will still call them functions for notational
convenience. However, note that for f ∈ Lp(X, dµ) the value f(x) is not
well-defined (unless there is a continuous representative and different con-
tinuous functions are in different equivalence classes, e.g., in the case of
Lebesgue measure).

With this modification we are back in business since Lp(X, dµ) turns
out to be a Banach space. We will show this in the following sections.

But before that, let us also define L∞(X, dµ). It should be the set of
bounded measurable functions B(X) together with the sup norm. The only
problem is that if we want to identify functions equal almost everywhere, the
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supremum is no longer independent of the representative in the equivalence
class. The solution is the essential supremum

‖f‖∞ = inf{C |µ({x| |f(x)| > C}) = 0}. (0.69)

That is, C is an essential bound if |f(x)| ≤ C almost everywhere and the
essential supremum is the infimum over all essential bounds.

Example. If λ is the Lebesgue measure, then the essential sup of χQ with
respect to λ is 0. If Θ is the Dirac measure centered at 0, then the essential
sup of χQ with respect to Θ is 1 (since χQ(0) = 1, and x = 0 is the only
point which counts for Θ). �

As before, we set

L∞(X, dµ) = B(X)/N (X, dµ) (0.70)

and observe that ‖f‖∞ is independent of the equivalence class.

If you wonder where the ∞ comes from, have a look at Problem 0.33.

As a preparation for proving that Lp is a Banach space, we will need
Hölder’s inequality, which plays a central role in the theory of Lp spaces.
In particular, it will imply Minkowski’s inequality, which is just the triangle
inequality for Lp.

Theorem 0.32 (Hölder’s inequality). Let p and q be dual indices; that is,

1

p
+

1

q
= 1 (0.71)

with 1 ≤ p ≤ ∞. If f ∈ Lp(X, dµ) and g ∈ Lq(X, dµ), then fg ∈ L1(X, dµ)
and

‖f g‖1 ≤ ‖f‖p‖g‖q. (0.72)

Proof. The case p = 1, q =∞ (respectively p =∞, q = 1) follows directly
from the properties of the integral and hence it remains to consider 1 <
p, q <∞.

First of all, it is no restriction to assume ‖f‖p = ‖g‖q = 1. Then, using
(0.26) with α = |f |p and β = |g|q and integrating over X gives∫

X
|f g|dµ ≤ 1

p

∫
X
|f |pdµ+

1

q

∫
X
|g|qdµ = 1

and finishes the proof. �

As a consequence we also get

Theorem 0.33 (Minkowski’s inequality). Let f, g ∈ Lp(X, dµ). Then

‖f + g‖p ≤ ‖f‖p + ‖g‖p. (0.73)
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Proof. Since the cases p = 1,∞ are straightforward, we only consider 1 <
p < ∞. Using |f + g|p ≤ |f | |f + g|p−1 + |g| |f + g|p−1, we obtain from
Hölder’s inequality (note (p− 1)q = p)

‖f + g‖pp ≤ ‖f‖p‖(f + g)p−1‖q + ‖g‖p‖(f + g)p−1‖q
= (‖f‖p + ‖g‖p)‖(f + g)‖p−1

p .

�

This shows that Lp(X, dµ) is a normed vector space. Finally, it remains
to show that Lp(X, dµ) is complete.

Theorem 0.34. The space Lp(X, dµ), 1 ≤ p ≤ ∞, is a Banach space.

Proof. We begin with the case 1 ≤ p < ∞. Suppose fn is a Cauchy
sequence. It suffices to show that some subsequence converges (show this).
Hence we can drop some terms such that

‖fn+1 − fn‖p ≤
1

2n
.

Now consider gn = fn − fn−1 (set f0 = 0). Then

G(x) =
∞∑
k=1

|gk(x)|

is in Lp. This follows from∥∥∥ n∑
k=1

|gk|
∥∥∥
p
≤

n∑
k=1

‖gk‖p ≤ ‖f1‖p + 1

using the monotone convergence theorem. In particular, G(x) < ∞ almost
everywhere and the sum

∞∑
n=1

gn(x) = lim
n→∞

fn(x)

is absolutely convergent for those x. Now let f(x) be this limit. Since
|f(x) − fn(x)|p converges to zero almost everywhere and |f(x) − fn(x)|p ≤
(2G(x))p ∈ L1, dominated convergence shows ‖f − fn‖p → 0.

In the case p = ∞, note that the Cauchy sequence property |fn(x) −
fm(x)| < ε for n,m > N holds except for sets Am,n of measure zero. Since
A =

⋃
n,mAn,m is again of measure zero, we see that fn(x) is a Cauchy

sequence for x ∈ X\A. The pointwise limit f(x) = limn→∞ fn(x), x ∈ X\A,
is the required limit in L∞(X, dµ) (show this). �

In particular, in the proof of the last theorem we have seen:

Corollary 0.35. If ‖fn − f‖p → 0, then there is a subsequence (of repre-
sentatives) which converges pointwise almost everywhere.
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Note that the statement is not true in general without passing to a
subsequence (Problem 0.38).

Using Hölder’s inequality, we can also identify a class of bounded oper-
ators in Lp.

Lemma 0.36 (Schur criterion). Consider Lp(X, dµ) and Lp(Y, dν) and let
1
p + 1

q = 1. Suppose that K(x, y) is measurable and there are measurable

functions K1(x, y), K2(x, y) such that |K(x, y)| ≤ K1(x, y)K2(x, y) and

‖K1(x, .)‖Lq(Y,dν) ≤ C1, ‖K2(., y)‖Lp(X,dµ) ≤ C2 (0.74)

for µ-almost every x, respectively, for ν-almost every y. Then the operator
K : Lp(Y, dν)→ Lp(X, dµ) defined by

(Kf)(x) =

∫
Y
K(x, y)f(y)dν(y) (0.75)

for µ-almost every x is bounded with ‖K‖ ≤ C1C2.

Proof. We assume 1 < p <∞ for simplicity and leave the cases p = 1,∞ to
the reader. Choose f ∈Lp(Y, dν). By Fubini’s theorem,

∫
Y|K(x, y)f(y)|dν(y)

is measurable and by Hölder’s inequality, we have∫
Y
|K(x, y)f(y)|dν(y) ≤

∫
Y
K1(x, y)K2(x, y)|f(y)|dν(y)

≤
(∫

Y
K1(x, y)qdν(y)

)1/q (∫
Y
|K2(x, y)f(y)|pdν(y)

)1/p

≤ C1

(∫
Y
|K2(x, y)f(y)|pdν(y)

)1/p

(if K2(x, .)f(.) 6∈ Lp(X, dν), the inequality is trivially true). Now take this
inequality to the p’th power and integrate with respect to x using Fubini:∫
X

(∫
Y
|K(x, y)f(y)|dν(y)

)p
dµ(x) ≤ Cp1

∫
X

∫
Y
|K2(x, y)f(y)|pdν(y)dµ(x)

= Cp1

∫
Y

∫
X
|K2(x, y)f(y)|pdµ(x)dν(y) ≤ Cp1C

p
2‖f‖

p
p.

Hence
∫
Y |K(x, y)f(y)|dν(y) ∈ Lp(X, dµ) and in particular it is finite for

µ-almost every x. Thus K(x, .)f(.) is ν integrable for µ-almost every x and∫
Y K(x, y)f(y)dν(y) is measurable. �

It even turns out that Lp is separable.

Lemma 0.37. Suppose X is a second countable topological space (i.e., it has
a countable basis) and µ is an outer regular Borel measure. Then Lp(X, dµ),
1 ≤ p < ∞, is separable. In particular, for every countable basis which is



0.6. Lebesgue Lp spaces 35

closed under finite unions, the set of characteristic functions χO(x) with O
in this basis is total.

Proof. The set of all characteristic functions χA(x) with A ∈ Σ and µ(A) <
∞ is total by construction of the integral. Now our strategy is as follows:
Using outer regularity, we can restrict A to open sets, and using the existence
of a countable base, we can restrict A to open sets from this base.

Fix A. By outer regularity, there is a decreasing sequence of open sets
On such that µ(On)→ µ(A). Since µ(A) <∞, it is no restriction to assume
µ(On) < ∞, and thus µ(On\A) = µ(On) − µ(A) → 0. Now dominated
convergence implies ‖χA − χOn‖p → 0. Thus the set of all characteristic
functions χO(x) with O open and µ(O) < ∞ is total. Finally, let B be a
countable basis for the topology. Then, every open set O can be written as
O =

⋃∞
j=1 Õj with Õj ∈ B. Moreover, by considering the set of all finite

unions of elements from B, it is no restriction to assume
⋃n
j=1 Õj ∈ B. Hence

there is an increasing sequence Õn ↗ O with Õn ∈ B. By monotone con-
vergence, ‖χO − χÕn‖p → 0 and hence the set of all characteristic functions

χÕ with Õ ∈ B is total. �

To finish this chapter, let us show that continuous functions are dense
in Lp.

Theorem 0.38. Let X be a locally compact metric space and let µ be a
σ-finite regular Borel measure. Then the set Cc(X) of continuous functions
with compact support is dense in Lp(X, dµ), 1 ≤ p <∞.

Proof. As in the previous proof, the set of all characteristic functions χK(x)
with K compact is total (using inner regularity). Hence it suffices to show
that χK(x) can be approximated by continuous functions. By outer regu-
larity there is an open set O ⊃ K such that µ(O\K) ≤ ε. By Urysohn’s
lemma (Lemma 0.16) there is a continuous function fε which is 1 on K and
0 outside O. Since∫

X
|χK − fε|pdµ =

∫
O\K
|fε|pdµ ≤ µ(O\K) ≤ ε,

we have ‖fε − χK‖ → 0 and we are done. �

If X is some subset of Rn, we can do even better. A nonnegative function
u ∈ C∞c (Rn) is called a mollifier if∫

Rn
u(x)dx = 1. (0.76)

The standard mollifier is u(x) = exp( 1
|x|2−1

) for |x| < 1 and u(x) = 0

otherwise.
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If we scale a mollifier according to uk(x) = knu(k x) such that its mass is
preserved (‖uk‖1 = 1) and it concentrates more and more around the origin,

-

6 uk

we have the following result (Problem 0.39):

Lemma 0.39. Let u be a mollifier in Rn and set uk(x) = knu(k x). Then
for every (uniformly) continuous function f : Rn → C we have that

fk(x) =

∫
Rn
uk(x− y)f(y)dy (0.77)

is in C∞(Rn) and converges to f (uniformly).

Now we are ready to prove

Theorem 0.40. If X ⊆ Rn is open and µ is a regular Borel measure, then
the set C∞c (X) of all smooth functions with compact support is dense in
Lp(X, dµ), 1 ≤ p <∞.

Proof. By our previous result it suffices to show that every continuous
function f(x) with compact support can be approximated by smooth ones.
By setting f(x) = 0 for x 6∈ X, it is no restriction to assume X = Rn.
Now choose a mollifier u and observe that fk has compact support (since
f has). Moreover, since f has compact support, it is uniformly continuous
and fk → f uniformly. But this implies fk → f in Lp. �

We say that f ∈ Lploc(X) if f ∈ Lp(K) for every compact subset K ⊂ X.

Lemma 0.41. Suppose f ∈ L1
loc(Rn). Then∫

Rn
ϕ(x)f(x)dx = 0, ∀ϕ ∈ C∞c (Rn), (0.78)

if and only if f(x) = 0 (a.e.).

Proof. First of all, we claim that for every bounded function g with compact
support K, there is a sequence of functions ϕn ∈ C∞c (Rn) with support in
K which converges pointwise to g such that ‖ϕn‖∞ ≤ ‖g‖∞.
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To see this, take a sequence of continuous functions ϕn with support in
K which converges to g in L1. To make sure that ‖ϕn‖∞ ≤ ‖g‖∞, just set
it equal to sign(ϕn)‖g‖∞ whenever |ϕn| > ‖g‖∞ (show that the resulting
sequence still converges). Finally, use (0.77) to make ϕn smooth (note that
this operation does not change the sup) and extract a pointwise convergent
subsequence.

Now let K be some compact set and choose g = sign(f)∗χK . Then∫
K
|f |dx =

∫
K
f sign(f)∗dx = lim

n→∞

∫
fϕndx = 0,

which shows f = 0 for a.e. x ∈ K. Since K is arbitrary, we are done. �

Problem 0.33. Suppose µ(X) < ∞. Show that L∞(X, dµ) ⊆ Lp(X, dµ)
and

lim
p→∞

‖f‖p = ‖f‖∞, f ∈ L∞(X, dµ).

Problem 0.34. Show the following generalization of Hölder’s inequality:

‖f g‖r ≤ ‖f‖p‖g‖q,
1

p
+

1

q
=

1

r
. (0.79)

Problem 0.35. Show the iterated Hölder’s inequality:

‖f1 · · · fm‖r ≤
m∏
j=1

‖fj‖pj ,
1

p1
+ · · ·+ 1

pm
=

1

r
. (0.80)

Problem 0.36. Show that

‖u‖p0 ≤ µ(X)
1
p0
− 1
p ‖u‖p, 1 ≤ p0 ≤ p.

(Hint: Hölder’s inequality.)

Problem 0.37 (Lyapunov inequality). Let 0 < θ < 1. Show that if f ∈
Lp1 ∩ Lp2, then f ∈ Lp and

‖f‖p ≤ ‖f‖θp1‖f‖
1−θ
p2 , (0.81)

where 1
p = θ

p1
+ 1−θ

p2
.

Problem 0.38. Find a sequence fn which converges to 0 in Lp([0, 1], dx),
1 ≤ p < ∞, but for which fn(x) → 0 for a.e. x ∈ [0, 1] does not hold.
(Hint: Every n ∈ N can be uniquely written as n = 2m + k with 0 ≤ m
and 0 ≤ k < 2m. Now consider the characteristic functions of the intervals
Im,k = [k2−m, (k + 1)2−m].)

Problem 0.39. Prove Lemma 0.39. (Hint: To show that fk is smooth, use
Problems A.19 and A.20.)
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Problem 0.40. Construct a function f ∈ Lp(0, 1) which has a singularity at
every rational number in [0, 1] (such that the essential supremum is infinite
on every open subinterval). (Hint: Start with the function f0(x) = |x|−α
which has a single singularity at 0, then fj(x) = f0(x−xj) has a singularity
at xj.)

Problem 0.41. Let µj be σ-finite regular Borel measures on some second
countable topological spaces Xj, j = 1, 2. Show that the set of characteristic
functions χA1×A2 with Aj Borel sets is total in Lp(X1 ×X2, d(µ1 ⊗ µ2)) for
1 ≤ p <∞. (Hint: Problem A.21 and Lemma 0.37.)

0.7. Appendix: The uniform boundedness principle

Recall that the interior of a set is the largest open subset (that is, the union
of all open subsets). A set is called nowhere dense if its closure has empty
interior. The key to several important theorems about Banach spaces is the
observation that a Banach space cannot be the countable union of nowhere
dense sets.

Theorem 0.42 (Baire category theorem). Let X be a complete metric space.
Then X cannot be the countable union of nowhere dense sets.

Proof. Suppose X =
⋃∞
n=1Xn. We can assume that the sets Xn are closed

and none of them contains a ball; that is, X\Xn is open and nonempty for
every n. We will construct a Cauchy sequence xn which stays away from all
Xn.

Since X\X1 is open and nonempty, there is a closed ball Br1(x1) ⊆
X\X1. Reducing r1 a little, we can even assume Br1(x1) ⊆ X\X1. More-
over, since X2 cannot contain Br1(x1), there is some x2 ∈ Br1(x1) that is

not in X2. Since Br1(x1)∩ (X\X2) is open, there is a closed ball Br2(x2) ⊆
Br1(x1) ∩ (X\X2). Proceeding by induction, we obtain a sequence of balls
such that

Brn(xn) ⊆ Brn−1(xn−1) ∩ (X\Xn).

Now observe that in every step we can choose rn as small as we please; hence
without loss of generality rn → 0. Since by construction xn ∈ BrN (xN ) for
n ≥ N , we conclude that xn is Cauchy and converges to some point x ∈ X.
But x ∈ Brn(xn) ⊆ X\Xn for every n, contradicting our assumption that
the Xn cover X. �

(Sets which can be written as the countable union of nowhere dense sets
are said to be of first category. All other sets are second category. Hence
we have the name category theorem.)

In other words, if Xn ⊆ X is a sequence of closed subsets which cover
X, at least one Xn contains a ball of radius ε > 0.
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Since a closed set is nowhere dense if and only if its complement is open
and dense (cf. Problem 0.4), there is a reformulation which is also worthwhile
noting:

Corollary 0.43. Let X be a complete metric space. Then any countable
intersection of open dense sets is again dense.

Proof. Let On be open dense sets whose intersection is not dense. Then
this intersection must be missing some ball Bε. The closure of this ball will
lie in

⋃
nXn, where Xn = X\On are closed and nowhere dense. But Bε is a

complete metric space, a contradiction. �

Now we come to the following important consequence, the uniform
boundedness principle.

Theorem 0.44 (Banach–Steinhaus). Let X be a Banach space and Y some
normed vector space. Let {Aα} ⊆ L(X,Y ) be a family of bounded operators.
Suppose ‖Aαx‖ ≤ C(x) is bounded for fixed x ∈ X. Then {Aα} is uniformly
bounded, ‖Aα‖ ≤ C.

Proof. Let

Xn = {x| ‖Aαx‖ ≤ n for all α} =
⋂
α

{x| ‖Aαx‖ ≤ n}.

Then
⋃
nXn = X by assumption. Moreover, by continuity of Aα and the

norm, each Xn is an intersection of closed sets and hence closed. By Baire’s
theorem, at least one contains a ball of positive radius: Bε(x0) ⊂ Xn. Now
observe

‖Aαy‖ ≤ ‖Aα(y + x0)‖+ ‖Aαx0‖ ≤ n+ C(x0)

for ‖y‖ ≤ ε. Setting y = ε x
‖x‖ , we obtain

‖Aαx‖ ≤
n+ C(x0)

ε
‖x‖

for every x. �
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Chapter 1

Hilbert spaces

The phase space in classical mechanics is the Euclidean space R2n (for the n
position and n momentum coordinates). In quantum mechanics the phase
space is always a Hilbert space H. Hence the geometry of Hilbert spaces
stands at the outset of our investigations.

1.1. Hilbert spaces

Suppose H is a vector space. A map 〈., ..〉 : H×H→ C is called a sesquilinear
form if it is conjugate linear in the first argument and linear in the second.
A positive definite sesquilinear form is called an inner product or scalar
product. Associated with every scalar product is a norm

‖ψ‖ =
√
〈ψ,ψ〉. (1.1)

The triangle inequality follows from the Cauchy–Schwarz–Bunjakowski
inequality:

|〈ψ,ϕ〉| ≤ ‖ψ‖ ‖ϕ‖ (1.2)

with equality if and only if ψ and ϕ are parallel.

If H is complete with respect to the above norm, it is called a Hilbert
space. It is no restriction to assume that H is complete since one can easily
replace it by its completion.

Example. The space L2(M,dµ) is a Hilbert space with scalar product given
by

〈f, g〉 =

∫
M
f(x)∗g(x)dµ(x). (1.3)

43
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Similarly, the set of all square summable sequences `2(N) is a Hilbert space
with scalar product

〈f, g〉 =
∑
j∈N

f∗j gj . (1.4)

(Note that the second example is a special case of the first one; take M = R
and µ a sum of Dirac measures.) �

A vector ψ ∈ H is called normalized or a unit vector if ‖ψ‖ = 1.
Two vectors ψ,ϕ ∈ H are called orthogonal or perpendicular (ψ ⊥ ϕ) if
〈ψ,ϕ〉 = 0 and parallel if one is a multiple of the other.

If ψ and ϕ are orthogonal, we have the Pythagorean theorem:

‖ψ + ϕ‖2 = ‖ψ‖2 + ‖ϕ‖2, ψ ⊥ ϕ, (1.5)

which is one line of computation.

Suppose ϕ is a unit vector. Then the projection of ψ in the direction of
ϕ is given by

ψ‖ = 〈ϕ,ψ〉ϕ, (1.6)

and ψ⊥ defined via

ψ⊥ = ψ − 〈ϕ,ψ〉ϕ (1.7)

is perpendicular to ϕ.

These results can also be generalized to more than one vector. A set of
vectors {ϕj} is called an orthonormal set (ONS) if 〈ϕj , ϕk〉 = 0 for j 6= k
and 〈ϕj , ϕj〉 = 1. Note that every orthonormal set is linearly independent
(show this).

Lemma 1.1. Suppose {ϕj}nj=0 is an orthonormal set. Then every ψ ∈ H
can be written as

ψ = ψ‖ + ψ⊥, ψ‖ =
n∑
j=0

〈ϕj , ψ〉ϕj , (1.8)

where ψ‖ and ψ⊥ are orthogonal. Moreover, 〈ϕj , ψ⊥〉 = 0 for all 1 ≤ j ≤ n.
In particular,

‖ψ‖2 =
n∑
j=0

|〈ϕj , ψ〉|2 + ‖ψ⊥‖2. (1.9)

Moreover, every ψ̂ in the span of {ϕj}nj=0 satisfies

‖ψ − ψ̂‖ ≥ ‖ψ⊥‖ (1.10)

with equality holding if and only if ψ̂ = ψ‖. In other words, ψ‖ is uniquely
characterized as the vector in the span of {ϕj}nj=0 closest to ψ.
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Proof. A straightforward calculation shows 〈ϕj , ψ − ψ‖〉 = 0 and hence ψ‖
and ψ⊥ = ψ − ψ‖ are orthogonal. The formula for the norm follows by
applying (1.5) iteratively.

Now, fix a vector

ψ̂ =

n∑
j=0

αjϕj

in the span of {ϕj}nj=0. Then one computes

‖ψ − ψ̂‖2 = ‖ψ‖ + ψ⊥ − ψ̂‖2 = ‖ψ⊥‖2 + ‖ψ‖ − ψ̂‖2

= ‖ψ⊥‖2 +

n∑
j=0

|αj − 〈ϕj , ψ〉|2

from which the last claim follows. �

From (1.9) we obtain Bessel’s inequality

n∑
j=0

|〈ϕj , ψ〉|2 ≤ ‖ψ‖2 (1.11)

with equality holding if and only if ψ lies in the span of {ϕj}nj=0.

Recall that a scalar product can be recovered from its norm by virtue of
the polarization identity

〈ϕ,ψ〉 =
1

4

(
‖ϕ+ ψ‖2 − ‖ϕ− ψ‖2 + i‖ϕ− iψ‖2 − i‖ϕ+ iψ‖2

)
. (1.12)

A bijective linear operator U ∈ L(H1,H2) is called unitary if U preserves
scalar products:

〈Uϕ,Uψ〉2 = 〈ϕ,ψ〉1, ϕ, ψ ∈ H1. (1.13)

By the polarization identity, this is the case if and only if U preserves norms:
‖Uψ‖2 = ‖ψ‖1 for all ψ ∈ H1. The two Hilbert spaces H1 and H2 are called
unitarily equivalent in this case.

Problem 1.1. The operator

S : `2(N)→ `2(N), (a1, a2, a3, . . . ) 7→ (0, a1, a2, . . . )

satisfies ‖Sa‖ = ‖a‖. Is it unitary?

1.2. Orthonormal bases

Of course, since we cannot assume H to be a finite dimensional vector space,
we need to generalize Lemma 1.1 to arbitrary orthonormal sets {ϕj}j∈J .
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We start by assuming that J is countable. Then Bessel’s inequality (1.11)
shows that ∑

j∈J
|〈ϕj , ψ〉|2 (1.14)

converges absolutely. Moreover, for every finite subset K ⊂ J we have

‖
∑
j∈K
〈ϕj , ψ〉ϕj‖2 =

∑
j∈K
|〈ϕj , ψ〉|2 (1.15)

by the Pythagorean theorem and thus
∑

j∈J〈ϕj , ψ〉ϕj is Cauchy if and only

if
∑

j∈J |〈ϕj , ψ〉|2 is. Now let J be arbitrary. Again, Bessel’s inequality
shows that for every given ε > 0 there are at most finitely many j for
which |〈ϕj , ψ〉| ≥ ε. Hence there are at most countably many j for which
|〈ϕj , ψ〉| > 0. Thus it follows that∑

j∈J
|〈ϕj , ψ〉|2 (1.16)

is well-defined and so is ∑
j∈J
〈ϕj , ψ〉ϕj . (1.17)

In particular, by continuity of the scalar product we see that Lemma 1.1
can be generalized to arbitrary orthonormal sets.

Theorem 1.2. Suppose {ϕj}j∈J is an orthonormal set. Then every ψ ∈ H
can be written as

ψ = ψ‖ + ψ⊥, ψ‖ =
∑
j∈J
〈ϕj , ψ〉ϕj , (1.18)

where ψ‖ and ψ⊥ are orthogonal. Moreover, 〈ϕj , ψ⊥〉 = 0 for all j ∈ J . In
particular,

‖ψ‖2 =
∑
j∈J
|〈ϕj , ψ〉|2 + ‖ψ⊥‖2. (1.19)

Furthermore, every ψ̂ in span{ϕj}j∈J satisfies

‖ψ − ψ̂‖ ≥ ‖ψ⊥‖ (1.20)

with equality holding if and only if ψ̂ = ψ‖. In other words, ψ‖ is uniquely

characterized as the vector in span{ϕj}j∈J closest to ψ.

Proof. The first part follows as in Lemma 1.1 using continuity of the scalar
product. The same is true for the last part except for the fact that every ψ ∈
span{ϕj}j∈J can be written as ψ =

∑
j∈J αjϕj (i.e., ψ = ψ‖). To see this, let

ψn ∈ span{ϕj}j∈J converge to ψ. Then ‖ψ−ψn‖2 = ‖ψ‖−ψn‖2+‖ψ⊥‖2 → 0
implies ψn → ψ‖ and ψ⊥ = 0. �



1.2. Orthonormal bases 47

Note that from Bessel’s inequality (which of course still holds), it follows
that the map ψ → ψ‖ is continuous.

An orthonormal set which is not a proper subset of any other orthonor-
mal set is called an orthonormal basis (ONB) due to the following result:

Theorem 1.3. For an orthonormal set {ϕj}j∈J , the following conditions
are equivalent:

(i) {ϕj}j∈J is a maximal orthonormal set.

(ii) For every vector ψ ∈ H we have

ψ =
∑
j∈J
〈ϕj , ψ〉ϕj . (1.21)

(iii) For every vector ψ ∈ H we have Parseval’s relation

‖ψ‖2 =
∑
j∈J
|〈ϕj , ψ〉|2. (1.22)

(iv) 〈ϕj , ψ〉 = 0 for all j ∈ J implies ψ = 0.

Proof. We will use the notation from Theorem 1.2.
(i) ⇒ (ii): If ψ⊥ 6= 0, then we can normalize ψ⊥ to obtain a unit vector ψ̃⊥
which is orthogonal to all vectors ϕj . But then {ϕj}j∈J ∪ {ψ̃⊥} would be a
larger orthonormal set, contradicting the maximality of {ϕj}j∈J .
(ii) ⇒ (iii): This follows since (ii) implies ψ⊥ = 0.
(iii) ⇒ (iv): If 〈ψ,ϕj〉 = 0 for all j ∈ J , we conclude ‖ψ‖2 = 0 and hence
ψ = 0.
(iv) ⇒ (i): If {ϕj}j∈J were not maximal, there would be a unit vector ϕ
such that {ϕj}j∈J ∪ {ϕ} is a larger orthonormal set. But 〈ϕj , ϕ〉 = 0 for all
j ∈ J implies ϕ = 0 by (iv), a contradiction. �

Since ψ → ψ‖ is continuous, it suffices to check conditions (ii) and (iii)
on a dense set.

Example. The set of functions

ϕn(x) =
1√
2π

einx, n ∈ Z, (1.23)

forms an orthonormal basis for H = L2(0, 2π). The corresponding orthogo-
nal expansion is just the ordinary Fourier series (Problem 1.21). �

A Hilbert space is separable if and only if there is a countable orthonor-
mal basis. In fact, if H is separable, then there exists a countable total set
{ψj}Nj=0. Here N ∈ N if H is finite dimensional and N =∞ otherwise. After
throwing away some vectors, we can assume that ψn+1 cannot be expressed
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as a linear combination of the vectors ψ0, . . . , ψn. Now we can construct an
orthonormal basis as follows: We begin by normalizing ψ0,

ϕ0 =
ψ0

‖ψ0‖
. (1.24)

Next we take ψ1 and remove the component parallel to ϕ0 and normalize
again:

ϕ1 =
ψ1 − 〈ϕ0, ψ1〉ϕ0

‖ψ1 − 〈ϕ0, ψ1〉ϕ0‖
. (1.25)

Proceeding like this, we define recursively

ϕn =
ψn −

∑n−1
j=0 〈ϕj , ψn〉ϕj

‖ψn −
∑n−1

j=0 〈ϕj , ψn〉ϕj‖
. (1.26)

This procedure is known as Gram–Schmidt orthogonalization. Hence
we obtain an orthonormal set {ϕj}Nj=0 such that span{ϕj}nj=0 = span{ψj}nj=0

for every finite n and thus also for N (if N =∞). Since {ψj}Nj=0 is total, so

is {ϕj}Nj=0. Now suppose there is some ψ = ψ‖ + ψ⊥ ∈ H for which ψ⊥ 6= 0.

Since {ϕj}Nj=1 is total, we can find a ψ̂ in its span such that ‖ψ−ψ̂‖ < ‖ψ⊥‖,
contradicting (1.20). Hence we infer that {ϕj}Nj=1 is an orthonormal basis.

Theorem 1.4. Every separable Hilbert space has a countable orthonormal
basis.

Example. In L2(−1, 1), we can orthogonalize the polynomial fn(x) = xn.
The resulting polynomials are up to a normalization equal to the Legendre
polynomials

P0(x) = 1, P1(x) = x, P2(x) =
3x2 − 1

2
, . . . (1.27)

(which are normalized such that Pn(1) = 1). �

In fact, if there is one countable basis, then it follows that every other
basis is countable as well.

Theorem 1.5. If H is separable, then every orthonormal basis is countable.

Proof. We know that there is at least one countable orthonormal basis
{ϕj}j∈J . Now let {φk}k∈K be a second basis and consider the set Kj =
{k ∈ K|〈φk, ϕj〉 6= 0}. Since these are the expansion coefficients of ϕj with

respect to {φk}k∈K , this set is countable. Hence the set K̃ =
⋃
j∈J Kj is

countable as well. But k ∈ K\K̃ implies φk = 0 and hence K̃ = K. �

We will assume all Hilbert spaces to be separable.
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In particular, it can be shown that L2(M,dµ) is separable. Moreover, it
turns out that, up to unitary equivalence, there is only one (separable)
infinite dimensional Hilbert space:

Let H be an infinite dimensional Hilbert space and let {ϕj}j∈N be any
orthogonal basis. Then the map U : H→ `2(N), ψ 7→ (〈ϕj , ψ〉)j∈N is unitary
(by Theorem 1.3 (iii)). In particular,

Theorem 1.6. Any separable infinite dimensional Hilbert space is unitarily
equivalent to `2(N).

Let me remark that if H is not separable, there still exists an orthonor-
mal basis. However, the proof requires Zorn’s lemma: The collection of all
orthonormal sets in H can be partially ordered by inclusion. Moreover, ev-
ery linearly ordered chain has an upper bound (the union of all sets in the
chain). Hence Zorn’s lemma implies the existence of a maximal element,
that is, an orthonormal basis.

Problem 1.2. Let {ϕj} be some orthonormal basis. Show that a bounded
linear operator A is uniquely determined by its matrix elements Ajk =
〈ϕj , Aϕk〉 with respect to this basis.

Problem 1.3. Show that L(H) is not separable if H is infinite dimensional.

1.3. The projection theorem and the Riesz lemma

Let M ⊆ H be a subset. Then M⊥ = {ψ|〈ϕ,ψ〉 = 0, ∀ϕ ∈ M} is called
the orthogonal complement of M . By continuity of the scalar prod-
uct it follows that M⊥ is a closed linear subspace and by linearity that
(span(M))⊥ = M⊥. For example, we have H⊥ = {0} since every vector
in H⊥ must be in particular orthogonal to all vectors in some orthonormal
basis.

Theorem 1.7 (Projection theorem). Let M be a closed linear subspace of a
Hilbert space H. Then every ψ ∈ H can be uniquely written as ψ = ψ‖ + ψ⊥
with ψ‖ ∈M and ψ⊥ ∈M⊥. One writes

M ⊕M⊥ = H (1.28)

in this situation.

Proof. Since M is closed, it is a Hilbert space and has an orthonormal
basis {ϕj}j∈J . Hence the existence part follows from Theorem 1.2. To see

uniqueness, suppose there is another decomposition ψ = ψ̃‖ + ψ̃⊥. Then

ψ‖ − ψ̃‖ = ψ̃⊥ − ψ⊥ ∈M ∩M⊥ = {0}. �
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This also shows that every orthogonal set {ϕj}j∈J can be extended to an

orthogonal basis, since we can just add an orthogonal basis for ({ϕj}j∈J)⊥.

Moreover, Theorem 1.7 implies that to every ψ ∈ H we can assign a
unique vector ψ‖ which is the vector in M closest to ψ. The rest, ψ − ψ‖,
lies in M⊥. The operator PMψ = ψ‖ is called the orthogonal projection
corresponding to M . Note that we have

P 2
M = PM and 〈PMψ,ϕ〉 = 〈ψ, PMϕ〉 (1.29)

since 〈PMψ,ϕ〉 = 〈ψ‖, ϕ‖〉 = 〈ψ, PMϕ〉. Clearly we have PM⊥ψ = ψ −
PMψ = ψ⊥. Furthermore, (1.29) uniquely characterizes orthogonal projec-
tions (Problem 1.6).

Moreover, if M is a closed subspace, we have PM⊥⊥ = I − PM⊥ =
I − (I − PM ) = PM ; that is, M⊥⊥ = M . If M is an arbitrary subset, we
have at least

M⊥⊥ = span(M). (1.30)

Note that by H⊥ = {0} we see that M⊥ = {0} if and only if M is total.

Finally we turn to linear functionals, that is, to operators ` : H →
C. By the Cauchy–Schwarz inequality we know that `ϕ : ψ 7→ 〈ϕ,ψ〉 is a
bounded linear functional (with norm ‖ϕ‖). It turns out that, in a Hilbert
space, every bounded linear functional can be written in this way.

Theorem 1.8 (Riesz lemma). Suppose ` is a bounded linear functional on a
Hilbert space H. Then there is a unique vector ϕ ∈ H such that `(ψ) = 〈ϕ,ψ〉
for all ψ ∈ H.

In other words, a Hilbert space is equivalent to its own dual space H∗ ∼= H
via the map ϕ 7→ 〈ϕ, .〉 which is a conjugate linear isometric bijection between
H and H∗.

Proof. If ` ≡ 0, we can choose ϕ = 0. Otherwise Ker(`) = {ψ|`(ψ) = 0}
is a proper subspace and we can find a unit vector ϕ̃ ∈ Ker(`)⊥. For every
ψ ∈ H we have `(ψ)ϕ̃− `(ϕ̃)ψ ∈ Ker(`) and hence

0 = 〈ϕ̃, `(ψ)ϕ̃− `(ϕ̃)ψ〉 = `(ψ)− `(ϕ̃)〈ϕ̃, ψ〉.

In other words, we can choose ϕ = `(ϕ̃)∗ϕ̃. To see uniqueness, let ϕ1, ϕ2 be
two such vectors. Then 〈ϕ1 − ϕ2, ψ〉 = 〈ϕ1, ψ〉 − 〈ϕ2, ψ〉 = `(ψ)− `(ψ) = 0
for every ψ ∈ H, which shows ϕ1 − ϕ2 ∈ H⊥ = {0}. �

The following easy consequence is left as an exercise.

Corollary 1.9. Suppose s is a bounded sesquilinear form; that is,

|s(ψ,ϕ)| ≤ C‖ψ‖ ‖ϕ‖. (1.31)
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Then there is a unique bounded operator A such that

s(ψ,ϕ) = 〈Aψ,ϕ〉. (1.32)

Moreover, the norm of A is given by

‖A‖ = sup
‖ψ‖=‖ϕ‖=1

|〈Aψ,ϕ〉| ≤ C. (1.33)

Note that by the polarization identity (Problem 0.22), A is already
uniquely determined by its quadratic form qA(ψ) = 〈ψ,Aψ〉.

Problem 1.4. Suppose U : H → H is unitary and M ⊆ H. Show that
UM⊥ = (UM)⊥.

Problem 1.5. Show that an orthogonal projection PM 6= 0 has norm one.

Problem 1.6. Suppose P ∈ L(H) satisfies

P 2 = P and 〈Pψ,ϕ〉 = 〈ψ, Pϕ〉

and set M = Ran(P ). Show

• Pψ = ψ for ψ ∈M and M is closed,

• ϕ ∈M⊥ implies Pϕ ∈M⊥ and thus Pϕ = 0,

and conclude P = PM .

Problem 1.7. Let P1, P2 be two orthogonal projections. Show that P1 ≤ P2

(that is, 〈ψ, P1ψ〉 ≤ 〈ψ, P2ψ〉) if and only if Ran(P1) ⊆ Ran(P2). Show in
this case that the two projections commute (that is, P1P2 = P2P1) and that
P2 − P1 is also a projection. (Hints: ‖Pjψ‖ = ‖ψ‖ if and only if Pjψ = ψ
and Ran(P1) ⊆ Ran(P2) if and only if P2P1 = P1.)

Problem 1.8. Show P : L2(R) → L2(R), f(x) 7→ 1
2(f(x) + f(−x)) is a

projection. Compute its range and kernel.

Problem 1.9. Prove Corollary 1.9.

Problem 1.10. Consider the sesquilinear form

B(f, g) =

∫ 1

0

(∫ x

0
f(t)∗dt

)(∫ x

0
g(t)dt

)
dx

in L2(0, 1). Show that it is bounded and find the corresponding operator A.
(Hint: Integration by parts.)
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1.4. Orthogonal sums and tensor products

Given two Hilbert spaces H1 and H2, we define their orthogonal sum
H1⊕H2 to be the set of all pairs (ψ1, ψ2) ∈ H1×H2 together with the scalar
product

〈(ϕ1, ϕ2), (ψ1, ψ2)〉 = 〈ϕ1, ψ1〉1 + 〈ϕ2, ψ2〉2. (1.34)

It is left as an exercise to verify that H1 ⊕ H2 is again a Hilbert space.
Moreover, H1 can be identified with {(ψ1, 0)|ψ1 ∈ H1}, and we can regard
H1 as a subspace of H1 ⊕ H2, and similarly for H2. It is also customary to
write ψ1 + ψ2 instead of (ψ1, ψ2).

More generally, let Hj , j ∈ N, be a countable collection of Hilbert spaces
and define

∞⊕
j=1

Hj = {
∞∑
j=1

ψj |ψj ∈ Hj ,

∞∑
j=1

‖ψj‖2j <∞}, (1.35)

which becomes a Hilbert space with the scalar product

〈
∞∑
j=1

ϕj ,

∞∑
j=1

ψj〉 =

∞∑
j=1

〈ϕj , ψj〉j . (1.36)

Example.
⊕∞

j=1 C = `2(N). �

Similarly, if H and H̃ are two Hilbert spaces, we define their tensor
product as follows: The elements should be products ψ⊗ψ̃ of elements ψ ∈ H
and ψ̃ ∈ H̃. Hence we start with the set of all finite linear combinations of
elements of H× H̃:

F(H, H̃) = {
n∑
j=1

αj(ψj , ψ̃j)|(ψj , ψ̃j) ∈ H× H̃, αj ∈ C}. (1.37)

Since we want (ψ1+ψ2)⊗ψ̃ = ψ1⊗ψ̃+ψ2⊗ψ̃, ψ⊗(ψ̃1+ψ̃2) = ψ⊗ψ̃1+ψ⊗ψ̃2,

and (αψ)⊗ ψ̃ = ψ ⊗ (αψ̃), we consider F(H, H̃)/N (H, H̃), where

N (H, H̃) = span{
n∑

j,k=1

αjβk(ψj , ψ̃k)− (
n∑
j=1

αjψj ,
n∑
k=1

βkψ̃k)} (1.38)

and write ψ ⊗ ψ̃ for the equivalence class of (ψ, ψ̃).

Next, we define

〈ψ ⊗ ψ̃, φ⊗ φ̃〉 = 〈ψ, φ〉〈ψ̃, φ̃〉 (1.39)

which extends to a sesquilinear form on F(H, H̃)/N (H, H̃). To show that we

obtain a scalar product, we need to ensure positivity. Let ψ =
∑

i αiψi⊗ψ̃i 6=
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0 and pick orthonormal bases ϕj , ϕ̃k for span{ψi}, span{ψ̃i}, respectively.
Then

ψ =
∑
j,k

αjkϕj ⊗ ϕ̃k, αjk =
∑
i

αi〈ϕj , ψi〉〈ϕ̃k, ψ̃i〉 (1.40)

and we compute

〈ψ,ψ〉 =
∑
j,k

|αjk|2 > 0. (1.41)

The completion of F(H, H̃)/N (H, H̃) with respect to the induced norm is

called the tensor product H⊗ H̃ of H and H̃.

Lemma 1.10. If ϕj, ϕ̃k are orthonormal bases for H, H̃, respectively, then

ϕj ⊗ ϕ̃k is an orthonormal basis for H⊗ H̃.

Proof. That ϕj⊗ ϕ̃k is an orthonormal set is immediate from (1.39). More-

over, since span{ϕj}, span{ϕ̃k} are dense in H, H̃, respectively, it is easy to

see that ϕj ⊗ ϕ̃k is dense in F(H, H̃)/N (H, H̃). But the latter is dense in

H⊗ H̃. �

Example. We have H⊗ Cn = Hn. �

Example. Let (M,dµ) and (M̃, dµ̃) be two measure spaces. Then we have

L2(M,dµ)⊗ L2(M̃, dµ̃) = L2(M × M̃, dµ× dµ̃).

Clearly we have L2(M,dµ) ⊗ L2(M̃, dµ̃) ⊆ L2(M × M̃, dµ × dµ̃). Now

take an orthonormal basis ϕj ⊗ ϕ̃k for L2(M,dµ) ⊗ L2(M̃, dµ̃) as in our
previous lemma. Then∫

M

∫
M̃

(ϕj(x)ϕ̃k(y))∗f(x, y)dµ(x)dµ̃(y) = 0 (1.42)

implies∫
M
ϕj(x)∗fk(x)dµ(x) = 0, fk(x) =

∫
M̃
ϕ̃k(y)∗f(x, y)dµ̃(y) (1.43)

and hence fk(x) = 0 µ-a.e. x. But this implies f(x, y) = 0 for µ-a.e. x and

µ̃-a.e. y and thus f = 0. Hence ϕj ⊗ ϕ̃k is a basis for L2(M × M̃, dµ× dµ̃)
and equality follows. �

It is straightforward to extend the tensor product to any finite number
of Hilbert spaces. We even note

(

∞⊕
j=1

Hj)⊗ H =

∞⊕
j=1

(Hj ⊗ H), (1.44)
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where equality has to be understood in the sense that both spaces are uni-
tarily equivalent by virtue of the identification

(
∞∑
j=1

ψj)⊗ ψ =
∞∑
j=1

ψj ⊗ ψ. (1.45)

Problem 1.11. Show that ψ ⊗ ψ̃ = 0 if and only if ψ = 0 or ψ̃ = 0.

Problem 1.12. We have ψ ⊗ ψ̃ = φ ⊗ φ̃ 6= 0 if and only if there is some
α ∈ C\{0} such that ψ = αφ and ψ̃ = α−1φ̃.

Problem 1.13. Show (1.44).

1.5. The C∗ algebra of bounded linear operators

We start by introducing a conjugation for operators on a Hilbert space H.
Let A ∈ L(H). Then the adjoint operator is defined via

〈ϕ,A∗ψ〉 = 〈Aϕ,ψ〉 (1.46)

(compare Corollary 1.9).

Example. If H = Cn and A = (ajk)1≤j,k≤n, then A∗ = (a∗kj)1≤j,k≤n. �

Lemma 1.11. Let A,B ∈ L(H) and α ∈ C. Then

(i) (A+B)∗ = A∗ +B∗, (αA)∗ = α∗A∗,

(ii) A∗∗ = A,

(iii) (AB)∗ = B∗A∗,

(iv) ‖A∗‖ = ‖A‖ and ‖A‖2 = ‖A∗A‖ = ‖AA∗‖.

Proof. (i) is obvious. (ii) follows from 〈ϕ,A∗∗ψ〉 = 〈A∗ϕ,ψ〉 = 〈fϕ,Aψ〉.
(iii) follows from 〈ϕ, (AB)ψ〉 = 〈A∗ϕ,Bψ〉 = 〈B∗A∗ϕ,ψ〉. (iv) follows using
(1.33) from

‖A∗‖ = sup
‖ϕ‖=‖ψ‖=1

|〈ψ,A∗ϕ〉| = sup
‖ϕ‖=‖ψ‖=1

|〈Aψ,ϕ〉|

= sup
‖ϕ‖=‖ψ‖=1

|〈ϕ,Aψ〉| = ‖A‖

and

‖A∗A‖ = sup
‖ϕ‖=‖ψ‖=1

|〈ϕ,A∗Aψ〉| = sup
‖ϕ‖=‖ψ‖=1

|〈Aϕ,Aψ〉|

= sup
‖ϕ‖=1

‖Aϕ‖2 = ‖A‖2,

where we have used ‖ϕ‖ = sup‖ψ‖=1 |〈ψ,ϕ〉|. �
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As a consequence of ‖A∗‖ = ‖A‖, observe that taking the adjoint is
continuous.

In general, a Banach algebra A together with an involution

(a+ b)∗ = a∗ + b∗, (αa)∗ = α∗a∗, a∗∗ = a, (ab)∗ = b∗a∗ (1.47)

satisfying

‖a‖2 = ‖a∗a‖ (1.48)

is called a C∗ algebra. The element a∗ is called the adjoint of a. Note that
‖a∗‖ = ‖a‖ follows from (1.48) and ‖aa∗‖ ≤ ‖a‖‖a∗‖.

Any subalgebra which is also closed under involution is called a ∗-
subalgebra. An ideal is a subspace I ⊆ A such that a ∈ I, b ∈ A imply
ab ∈ I and ba ∈ I. If it is closed under the adjoint map, it is called a ∗-ideal.
Note that if there is an identity e, we have e∗ = e and hence (a−1)∗ = (a∗)−1

(show this).

Example. The continuous functions C(I) together with complex conjuga-
tion form a commutative C∗ algebra. �

An element a ∈ A is called normal if aa∗ = a∗a, self-adjoint if a = a∗,
unitary if aa∗ = a∗a = I, an (orthogonal) projection if a = a∗ = a2, and
positive if a = bb∗ for some b ∈ A. Clearly both self-adjoint and unitary
elements are normal.

Problem 1.14. Let A ∈ L(H). Show that A is normal if and only if

‖Aψ‖ = ‖A∗ψ‖, ∀ψ ∈ H.

(Hint: Problem 0.22.)

Problem 1.15. Show that U : H→ H is unitary if and only if U−1 = U∗.

Problem 1.16. Compute the adjoint of

S : `2(N)→ `2(N), (a1, a2, a3, . . . ) 7→ (0, a1, a2, . . . ).

1.6. Weak and strong convergence

Sometimes a weaker notion of convergence is useful: We say that ψn con-
verges weakly to ψ and write

w-lim
n→∞

ψn = ψ or ψn ⇀ ψ (1.49)

if 〈ϕ,ψn〉 → 〈ϕ,ψ〉 for every ϕ ∈ H (show that a weak limit is unique).

Example. Let ϕn be an (infinite) orthonormal set. Then 〈ψ,ϕn〉 → 0 for
every ψ since these are just the expansion coefficients of ψ. (ϕn does not
converge to 0, since ‖ϕn‖ = 1.) �
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Clearly ψn → ψ implies ψn ⇀ ψ and hence this notion of convergence is
indeed weaker. Moreover, the weak limit is unique, since 〈ϕ,ψn〉 → 〈ϕ,ψ〉
and 〈ϕ,ψn〉 → 〈ϕ, ψ̃〉 imply 〈ϕ, (ψ − ψ̃)〉 = 0. A sequence ψn is called a
weak Cauchy sequence if 〈ϕ,ψn〉 is Cauchy for every ϕ ∈ H.

Lemma 1.12. Let H be a Hilbert space.

(i) ψn ⇀ ψ implies ‖ψ‖ ≤ lim inf ‖ψn‖.
(ii) Every weak Cauchy sequence ψn is bounded: ‖ψn‖ ≤ C.

(iii) Every weak Cauchy sequence converges weakly.

(iv) For a weakly convergent sequence ψn ⇀ ψ we have ψn → ψ if and
only if lim sup ‖ψn‖ ≤ ‖ψ‖.

Proof. (i) Observe

‖ψ‖2 = 〈ψ,ψ〉 = lim inf〈ψ,ψn〉 ≤ ‖ψ‖ lim inf ‖ψn‖.

(ii) For every ϕ we have that |〈ϕ,ψn〉| ≤ C(ϕ) is bounded. Hence by the
uniform boundedness principle we have ‖ψn‖ = ‖〈ψn, .〉‖ ≤ C.
(iii) Let ϕm be an orthonormal basis and define cm = limn→∞〈ϕm, ψn〉.
Then ψ =

∑
m cmϕm is the desired limit.

(iv) By (i) we have lim ‖ψn‖ = ‖ψ‖ and hence

‖ψ − ψn‖2 = ‖ψ‖2 − 2 Re(〈ψ,ψn〉) + ‖ψn‖2 → 0.

The converse is straightforward. �

Clearly, an orthonormal basis does not have a norm convergent subse-
quence. Hence the unit ball in an infinite dimensional Hilbert space is never
compact. However, we can at least extract weakly convergent subsequences:

Lemma 1.13. Let H be a Hilbert space. Every bounded sequence ψn has a
weakly convergent subsequence.

Proof. Let ϕk be an orthonormal basis. Then by the usual diagonal se-
quence argument we can find a subsequence ψnm such that 〈ϕk, ψnm〉 con-
verges for all k. Since ψn is bounded, 〈ϕ,ψnm〉 converges for every ϕ ∈ H
and hence ψnm is a weak Cauchy sequence. �

Finally, let me remark that similar concepts can be introduced for oper-
ators. This is of particular importance for the case of unbounded operators,
where convergence in the operator norm makes no sense at all.

A sequence of operators An is said to converge strongly to A,

s-lim
n→∞

An = A :⇔ Anψ → Aψ ∀ψ ∈ D(A) ⊆ D(An). (1.50)
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It is said to converge weakly to A,

w-lim
n→∞

An = A :⇔ Anψ ⇀ Aψ ∀ψ ∈ D(A) ⊆ D(An). (1.51)

Clearly, norm convergence implies strong convergence and strong conver-
gence implies weak convergence.

Example. Consider the operator Sn ∈ L(`2(N)) which shifts a sequence n
places to the left, that is,

Sn (x1, x2, . . . ) = (xn+1, xn+2, . . . ), (1.52)

and the operator S∗n ∈ L(`2(N)) which shifts a sequence n places to the right
and fills up the first n places with zeros, that is,

S∗n (x1, x2, . . . ) = (0, . . . , 0︸ ︷︷ ︸
n places

, x1, x2, . . . ). (1.53)

Then Sn converges to zero strongly but not in norm (since ‖Sn‖ = 1) and
S∗n converges weakly to zero (since 〈ϕ, S∗nψ〉 = 〈Snϕ,ψ〉) but not strongly
(since ‖S∗nψ‖ = ‖ψ‖) . �

Note that this example also shows that taking adjoints is not continuous

with respect to strong convergence! If An
s→ A, we only have

〈ϕ,A∗nψ〉 = 〈Anϕ,ψ〉 → 〈Aϕ,ψ〉 = 〈ϕ,A∗ψ〉 (1.54)

and hence A∗n ⇀ A∗ in general. However, if An and A are normal, we have
(Problem 1.14)

‖A∗nψ‖ = ‖Anψ‖ → ‖Aψ‖ = ‖A∗ψ‖ (1.55)

and hence A∗n
s→ A∗ by Lemma 1.12 (iv) in this case. Thus, at least for

normal operators, taking adjoints is continuous with respect to strong con-
vergence.

Lemma 1.14. Suppose An ∈ L(H) is a sequence of bounded operators.

(i) s-lim
n→∞

An = A implies ‖A‖ ≤ lim inf
n→∞

‖An‖.

(ii) Every strong Cauchy sequence An is bounded: ‖An‖ ≤ C.

(iii) If Anψ → Aψ for ψ in some dense set and ‖An‖ ≤ C, then
s-lim
n→∞

An = A.

The same result holds if strong convergence is replaced by weak convergence.

Proof. (i) follows from

‖Aψ‖ = lim
n→∞

‖Anψ‖ ≤ lim inf
n→∞

‖An‖
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for every ψ with ‖ψ‖ = 1.
(ii) follows as in Lemma 1.12 (ii).
(iii) Just use

‖Anψ −Aψ‖ ≤ ‖Anψ −Anϕ‖+ ‖Anϕ−Aϕ‖+ ‖Aϕ−Aψ‖
≤ 2C‖ψ − ϕ‖+ ‖Anϕ−Aϕ‖

and choose ϕ in the dense subspace such that ‖ψ − ϕ‖ ≤ ε
4C and n large

such that ‖Anϕ−Aϕ‖ ≤ ε
2 .

The case of weak convergence is left as an exercise. (Hint: (2.14).) �

Lemma 1.15. Suppose An, Bn ∈ L(H) are two sequences of bounded oper-
ators.

(i) s-lim
n→∞

An = A and s-lim
n→∞

Bn = B implies s-lim
n→∞

AnBn = AB.

(ii) w-lim
n→∞

An = A and s-lim
n→∞

Bn = B implies w-lim
n→∞

AnBn = AB.

(iii) lim
n→∞

An = A and w-lim
n→∞

Bn = B implies w-lim
n→∞

AnBn = AB.

Proof. For the first case, just observe

‖(AnBn −AB)ψ‖ ≤ ‖(An −A)Bψ‖+ ‖An‖‖(Bn −B)ψ‖ → 0.

The remaining cases are similar and again left as an exercise. �

Example. Consider again the last example. Then

S∗nSn (x1, x2, . . . ) = (0, . . . , 0︸ ︷︷ ︸
n places

, xn+1, xn+2, . . . )

converges to 0 weakly (in fact even strongly) but

SnS
∗
n(x1, x2, . . . ) = (x1, x2, . . . )

does not! Hence the order in the second claim is important. �

Problem 1.17. Suppose ψn → ψ and ϕn ⇀ ϕ. Then 〈ψn, ϕn〉 → 〈ψ,ϕ〉.

Problem 1.18. Show that ψn ⇀ ψ implies Aψn ⇀ Aψ for A ∈ L(H).

Problem 1.19. Let {ϕj}∞j=1 be some orthonormal basis. Show that ψn ⇀ ψ

if and only if ψn is bounded and 〈ϕj , ψn〉 → 〈ϕj , ψ〉 for every j. Show that
this is wrong without the boundedness assumption.

Problem 1.20. A subspace M ⊆ H is closed if and only if every weak
Cauchy sequence in M has a limit in M . (Hint: M = M⊥⊥.)
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1.7. Appendix: The Stone–Weierstraß theorem

In case of a self-adjoint operator, the spectral theorem will show that the
closed ∗-subalgebra generated by this operator is isomorphic to the C∗ alge-
bra of continuous functions C(K) over some compact set K ⊆ C. Hence it is
important to be able to identify dense sets. We will be slightly more general
and assume that K is some compact metric space. Then it is straightforward
to check that the same proof as in the case K = [a, b] (Section 0.2) shows
that C(K,R) and C(K) = C(K,C) are Banach spaces when equipped with
the maximum norm ‖f‖∞ = maxx∈K |f(x)|.

Theorem 1.16 (Stone–Weierstraß, real version). Suppose K is a compact
metric space and let C(K,R) be the Banach algebra of continuous functions
(with the maximum norm).

If F ⊂ C(K,R) contains the identity 1 and separates points (i.e., for
every x1 6= x2 there is some function f ∈ F such that f(x1) 6= f(x2)), then
the algebra generated by F is dense.

Proof. Denote by A the algebra generated by F . Note that if f ∈ A, we
have |f | ∈ A: By the Weierstraß approximation theorem (Theorem 0.20)
there is a polynomial pn(t) such that

∣∣|t| − pn(t)
∣∣ < 1

n for t ∈ f(K) and
hence pn(f)→ |f |.

In particular, if f, g are in A, we also have

max{f, g} =
(f + g) + |f − g|

2
, min{f, g} =

(f + g)− |f − g|
2

in A.

Now fix f ∈ C(K,R). We need to find some fε ∈ A with ‖f − fε‖∞ < ε.

First of all, since A separates points, observe that for given y, z ∈ K
there is a function fy,z ∈ A such that fy,z(y) = f(y) and fy,z(z) = f(z)
(show this). Next, for every y ∈ K there is a neighborhood U(y) such that

fy,z(x) > f(x)− ε, x ∈ U(y),

and since K is compact, finitely many, say U(y1), . . . , U(yj), cover K. Then

fz = max{fy1,z, . . . , fyj ,z} ∈ A

and satisfies fz > f−ε by construction. Since fz(z) = f(z) for every z ∈ K,
there is a neighborhood V (z) such that

fz(x) < f(x) + ε, x ∈ V (z),

and a corresponding finite cover V (z1), . . . , V (zk). Now

fε = min{fz1 , . . . , fzk} ∈ A
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satisfies fε < f + ε. Since f − ε < fzl < fε, we have found a required
function. �

Theorem 1.17 (Stone–Weierstraß). Suppose K is a compact metric space
and let C(K) be the C∗ algebra of continuous functions (with the maximum
norm).

If F ⊂ C(K) contains the identity 1 and separates points, then the ∗-
subalgebra generated by F is dense.

Proof. Just observe that F̃ = {Re(f), Im(f)|f ∈ F} satisfies the assump-
tion of the real version. Hence every real-valued continuous function can be
approximated by elements from F̃ ; in particular, this holds for the real and
imaginary parts for every given complex-valued function. �

Note that the additional requirement of being closed under complex
conjugation is crucial: The functions holomorphic on the unit ball and con-
tinuous on the boundary separate points, but they are not dense (since the
uniform limit of holomorphic functions is again holomorphic).

Corollary 1.18. Suppose K is a compact set and let C(K) be the C∗ algebra
of continuous functions (with the maximum norm).

If F ⊂ C(K) separates points, then the closure of the ∗-subalgebra gen-
erated by F is either C(K) or {f ∈ C(K)|f(t0) = 0} for some t0 ∈ K.

Proof. There are two possibilities: either all f ∈ F vanish at one point
t0 ∈ K (there can be at most one such point since F separates points)
or there is no such point. If there is no such point, we can proceed as in
the proof of the Stone–Weierstraß theorem to show that the identity can
be approximated by elements in A (note that to show |f | ∈ A if f ∈ A,
we do not need the identity, since pn can be chosen to contain no constant
term). If there is such a t0, the identity is clearly missing from A. However,
adding the identity to A, we get A + C = C(K), and it is easy to see that
A = {f ∈ C(K)|f(t0) = 0}. �

Problem 1.21. Show that the functions ϕn(x) = 1√
2π

einx, n ∈ Z, form an

orthonormal basis for H = L2(0, 2π).

Problem 1.22. Let k ∈ N and I ⊆ R. Show that the ∗-subalgebra generated
by fz0(t) = 1

(t−z0)k
for one z0 ∈ C is dense in the C∗ algebra C∞(I) of

continuous functions vanishing at infinity:

• for I = R if z0 ∈ C\R and k = 1 or k = 2,

• for I = [a,∞) if z0 ∈ (−∞, a) and k arbitrary,

• for I = (−∞, a] ∪ [b,∞) if z0 ∈ (a, b) and k odd.
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(Hint: Add ∞ to R to make it compact.)

Problem 1.23. Let U ⊆ C\R be a set which has a limit point and is sym-
metric under complex conjugation. Show that the span of {(t− z)−1|z ∈ U}
is dense in C∞(R). (Hint: The product of two such functions is in the span
provided they are different.)

Problem 1.24. Let K ⊆ C be a compact set. Show that the set of all
functions f(z) = p(x, y), where p : R2 → C is polynomial and z = x+ iy, is
dense in C(K).





Chapter 2

Self-adjointness and
spectrum

2.1. Some quantum mechanics

In quantum mechanics, a single particle living in R3 is described by a
complex-valued function (the wave function)

ψ(x, t), (x, t) ∈ R3 × R, (2.1)

where x corresponds to a point in space and t corresponds to time. The
quantity ρt(x) = |ψ(x, t)|2 is interpreted as the probability density of the
particle at the time t. In particular, ψ must be normalized according to∫

R3

|ψ(x, t)|2d3x = 1, t ∈ R. (2.2)

The location x of the particle is a quantity which can be observed (i.e.,
measured) and is hence called observable. Due to our probabilistic inter-
pretation, it is also a random variable whose expectation is given by

Eψ(x) =

∫
R3

x|ψ(x, t)|2d3x. (2.3)

In a real-life setting, it will not be possible to measure x directly, and one will
only be able to measure certain functions of x. For example, it is possible to
check whether the particle is inside a certain area Ω of space (e.g., inside a
detector). The corresponding observable is the characteristic function χΩ(x)
of this set. In particular, the number

Eψ(χΩ) =

∫
R3

χΩ(x)|ψ(x, t)|2d3x =

∫
Ω
|ψ(x, t)|2d3x (2.4)

63
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corresponds to the probability of finding the particle inside Ω ⊆ R3 at time
t ∈ R. An important point to observe is that, in contradistinction to classical
mechanics, the particle is no longer localized at a certain point. In particular,
the mean-square deviation (or variance) ∆ψ(x)2 = Eψ(x2) − Eψ(x)2 is
always nonzero.

In general, the configuration space (or phase space) of a quantum
system is a (complex) Hilbert space H, and the possible states of this system
are represented by the elements ψ having norm one, ‖ψ‖ = 1.

An observable a corresponds to a linear operator A in this Hilbert space,
and its expectation, if the system is in the state ψ, is given by the real number

Eψ(A) = 〈ψ,Aψ〉 = 〈Aψ,ψ〉, (2.5)

where 〈., ..〉 denotes the scalar product of H. Similarly, the mean-square
deviation is given by

∆ψ(A)2 = Eψ(A2)− Eψ(A)2 = ‖(A− Eψ(A))ψ‖2. (2.6)

Note that ∆ψ(A) vanishes if and only if ψ is an eigenstate corresponding to
the eigenvalue Eψ(A); that is, Aψ = Eψ(A)ψ.

From a physical point of view, (2.5) should make sense for every ψ ∈ H.
However, this is not in the cards as our simple example of one particle already
shows. In fact, the reader is invited to find a square integrable function ψ(x)
for which xψ(x) is no longer square integrable. The deeper reason behind
this nuisance is that Eψ(x) can attain arbitrarily large values if the particle
is not confined to a finite domain, which renders the corresponding opera-
tor unbounded. But unbounded operators cannot be defined on the entire
Hilbert space in a natural way by the closed graph theorem (Theorem 2.9
below).

Hence, A will only be defined on a subset D(A) ⊆ H, called the domain
of A. Since we want A to be defined for at least most states, we require
D(A) to be dense.

However, it should be noted that there is no general prescription for how
to find the operator corresponding to a given observable.

Now let us turn to the time evolution of such a quantum mechanical
system. Given an initial state ψ(0) of the system, there should be a unique
ψ(t) representing the state of the system at time t ∈ R. We will write

ψ(t) = U(t)ψ(0). (2.7)

Moreover, it follows from physical experiments that superposition of
states holds; that is, U(t)(α1ψ1(0) + α2ψ2(0)) = α1ψ1(t) + α2ψ2(t). In
other words, U(t) should be a linear operator. Moreover, since ψ(t) is a
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state (i.e., ‖ψ(t)‖ = 1), we have

‖U(t)ψ‖ = ‖ψ‖. (2.8)

Such operators are called unitary. Next, since we have assumed uniqueness
of solutions to the initial value problem, we must have

U(0) = I, U(t+ s) = U(t)U(s). (2.9)

A family of unitary operators U(t) having this property is called a one-
parameter unitary group. In addition, it is natural to assume that this
group is strongly continuous; that is,

lim
t→t0

U(t)ψ = U(t0)ψ, ψ ∈ H. (2.10)

Each such group has an infinitesimal generator, defined by

Hψ = lim
t→0

i

t
(U(t)ψ − ψ), D(H) = {ψ ∈ H| lim

t→0

1

t
(U(t)ψ − ψ) exists}.

(2.11)
This operator is called the Hamiltonian and corresponds to the energy of
the system. If ψ(0) ∈ D(H), then ψ(t) is a solution of the Schrödinger
equation (in suitable units)

i
d

dt
ψ(t) = Hψ(t). (2.12)

This equation will be the main subject of our course.

In summary, we have the following axioms of quantum mechanics.

Axiom 1. The configuration space of a quantum system is a complex
separable Hilbert space H, and the possible states of this system are repre-
sented by the elements of H which have norm one.

Axiom 2. Each observable a corresponds to a linear operator A defined
maximally on a dense subset D(A). Moreover, the operator correspond-
ing to a polynomial Pn(a) =

∑n
j=0 αja

j , αj ∈ R, is Pn(A) =
∑n

j=0 αjA
j ,

D(Pn(A)) = D(An) = {ψ ∈ D(A)|Aψ ∈ D(An−1)} (A0 = I).
Axiom 3. The expectation value for a measurement of a, when the

system is in the state ψ ∈ D(A), is given by (2.5), which must be real for
all ψ ∈ D(A).

Axiom 4. The time evolution is given by a strongly continuous one-
parameter unitary group U(t). The generator of this group corresponds to
the energy of the system.

In the following sections we will try to draw some mathematical conse-
quences from these assumptions:

First, we will see that Axioms 2 and 3 imply that observables corre-
spond to self-adjoint operators. Hence these operators play a central role
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in quantum mechanics and we will derive some of their basic properties.
Another crucial role is played by the set of all possible expectation values
for the measurement of a, which is connected with the spectrum σ(A) of the
corresponding operator A.

The problem of defining functions of an observable will lead us to the
spectral theorem (in the next chapter), which generalizes the diagonalization
of symmetric matrices.

Axiom 4 will be the topic of Chapter 5.

2.2. Self-adjoint operators

Let H be a (complex separable) Hilbert space. A linear operator is a linear
mapping

A : D(A)→ H, (2.13)

where D(A) is a linear subspace of H, called the domain of A. It is called
bounded if the operator norm

‖A‖ = sup
‖ψ‖=1

‖Aψ‖ = sup
‖ϕ‖=‖ψ‖=1

|〈ψ,Aϕ〉| (2.14)

is finite. The second equality follows since equality in |〈ψ,Aϕ〉| ≤ ‖ψ‖ ‖Aϕ‖
is attained when Aϕ = zψ for some z ∈ C. If A is bounded, it is no
restriction to assume D(A) = H and we will usually do so. The Banach space
of all bounded linear operators is denoted by L(H). Sums and products of
(unbounded) operators are defined naturally; that is, (A+B)ψ = Aψ+Bψ
for ψ ∈ D(A + B) = D(A) ∩ D(B) and ABψ = A(Bψ) for ψ ∈ D(AB) =
{ψ ∈ D(B)|Bψ ∈ D(A)}.
Example. (Multiplication operator). Consider the multiplication operator

(Af)(x) = A(x)f(x), D(A) = {f ∈ L2(Rd, dµ) |Af ∈ L2(Rd, dµ)} (2.15)

given by multiplication with the measurable function A : Rn → C. First
of all note that D(A) is dense. In fact, consider Ωn = {x ∈ Rd | |A(x)| ≤
n} ↗ Rd. Then, for every f ∈ L2(Rd, dµ) the function fn = χΩnf ∈ D(A)
converges to f as n→∞ by dominated convergence.

Moreover, A is a bounded operator if and only if A(x) is an (essentially)
bounded function and ‖A‖ = ‖A‖∞ in this case.

If ‖A‖∞ <∞ we of course have |A(x)| ≤ ‖A‖∞ (a.e.) and |(Af)(x)|2 =
|A(x)|2|f(x)|2 ≤ ‖A‖∞|f(x)|2 shows D(A) = H. Furthermore,

‖Af‖2 =

∫
Rd
|A(x)f(x)|2dµ(x) ≤ ‖A‖2∞

∫
Rd
|f(x)|2dµ(x) = ‖A‖2∞‖f‖2

shows ‖A‖ ≤ ‖A‖∞. To see the converse inequality, consider the set Ωε =
{x | |A(x)| ≥ ‖A‖∞ − ε} which satisfies µ(Ωε) > 0 for ε > 0. Thus we can



2.2. Self-adjoint operators 67

choose Ω̃ε ⊆ Ωε with 0 < µ(Ω̃ε) <∞, implying

‖AχΩ̃ε
‖2 =

∫
Ω̃ε

|A(x)|2dµ(x) ≥ (‖A‖∞ − ε)2‖χΩ̃ε
‖2

which shows ‖A‖ ≥ ‖A‖∞. �

The expression 〈ψ,Aψ〉 encountered in the previous section is called the
quadratic form,

qA(ψ) = 〈ψ,Aψ〉, ψ ∈ D(A), (2.16)

associated to A. An operator can be reconstructed from its quadratic form
via the polarization identity

〈ϕ,Aψ〉 =
1

4
(qA(ϕ+ ψ)− qA(ϕ− ψ) + iqA(ϕ− iψ)− iqA(ϕ+ iψ)) . (2.17)

A densely defined linear operator A is called symmetric (or hermitian) if

〈ϕ,Aψ〉 = 〈Aϕ,ψ〉, ψ, ϕ ∈ D(A). (2.18)

The justification for this definition is provided by the following

Lemma 2.1. A densely defined operator A is symmetric if and only if the
corresponding quadratic form is real-valued.

Proof. Clearly (2.18) implies that Im(qA(ψ)) = 0. Conversely, taking the
imaginary part of the identity

qA(ψ + iϕ) = qA(ψ) + qA(ϕ) + i(〈ψ,Aϕ〉 − 〈ϕ,Aψ〉)
shows Re〈Aϕ,ψ〉 = Re〈ϕ,Aψ〉. Replacing ϕ by iϕ in this last equation
shows Im〈Aϕ,ψ〉 = Im〈ϕ,Aψ〉 and finishes the proof. �

In other words, a densely defined operator A is symmetric if and only if

〈ψ,Aψ〉 = 〈Aψ,ψ〉, ψ ∈ D(A). (2.19)

This already narrows the class of admissible operators to the class of
symmetric operators by Axiom 3. Next, let us tackle the issue of the correct
domain.

By Axiom 2, A should be defined maximally; that is, if Ã is another
symmetric operator such that A ⊆ Ã, then A = Ã. Here we write A ⊆ Ã
if D(A) ⊆ D(Ã) and Aψ = Ãψ for all ψ ∈ D(A). The operator Ã is called

an extension of A in this case. In addition, we write A = Ã if both Ã ⊆ A
and A ⊆ Ã hold.

The adjoint operator A∗ of a densely defined linear operator A is
defined by

D(A∗) = {ψ ∈ H|∃ψ̃ ∈ H : 〈ψ,Aϕ〉 = 〈ψ̃, ϕ〉, ∀ϕ ∈ D(A)},
A∗ψ = ψ̃.

(2.20)
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The requirement that D(A) be dense implies that A∗ is well-defined. How-
ever, note that D(A∗) might not be dense in general. In fact, it might
contain no vectors other than 0.

Clearly we have (αA)∗ = α∗A∗ for α ∈ C and (A + B)∗ ⊇ A∗ + B∗

provided D(A + B) = D(A) ∩ D(B) is dense. However, equality will not
hold in general unless one operator is bounded (Problem 2.2).

For later use, note that (Problem 2.4)

Ker(A∗) = Ran(A)⊥. (2.21)

For symmetric operators, we clearly have A ⊆ A∗. If, in addition, A =
A∗ holds, then A is called self-adjoint. Our goal is to show that observables
correspond to self-adjoint operators. This is for example true in the case of
the position operator x, which is a special case of a multiplication operator.

Example. (Multiplication operator). Consider again the multiplication
operator

(Af)(x) = A(x)f(x), D(A) = {f ∈ L2(Rd, dµ) |Af ∈ L2(Rd, dµ)} (2.22)

given by multiplication with the measurable function A : Rd → C and let us
compute its adjoint.

Performing a formal computation, we have for h, f ∈ D(A) that

〈h,Af〉 =

∫
h(x)∗A(x)f(x)dµ(x) =

∫
(A(x)∗h(x))∗f(x)dµ(x) = 〈Ãh, f〉,

(2.23)

where Ã is multiplication by A(x)∗,

(Ãf)(x) = A(x)∗f(x), D(Ã) = {f ∈ L2(Rd, dµ) | Ãf ∈ L2(Rd, dµ)}.
(2.24)

Note D(Ã) = D(A). At first sight this seems to show that the adjoint of

A is Ã. But for our calculation we had to assume h ∈ D(A), and there
might be some functions in D(A∗) which do not satisfy this requirement! In

particular, our calculation only shows Ã ⊆ A∗. To show that equality holds,
we need to work a little harder:

If h ∈ D(A∗), there is some g ∈ L2(Rd, dµ) such that∫
h(x)∗A(x)f(x)dµ(x) =

∫
g(x)∗f(x)dµ(x), f ∈ D(A), (2.25)

and thus∫
(h(x)A(x)∗ − g(x))∗f(x)dµ(x) = 0, f ∈ D(A). (2.26)

In particular, using Ωn = {x ∈ Rd | |A(x)| ≤ n} ↗ Rd,∫
χΩn(x)(h(x)A(x)∗ − g(x))∗f(x)dµ(x) = 0, f ∈ L2(Rd, dµ), (2.27)
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which shows that χΩn(h(x)A(x)∗ − g(x))∗ ∈ L2(Rd, dµ) vanishes. Since n
is arbitrary, we even have h(x)A(x)∗ = g(x) ∈ L2(Rd, dµ) and thus A∗ is
multiplication by A(x)∗ and D(A∗) = D(A).

In particular, A is self-adjoint if A is real-valued. In the general case we
have at least ‖Af‖ = ‖A∗f‖ for all f ∈ D(A) = D(A∗). Such operators are
called normal. �

Now note that

A ⊆ B ⇒ B∗ ⊆ A∗; (2.28)

that is, increasing the domain of A implies decreasing the domain of A∗.
Thus there is no point in trying to extend the domain of a self-adjoint
operator further. In fact, if A is self-adjoint and B is a symmetric extension,
we infer A ⊆ B ⊆ B∗ ⊆ A∗ = A implying A = B.

Corollary 2.2. Self-adjoint operators are maximal; that is, they do not have
any symmetric extensions.

Furthermore, if A∗ is densely defined (which is the case if A is symmet-
ric), we can consider A∗∗. From the definition (2.20) it is clear that A ⊆ A∗∗
and thus A∗∗ is an extension of A. This extension is closely related to ex-
tending a linear subspace M via M⊥⊥ = M (as we will see a bit later) and
thus is called the closure A = A∗∗ of A.

If A is symmetric, we have A ⊆ A∗ and hence A = A∗∗ ⊆ A∗; that is,
A lies between A and A∗. Moreover, 〈ψ,A∗ϕ〉 = 〈Aψ,ϕ〉 for all ψ ∈ D(A),
ϕ ∈ D(A∗) implies that A is symmetric since A∗ϕ = Aϕ for ϕ ∈ D(A).

Example. (Differential operator). Take H = L2(0, 2π).

(i) Consider the operator

A0f = −i
d

dx
f, D(A0) = {f ∈ C1[0, 2π] | f(0) = f(2π) = 0}. (2.29)

That A0 is symmetric can be shown by a simple integration by parts (do
this). Note that the boundary conditions f(0) = f(2π) = 0 are chosen
such that the boundary terms occurring from integration by parts vanish.
However, this will also follow once we have computed A∗0. If g ∈ D(A∗0), we
must have ∫ 2π

0
g(x)∗(−if ′(x))dx =

∫ 2π

0
g̃(x)∗f(x)dx (2.30)

for some g̃ ∈ L2(0, 2π). Integration by parts (cf. (2.119)) shows∫ 2π

0
f ′(x)

(
g(x)− i

∫ x

0
g̃(t)dt

)∗
dx = 0. (2.31)

In fact, this formula holds for g̃ ∈ C[0, 2π]. Since the set of continuous
functions is dense, the general case g̃ ∈ L2(0, 2π) follows by approximating
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g̃ with continuous functions and taking limits on both sides using dominated
convergence.

Hence g(x) − i
∫ x

0 g̃(t)dt ∈ {f ′|f ∈ D(A0)}⊥. But {f ′|f ∈ D(A0)} =

{h ∈ C[0, 2π]|
∫ 2π

0 h(t)dt = 0} (show this) implying g(x) = g(0) + i
∫ x

0 g̃(t)dt

since {f ′|f ∈ D(A0)} = {h ∈ H|〈1, h〉 = 0} = {1}⊥ and {1}⊥⊥ = span{1}.
Thus g ∈ AC[0, 2π], where

AC[a, b] = {f ∈ C[a, b]|f(x) = f(a) +

∫ x

a
g(t)dt, g ∈ L1(a, b)} (2.32)

denotes the set of all absolutely continuous functions (see Section 2.7). In
summary, g ∈ D(A∗0) implies g ∈ AC[0, 2π] and A∗0g = g̃ = −ig′. Conversely,
for every g ∈ H1(0, 2π) = {f ∈ AC[0, 2π]|f ′ ∈ L2(0, 2π)}, (2.30) holds with
g̃ = −ig′ and we conclude

A∗0f = −i
d

dx
f, D(A∗0) = H1(0, 2π). (2.33)

In particular, A0 is symmetric but not self-adjoint. Since A0 = A∗∗0 ⊆ A∗0,
we can use integration by parts to compute

0 = 〈g,A0f〉 − 〈A∗0g, f〉 = i(f(0)g(0)∗ − f(2π)g(2π)∗) (2.34)

and since the boundary values of g ∈ D(A∗0) can be prescribed arbitrarily,
we must have f(0) = f(2π) = 0. Thus

A0f = −i
d

dx
f, D(A0) = {f ∈ D(A∗0) | f(0) = f(2π) = 0}. (2.35)

(ii) Now let us take

Af = −i
d

dx
f, D(A) = {f ∈ C1[0, 2π] | f(0) = f(2π)}, (2.36)

which is clearly an extension of A0. Thus A∗ ⊆ A∗0 and we compute

0 = 〈g,Af〉 − 〈A∗g, f〉 = if(0)(g(0)∗ − g(2π)∗). (2.37)

Since this must hold for all f ∈ D(A), we conclude g(0) = g(2π) and

A∗f = −i
d

dx
f, D(A∗) = {f ∈ H1(0, 2π) | f(0) = f(2π)}. (2.38)

Similarly, as before, A = A∗ and thus A is self-adjoint. �

One might suspect that there is no big difference between the two sym-
metric operators A0 and A from the previous example, since they coincide
on a dense set of vectors. However, the converse is true: For example, the
first operator A0 has no eigenvectors at all (i.e., solutions of the equation
A0ψ = zψ, z ∈ C) whereas the second one has an orthonormal basis of
eigenvectors!
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Example. Compute the eigenvectors of A0 and A from the previous exam-
ple.

(i) By definition, an eigenvector is a (nonzero) solution of A0u = zu,
z ∈ C, that is, a solution of the ordinary differential equation

− iu′(x) = zu(x) (2.39)

satisfying the boundary conditions u(0) = u(2π) = 0 (since we must have
u ∈ D(A0)). The general solution of the differential equation is u(x) =
u(0)eizx and the boundary conditions imply u(x) = 0. Hence there are no
eigenvectors.

(ii) Now we look for solutions of Au = zu, that is, the same differential
equation as before, but now subject to the boundary condition u(0) = u(2π).
Again the general solution is u(x) = u(0)eizx, and the boundary condition
requires u(0) = u(0)e2πiz. Thus there are two possibilities. Either u(0) = 0
(which is of no use for us) or z ∈ Z. In particular, we see that all eigenvectors
are given by

un(x) =
1√
2π

einx, n ∈ Z, (2.40)

which are well known to form an orthonormal basis. �

We will see a bit later that this is a consequence of self-adjointness of A.
Hence it will be important to know whether a given operator is self-adjoint.
Our example shows that symmetry is easy to check (in case of differential
operators it usually boils down to integration by parts), but computing the
adjoint of an operator is a nontrivial job even in simple situations. However,
we will learn soon that self-adjointness is a much stronger property than
symmetry, justifying the additional effort needed to prove it.

On the other hand, if a given symmetric operator A turns out not to
be self-adjoint, this raises the question of self-adjoint extensions. Two cases
need to be distinguished. If A is self-adjoint, then there is only one self-
adjoint extension (if B is another one, we have A ⊆ B and hence A = B
by Corollary 2.2). In this case A is called essentially self-adjoint and
D(A) is called a core for A. Otherwise there might be more than one self-
adjoint extension or none at all. This situation is more delicate and will be
investigated in Section 2.6.

Since we have seen that computing A∗ is not always easy, a criterion for
self-adjointness not involving A∗ will be useful.

Lemma 2.3. Let A be symmetric such that Ran(A+ z) = Ran(A+ z∗) = H
for one z ∈ C. Then A is self-adjoint.
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Proof. Let ψ ∈ D(A∗) and A∗ψ = ψ̃. Since Ran(A + z∗) = H, there is a

ϑ ∈ D(A) such that (A+ z∗)ϑ = ψ̃ + z∗ψ. Now we compute

〈ψ, (A+ z)ϕ〉 = 〈ψ̃+ z∗ψ,ϕ〉 = 〈(A+ z∗)ϑ, ϕ〉 = 〈ϑ, (A+ z)ϕ〉, ϕ ∈ D(A),

and hence ψ = ϑ ∈ D(A) since Ran(A+ z) = H. �

To proceed further, we will need more information on the closure of
an operator. We will use a different approach which avoids the use of the
adjoint operator. We will establish equivalence with our original definition
in Lemma 2.4.

The simplest way of extending an operator A is to take the closure of its
graph Γ(A) = {(ψ,Aψ)|ψ ∈ D(A)} ⊂ H2. That is, if (ψn, Aψn) → (ψ, ψ̃),

we might try to define Aψ = ψ̃. For Aψ to be well-defined, we need that
(ψn, Aψn) → (0, ψ̃) implies ψ̃ = 0. In this case A is called closable, and

the unique operator A which satisfies Γ(A) = Γ(A) is called the closure of
A. Clearly, A is called closed if A = A, which is the case if and only if the
graph of A is closed. Equivalently, A is closed if and only if Γ(A) equipped
with the graph norm ‖(ψ,Aψ)‖2Γ(A) = ‖ψ‖2 + ‖Aψ‖2 is a Hilbert space

(i.e., closed). By construction, A is the smallest closed extension of A.

Clearly we have αA = αA for α ∈ C and A+B ⊇ A + B provided A,
B, and A+B are closable. However, equality will not hold in general unless
one operator is bounded (Problem 2.8).

Example. Suppose A is bounded. Then the closure was already computed
in Theorem 0.29. In particular, D(A) = D(A) and a bounded operator is
closed if and only if its domain is closed. �

Example. Consider again the differential operator A0 from (2.29) and let
us compute the closure without the use of the adjoint operator.

Let f ∈ D(A0) and let fn ∈ D(A0) be a sequence such that fn → f ,
A0fn → −ig. Then f ′n → g and hence f(x) =

∫ x
0 g(t)dt. Thus f ∈ AC[0, 2π]

and f(0) = 0. Moreover, f(2π) = limn→∞
∫ 2π

0 f ′n(t)dt = 0. Conversely, any
such f can be approximated by functions in D(A0) (show this). �

Example. Consider again the multiplication operator by A(x) in L2(Rd, dµ)
but now defined on functions with compact support, that is,

D(A0) = {f ∈ D(A) | supp(f) is compact}. (2.41)

Then its closure is given by A0 = A. In particular, if A(x) is real-valued,
then A0 is essentially self-adjoint and D(A0) is a core for A.

To prove A0 = A, let some f ∈ D(A) be given and consider fn =
χ{x| |x|≤n}f . Then fn ∈ D(A0) and fn(x) → f(x) as well as A(x)fn(x) →
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A(x)f(x) in L2(Rd, dµ) by dominated convergence. Thus D(A) ⊆ D(A0)
and since A is closed, we even get equality. �

Example. Consider the multiplication operator by A(x) = x in L2(R)
defined on

D(A0) = {f ∈ D(A) |
∫
R
f(x)dx = 0}. (2.42)

Then A0 is closed. Hence D(A0) is not a core for A.

Note that D(A0) is well-defined since f ∈ D(A) implies f ∈ L1(R) as
we can write f(x) = (1 + |x|)−1((1 + |x|)f(x)), where both (1 + |x|)−1, (1 +
|x|)f(x) ∈ L2(R). Moreover, D(A0) is dense. To see this, it suffices to show
that every element of D(A) can be approximated by elements from D(A0)
(why?). So choose f ∈ D(A) and consider

fn(x) = χ[−n,n](x)
(
f(x)− 1

2n

∫ n

−n
f(t)dt

)
.

Clearly fn ∈ D(A0). Moreover, fn(x)→ f(x) pointwise for every x and

|fn(x)| ≤ |f(x)|+ ‖f‖1
2n

χ[−n,n](x) ≤ |f(x)|+ ‖f‖1
2

min(1,
1

|x|
) ∈ L2(R).

Thus dominated convergence shows fn → f in L2(R).

To show that A0 is closed, suppose there is a sequence fn(x) → f(x)
such that xfn(x) → g(x). Since A is closed, we necessarily have f ∈ D(A)
and g(x) = xf(x). But then

0 = lim
n→∞

∫
R
fn(x)dx = lim

n→∞

∫
R

1

1 + |x|
(fn(x) + sign(x)xfn(x))dx

=

∫
R

1

1 + |x|
(f(x) + sign(x)g(x))dx =

∫
R
f(x)dx (2.43)

which shows f ∈ D(A0). �

Next, let us collect a few important results.

Lemma 2.4. Suppose A is a densely defined operator.

(i) A∗ is closed.

(ii) A is closable if and only if D(A∗) is dense and A = A∗∗, respec-
tively, (A)∗ = A∗, in this case.

(iii) If A is injective and Ran(A) is dense, then (A∗)−1 = (A−1)∗. If

A is closable and A is injective, then A
−1

= A−1.

Proof. Let us consider the following two unitary operators from H2 to itself:

U(ϕ,ψ) = (ψ,−ϕ), V (ϕ,ψ) = (ψ,ϕ).

Note U−1 = −U and V −1 = V .
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(i) From

Γ(A∗) = {(ϕ, ϕ̃) ∈ H2|〈ϕ,Aψ〉 = 〈ϕ̃, ψ〉, ∀ψ ∈ D(A)}

= {(ϕ, ϕ̃) ∈ H2|〈(ϕ, ϕ̃), (ψ̃,−ψ)〉H2 = 0, ∀(ψ, ψ̃) ∈ Γ(A)}

= (UΓ(A))⊥, (2.44)

we conclude that A∗ is closed.

(ii) Similarly, using UΓ⊥ = (UΓ)⊥ (Problem 1.4) and (i), by

Γ(A) = Γ(A)⊥⊥ = (U−1Γ(A∗))⊥

= {(ψ, ψ̃)| 〈ψ,A∗ϕ〉 − 〈ψ̃, ϕ〉 = 0, ∀ϕ ∈ D(A∗)}, (2.45)

we see that (0, ψ̃) ∈ Γ(A) if and only if ψ̃ ∈ D(A∗)⊥. Hence A is closable if

and only if D(A∗) is dense. In this case, equation (2.44) also shows A
∗

= A∗.
Moreover, replacing A by A∗ in (2.44) and comparing with (2.45) shows
A∗∗ = A.

(iii) Next note that (provided A is injective)

Γ(A−1) = V Γ(A).

Hence if Ran(A) is dense, then Ker(A∗) = Ran(A)⊥ = {0} and

Γ((A∗)−1) = V Γ(A∗) = V UΓ(A)⊥ = UV Γ(A)⊥ = U(V Γ(A))⊥

shows that (A∗)−1 = (A−1)∗. Similarly, if A is closable and A is injective,

then A
−1

= A−1 by

Γ(A
−1

) = V Γ(A) = V Γ(A) = Γ(A−1).

�

Corollary 2.5. If A is self-adjoint and injective, then A−1 is also self-
adjoint.

Proof. Equation (2.21) in the case A = A∗ implies Ran(A)⊥ = Ker(A) =
{0} and hence (iii) is applicable. �

If A is densely defined and bounded, we clearly have D(A∗) = H and by
Corollary 1.9, A∗ ∈ L(H). In particular, since A = A∗∗, we obtain

Theorem 2.6. We have A ∈ L(H) if and only if A∗ ∈ L(H).

Next note the following estimates for the inverse of symmetric operators.

Lemma 2.7. Let A be symmetric. Then A−z is injective for z ∈ C\R with
its inverse being bounded ‖(A−z)−1‖ ≤ | Im(z)|−1. Moreover, Ran(A−z) =

Ran(A− z) and A is closed if and only if Ran(A− z) is closed.
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If A is nonnegative, that is, 〈ψ,Aψ〉 ≥ 0 for all ψ ∈ D(A), we can also
admit z ∈ (−∞, 0) and the estimate for the inverse now reads ‖(A+λ)−1‖ ≤
λ−1, λ > 0.

Proof. Let z = x+ iy. From

‖(A− z)ψ‖2 = ‖(A+ x)ψ − iyψ‖2

= ‖(A+ x)ψ‖2 + y2‖ψ‖2 ≥ y2‖ψ‖2, (2.46)

we infer that Ker(A − z) = {0} and hence (A − z)−1 exists. Moreover,
setting ψ = (A−z)−1ϕ (y 6= 0) shows ‖(A−z)−1‖ ≤ |y|−1. Hence (A−z)−1

is bounded and hence the domain of its closure equals the closure of its
domain. Moreover, by Lemma 2.4 (iii), A− z (and hence A) is closed if and
only if (A− z)−1 is closed.

The argument for the nonnegative case with z < 0 is similar using
λ‖ψ‖2 ≤ 〈ψ, (A+ λ)ψ〉 ≤ ‖ψ‖‖(A+ λ)ψ‖ which shows ‖(A+ λ)−1‖ ≤ λ−1,
λ > 0. �

Now we can also generalize Lemma 2.3 to the case of essentially self-
adjoint operators.

Corollary 2.8. A symmetric operator A is essentially self-adjoint if and
only if one of the following conditions holds for one z ∈ C\R:

• Ran(A− z) = Ran(A− z∗) = H,

• Ker(A∗ − z) = Ker(A∗ − z∗) = {0}.

If A is nonnegative we can also admit z ∈ (−∞, 0).

Proof. First of all, note that by (2.21) the two conditions are equivalent. By
the previous lemma our assumption implies Ran(A− z) = Ran(A− z∗) = H
which shows that A is self-adjoint by Lemma 2.3.

Conversely, Lemma 2.7 shows that for symmetric A we have Ker(A−z) =
{0}. If A = A∗ this implies Ker(A∗ − z) = {0} which finishes the proof. �

In addition, we can also prove the closed graph theorem which shows
that an unbounded closed operator cannot be defined on the entire Hilbert
space.

Theorem 2.9 (Closed graph). Let H1 and H2 be two Hilbert spaces and
A : H1 → H2 an operator defined on all of H1. Then A is bounded if and
only if Γ(A) is closed.

Proof. If A is bounded, then it is easy to see that Γ(A) is closed. So let us
assume that Γ(A) is closed. Then A∗ is well-defined and for all unit vectors
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ϕ ∈ D(A∗) we have that the linear functional `ϕ(ψ) = 〈A∗ϕ,ψ〉 is pointwise
bounded, that is,

|`ϕ(ψ)| = |〈ϕ,Aψ〉| ≤ ‖Aψ‖.
Hence, by the uniform boundedness principle, there is a constant C such
that ‖`ϕ‖ = ‖A∗ϕ‖ ≤ C. That is, A∗ is bounded and so is A = A∗∗. �

Note that since symmetric operators are closable, they are automatically
closed if they are defined on the entire Hilbert space.

Theorem 2.10 (Hellinger–Toeplitz). A symmetric operator defined on the
entire Hilbert space is bounded.

Problem 2.1 (Jacobi operator). Let a and b be some real-valued sequences
in `∞(Z). Consider the operator

Jfn = anfn+1 + an−1fn−1 + bnfn, f ∈ `2(Z).

Show that J is a bounded self-adjoint operator.

Problem 2.2. Show that (αA)∗ = α∗A∗ and (A + B)∗ ⊇ A∗ + B∗ (where
D(A∗ + B∗) = D(A∗) ∩ D(B∗)) with equality if one operator is bounded.
Give an example where equality does not hold.

Problem 2.3. Suppose AB is densely defined. Show that (AB)∗ ⊇ B∗A∗.
Moreover, if B is bounded, then (BA)∗ = A∗B∗.

Problem 2.4. Show (2.21).

Problem 2.5. An operator is called normal if ‖Aψ‖ = ‖A∗ψ‖ for all
ψ ∈ D(A) = D(A∗).

Show that if A is normal, so is A+ z for every z ∈ C.

Problem 2.6. Show that normal operators are closed. (Hint: A∗ is closed.)

Problem 2.7. Show that the kernel of a closed operator is closed.

Problem 2.8. Suppose A, B, and A+B (defined on D(A+B) = D(A) ∩
D(B)) are closable. Show that αA = αA and A+B ⊇ A+B with equality
if one operator is bounded. Give an example where equality does not hold.

Problem 2.9. Show that if A is closed and B is bounded, then AB is closed.
Moreover, if B is injective and B−1 is bounded, then BA is closed.

2.3. Quadratic forms and the Friedrichs extension

Finally we want to draw some further consequences of Axiom 2 and show
that observables correspond to self-adjoint operators. Since self-adjoint op-
erators are already maximal, the difficult part remaining is to show that an
observable has at least one self-adjoint extension. There is a good way of
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doing this for nonnegative operators and hence we will consider this case
first.

A densely defined operator is called nonnegative (resp. positive) if
〈ψ,Aψ〉 ≥ 0 (resp. > 0 for ψ 6= 0) for all ψ ∈ D(A). Recall that by
Lemma 2.1 any nonnegative operator is automatically symmetric. If A is
positive, the map (ϕ,ψ) 7→ 〈ϕ,Aψ〉 is a scalar product. However, there
might be sequences which are Cauchy with respect to this scalar product
but not with respect to our original one. To avoid this, we introduce the
scalar product

〈ϕ,ψ〉A = 〈ϕ, (A+ 1)ψ〉, A ≥ 0, (2.47)

defined on D(A), which satisfies ‖ψ‖ ≤ ‖ψ‖A. Let HA be the completion of
D(A) with respect to the above scalar product. We claim that HA can be
regarded as a subspace of H; that is, D(A) ⊆ HA ⊆ H.

If (ψn) is a Cauchy sequence in D(A), then it is also Cauchy in H (since
‖ψ‖ ≤ ‖ψ‖A by assumption), and hence we can identify the limit in HA with
the limit of (ψn) regarded as a sequence in H. For this identification to be
unique, we need to show that if (ψn) ⊂ D(A) is a Cauchy sequence in HA
such that ‖ψn‖ → 0, then ‖ψn‖A → 0. This follows from

‖ψn‖2A = 〈ψn, ψn − ψm〉A + 〈ψn, ψm〉A
≤ ‖ψn‖A‖ψn − ψm‖A + ‖(A+ 1)ψn‖‖ψm‖ (2.48)

since the right-hand side can be made arbitrarily small by first choosing n,m
large such that the first term gets small (note that ‖ψn‖A is bounded) and
then further increasing m such that the second term gets small.

Clearly, the quadratic form qA can be extended to every ψ ∈ HA by
setting

qA(ψ) = 〈ψ,ψ〉A − ‖ψ‖2, ψ ∈ Q(A) = HA. (2.49)

The set Q(A) is also called the form domain of A.

Example. (Multiplication operator). Let A be multiplication by A(x) ≥ 0
in L2(Rd, dµ). Then

Q(A) = D(A1/2) = {f ∈ L2(Rd, dµ) |A1/2f ∈ L2(Rd, dµ)} (2.50)

and

qA(f) =

∫
Rd
A(x)|f(x)|2dµ(x) (2.51)

(show this). �

Now we come to our extension result. Note that A + 1 is injective and
the best we can hope for is that for a nonnegative extension Ã, the operator
Ã+ 1 is a bijection from D(Ã) onto H.
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Lemma 2.11. Suppose A is a nonnegative operator. Then there is a non-
negative extension Ã, given by restricting A∗ to HA, such that Ran(Ã+1) =
H.

Proof. Let us define an operator Ã by

D(Ã) = {ψ ∈ HA|∃ψ̃ ∈ H : 〈ϕ,ψ〉A = 〈ϕ, ψ̃〉,∀ϕ ∈ HA},
Ãψ = A∗ψ = ψ̃ − ψ.

Since HA is dense, ψ̃ is well-defined. Moreover, it is straightforward to see
that Ã is a nonnegative extension of A and that

D(Ã) = {ψ ∈ HA|∃ψ̃ ∈ H : 〈ϕ,ψ〉A = 〈ϕ, ψ̃〉, ∀ϕ ∈ HA} = HA ∩D(A∗)

as D(A) ⊂ HA is dense.

It is also not hard to see that Ran(Ã+ 1) = H. Indeed, for every ψ̃ ∈ H,

ϕ 7→ 〈ψ̃, ϕ〉 is a bounded linear functional on HA. Hence there is an element

ψ ∈ HA such that 〈ψ̃, ϕ〉 = 〈ψ,ϕ〉A for all ϕ ∈ HA. By the definition of Ã,

(Ã+ 1)ψ = ψ̃ and hence Ã+ 1 is onto. �

Example. Let us take H = L2(0, π) and consider the operator

Af = − d2

dx2
f, D(A) = {f ∈ C2[0, π] | f(0) = f(π) = 0}, (2.52)

which corresponds to the one-dimensional model of a particle confined to a
box.

(i) First of all, using integration by parts twice, it is straightforward to
check that A is symmetric:∫ π

0
g(x)∗(−f ′′)(x)dx =

∫ π

0
g′(x)∗f ′(x)dx =

∫ π

0
(−g′′)(x)∗f(x)dx. (2.53)

Note that the compact support assumption ensures that the boundary terms
occurring from integration by parts vanish. Moreover, the same calculation
also shows that A is positive:∫ π

0
f(x)∗(−f ′′)(x)dx =

∫ π

0
|f ′(x)|2dx > 0, f 6= 0. (2.54)

(ii) Next, let us show HA = {f ∈ H1(0, π) | f(0) = f(π) = 0}. In fact,
since

〈g, f〉A =

∫ π

0

(
g′(x)∗f ′(x) + g(x)∗f(x)

)
dx, (2.55)

we see that fn is Cauchy in HA if and only if both fn and f ′n are Cauchy
in L2(0, π). Thus fn → f and f ′n → g in L2(0, π) and fn(x) =

∫ x
0 f
′
n(t)dt

implies f(x) =
∫ x

0 g(t)dt. Thus f ∈ AC[0, π]. Moreover, f(0) = 0 is obvious

and from 0 = fn(π) =
∫ π

0 f ′n(t)dt we have f(π) = limn→∞
∫ π

0 f ′n(t)dt = 0.

So we have HA ⊆ {f ∈ H1(0, π) | f(0) = f(π) = 0}. To see the converse,
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approximate f ′ by smooth functions gn. Using gn − 1
π

∫ π
0 gn(t)dt instead

of gn, it is no restriction to assume
∫ π

0 gn(t)dt = 0. Now define fn(x) =∫ x
0 gn(t)dt and note that fn ∈ D(A)→ f .

(iii) Finally, let us compute the extension Ã. We have f ∈ D(Ã) if for

all g ∈ HA there is an f̃ such that 〈g, f〉A = 〈g, f̃〉. That is,∫ π

0
g′(x)∗f ′(x)dx =

∫ π

0
g(x)∗(f̃(x)− f(x))dx. (2.56)

Integration by parts on the right-hand side shows∫ π

0
g′(x)∗f ′(x)dx = −

∫ π

0
g′(x)∗

∫ x

0
(f̃(t)− f(t))dt dx (2.57)

or, equivalently,∫ π

0
g′(x)∗

(
f ′(x) +

∫ x

0
(f̃(t)− f(t))dt

)
dx = 0. (2.58)

Now observe {g′ ∈ H|g ∈ HA} = {h ∈ H|
∫ π

0 h(t)dt = 0} = {1}⊥ and thus

f ′(x) +
∫ x

0 (f̃(t) − f(t))dt ∈ {1}⊥⊥ = span{1}. So we see f ∈ H2(0, π) =

{f ∈ AC[0, π]|f ′ ∈ H1(0, π)} and Ãf = −f ′′. The converse is easy and
hence

Ãf = − d2

dx2
f, D(Ã) = {f ∈ H2[0, π] | f(0) = f(π) = 0}. (2.59)

�

Now let us apply this result to operators A corresponding to observables.
Since A will, in general, not satisfy the assumptions of our lemma, we will

consider A2 instead, which has a symmetric extension Ã2 with Ran(Ã2+1) =
H. By our requirement for observables, A2 is maximally defined and hence
is equal to this extension. In other words, Ran(A2 + 1) = H. Moreover, for
every ϕ ∈ H there is a ψ ∈ D(A2) such that

(A− i)(A+ i)ψ = (A+ i)(A− i)ψ = ϕ (2.60)

and since (A ± i)ψ ∈ D(A), we infer Ran(A ± i) = H. As an immediate
consequence we obtain

Corollary 2.12. Observables correspond to self-adjoint operators.

But there is another important consequence of the results which is worth-
while mentioning. A symmetric operator is called semi-bounded, respec-
tively, bounded from below, if there exists a γ ∈ R such that

qA(ψ) = 〈ψ,Aψ〉 ≥ γ‖ψ‖2, ψ ∈ D(A). (2.61)

We will write A ≥ γ for short.
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Theorem 2.13 (Friedrichs extension). Let A be a symmetric operator which
is bounded from below by γ. Then there is a self-adjoint extension

Ãψ = A∗ψ, D(Ã) = D(A∗) ∩ HA−γ (2.62)

which is also bounded from below by γ. Moreover, Ã is the only self-adjoint
extension with D(Ã) ⊆ HA−γ.

Proof. If we replace A by A − γ we can assume γ = 0 without loss of
generality. Existence follows from Lemma 2.11. To see uniqueness, let Â
be another self-adjoint extension with D(Â) ⊆ HA. Choose ϕ ∈ D(A) and

ψ ∈ D(Â). Then

〈ϕ, (Â+ 1)ψ〉 = 〈(A+ 1)ϕ,ψ〉 = 〈ψ, (A+ 1)ϕ〉∗ = 〈ψ,ϕ〉∗A = 〈ϕ,ψ〉A,

and by continuity we even get 〈ϕ, (Â + 1)ψ〉 = 〈ϕ,ψ〉A for every ϕ ∈ HA.

Hence by the definition of Ã we have ψ ∈ D(Ã) and Ãψ = Âψ; that is,

Â ⊆ Ã. But self-adjoint operators are maximal by Corollary 2.2 and thus
Â = Ã. �

Clearly Q(A) = HA and qA can be defined for semi-bounded operators
as before by using ‖ψ‖2A = 〈ψ, (A− γ)ψ〉+ ‖ψ‖2.

In many physical applications, the converse of this result is also of im-
portance: given a quadratic form q, when is there a corresponding operator
A such that q = qA?

So let q : Q → C be a densely defined quadratic form corresponding
to a sesquilinear form s : Q × Q → C; that is, q(ψ) = s(ψ,ψ). As with
a scalar product, s can be recovered from q via the polarization identity
(cf. Problem 0.22). Furthermore, as in Lemma 2.1, one can show that s is
symmetric; that is, s(ϕ,ψ) = s(ψ,ϕ)∗, if and only if q is real-valued. In this
case q will be called hermitian.

A hermitian form q is called nonnegative if q(ψ) ≥ 0 and semi-
bounded if q(ψ) ≥ γ‖ψ‖2 for some γ ∈ R. As before, we can asso-
ciate a scalar product 〈ψ,ϕ〉q = s(ψ,ϕ) + (1 − γ)〈ψ,ϕ〉 and norm ‖ψ‖2q =

q(ψ) + (1 − γ)‖ψ‖2 with every semi-bounded q and look at the completion
Hq of Q with respect to this norm. However, since we are not assuming
that q is steaming from a semi-bounded operator, we do not know whether
Hq can be regarded as a subspace of H! Hence we will call q closable if
for every Cauchy sequence ψn ∈ Q with respect to ‖.‖q, ‖ψn‖ → 0 implies
‖ψn‖q → 0. In this case we have Hq ⊆ H and we call the extension of q to
Hq the closure of q. In particular, we will call q closed if Q = Hq.

Example. Let H = L2(0, 1). Then

q(f) = |f(c)|2, f ∈ C[0, 1], c ∈ [0, 1],
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is a well-defined nonnegative form. However, let fn(x) = max(0, 1−n|x−c|).
Then fn is a Cauchy sequence with respect to ‖.‖q such that ‖fn‖ → 0 but
‖fn‖q → 1. Hence q is not closable and hence also not associated with a
nonnegative operator. Formally, one can interpret q as the quadratic form
of the multiplication operator with the delta distribution at x = c. Exercise:
Show Hq = H⊕ C. �

From our previous considerations, we already know that the quadratic
form qA of a semi-bounded operator A is closable and its closure is associated
with a self-adjoint operator. It turns out that the converse is also true
(compare also Corollary 1.9 for the case of bounded operators):

Theorem 2.14. To every closed semi-bounded quadratic form q there cor-
responds a unique self-adjoint operator A such that Q = Q(A) and q = qA.
If s is the sesquilinear form corresponding to q, then A is given by

D(A) = {ψ ∈ Hq|∃ψ̃ ∈ H : s(ϕ,ψ) = 〈ϕ, ψ̃〉,∀ϕ ∈ Hq},
Aψ = ψ̃.

(2.63)

Proof. Since Hq is dense, ψ̃ and hence A is well-defined. Moreover, replac-
ing q by q(.)−γ‖.‖2 and A by A−γ, it is no restriction to assume γ = 0. By
construction, qA(ψ) = q(ψ) for ψ ∈ D(A), which shows that A is nonnegative
(and hence symmetric). Moreover, as in the proof of Lemma 2.11, it follows
that Ran(A+ 1) = H. In particular, (A+ 1)−1 exists and is bounded. Fur-
thermore, for every ϕj ∈ H we can find ψj ∈ D(A) such that ϕj = (A+1)ψj .
Finally,

〈(A+ 1)−1ϕ1, ϕ2〉 = 〈ψ1, (A+ 1)ψ2〉 = s(ψ1, ψ2) = s(ψ2, ψ1)∗

= 〈ψ2, (A+ 1)ψ1〉∗ = 〈(A+ 1)ψ1, ψ2〉
= 〈ϕ1, (A+ 1)−1ϕ2〉

shows that (A + 1)−1 is self-adjoint and so is A + 1 by Corollary 2.5. The
rest is straightforward. �

Any subspace Q̃ ⊆ Q(A) which is dense with respect to ‖.‖A is called a
form core of A and uniquely determines A.

Example. We have already seen that the operator

Af = − d2

dx2
f, D(A) = {f ∈ H2[0, π] | f(0) = f(π) = 0} (2.64)

is associated with the closed form

qA(f) =

∫ π

0
|f ′(x)|2dx, Q(A) = {f ∈ H1[0, π] | f(0) = f(π) = 0}. (2.65)
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However, this quadratic form even makes sense on the larger form domain
Q = H1[0, π]. What is the corresponding self-adjoint operator? (See Prob-
lem 2.14.) �

A hermitian form q is called bounded if |q(ψ)| ≤ C‖ψ‖2 and we call

‖q‖ = sup
‖ψ‖=1

|q(ψ)| (2.66)

the norm of q. In this case the norm ‖.‖q is equivalent to ‖.‖. Hence
Hq = H and the corresponding operator is bounded by the Hellinger–Toeplitz
theorem (Theorem 2.10). In fact, the operator norm is equal to the norm of
q (see also Problem 0.23):

Lemma 2.15. A semi-bounded form q is bounded if and only if the associ-
ated operator A is. Moreover, in this case

‖q‖ = ‖A‖. (2.67)

Proof. Using the polarization identity and the parallelogram law (Prob-
lem 0.22), we infer

2 Re〈ϕ,Aψ〉 =
1

2

(
q(ψ + ϕ)− q(ψ − ϕ)

)
≤ q(ψ) + q(ϕ) ≤ ‖q‖(‖ψ‖2 + ‖ϕ‖2)

and choosing ϕ = ‖Aψ‖−1Aψ as well as ‖ψ‖ = 1 shows that ‖A‖ ≤ ‖q‖.
The converse is easy. �

As a consequence we see that for symmetric operators we have

‖A‖ = sup
‖ψ‖=1

|〈ψ,Aψ〉| (2.68)

generalizing (2.14) in this case.

Problem 2.10. Let A be invertible. Show A > 0 if and only if A−1 > 0.

Problem 2.11. Let A = − d2

dx2
, D(A) = {f ∈ H2(0, π) | f(0) = f(π) = 0}

and let ψ(x) = 1
2
√
π
x(π−x). Find the error in the following argument: Since

A is symmetric, we have 1 = 〈Aψ,Aψ〉 = 〈ψ,A2ψ〉 = 0.

Problem 2.12. Suppose A is a densely defined closed operator. Show that
A∗A (with D(A∗A) = {ψ ∈ D(A)|Aψ ∈ D(A∗)}) is self-adjoint. Show
Q(A∗A) = D(A). (Hint: A∗A ≥ 0.)

Problem 2.13. Let A and B be two closed operators. Show ‖Aψ‖ = ‖Bψ‖
for all ψ ∈ D(A) = D(B) if and only if A∗A = B∗B.

Conclude that a closed operator A is normal if and only if AA∗ = A∗A.
(Hint: Problem 2.12 and Theorem 2.14.)
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Problem 2.14. Suppose a densely defined operator A0 can be written as
A0 = S∗S, where S is a closable operator with D(S) = D(A0). Show that
the Friedrichs extension is given by A = S∗S.

Use this to compute the Friedrichs extension of A0 = − d2

dx2
, D(A) =

{f ∈ C2(0, π)|f(0) = f(π) = 0}. Compute also the self-adjoint operator
SS∗ and its form domain.

Problem 2.15. Use the previous problem to compute the Friedrichs exten-

sion A of A0 = − d2

dx2
, D(A0) = C∞c (R). Show that Q(A) = H1(R) and

D(A) = H2(R). (Hint: Section 2.7.)

Problem 2.16. Let A be self-adjoint. Suppose D ⊆ D(A) is a core. Then
D is also a form core.

Problem 2.17. Show that (2.68) is wrong if A is not symmetric.

2.4. Resolvents and spectra

Let A be a (densely defined) closed operator. The resolvent set of A is
defined by

ρ(A) = {z ∈ C|(A− z)−1 ∈ L(H)}. (2.69)

More precisely, z ∈ ρ(A) if and only if (A − z) : D(A) → H is bijective
and its inverse is bounded. By the closed graph theorem (Theorem 2.9), it
suffices to check that A − z is bijective. The complement of the resolvent
set is called the spectrum

σ(A) = C\ρ(A) (2.70)

of A. In particular, z ∈ σ(A) if A − z has a nontrivial kernel. A nonzero
vector ψ ∈ Ker(A−z) is called an eigenvector and z is called an eigenvalue
in this case.

The function

RA : ρ(A) → L(H)
z 7→ (A− z)−1

(2.71)

is called the resolvent of A. Note the convenient formula

RA(z)∗ = ((A− z)−1)∗ = ((A− z)∗)−1 = (A∗ − z∗)−1 = RA∗(z
∗). (2.72)

In particular,

ρ(A∗) = ρ(A)∗. (2.73)

Example. (Multiplication operator). Consider again the multiplication
operator

(Af)(x) = A(x)f(x), D(A) = {f ∈ L2(Rd, dµ) |Af ∈ L2(Rd, dµ)},
(2.74)
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given by multiplication with the measurable function A : Rd → C. Clearly
(A− z)−1 is given by the multiplication operator

(A− z)−1f(x) =
1

A(x)− z
f(x),

D((A− z)−1) = {f ∈ L2(Rd, dµ) | 1

A− z
f ∈ L2(Rd, dµ)} (2.75)

whenever this operator is bounded. But ‖(A − z)−1‖ = ‖ 1
A−z‖∞ ≤

1
ε is

equivalent to µ({x| |A(x)− z| < ε}) = 0 and hence

ρ(A) = {z ∈ C|∃ε > 0 : µ({x| |A(x)− z| < ε}) = 0}. (2.76)

The spectrum

σ(A) = {z ∈ C|∀ε > 0 : µ({x| |A(x)− z| < ε}) > 0} (2.77)

is also known as the essential range of A(x). Moreover, z is an eigenvalue
of A if µ(A−1({z})) > 0 and χA−1({z}) is a corresponding eigenfunction in
this case. �

Example. (Differential operator). Consider again the differential operator

Af = −i
d

dx
f, D(A) = {f ∈ AC[0, 2π] | f ′ ∈ L2, f(0) = f(2π)} (2.78)

in L2(0, 2π). We already know that the eigenvalues of A are the integers
and that the corresponding normalized eigenfunctions

un(x) =
1√
2π

einx (2.79)

form an orthonormal basis.

To compute the resolvent, we must find the solution of the correspond-
ing inhomogeneous equation −if ′(x) − z f(x) = g(x). By the variation of
constants formula, the solution is given by (this can also be easily verified
directly)

f(x) = f(0)eizx + i

∫ x

0
eiz(x−t)g(t)dt. (2.80)

Since f must lie in the domain of A, we must have f(0) = f(2π) which gives

f(0) =
i

e−2πiz − 1

∫ 2π

0
e−iztg(t)dt, z ∈ C\Z. (2.81)

(Since z ∈ Z are the eigenvalues, the inverse cannot exist in this case.) Hence

(A− z)−1g(x) =

∫ 2π

0
G(z, x, t)g(t)dt, (2.82)

where

G(z, x, t) = eiz(x−t)

{
−i

1−e−2πiz , t > x,
i

1−e2πiz
, t < x,

z ∈ C\Z. (2.83)
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In particular, σ(A) = Z. �

If z, z′ ∈ ρ(A), we have the first resolvent formula

RA(z)−RA(z′) = (z − z′)RA(z)RA(z′) = (z − z′)RA(z′)RA(z). (2.84)

In fact,

(A− z)−1 − (z − z′)(A− z)−1(A− z′)−1

= (A− z)−1(1− (z −A+A− z′)(A− z′)−1) = (A− z′)−1, (2.85)

which proves the first equality. The second follows after interchanging z and
z′. Now fix z′ = z0 and use (2.84) recursively to obtain

RA(z) =
n∑
j=0

(z − z0)jRA(z0)j+1 + (z − z0)n+1RA(z0)n+1RA(z). (2.86)

The sequence of bounded operators

Rn =
n∑
j=0

(z − z0)jRA(z0)j+1 (2.87)

converges to a bounded operator if |z − z0| < ‖RA(z0)‖−1, and clearly we
expect z ∈ ρ(A) and Rn → RA(z) in this case. Let R∞ = limn→∞Rn and
set ϕn = Rnψ, ϕ = R∞ψ for some ψ ∈ H. Then a quick calculation shows

ARnψ = (A− z0)Rnψ + z0ϕn = ψ + (z − z0)ϕn−1 + z0ϕn. (2.88)

Hence (ϕn, Aϕn) → (ϕ,ψ + zϕ) shows ϕ ∈ D(A) (since A is closed) and
(A− z)R∞ψ = ψ. Similarly, for ψ ∈ D(A),

RnAψ = ψ + (z − z0)ϕn−1 + z0ϕn (2.89)

and hence R∞(A − z)ψ = ψ after taking the limit. Thus R∞ = RA(z) as
anticipated.

If A is bounded, a similar argument verifies the Neumann series for
the resolvent

RA(z) = −
n−1∑
j=0

Aj

zj+1
+

1

zn
AnRA(z)

= −
∞∑
j=0

Aj

zj+1
, |z| > ‖A‖. (2.90)

In summary, we have proved the following:

Theorem 2.16. The resolvent set ρ(A) is open and RA : ρ(A) → L(H) is
holomorphic; that is, it has an absolutely convergent power series expansion
around every point z0 ∈ ρ(A). In addition,

‖RA(z)‖ ≥ dist(z, σ(A))−1 (2.91)
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and if A is bounded, we have {z ∈ C| |z| > ‖A‖} ⊆ ρ(A).

As a consequence we obtain the useful

Lemma 2.17. We have z ∈ σ(A) if there is a sequence ψn ∈ D(A) such
that ‖ψn‖ = 1 and ‖(A− z)ψn‖ → 0. If z is a boundary point of ρ(A), then
the converse is also true. Such a sequence is called a Weyl sequence.

Proof. Let ψn be a Weyl sequence. Then z ∈ ρ(A) is impossible by 1 =
‖ψn‖ = ‖RA(z)(A − z)ψn‖ ≤ ‖RA(z)‖‖(A − z)ψn‖ → 0. Conversely, by
(2.91), there is a sequence zn → z and corresponding vectors ϕn ∈ H such
that ‖RA(zn)ϕn‖‖ϕn‖−1 → ∞. Let ψn = RA(zn)ϕn and rescale ϕn such
that ‖ψn‖ = 1. Then ‖ϕn‖ → 0 and hence

‖(A− z)ψn‖ = ‖ϕn + (zn − z)ψn‖ ≤ ‖ϕn‖+ |z − zn| → 0

shows that ψn is a Weyl sequence. �

Let us also note the following spectral mapping result.

Lemma 2.18. Suppose A is injective and Ran(A) is dense. Then

σ(A−1)\{0} = (σ(A)\{0})−1. (2.92)

In addition, we have Aψ = zψ if and only if A−1ψ = z−1ψ.

Proof. Suppose z ∈ ρ(A)\{0}. Then we claim

RA−1(z−1) = −zARA(z) = −z − z2RA(z).

In fact, the right-hand side is a bounded operator from H → Ran(A) =
D(A−1) and

(A−1 − z−1)(−zARA(z))ϕ = (−z +A)RA(z)ϕ = ϕ, ϕ ∈ H.

Conversely, if ψ ∈ D(A−1) = Ran(A), we have ψ = Aϕ and hence

(−zARA(z))(A−1 − z−1)ψ = ARA(z)((A− z)ϕ) = Aϕ = ψ.

Thus z−1 ∈ ρ(A−1). The rest follows after interchanging the roles of A and
A−1. �

Next, let us characterize the spectra of self-adjoint operators.

Theorem 2.19. Let A be symmetric. Then A is self-adjoint if and only
if σ(A) ⊆ R and (A − E) ≥ 0, E ∈ R, if and only if σ(A) ⊆ [E,∞).
Moreover, for self-adjoint A we have ‖RA(z)‖ ≤ | Im(z)|−1 and, if (A−E) ≥
0, ‖RA(λ)‖ ≤ |λ− E|−1, λ < E.
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Proof. If σ(A) ⊆ R, then Ran(A − z) = H, z ∈ C\R, and hence A is self-
adjoint by Lemma 2.3. Next, if σ(A) ⊆ [E,∞) we show 〈ψ, (A− E)ψ〉 ≥ 0
for every ψ ∈ D(A) or, since E − λ ∈ ρ(A) for every λ > 0, that f(λ) =
〈ϕ, (A−E+λ)−1ϕ〉 > 0 for every λ > 0 and ‖ϕ‖ = 1. By the first resolvent
identity (2.84) and Cauchy–Schwarz, we see

f ′(λ) = −‖(A+ λ)−1ϕ‖2 ≤ −f(λ)2

and in particular f is a decreasing function. Suppose f(λ0) < 0 for some
λ0 > 0. Then f(λ0) < 0 for λ > λ0 and integrating f ′/f2 ≤ −1 from λ0 to
λ shows

f(λ) ≤ f(λ0)

1 + f(λ0)(λ− λ0)
.

Hence f(λ)→ −∞ as λ→ λ0 − f(λ0)−1 contradicting the fact that f must
be bounded for all λ.

Conversely, if A is self-adjoint (resp. A ≥ E), then RA(z) exists for
z ∈ C\R (resp. z ∈ C\[E,∞)) and satisfies the given estimates as has been
shown in Lemma 2.7. �

In particular, we obtain (show this!)

Theorem 2.20. Let A be self-adjoint. Then

inf σ(A) = inf
ψ∈D(A), ‖ψ‖=1

〈ψ,Aψ〉 (2.93)

and

supσ(A) = sup
ψ∈D(A), ‖ψ‖=1

〈ψ,Aψ〉. (2.94)

For the eigenvalues and corresponding eigenfunctions we have

Lemma 2.21. Let A be symmetric. Then all eigenvalues are real and eigen-
vectors corresponding to different eigenvalues are orthogonal.

Proof. If Aψj = λjψj , j = 1, 2, we have

λ1‖ψ1‖2 = 〈ψ1, λ1ψ1〉 = 〈ψ1, Aψ1〉 = 〈Aψ1, ψ1〉 = 〈λ1ψ1, ψ1〉 = λ∗1‖ψ1‖2

and

(λ1 − λ2)〈ψ1, ψ2〉 = 〈Aψ1, ψ2〉 − 〈Aψ1, ψ2〉 = 0,

finishing the proof. �

The result does not imply that two linearly independent eigenfunctions
to the same eigenvalue are orthogonal. However, it is no restriction to
assume that they are since we can use Gram–Schmidt to find an orthonormal
basis for Ker(A − λ). If H is finite dimensional, we can always find an
orthonormal basis of eigenvectors. In the infinite dimensional case this is
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no longer true in general. However, if there is an orthonormal basis of
eigenvectors, then A is essentially self-adjoint.

Theorem 2.22. Suppose A is a symmetric operator which has an orthonor-
mal basis of eigenfunctions {ϕj}. Then A is essentially self-adjoint. In
particular, it is essentially self-adjoint on span{ϕj}.

Proof. Consider the set of all finite linear combinations ψ =
∑n

j=0 cjϕj
which is dense in H. Then φ =

∑n
j=0

cj
λj±iϕj ∈ D(A) and (A ± i)φ = ψ

shows that Ran(A± i) is dense. �

Similarly, we can characterize the spectra of unitary operators. Recall
that a bijection U is called unitary if 〈Uψ,Uψ〉 = 〈ψ,U∗Uψ〉 = 〈ψ,ψ〉. Thus
U is unitary if and only if

U∗ = U−1. (2.95)

Theorem 2.23. Let U be unitary. Then σ(U) ⊆ {z ∈ C| |z| = 1}. All
eigenvalues have modulus one, and eigenvectors corresponding to different
eigenvalues are orthogonal.

Proof. Since ‖U‖ ≤ 1, we have σ(U) ⊆ {z ∈ C| |z| ≤ 1}. Moreover, U−1

is also unitary and hence σ(U) ⊆ {z ∈ C| |z| ≥ 1} by Lemma 2.18. If
Uψj = zjψj , j = 1, 2, we have

(z1 − z2)〈ψ1, ψ2〉 = 〈U∗ψ1, ψ2〉 − 〈ψ1, Uψ2〉 = 0

since Uψ = zψ implies U∗ψ = U−1ψ = z−1ψ = z∗ψ. �

Problem 2.18. Suppose A is closed and B bounded:

• Show that I +B has a bounded inverse if ‖B‖ < 1.

• Suppose A has a bounded inverse. Then so does A + B if ‖B‖ ≤
‖A−1‖−1.

Problem 2.19. What is the spectrum of an orthogonal projection?

Problem 2.20. Compute the resolvent of

Af = f ′, D(A) = {f ∈ H1[0, 1] | f(0) = 0}

and show that unbounded operators can have empty spectrum.

Problem 2.21. Compute the eigenvalues and eigenvectors of A = − d2

dx2
,

D(A) = {f ∈ H2(0, π)|f(0) = f(π) = 0}. Compute the resolvent of A.

Problem 2.22. Find a Weyl sequence for the self-adjoint operator A =

− d2

dx2
, D(A) = H2(R) for z ∈ (0,∞). What is σ(A)? (Hint: Cut off the

solutions of −u′′(x) = z u(x) outside a finite ball.)
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Problem 2.23. Suppose A = A0. If ψn ∈ D(A) is a Weyl sequence for

z ∈ σ(A), then there is also one with ψ̃n ∈ D(A0).

Problem 2.24. Suppose A is bounded. Show that the spectra of AA∗ and
A∗A coincide away from 0 by showing

RAA∗(z) =
1

z
(ARA∗A(z)A∗ − 1) , RA∗A(z) =

1

z
(A∗RAA∗(z)A− 1) .

(2.96)

2.5. Orthogonal sums of operators

Let Hj , j = 1, 2, be two given Hilbert spaces and let Aj : D(Aj) → Hj be
two given operators. Setting H = H1 ⊕ H2, we can define an operator

A1 ⊕A2, D(A1 ⊕A2) = D(A1)⊕D(A2) (2.97)

by setting (A1 ⊕ A2)(ψ1 + ψ2) = A1ψ1 + A2ψ2 for ψj ∈ D(Aj). Clearly
A1 ⊕ A2 is closed, (essentially) self-adjoint, etc., if and only if both A1 and
A2 are. The same considerations apply to countable orthogonal sums. Let
H =

⊕
j Hj and define an operator⊕

j

Aj , D(
⊕
j

Aj) = {
∑
j

ψj ∈
⊕
j

D(Aj)|
∑
j

‖Ajψj‖2 <∞} (2.98)

by setting
⊕

j Ajψ =
∑

j Ajψj for ψ =
∑

j ψj ∈ D(
⊕

j Aj). Then we have

Theorem 2.24. Suppose Aj are self-adjoint operators on Hj. Then A =⊕
j Aj is self-adjoint and

RA(z) =
⊕
j

RAj (z), z ∈ ρ(A) = C\σ(A) (2.99)

where

σ(A) =
⋃
j

σ(Aj) (2.100)

(the closure can be omitted if there are only finitely many terms).

Proof. Fix z 6∈
⋃
j σ(Aj) and let ε = Im(z). Then, by Theorem 2.19,

‖RAj (z)‖ ≤ ε−1 and so R(z) =
⊕

j RAj (z) is a bounded operator with

‖R(z)‖ ≤ ε−1 (cf. Problem 2.27). It is straightforward to check that R(z)
is in fact the resolvent of A and thus σ(A) ⊆ R. In particular, A is self-

adjoint by Theorem 2.19. To see that σ(A) ⊆
⋃
j σ(Aj), note that the

above argument can be repeated with ε = dist(z,
⋃
j σ(Aj)) > 0, which will

follow from the spectral theorem (Problem 3.5) to be proven in the next
chapter. Conversely, if z ∈ σ(Aj), there is a corresponding Weyl sequence
ψn ∈ D(Aj) ⊆ D(A) and hence z ∈ σ(A). �
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Conversely, given an operator A, it might be useful to write A as an
orthogonal sum and investigate each part separately.

Let H1 ⊆ H be a closed subspace and let P1 be the corresponding pro-
jector. We say that H1 reduces the operator A if P1A ⊆ AP1. Note that
this is equivalent to P1D(A) ⊆ D(A) and P1Aψ = AP1ψ for ψ ∈ D(A).
Moreover, if we set H2 = H⊥1 , we have H = H1⊕H2 and P2 = 1−P1 reduces
A as well.

Lemma 2.25. Suppose H =
⊕

j Hj where each Hj reduces A. Then A ⊆⊕
j Aj, where

Ajψ = Aψ, D(Aj) = PjD(A) ⊆ D(A). (2.101)

If A is closed, then so are the operators Aj and A =
⊕

j Aj. If A is closable,

then Hj also reduces A and

A =
⊕
j

Aj . (2.102)

Proof. As already noted, PjD(A) ⊆ D(A) and thus Aj is well-defined.
Moreover, if ψj ∈ D(Aj), we have Aψj = APjψj = PjAψj ∈ Hj and thus
Aj : D(Aj) → Hj . Furthermore, every ψ ∈ D(A) can be written as ψ =∑

j Pjψ and Aψ =
∑

j PjAψ =
∑

j APjψ shows ‖Aψ‖2 =
∑

j ‖AjPjψ‖2
implying D(A) ⊆ D(

⊕
j Aj). This proves the first claim.

If A is closed, it is straightforward to see that the same is true for Aj .
Now consider ψ =

∑
j ψj ∈ D(

⊕
j Aj) and abbreviate ψn =

∑n
j=1 ψj . Then

ψn → ψ and Aψn →
⊕

j Ajψ which implies ψ ∈ D(A) and
⊕

j Ajψ = Aψ
since A is closed.

Now let us turn to the last claim. Suppose ψ ∈ D(A). Then there is
a sequence ψn ∈ D(A) such that ψn → ψ and Aψn → ϕ = Aψ. Thus
Pjψn → Pjψ and APjψn = PjAψn → Pjϕ which shows Pjψ ∈ D(A) and

PjAψ = APjψ; that is, Hj reduces A. Moreover, this argument also shows

PjD(A) ⊆ D(Aj), and the converse follows analogously. �

If A is self-adjoint, then H1 reduces A if P1D(A) ⊆ D(A) and AP1ψ ∈ H1

for every ψ ∈ D(A). In fact, if ψ ∈ D(A), we can write ψ = ψ1 ⊕ ψ2, with
P2 = 1 − P1 and ψj = Pjψ ∈ D(A). Since AP1ψ = Aψ1 and P1Aψ =
P1Aψ1 + P1Aψ2 = Aψ1 + P1Aψ2, we need to show P1Aψ2 = 0. But this
follows since

〈ϕ, P1Aψ2〉 = 〈AP1ϕ,ψ2〉 = 0 (2.103)

for every ϕ ∈ D(A).

Problem 2.25. Show (
⊕

j Aj)
∗ =

⊕
j A
∗
j .
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Problem 2.26. Show that A defined in (2.98) is closed if and only if all Aj
are.

Problem 2.27. Show that for A defined in (2.98), we have ‖A‖=supj‖Aj‖.

2.6. Self-adjoint extensions

It is safe to skip this entire section on first reading.

In many physical applications, a symmetric operator is given. If this
operator turns out to be essentially self-adjoint, there is a unique self-adjoint
extension and everything is fine. However, if it is not, it is important to find
out if there are self-adjoint extensions at all (for physical problems there
better be) and to classify them.

In Section 2.2 we saw that A is essentially self-adjoint if Ker(A∗ − z) =
Ker(A∗ − z∗) = {0} for one z ∈ C\R. Hence self-adjointness is related to
the dimension of these spaces, and one calls the numbers

d±(A) = dimK±, K± = Ran(A± i)⊥ = Ker(A∗ ∓ i), (2.104)

defect indices of A (we have chosen z = i for simplicity; any other z ∈ C\R
would be as good). If d−(A) = d+(A) = 0, there is one self-adjoint extension
of A, namely A. But what happens in the general case? Is there more than
one extension, or maybe none at all? These questions can be answered by
virtue of the Cayley transform

V = (A− i)(A+ i)−1 : Ran(A+ i)→ Ran(A− i). (2.105)

Theorem 2.26. The Cayley transform is a bijection from the set of all
symmetric operators A to the set of all isometric operators V (i.e., ‖V ϕ‖ =
‖ϕ‖ for all ϕ ∈ D(V )) for which Ran(1− V ) is dense.

Proof. Since A is symmetric, we have ‖(A± i)ψ‖2 = ‖Aψ‖2 + ‖ψ‖2 for all
ψ ∈ D(A) by a straightforward computation. Thus for every ϕ = (A+i)ψ ∈
D(V ) = Ran(A+ i) we have

‖V ϕ‖ = ‖(A− i)ψ‖ = ‖(A+ i)ψ‖ = ‖ϕ‖.

Next, observe that

1± V = ((A+ i)± (A− i))(A+ i)−1 =

{
2A(A+ i)−1,
2i(A+ i)−1,

which shows that Ran(1− V ) = D(A) is dense and

A = i(1 + V )(1− V )−1.

Conversely, let V be given and use the last equation to define A.
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Since V is isometric, we have 〈(1 ± V )ϕ, (1 ∓ V )ϕ〉 = ±2i Im〈V ϕ, ϕ〉
for all ϕ ∈ D(V ) by a straightforward computation. Thus for every ψ =
(1− V )ϕ ∈ D(A) = Ran(1− V ) we have

〈Aψ,ψ〉 = −i〈(1 + V )ϕ, (1− V )ϕ〉 = i〈(1− V )ϕ, (1 + V )ϕ〉 = 〈ψ,Aψ〉;
that is, A is symmetric. Finally, observe that

A± i = ((1 + V )± (1− V ))(1− V )−1 =

{
2i(1− V )−1,

2iV (1− V )−1,

which shows that A is the Cayley transform of V and finishes the proof. �

Thus A is self-adjoint if and only if its Cayley transform V is unitary.
Moreover, finding a self-adjoint extension of A is equivalent to finding a
unitary extension of V and this in turn is equivalent to (taking the closure
and) finding a unitary operator from D(V )⊥ to Ran(V )⊥. This is possible
if and only if both spaces have the same dimension, that is, if and only if
d+(A) = d−(A).

Theorem 2.27. A symmetric operator A has self-adjoint extensions if and
only if its defect indices are equal.

In this case let A1 be a self-adjoint extension and V1 its Cayley trans-
form. Then

D(A1) = D(A) + (1− V1)K+ = {ψ + ϕ+ − V1ϕ+|ψ ∈ D(A), ϕ+ ∈ K+}
(2.106)

and

A1(ψ + ϕ+ − V1ϕ+) = Aψ + iϕ+ + iV1ϕ+. (2.107)

Moreover,

(A1 ± i)−1 = (A± i)−1 ⊕ ∓i

2

∑
j

〈ϕ±j , .〉(ϕ
±
j − ϕ

∓
j ), (2.108)

where {ϕ+
j } is an orthonormal basis for K+ and ϕ−j = V1ϕ

+
j .

Proof. From the proof of the previous theorem we know that D(A1) =
Ran(1− V1) = Ran(1 + V ) + (1− V1)K+ = D(A) + (1− V1)K+. Moreover,
A1(ψ+ϕ+−V1ϕ+) = Aψ+i(1+V1)(1−V1)−1(1−V1)ϕ+ = Aψ+i(1+V1)ϕ+.

Similarly, Ran(A1± i) = Ran(A± i)⊕K± and (A1 + i)−1 = − i
2(1−V1),

respectively, (A1 + i)−1 = − i
2(1− V −1

1 ). �

Note that instead of z = i we could use V (z) = (A + z∗)(A + z)−1 for
any z ∈ C\R. We remark that in this case one can show that the defect
indices are independent of z ∈ C+ = {z ∈ C| Im(z) > 0}.
Example. Recall the operator A = −i ddx , D(A) = {f ∈ H1(0, 2π)|f(0) =

f(2π) = 0} with adjoint A∗ = −i ddx , D(A∗) = H1(0, 2π).
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Clearly

K± = span{e∓x} (2.109)

is one-dimensional and hence all unitary maps are of the form

Vθe
2π−x = eiθex, θ ∈ [0, 2π). (2.110)

The functions in the domain of the corresponding operator Aθ are given by

fθ(x) = f(x) + α(e2π−x − eiθex), f ∈ D(A), α ∈ C. (2.111)

In particular, fθ satisfies

fθ(2π) = eiθ̃fθ(0), eiθ̃ =
1− eiθe2π

e2π − eiθ
, (2.112)

and thus we have

D(Aθ) = {f ∈ H1(0, 2π)|f(2π) = eiθ̃f(0)}. (2.113)

�

Concerning closures, we can combine the fact that a bounded operator
is closed if and only if its domain is closed with item (iii) from Lemma 2.4
to obtain

Lemma 2.28. Suppose A is symmetric. Then the following items are equiv-
alent.

• A is closed.

• D(V ) = Ran(A+ i) is closed.

• Ran(V ) = Ran(A− i) is closed.

• V is closed.

Next, we give a useful criterion for the existence of self-adjoint exten-
sions. A conjugate linear map C : H → H is called a conjugation if it
satisfies C2 = I and 〈Cψ,Cϕ〉 = 〈ψ,ϕ〉. The prototypical example is, of
course, complex conjugation Cψ = ψ∗. An operator A is called C-real if

CD(A) ⊆ D(A), and ACψ = CAψ, ψ ∈ D(A). (2.114)

Note that in this case CD(A) = D(A), since D(A) = C2D(A) ⊆ CD(A).

Theorem 2.29. Suppose the symmetric operator A is C-real. Then its
defect indices are equal.

Proof. Let {ϕj} be an orthonormal set in Ran(A+ i)⊥. Then {Cϕj} is an

orthonormal set in Ran(A − i)⊥. Hence {ϕj} is an orthonormal basis for

Ran(A+ i)⊥ if and only if {Cϕj} is an orthonormal basis for Ran(A− i)⊥.
Hence the two spaces have the same dimension. �
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Finally, we note the following useful formula for the difference of resol-
vents of self-adjoint extensions.

Lemma 2.30. If Aj, j = 1, 2, are self-adjoint extensions of A and if {ϕj(z)}
is an orthonormal basis for Ker(A∗ − z), then

(A1 − z)−1 − (A2 − z)−1 =
∑
j,k

(α1
jk(z)− α2

jk(z))〈ϕj(z∗), .〉ϕk(z), (2.115)

where

αljk(z) = 〈ϕk(z), (Al − z)−1ϕj(z
∗)〉. (2.116)

Proof. First observe that ((A1 − z)−1 − (A2 − z)−1)ϕ is zero for every
ϕ ∈ Ran(A − z). Hence it suffices to consider vectors of the form ϕ =∑

j〈ϕj(z∗), ϕ〉ϕj(z∗) ∈ Ran(A− z)⊥ = Ker(A∗ − z∗). Hence we have

(A1 − z)−1 − (A2 − z)−1 =
∑
j

〈ϕj(z∗), .〉ψj(z),

where

ψj(z) = ((A1 − z)−1 − (A2 − z)−1)ϕj(z
∗).

Now computing the adjoint once using ((Al−z)−1)∗ = (Al−z∗)−1 and once
using (

∑
j〈ϕj , .〉ψj)∗ =

∑
j〈ψj , .〉ϕj , we obtain∑

j

〈ϕj(z), .〉ψj(z∗) =
∑
j

〈ψj(z), .〉ϕk(z∗).

Evaluating at ϕk(z) implies

ψk(z) =
∑
j

〈ψj(z∗), ϕk(z∗)〉ϕj(z) =
∑
j

(α1
kj(z)− α2

kj(z))ϕj(z)

and finishes the proof. �

Problem 2.28. Compute the defect indices of

A0 = i
d

dx
, D(A0) = C∞c ((0,∞)).

Can you give a self-adjoint extension of A0?

Problem 2.29. Let A1 be a self-adjoint extension of A and suppose ϕ ∈
Ker(A∗ − z0). Show that ϕ(z) = ϕ+ (z − z0)(A1 − z)−1ϕ ∈ Ker(A∗ − z).
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2.7. Appendix: Absolutely continuous functions

Let (a, b) ⊆ R be some interval. We denote by

AC(a, b) = {f ∈ C(a, b)|f(x) = f(c) +

∫ x

c
g(t)dt, c ∈ (a, b), g ∈ L1

loc(a, b)}

(2.117)
the set of all absolutely continuous functions. That is, f is absolutely
continuous if and only if it can be written as the integral of some locally
integrable function. Note that AC(a, b) is a vector space.

By Corollary A.44, f(x) = f(c)+
∫ x
c g(t)dt is differentiable a.e. (with re-

spect to Lebesgue measure) and f ′(x) = g(x). In particular, g is determined
uniquely a.e.

If [a, b] is a compact interval, we set

AC[a, b] = {f ∈ AC(a, b)|g ∈ L1(a, b)} ⊆ C[a, b]. (2.118)

If f, g ∈ AC[a, b], we have the integration by parts formula (Problem 2.30)∫ b

a
f(x)g′(x)dx = f(b)g(b)− f(a)g(a)−

∫ b

a
f ′(x)g(x)dx, (2.119)

which also implies that the product rule holds for absolutely continuous
functions.

We define the usual Sobolev spaces via

Hm(a, b) = {f ∈ L2(a, b)|f (j) ∈ AC(a, b), f (j+1) ∈ L2(a, b), 0 ≤ j ≤ m− 1}.
(2.120)

Note that Hm(a, b) is a Hilbert space when equipped with the norm

‖f‖22,m =
m∑
j=0

∫ b

a
|f (j)(t)|2dt (2.121)

(cf. Problem 2.32).

Then we have

Lemma 2.31. Suppose f ∈ Hm(a, b), m ≥ 1. Then f is bounded and

limx↓a f
(j)(x), respectively, limx↑b f

(j)(x), exists for 0 ≤ j ≤ m − 1. More-
over, the limit is zero if the endpoint is infinite.

Proof. If the endpoint is finite, then f (j+1) is integrable near this endpoint
and hence the claim follows. If the endpoint is infinite, note that

|f (j)(x)|2 = |f (j)(c)|2 + 2

∫ x

c
Re(f (j)(t)∗f (j+1)(t))dt

shows that the limit exists (dominated convergence). Since f (j) is square
integrable, the limit must be zero. �
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Hence we can set f (j)(a) = limx↓a f
(j)(x), f (j)(b) = limx↑b f

(j)(x) and
introduce

Hm
0 (a, b) = {f ∈ Hm(a, b)|f (j)(a) = f (j)(b) = 0, 0 ≤ j ≤ m− 1}, (2.122)

which could equivalently be defined as the closure of C∞0 (a, b) inHm(a, b) (cf.
Problem 2.33). Of course if both endpoints are infinite, we have Hm

0 (R) =
Hm(R).

Finally, let me remark that it suffices to check that the function plus the
highest derivative are in L2; the lower derivatives are then automatically in
L2. That is,

Hm(a, b) = {f ∈ L2(a, b)|f (j) ∈ AC(a, b), 0 ≤ j ≤ m− 1, f (m) ∈ L2(a, b)}.
(2.123)

For a finite endpoint, this is straightforward. For an infinite endpoint, this
can also be shown directly, but it is much easier to use the Fourier transform
(compare Section 7.1).

Problem 2.30. Show (2.119). (Hint: Fubini.)

Problem 2.31. A function u ∈ L1(0, 1) is called weakly differentiable if for
some v ∈ L1(0, 1) we have∫ 1

0
v(x)ϕ(x)dx = −

∫ 1

0
u(x)ϕ′(x)dx

for all test functions ϕ ∈ C∞c (0, 1). Show that u is weakly differentiable if
and only if u is absolutely continuous and u′ = v in this case. (Hint: You will

need that
∫ 1

0 u(t)ϕ′(t)dt = 0 for all ϕ ∈ C∞c (0, 1) if and only if u is constant.

To see this, choose some ϕ0 ∈ C∞c (0, 1) with I(ϕ0) =
∫ 1

0 ϕ0(t)dt = 1. Then
invoke Lemma 0.41 and use that every ϕ ∈ C∞c (0, 1) can be written as

ϕ(t) = Φ′(t) + I(ϕ)ϕ0(t) with Φ(t) =
∫ t

0 ϕ(s)ds− I(ϕ)
∫ t

0 ϕ0(s)ds.)

Problem 2.32. Show that Hm(a, b) together with the norm (2.121) is a
Hilbert space.

Problem 2.33. Show

‖f‖2∞ ≤
‖f‖2

b− a
+ 2‖f‖‖f ′‖, f ∈ H1(a, b), (2.124)

(where the first term on the left-hand side is zero if (a, b) is unbounded) and

‖f‖2∞ ≤ 2‖f‖‖f ′‖, f ∈ H1
0 (a, b). (2.125)

Conclude that the trace operator

T : H1(a, b)→ C2, f 7→ T (f) = (f(a), f(b)), (2.126)

is continuous and that H1
0 (a, b) is a closed subspace.
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Moreover, show that the closure of C∞0 (a, b) in H1(a, b) is H1
0 (a, b). Sim-

ilarly, show that the closure of C∞0 (a, b) in Hm(a, b) is Hm
0 (a, b). (Hint:

Start with the case where (a, b) is finite.)

Problem 2.34. Show that if f ∈ AC(a, b) and f ′ ∈ Lp(a, b), then f is
Hölder continuous:

|f(x)− f(y)| ≤ ‖f ′‖p|x− y|1−
1
p .





Chapter 3

The spectral theorem

The time evolution of a quantum mechanical system is governed by the
Schrödinger equation

i
d

dt
ψ(t) = Hψ(t). (3.1)

If H = Cn and H is hence a matrix, this system of ordinary differential
equations is solved by the matrix exponential

ψ(t) = exp(−itH)ψ(0). (3.2)

This matrix exponential can be defined by a convergent power series

exp(−itH) =

∞∑
n=0

(−it)n

n!
Hn. (3.3)

For this approach, the boundedness of H is crucial, which might not be the
case for a quantum system. However, the best way to compute the matrix
exponential and to understand the underlying dynamics is to diagonalize H.
But how do we diagonalize a self-adjoint operator? The answer is known as
the spectral theorem.

3.1. The spectral theorem

In this section, we want to address the problem of defining functions of a
self-adjoint operator A in a natural way, that is, such that

(f+g)(A) = f(A)+g(A), (fg)(A) = f(A)g(A), (f∗)(A) = f(A)∗. (3.4)

As long as f and g are polynomials, no problems arise. If we want to extend
this definition to a larger class of functions, we will need to perform some
limiting procedure. Hence we could consider convergent power series or
equip the space of polynomials on the spectrum with the sup norm. In both

99
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cases this only works if the operator A is bounded. To overcome this limita-
tion, we will use characteristic functions χΩ(A) instead of powers Aj . Since
χΩ(λ)2 = χΩ(λ), the corresponding operators should be orthogonal projec-
tions. Moreover, we should also have χR(A) = I and χΩ(A) =

∑n
j=1 χΩj (A)

for any finite union Ω =
⋃n
j=1 Ωj of disjoint sets. The only remaining prob-

lem is of course the definition of χΩ(A). However, we will defer this problem
and begin by developing a functional calculus for a family of characteristic
functions χΩ(A).

Denote the Borel sigma algebra of R by B. A projection-valued mea-
sure is a map

P : B→ L(H), Ω 7→ P (Ω), (3.5)

from the Borel sets to the set of orthogonal projections, that is, P (Ω)∗ =
P (Ω) and P (Ω)2 = P (Ω), such that the following two conditions hold:

(i) P (R) = I.
(ii) If Ω =

⋃
n Ωn with Ωn ∩ Ωm = ∅ for n 6= m, then

∑
n P (Ωn)ψ =

P (Ω)ψ for every ψ ∈ H (strong σ-additivity).

Note that we require strong convergence,
∑

n P (Ωn)ψ = P (Ω)ψ, rather
than norm convergence,

∑
n P (Ωn) = P (Ω). In fact, norm convergence

does not even hold in the simplest case where H = L2(I) and P (Ω) = χΩ

(multiplication operator), since for a multiplication operator the norm is just
the sup norm of the function. Furthermore, it even suffices to require weak
convergence, since w-limPn = P for some orthogonal projections implies
s-limPn = P by 〈ψ, Pnψ〉 = 〈ψ, P 2

nψ〉 = 〈Pnψ, Pnψ〉 = ‖Pnψ‖2 together
with Lemma 1.12 (iv).

Example. Let H = Cn and let A ∈ L(Cn) be some symmetric matrix. Let
λ1, . . . , λm be its (distinct) eigenvalues and let Pj be the projections onto
the corresponding eigenspaces. Then

PA(Ω) =
∑

{j|λj∈Ω}

Pj (3.6)

is a projection-valued measure. �

Example. Let H = L2(R) and let f be a real-valued measurable function.
Then

P (Ω) = χf−1(Ω) (3.7)

is a projection-valued measure (Problem 3.3). �

It is straightforward to verify that every projection-valued measure sat-
isfies

P (∅) = 0, P (R\Ω) = I− P (Ω), (3.8)
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and
P (Ω1 ∪ Ω2) + P (Ω1 ∩ Ω2) = P (Ω1) + P (Ω2). (3.9)

Moreover, we also have

P (Ω1)P (Ω2) = P (Ω1 ∩ Ω2). (3.10)

Indeed, first suppose Ω1∩Ω2 = ∅. Then, taking the square of (3.9), we infer

P (Ω1)P (Ω2) + P (Ω2)P (Ω1) = 0. (3.11)

Multiplying this equation from the right by P (Ω2) shows that P (Ω1)P (Ω2) =
−P (Ω2)P (Ω1)P (Ω2) is self-adjoint and thus P (Ω1)P (Ω2) = P (Ω2)P (Ω1) =
0. For the general case Ω1 ∩ Ω2 6= ∅, we now have

P (Ω1)P (Ω2) = (P (Ω1 − Ω2) + P (Ω1 ∩ Ω2))(P (Ω2 − Ω1) + P (Ω1 ∩ Ω2))

= P (Ω1 ∩ Ω2) (3.12)

as stated.

Moreover, a projection-valued measure is monotone, that is,

Ω1 ⊆ Ω2 ⇒ P (Ω1) ≤ P (Ω2), (3.13)

in the sense that 〈ψ, P (Ω1)ψ〉 ≤ 〈ψ, P (Ω2)ψ〉 or equivalently Ran(P (Ω1)) ⊆
Ran(P (Ω2)) (cf. Problem 1.7). As a useful consequence, note that P (Ω2) = 0
implies P (Ω1) = 0 for every subset Ω1 ⊆ Ω2.

To every projection-valued measure there corresponds a resolution of
the identity

P (λ) = P ((−∞, λ]) (3.14)

which has the following properties (Problem 3.4):

(i) P (λ) is an orthogonal projection.

(ii) P (λ1) ≤ P (λ2) for λ1 ≤ λ2.

(iii) s-limλn↓λ P (λn) = P (λ) (strong right continuity).

(iv) s-limλ→−∞ P (λ) = 0 and s-limλ→+∞ P (λ) = I.

As before, strong right continuity is equivalent to weak right continuity.

Picking ψ ∈ H, we obtain a finite Borel measure µψ(Ω) = 〈ψ, P (Ω)ψ〉 =
‖P (Ω)ψ‖2 with µψ(R) = ‖ψ‖2 < ∞. The corresponding distribution func-
tion is given by µψ(λ) = 〈ψ, P (λ)ψ〉 and since for every distribution function
there is a unique Borel measure (Theorem A.3), for every resolution of the
identity there is a unique projection-valued measure.

Using the polarization identity (2.17), we also have the complex Borel
measures

µϕ,ψ(Ω) = 〈ϕ, P (Ω)ψ〉 =
1

4
(µϕ+ψ(Ω)− µϕ−ψ(Ω) + iµϕ−iψ(Ω)− iµϕ+iψ(Ω)).

(3.15)
Note also that, by Cauchy–Schwarz, |µϕ,ψ(Ω)| ≤ ‖ϕ‖ ‖ψ‖.



102 3. The spectral theorem

Now let us turn to integration with respect to our projection-valued
measure. For every simple function f =

∑n
j=1 αjχΩj (where Ωj = f−1(αj)),

we set

P (f) ≡
∫
R
f(λ)dP (λ) =

n∑
j=1

αjP (Ωj). (3.16)

In particular, P (χΩ) = P (Ω). Then 〈ϕ, P (f)ψ〉 =
∑

j αjµϕ,ψ(Ωj) shows

〈ϕ, P (f)ψ〉 =

∫
R
f(λ)dµϕ,ψ(λ) (3.17)

and, by linearity of the integral, the operator P is a linear map from the set
of simple functions into the set of bounded linear operators on H. Moreover,
‖P (f)ψ‖2 =

∑
j |αj |2µψ(Ωj) (the sets Ωj are disjoint) shows

‖P (f)ψ‖2 =

∫
R
|f(λ)|2dµψ(λ). (3.18)

Equipping the set of simple functions with the sup norm, we infer

‖P (f)ψ‖ ≤ ‖f‖∞‖ψ‖, (3.19)

which implies that P has norm one. Since the simple functions are dense
in the Banach space of bounded Borel functions B(R), there is a unique
extension of P to a bounded linear operator P : B(R)→ L(H) (whose norm
is one) from the bounded Borel functions on R (with sup norm) to the set
of bounded linear operators on H. In particular, (3.17) and (3.18) remain
true.

There is some additional structure behind this extension. Recall that
the set L(H) of all bounded linear mappings on H forms a C∗ algebra. A C∗

algebra homomorphism φ is a linear map between two C∗ algebras which
respects both the multiplication and the adjoint; that is, φ(ab) = φ(a)φ(b)
and φ(a∗) = φ(a)∗.

Theorem 3.1. Let P (Ω) be a projection-valued measure. Then the operator

P : B(R) → L(H)
f 7→

∫
R f(λ)dP (λ)

(3.20)

is a C∗ algebra homomorphism with norm one such that

〈P (g)ϕ, P (f)ψ〉 =

∫
R
g∗(λ)f(λ)dµϕ,ψ(λ). (3.21)

In addition, if fn(λ)→ f(λ) pointwise and if the sequence ‖fn‖∞ is bounded,

then P (fn)
s→ P (f) strongly.

Proof. The properties P (1) = I, P (f∗) = P (f)∗, and P (fg) = P (f)P (g)
are straightforward for simple functions f . For general f they follow from
continuity. Hence P is a C∗ algebra homomorphism.
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Equation (3.21) is a consequence of 〈P (g)ϕ, P (f)ψ〉 = 〈ϕ, P (g∗f)ψ〉.
The last claim follows from the dominated convergence theorem and

(3.18). �

As a consequence of (3.21), observe

µP (g)ϕ,P (f)ψ(Ω) = 〈P (g)ϕ, P (Ω)P (f)ψ〉 =

∫
Ω
g∗(λ)f(λ)dµϕ,ψ(λ), (3.22)

which implies

dµP (g)ϕ,P (f)ψ = g∗fdµϕ,ψ. (3.23)

Example. Let H = Cn and A = A∗ ∈ L(Cn), respectively, PA, as in the
previous example. Then

PA(f) =

m∑
j=1

f(λj)Pj . (3.24)

In particular, PA(f) = A for f(λ) = λ. Moreover,

dµψ(λ) =
n∑
j=1

‖Pjψ‖2dΘ(λ− λj), (3.25)

where dΘ(λ− λj) is the Dirac measure centered at λj . �

Next we want to define this operator for unbounded Borel functions.
Since we expect the resulting operator to be unbounded, we need a suitable
domain first. Motivated by (3.18), we set

Df = {ψ ∈ H|
∫
R
|f(λ)|2dµψ(λ) <∞}. (3.26)

This is clearly a linear subspace of H since µαψ(Ω) = |α|2µψ(Ω) and since
µϕ+ψ(Ω) = ‖P (Ω)(ϕ+ψ)‖2 ≤ 2(‖P (Ω)ϕ‖2+‖P (Ω)ψ‖2) = 2(µϕ(Ω)+µψ(Ω))
(by the triangle inequality).

For every ψ ∈ Df , the sequence of bounded Borel functions

fn = χΩnf, Ωn = {λ| |f(λ)| ≤ n}, (3.27)

is a Cauchy sequence converging to f in the sense of L2(R, dµψ). Hence, by
virtue of (3.18), the vectors ψn = P (fn)ψ form a Cauchy sequence in H and
we can define

P (f)ψ = lim
n→∞

P (fn)ψ, ψ ∈ Df . (3.28)

By construction, P (f) is a linear operator such that (3.18) holds. Since
f ∈ L1(R, dµψ) (µψ is finite), (3.17) also remains true at least for ϕ = ψ.

In addition, Df is dense. Indeed, let Ωn be defined as in (3.27) and
abbreviate ψn = P (Ωn)ψ. Now observe that dµψn = χΩndµψ and hence
ψn ∈ Df . Moreover, ψn → ψ by (3.18) since χΩn → 1 in L2(R, dµψ).
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The operator P (f) has some additional properties. One calls an un-
bounded operator A normal if D(A) = D(A∗) and ‖Aψ‖ = ‖A∗ψ‖ for all
ψ ∈ D(A). Note that normal operators are closed since the graph norms on
D(A) = D(A∗) are identical.

Theorem 3.2. For every Borel function f , the operator

P (f) ≡
∫
R
f(λ)dP (λ), D(P (f)) = Df , (3.29)

is normal and satisfies

‖P (f)ψ‖2 =

∫
R
|f(λ)|2dµψ(λ), 〈ψ, P (f)ψ〉 =

∫
R
f(λ)dµψ(λ) (3.30)

for ψ ∈ Df .

Let f, g be Borel functions and α, β ∈ C. Then we have

P (f)∗ = P (f∗), (3.31)

αP (f) + βP (g) ⊆ P (αf + βg), D(αP (f) + βP (g)) = D|f |+|g|, (3.32)

and

P (f)P (g) ⊆ P (f g), D(P (f)P (g)) = Dg ∩Df g. (3.33)

Proof. We begin by showing (3.31). Let f be given and define fn, Ωn as
above. Since (3.31) holds for fn by our previous theorem, we get

〈ϕ, P (f)ψ〉 = 〈P (f∗)ϕ,ψ〉

for every ϕ,ψ ∈ Df = Df∗ by continuity. Thus it remains to show that

D(P (f)∗) ⊆ Df . If ψ ∈ D(P (f)∗), we have 〈ψ, P (f)ϕ〉 = 〈ψ̃, ϕ〉 for all
ϕ ∈ Df by definition. By construction of P (f) we have P (fn) = P (f)P (Ωn)
and thus

〈P (f∗n)ψ,ϕ〉 = 〈ψ, P (fn)ϕ〉 = 〈ψ, P (f)P (Ωn)ϕ〉 = 〈P (Ωn)ψ̃, ϕ〉

for every ϕ ∈ H shows P (f∗n)ψ = P (Ωn)ψ̃. This proves existence of the limit

lim
n→∞

∫
R
|fn|2dµψ = lim

n→∞
‖P (f∗n)ψ‖2 = lim

n→∞
‖P (Ωn)ψ̃‖2 = ‖ψ̃‖2,

which by monotone convergence implies f ∈ L2(R, dµψ); that is, ψ ∈ Df .

That P (f) is normal follows from Df = D|f | = Df∗ and (3.30), which

implies ‖P (f)ψ‖2 = ‖P (|f |)ψ‖2 = ‖P (f∗)ψ‖2.

To show (3.32), note D(αP (f) + βP (g)) = D(P (f)) ∩D(P (g)) = Df ∩
Dg = D|f |+|g| and set fn = χΩnf , gn = χΩng, where Ωn = {λ| |f(λ)| +
|g(λ)| ≤ n}. Then P (fn)ψ → P (f)ψ, P (gn)ψ → P (g)ψ and αP (fn)ψ +
βP (gn)ψ = P (αfn + βgn)ψ = P ((αf + βg)χΩn)ψ → P (αf + βg)ψ for
ψ ∈ D|f |+|g|.
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To show (3.33), we start with the case where g is bounded and define fn,
Ωn as usual. Then P (fn) = P (f)P (Ωn) as noted above and P (Ωn)P (g)ψ →
P (g)ψ plus P (f)P (Ωn)P (g)ψ = P (fn)P (g)ψ = P (fng)ψ → P (f g)ψ for ψ ∈
Df shows P (g)ψ ∈ D(P (f)) and P (f)P (g)ψ = P (fg)ψ; that is, P (f)P (g) =
P (fg).

Finally, if g is unbounded, define gn, Ωn as usual. Then P (gn)ψ →
P (g)ψ and P (f)P (gn)ψ = P (fgn)ψ → P (f g)ψ for ψ ∈ Dg ∩Df g; that is,
P (g)ψ ∈ D(P (f)) and P (f)P (g)ψ = P (fg)ψ. �

These considerations seem to indicate some kind of correspondence be-
tween the operators P (f) in H and f in L2(R, dµψ). Recall that U : H→ H̃
is called unitary if it is a bijection which preserves norms ‖Uψ‖ = ‖ψ‖ (and

hence scalar products). The operators A in H and Ã in H̃ are said to be
unitarily equivalent if

UA = ÃU, UD(A) = D(Ã). (3.34)

Clearly, A is self-adjoint if and only if Ã is and σ(A) = σ(Ã).

Now let us return to our original problem and consider the subspace

Hψ = {P (g)ψ|g ∈ L2(R, dµψ)} ⊆ H. (3.35)

Note that Hψ is closed since L2 is and ψn = P (gn)ψ converges in H if and
only if gn converges in L2. It even turns out that we can restrict P (f) to
Hψ (see Section 2.5).

Lemma 3.3. The subspace Hψ reduces P (f); that is, PψP (f) ⊆ P (f)Pψ,
where Pψ is the projection onto Hψ.

Proof. First, suppose f is bounded. Any ϕ ∈ H can be decomposed as
ϕ = P (g)ψ + ϕ⊥. Moreover, 〈P (h)ψ, P (f)ϕ⊥〉 = 〈P (f∗h)ψ,ϕ⊥〉 = 0
for every bounded function h implies P (f)ϕ⊥ ∈ H⊥ψ . Hence PψP (f)ϕ =

PψP (f)P (g)ψ = PψP (f g)ψ = P (f)Pψϕ, which by definition says that Hψ
reduces P (f).

If f is unbounded, we consider fn = fχΩn as before. Then, for every
ϕ ∈ Df , P (fn)Pψϕ = PψP (fn)ϕ. Letting n → ∞, we have P (Ωn)Pψϕ →
Pψϕ and P (fn)Pψϕ = P (f)P (Ωn)Pψϕ → PψP (f)ϕ. Finally, closedness of
P (f) implies Pψϕ ∈ Df and P (f)Pψϕ = PψP (f)ϕ. �

In particular, we can decompose P (f) = P (f)
∣∣
Hψ
⊕ P (f)

∣∣
H⊥ψ

. Note that

PψDf = Df ∩ Hψ = {P (g)ψ|g, fg ∈ L2(R, dµψ)} (3.36)

and P (f)P (g)ψ = P (fg)ψ ∈ Hψ in this case.
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By (3.30), the operator

Uψ : Hψ → L2(R, dµψ)
P (g)ψ 7→ g

(3.37)

is unitary. Moreover, by (3.36) we have UψPψD(P (f)) = Uψ(Df ∩ Hψ) =
{g ∈ L2(R, dµψ)|fg ∈ L2(R, dµψ)} = D(f) and thus

UψP (f)
∣∣
Hψ

= fUψ, (3.38)

where f is identified with its corresponding multiplication operator.

The vector ψ is called cyclic if Hψ = H, and in this case, our picture
is complete. Otherwise we need to extend this approach. A set {ψj}j∈J (J
some index set) is called a set of spectral vectors if ‖ψj‖ = 1 and Hψi ⊥ Hψj
for all i 6= j. A set of spectral vectors is called a spectral basis if

⊕
j Hψj =

H. Luckily, a spectral basis always exists:

Lemma 3.4. For every projection-valued measure P , there is a (at most
countable) spectral basis {ψn} such that

H =
⊕
n

Hψn (3.39)

and a corresponding unitary operator

U =
⊕
n

Uψn : H→
⊕
n

L2(R, dµψn) (3.40)

such that for every Borel function f ,

UP (f) = fU, UDf = D(f). (3.41)

Proof. It suffices to show that a spectral basis exists. This can be easily
done using a Gram–Schmidt-type construction. First of all, observe that if
{ψj}j∈J is a spectral set and ψ ⊥ Hψj for all j, we have Hψ ⊥ Hψj for all j.
Indeed, ψ ⊥ Hψj implies P (g)ψ ⊥ Hψj for every bounded function g since
〈P (g)ψ, P (f)ψj〉 = 〈ψ, P (g∗f)ψj〉 = 0. But P (g)ψ with g bounded is dense
in Hψ, implying Hψ ⊥ Hψj .

Now start with some total set {ψ̃j}. Normalize ψ̃1 and choose this to

be ψ1. Move to the first ψ̃j which is not in Hψ1 , project to the orthogonal
complement of Hψ1 and normalize it. Choose the result to be ψ2. Proceeding

like this, we get a set of spectral vectors {ψj} such that span{ψ̃j} ⊆
⊕

j Hψj .

Hence H = span{ψ̃j} ⊆
⊕

j Hψj . �

It is important to observe that the cardinality of a spectral basis is not
well-defined (in contradistinction to the cardinality of an ordinary basis of
the Hilbert space). However, it can be at most equal to the cardinality of
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an ordinary basis. In particular, since H is separable, it is at most count-
able. The minimal cardinality of a spectral basis is called the spectral
multiplicity of P . If the spectral multiplicity is one, the spectrum is called
simple.

Example. Let H = C2 and A =
(

0 0
0 1

)
and consider the associated projec-

tion-valued measure PA(Ω) as before. Then ψ1 = (1, 0) and ψ2 = (0, 1) are
a spectral basis. However, ψ = (1, 1) is cyclic and hence the spectrum of
A is simple. If A =

(
1 0
0 1

)
, there is no cyclic vector (why?) and hence the

spectral multiplicity is two. �

Now observe that to every projection-valued measure P we can assign a
self-adjoint operator A =

∫
R λdP (λ). The question is whether we can invert

this map. To do this, we consider the resolvent RA(z) =
∫
R(λ− z)−1dP (λ).

From (3.17) the corresponding quadratic form is given by

Fψ(z) = 〈ψ,RA(z)ψ〉 =

∫
R

1

λ− z
dµψ(λ), (3.42)

which is known as the Borel transform of the measure µψ. By

Im(Fψ(z)) = Im(z)

∫
R

1

|λ− z|2
dµψ(λ), (3.43)

we infer that Fψ(z) is a holomorphic map from the upper half-plane into
itself. Such functions are called Herglotz or Nevanlinna functions (see
Section 3.4). Moreover, the measure µψ can be reconstructed from Fψ(z)
by the Stieltjes inversion formula

µψ(λ) = lim
δ↓0

lim
ε↓0

1

π

∫ λ+δ

−∞
Im(Fψ(t+ iε))dt. (3.44)

(The limit with respect to δ is only here to ensure right continuity of µψ(λ).)
Conversely, if Fψ(z) is a Herglotz–Nevanlinna function satisfying |Fψ(z)| ≤
M

| Im(z)| , then it is the Borel transform of a unique measure µψ (given by the

Stieltjes inversion formula) satisfying µψ(R) ≤M .

So let A be a given self-adjoint operator and consider the expectation of
the resolvent of A,

Fψ(z) = 〈ψ,RA(z)ψ〉. (3.45)

This function is holomorphic for z ∈ ρ(A) and satisfies

Fψ(z∗) = Fψ(z)∗ and |Fψ(z)| ≤ ‖ψ‖2

| Im(z)|
(3.46)

(see (2.72) and Theorem 2.19). Moreover, the first resolvent formula (2.84)
shows that it maps the upper half-plane to itself:

Im(Fψ(z)) = Im(z)‖RA(z)ψ‖2; (3.47)



108 3. The spectral theorem

that is, it is a Herglotz–Nevanlinna function. So by our above remarks, there
is a corresponding measure µψ(λ) given by the Stieltjes inversion formula.
It is called the spectral measure corresponding to ψ.

More generally, by polarization (2.17), for each ϕ,ψ ∈ H we can find a
corresponding complex measure µϕ,ψ such that

〈ϕ,RA(z)ψ〉 =

∫
R

1

λ− z
dµϕ,ψ(λ). (3.48)

The measure µϕ,ψ is conjugate linear in ϕ and linear in ψ since a com-
plex measure is uniquely determined by its Borel transform (Problem 3.29).
Moreover, a comparison with our previous considerations begs us to define
a family of operators via the sesquilinear forms

sΩ(ϕ,ψ) =

∫
R
χΩ(λ)dµϕ,ψ(λ). (3.49)

Since the associated quadratic form is nonnegative, qΩ(ψ) = sΩ(ψ,ψ) =
µψ(Ω) ≥ 0, the Cauchy–Schwarz inequality for sesquilinear forms (Prob-

lem 0.24) implies |sΩ(ϕ,ψ)| ≤ qΩ(ϕ)1/2qΩ(ψ)1/2 = µϕ(Ω)1/2µψ(Ω)1/2 ≤
µϕ(R)1/2µψ(R)1/2 ≤ ‖ϕ‖ ‖ψ‖. Hence, Corollary 1.9 implies that there is
indeed a family of nonnegative (0 ≤ 〈ψ, PA(Ω)ψ〉 ≤ ‖ψ‖2) and hence self-
adjoint operators PA(Ω) such that

〈ϕ, PA(Ω)ψ〉 =

∫
R
χΩ(λ)dµϕ,ψ(λ). (3.50)

Lemma 3.5. The family of operators PA(Ω) forms a projection-valued mea-
sure.

Proof. We first show PA(Ω1)PA(Ω2) = PA(Ω1 ∩ Ω2) in two steps. First
observe (using the first resolvent formula (2.84))∫

R

1

λ− z̃
dµRA(z∗)ϕ,ψ(λ) = 〈RA(z∗)ϕ,RA(z̃)ψ〉 = 〈ϕ,RA(z)RA(z̃)ψ〉

=
1

z − z̃
(〈ϕ,RA(z)ψ〉 − 〈ϕ,RA(z̃)ψ〉)

=
1

z − z̃

∫
R

(
1

λ− z
− 1

λ− z̃

)
dµϕ,ψ(λ) =

∫
R

1

λ− z̃
dµϕ,ψ(λ)

λ− z
,

implying dµRA(z∗)ϕ,ψ(λ) = (λ − z)−1dµϕ,ψ(λ) by Problem 3.29. Secondly,
we compute∫

R

1

λ− z
dµϕ,PA(Ω)ψ(λ) = 〈ϕ,RA(z)PA(Ω)ψ〉 = 〈RA(z∗)ϕ, PA(Ω)ψ〉

=

∫
R
χΩ(λ)dµRA(z∗)ϕ,ψ(λ) =

∫
R

1

λ− z
χΩ(λ)dµϕ,ψ(λ),
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implying dµϕ,PA(Ω)ψ(λ) = χΩ(λ)dµϕ,ψ(λ). Equivalently, we have

〈ϕ, PA(Ω1)PA(Ω2)ψ〉 = 〈ϕ, PA(Ω1 ∩ Ω2)ψ〉

since χΩ1χΩ2 = χΩ1∩Ω2 . In particular, choosing Ω1 = Ω2, we see that
PA(Ω1) is a projector.

To see PA(R) = I, let ψ ∈ Ker(PA(R)). Then 0 = dµϕ,PA(R)ψ(λ) =
χR(λ)dµϕ,ψ(λ) = dµϕ,ψ(λ) implies 〈ϕ,RA(z)ψ〉 = 0 which implies ψ = 0.

Now let Ω =
⋃∞
n=1 Ωn with Ωn ∩ Ωm = ∅ for n 6= m. Then

n∑
j=1

〈ψ, PA(Ωj)ψ〉 =

n∑
j=1

µψ(Ωj)→ 〈ψ, PA(Ω)ψ〉 = µψ(Ω)

by σ-additivity of µψ. Hence PA is weakly σ-additive which implies strong
σ-additivity, as pointed out earlier. �

Now we can prove the spectral theorem for self-adjoint operators.

Theorem 3.6 (Spectral theorem). To every self-adjoint operator A there
corresponds a unique projection-valued measure PA such that

A =

∫
R
λdPA(λ). (3.51)

Proof. Existence has already been established. Moreover, Theorem 3.1
shows that PA((λ − z)−1) = RA(z), z ∈ C\R. Since the measures µϕ,ψ are
uniquely determined by the resolvent and the projection-valued measure is
uniquely determined by the measures µϕ,ψ, we are done. �

The quadratic form of A is given by

qA(ψ) =

∫
R
λdµψ(λ) (3.52)

and can be defined for every ψ in the form domain

Q(A) = D(|A|1/2) = {ψ ∈ H|
∫
R
|λ|dµψ(λ) <∞} (3.53)

(which is larger than the domain D(A) = {ψ ∈ H|
∫
R λ

2dµψ(λ) <∞}). This
extends our previous definition for nonnegative operators.

Note that if A and Ã are unitarily equivalent as in (3.34), then URA(z) =
RÃ(z)U and hence

dµψ = dµ̃Uψ. (3.54)

In particular, we have UPA(f) = PÃ(f)U , UD(PA(f)) = D(PÃ(f)).

Finally, let us give a characterization of the spectrum of A in terms of
the associated projectors.
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Theorem 3.7. The spectrum of A is given by

σ(A) = {λ ∈ R|PA((λ− ε, λ+ ε)) 6= 0 for all ε > 0}. (3.55)

Proof. Let Ωn = (λ0 − 1
n , λ0 + 1

n). Suppose PA(Ωn) 6= 0. Then we can find
a ψn ∈ PA(Ωn)H with ‖ψn‖ = 1. Since

‖(A− λ0)ψn‖2 = ‖(A− λ0)PA(Ωn)ψn‖2

=

∫
R

(λ− λ0)2χΩn(λ)dµψn(λ) ≤ 1

n2
,

we conclude λ0 ∈ σ(A) by Lemma 2.17.

Conversely, if PA((λ0 − ε, λ0 + ε)) = 0, set

fε(λ) = χR\(λ0−ε,λ0+ε)(λ)(λ− λ0)−1.

Then

(A− λ0)PA(fε) = PA((λ− λ0)fε(λ)) = PA(R\(λ0 − ε, λ0 + ε)) = I.

Similarly, PA(fε)(A− λ0) = I|D(A) and hence λ0 ∈ ρ(A). �

In particular, PA((λ1, λ2)) = 0 if and only if (λ1, λ2) ⊆ ρ(A).

Corollary 3.8. We have

PA(σ(A)) = I and PA(R ∩ ρ(A)) = 0. (3.56)

Proof. For every λ ∈ R∩ρ(A) there is some open interval Iλ with PA(Iλ) =
0. These intervals form an open cover for R∩ρ(A), and there is a countable
subcover Jn. Setting Ωn = Jn\

⋃
m<n Jm, we have disjoint Borel sets which

cover R ∩ ρ(A) and satisfy PA(Ωn) = 0. Finally, strong σ-additivity shows
PA(R ∩ ρ(A))ψ =

∑
n PA(Ωn)ψ = 0. �

Consequently,

PA(f) = PA(σ(A))PA(f) = PA(χσ(A)f). (3.57)

In other words, PA(f) is not affected by the values of f on R\σ(A)!

It is clearly more intuitive to write PA(f) = f(A) and we will do so from
now on. This notation is justified by the elementary observation

PA(
n∑
j=0

αjλ
j) =

n∑
j=0

αjA
j . (3.58)

Moreover, this also shows that if A is bounded and f(A) can be defined via
a convergent power series, then this agrees with our present definition by
Theorem 3.1.

Problem 3.1. Show that a self-adjoint operator P is a projection if and
only if σ(P ) ⊆ {0, 1}.
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Problem 3.2. Consider the parity operator Π : L2(Rd) → L2(Rd),
ψ(x) 7→ ψ(−x). Show that Π is self-adjoint. Compute its spectrum σ(Π)
and the corresponding projection-valued measure PΠ.

Problem 3.3. Show that (3.7) is a projection-valued measure. What is the
corresponding operator?

Problem 3.4. Show that P (λ) defined in (3.14) satisfies properties (i)–(iv)
stated there.

Problem 3.5. Show that for a self-adjoint operator A we have ‖RA(z)‖ =
dist(z, σ(A))−1.

Problem 3.6. Suppose A is self-adjoint and ‖B − z0‖ ≤ r. Show that

σ(A + B) ⊆ σ(A) + Br(z0), where Br(z0) is the ball of radius r around z0.
(Hint: Problem 2.18.)

Problem 3.7. Show that for a self-adjoint operator A we have ‖ARA(z)‖ ≤
|z|

| Im(z)| . Find some A for which equality is attained.

Conclude that for every ψ ∈ H we have

lim
z→∞

‖ARA(z)ψ‖ = 0, (3.59)

where the limit is taken in any sector ε|Re(z)| ≤ | Im(z)|, ε > 0.

Problem 3.8. Suppose A is self-adjoint. Show that, if ψ ∈ D(An), then

RA(z)ψ = −
n∑
j=0

Ajψ

zj+1
+O

( ‖Anψ‖
|z|n Im(z)

)
, as z →∞. (3.60)

(Hint: Proceed as in (2.90) and use the previous problem.)

Problem 3.9. Suppose A is self-adjoint. Let λ0 be an eigenvalue and ψ a
corresponding normalized eigenvector. Compute µψ.

Problem 3.10. Suppose A is self-adjoint. Show

Ran(PA({λ0})) = Ker(A− λ0).

(Hint: Start by verifying Ran(PA({λ0})) ⊆ Ker(A−λ0). To see the converse,
let ψ ∈ Ker(A − λ0) and use the previous example to compute
〈ψ, PA({λ0})ψ〉.)

3.2. More on Borel measures

Section 3.1 showed that in order to understand self-adjoint operators, one
needs to understand multiplication operators on L2(R, dµ), where dµ is a
finite Borel measure. This is the purpose of the present section.
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The set of all growth points, that is,

σ(µ) = {λ ∈ R|µ((λ− ε, λ+ ε)) > 0 for all ε > 0}, (3.61)

is called the spectrum of µ. The same proof as for Corollary 3.8 shows that
the spectrum σ = σ(µ) is a support for µ; that is, µ(R\σ) = 0. In fact,
it coincides with the (topological) support, σ(µ) = supp(µ), as defined in
(A.7).

In the previous section we have already seen that the Borel transform of
µ,

F (z) =

∫
R

1

λ− z
dµ(λ), (3.62)

plays an important role.

Theorem 3.9. The Borel transform of a finite Borel measure is a Herglotz–
Nevanlinna function. It is holomorphic in C\σ(µ) and satisfies

F (z∗) = F (z)∗, |F (z)| ≤ µ(R)

Im(z)
, z ∈ C+. (3.63)

Proof. First of all, note

Im(F (z)) =

∫
R

Im

(
1

λ− z

)
dµ(λ) = Im(z)

∫
R

dµ(λ)

|λ− z|2
,

which shows that F maps C+ to C+. Moreover, F (z∗) = F (z)∗ is obvious
and

|F (z)| ≤
∫
R

dµ(λ)

|λ− z|
≤ 1

Im(z)

∫
R
dµ(λ)

establishes the bound. Moreover, since µ(R\σ) = 0, we have

F (z) =

∫
σ

1

λ− z
dµ(λ),

which together with the bound

1

|λ− z|
≤ 1

dist(z, σ)

allows the application of the dominated convergence theorem to conclude
that F is continuous on C\σ. To show that F is holomorphic in C\σ,
by Morera’s theorem, it suffices to check

∫
Γ F (z)dz = 0 for every triangle

Γ ⊂ C\σ. Since (λ − z)−1 is bounded for (λ, z) ∈ σ × Γ, this follows from∫
Γ(λ − z)−1dz = 0 by using Fubini,

∫
Γ F (z)dz =

∫
Γ

∫
R(λ − z)−1dµ(λ) dz =∫

R
∫

Γ(λ− z)−1dz dµ(λ) = 0. �

Note that F cannot be holomorphically extended to a larger domain. In
fact, if F is holomorphic in a neighborhood of some λ ∈ R, then F (λ) =
F (λ∗) = F (λ)∗ implies Im(F (λ)) = 0, and the Stieltjes inversion formula
(Theorem 3.23) shows that λ ∈ R\σ(µ).
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Associated with this measure is the operator

Af(λ) = λf(λ), D(A) = {f ∈ L2(R, dµ)|λf(λ) ∈ L2(R, dµ)}. (3.64)

By Theorem 3.7 the spectrum of A is precisely the spectrum of µ; that is,

σ(A) = σ(µ). (3.65)

Note that 1 ∈ L2(R, dµ) is a cyclic vector for A and that

dµg,f (λ) = g(λ)∗f(λ)dµ(λ). (3.66)

Now what can we say about the function f(A) (which is precisely the
multiplication operator by f) of A? We are only interested in the case where
f is real-valued. Introduce the measure

(f?µ)(Ω) = µ(f−1(Ω)). (3.67)

Then ∫
R
g(λ)d(f?µ)(λ) =

∫
R
g(f(λ))dµ(λ). (3.68)

In fact, it suffices to check this formula for simple functions g, which follows
since χΩ ◦ f = χf−1(Ω). In particular, we have

Pf(A)(Ω) = χf−1(Ω). (3.69)

It is tempting to conjecture that f(A) is unitarily equivalent to multi-
plication by λ in L2(R, d(f?µ)) via the map

L2(R, d(f?µ))→ L2(R, dµ), g 7→ g ◦ f. (3.70)

However, this map is only unitary if its range is L2(R, dµ).

Lemma 3.10. Suppose f is injective. Then

U : L2(R, dµ)→ L2(R, d(f?µ)), g 7→ g ◦ f−1 (3.71)

is a unitary map such that Uf(λ) = λ.

Example. Let f(λ) = λ2. Then (g ◦ f)(λ) = g(λ2) and the range of the
above map is given by the symmetric functions. Note that we can still
get a unitary map L2(R, d(f?µ)) ⊕ L2(R, d(f?µ)) → L2(R, dµ), (g1, g2) 7→
g1(λ2) + g2(λ2)(χ(0,∞)(λ)− χ(0,∞)(−λ)). �

Lemma 3.11. Let f be real-valued. The spectrum of f(A) is given by

σ(f(A)) = σ(f?µ). (3.72)

In particular,

σ(f(A)) ⊆ f(σ(A)), (3.73)

where equality holds if f is continuous and the closure can be dropped if, in
addition, σ(A) is bounded (i.e., compact) or |f(λ)| → ∞ for |λ| → ∞.
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Proof. The first formula follows by comparing

σ(f?µ) = {λ ∈ R |µ(f−1(λ− ε, λ+ ε)) > 0 for all ε > 0}

with (2.77).

Next, let λ 6∈ f(σ(A)). Then there exists an ε > 0 such that (λ− ε, λ+

ε) 6⊂ f(σ(A)) and thus ‖(f(A)− λ)−1‖ ≤ ε−1 which shows λ 6∈ σ(f(A)).

If f is continuous, f−1((f(λ) − ε, f(λ) + ε)) contains an open interval
around λ and hence f(λ) ∈ σ(f(A)) if λ ∈ σ(A). If, in addition, σ(A) is
compact, then f(σ(A)) is compact and hence closed. Similarly, if |f(λ)| →
∞ for |λ| → ∞, suppose ηn = f(λn) → η. Then, λn is bounded (otherwise
ηn were also unbounded and could not be convergent), and we can pass to a
convergent subsequence λnm → λ ∈ σ(A) such that η = f(λ) ∈ f(σ(A)). �

Whether two operators with simple spectrum are unitarily equivalent
can be read off from the corresponding measures:

Lemma 3.12. Let A1, A2 be self-adjoint operators with simple spectrum and
corresponding spectral measures µ1 and µ2 of cyclic vectors. Then A1 and
A2 are unitarily equivalent if and only if µ1 and µ2 are mutually absolutely
continuous.

Proof. Without restriction, we can assume that Aj is multiplication by λ
in L2(R, dµj). Let U : L2(R, dµ1)→ L2(R, dµ2) be a unitary map such that
UA1 = A2U . Then we also have Uf(A1) = f(A2)U for every bounded Borel
function and hence

Uf(λ) = Uf(λ) · 1 = f(λ)U(1)(λ)

and thus U is multiplication by u(λ) = U(1)(λ). Moreover, since U is
unitary, we have

µ1(Ω) =

∫
R
|χΩ|2dµ1 =

∫
R
|uχΩ|2dµ2 =

∫
Ω
|u|2dµ2;

that is, dµ1 = |u|2dµ2. Reversing the roles of A1 and A2, we obtain dµ2 =
|v|2dµ1, where v = U−11.

The converse is left as an exercise (Problem 3.18). �

Next, we recall the unique decomposition of µ with respect to Lebesgue
measure,

dµ = dµac + dµs, (3.74)

where µac is absolutely continuous with respect to Lebesgue measure (i.e.,
we have µac(B) = 0 for allB with Lebesgue measure zero) and µs is singular
with respect to Lebesgue measure (i.e., µs is supported, µs(R\B) = 0, on
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a set B with Lebesgue measure zero). The singular part µs can be further
decomposed into a (singularly) continuous and a pure point part,

dµs = dµsc + dµpp, (3.75)

where µsc is continuous on R and µpp is a step function. Since the measures
dµac, dµsc, and dµpp are mutually singular, they have mutually disjoint
supports Mac, Msc, and Mpp. Note that these sets are not unique. We will
choose them such that Mpp is the set of all jumps of µ(λ) and such that Msc

has Lebesgue measure zero.

To the sets Mac, Msc, and Mpp correspond projectors P ac = χMac(A),
P sc = χMsc(A), and P pp = χMpp(A) satisfying P ac + P sc + P pp = I. In
other words, we have a corresponding direct sum decomposition of both our
Hilbert space

L2(R, dµ) = L2(R, dµac)⊕ L2(R, dµsc)⊕ L2(R, dµpp) (3.76)

and our operator

A = (AP ac)⊕ (AP sc)⊕ (AP pp). (3.77)

The corresponding spectra, σac(A) = σ(µac), σsc(A) = σ(µsc), and σpp(A) =
σ(µpp) are called the absolutely continuous, singularly continuous, and pure
point spectrum of A, respectively.

It is important to observe that σpp(A) is in general not equal to the set
of eigenvalues

σp(A) = {λ ∈ R|λ is an eigenvalue of A} (3.78)

since we only have σpp(A) = σp(A).

Example. Let H = `2(N) and let A be given by Aδn = 1
nδn, where δn is

the sequence which is 1 at the n’th place and zero otherwise (that is, A is
a diagonal matrix with diagonal elements 1

n). Then σp(A) = { 1
n |n ∈ N}

but σ(A) = σpp(A) = σp(A) ∪ {0}. To see this, just observe that δn is the
eigenvector corresponding to the eigenvalue 1

n and for z 6∈ σ(A) we have
RA(z)δn = n

1−nz δn. At z = 0 this formula still gives the inverse of A, but

it is unbounded and hence 0 ∈ σ(A) but 0 6∈ σp(A). Since a continuous
measure cannot live on a single point and hence also not on a countable set,
we have σac(A) = σsc(A) = ∅. �

Example. An example with purely absolutely continuous spectrum is given
by taking µ to be the Lebesgue measure. An example with purely singularly
continuous spectrum is given by taking µ to be the Cantor measure. �
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Finally, we show how the spectrum can be read off from the boundary
values of Im(F ) toward the real line. We define the following sets:

Mac = {λ|0 < lim sup
ε↓0

Im(F (λ+ iε)) <∞},

Ms = {λ| lim sup
ε↓0

Im(F (λ+ iε)) =∞}, (3.79)

Mp = {λ| lim
ε↓0

ε Im(F (λ+ iε)) > 0},

M = Mac ∪Ms = {λ|0 < lim sup
ε↓0

Im(F (λ+ iε))}.

Then, by Lemma 3.25 and Theorem 3.27, we conclude that these sets are
minimal supports for µac, µs, µpp, and µ, respectively. In fact, by Theo-
rem 3.27, we could even restrict ourselves to values of λ, where the lim sup
is a lim (finite or infinite).

Lemma 3.13. The spectrum of µ is given by

σ(µ) = M, M = {λ|0 < lim inf
ε↓0

Im(F (λ+ iε))}. (3.80)

Proof. First, observe that F is real holomorphic near λ 6∈ σ(µ) and hence
Im(F (λ)) = 0 in this case. Thus M ⊆ σ(µ) and since σ(µ) is closed, we
even have M ⊆ σ(µ). To see the converse, note that by Theorem 3.27, the
set M is a support for M . Thus, if λ ∈ σ(µ), then

0 < µ((λ− ε, λ+ ε)) = µ((λ− ε, λ+ ε) ∩M)

for all ε > 0 and we can find a sequence λn ∈ (λ−1/n, λ+1/n)∩M converging
to λ from inside M . This shows the remaining part σ(µ) ⊆M . �

By Lemma 3.25, the set Mp is precisely the set of point masses of µ and
thus

σ(µpp) = Mp. (3.81)

To recover σ(µac) from Mac, we need the essential closure of a Borel set
Ω ⊆ R,

Ω
ess

= {λ ∈ R||(λ− ε, λ+ ε) ∩ Ω| > 0 for all ε > 0}, (3.82)

where |Ω| denotes the Lebesgue measure of a Borel set Ω. Note that Ω
ess

is
closed, whereas, in contradistinction to the ordinary closure, we might have
Ω 6⊂ Ω

ess
(e.g., every isolated point of Ω will disappear).

Lemma 3.14. The absolutely continuous spectrum of µ is given by

σ(µac) = M
ess
ac . (3.83)

Proof. We use that 0 < µac((λ − ε, λ + ε)) = µac((λ − ε, λ + ε) ∩ Mac)
is equivalent to |(λ − ε, λ + ε) ∩Mac| > 0. One direction follows from the
definition of absolute continuity and the other from minimality of Mac. �
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Problem 3.11. Show that the set of eigenvalues of the operator A of multi-
plication by λ in L2(R, dµ) is precisely the set of point masses of µ: σp(A) =
Mp.

Problem 3.12. Construct a multiplication operator on L2(R) which has
dense point spectrum.

Problem 3.13. Let λ be Lebesgue measure on R, and let f be a strictly
increasing function. Show that

d(f?λ) = d(f−1),

where f−1 is the inverse of f extended to all of R by setting f−1(y) = x for
y ∈ [f(x−), f(x+)].

Moreover, if f ∈ AC(R) with f ′ > 0, then

d(f?λ) =
1

f ′(f−1(λ))
dλ.

Problem 3.14. Let dµ(λ) = χ[0,1](λ)dλ and f(λ) = χ(−∞,t](λ), t ∈ R.
Compute f?µ.

Problem 3.15. Let A be the multiplication operator by the Cantor function
in L2(0, 1). Compute the spectrum of A. Determine the spectral types.

Problem 3.16. Find a multiplication operator in L2(0, 1) with purely sin-
gular continuous spectrum. (Hint: Find a function whose inverse is the
Cantor function and use Problem 3.13.)

Problem 3.17. Let A be multiplication by λ in L2(R). Find a function f

such that σ(f(A)) 6= f(σ(A)). Moreover, find a continuous function f such
that σ(f(A)) 6= f(σ(A)).

Problem 3.18. Show the missing direction in the proof of Lemma 3.12.

Problem 3.19. Show (Ω1 ∪ Ω2)
ess

= Ω1
ess ∪Ω2

ess
and Ω

ess
= ∅ if |Ω| = 0.

Moreover, show that Ω
ess

is closed and satisfies Ω
ess ⊆ Ω.

3.3. Spectral types

Our next aim is to transfer the results of the previous section to arbitrary
self-adjoint operators A using Lemma 3.4. To this end, we will need a
spectral measure which contains the information from all measures in a
spectral basis. This will be the case if there is a vector ψ such that for every
ϕ ∈ H its spectral measure µϕ is absolutely continuous with respect to µψ.
Such a vector will be called a maximal spectral vector of A, and µψ will
be called a maximal spectral measure of A.

Lemma 3.15. For every self-adjoint operator A there is a maximal spectral
vector.
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Proof. Let {ψj}j∈J be a spectral basis and choose nonzero numbers εj with∑
j∈J |εj |2 = 1. Then I claim that

ψ =
∑
j∈J

εjψj

is a maximal spectral vector. Let ϕ be given. Then we can write it as ϕ =∑
j fj(A)ψj and hence dµϕ =

∑
j |fj |2dµψj . But µψ(Ω) =

∑
j |εj |2µψj (Ω) =

0 implies µψj (Ω) = 0 for every j ∈ J and thus µϕ(Ω) = 0. �

A set {ψj} of spectral vectors is called ordered if ψk is a maximal

spectral vector for A restricted to (
⊕k−1

j=1 Hψj )
⊥. As in the unordered case

one can show

Theorem 3.16. For every self-adjoint operator there is an ordered spectral
basis.

Observe that if {ψj} is an ordered spectral basis, then µψj+1
is absolutely

continuous with respect to µψj .

If µ is a maximal spectral measure, we have σ(A) = σ(µ) and the fol-
lowing generalization of Lemma 3.11 holds.

Theorem 3.17 (Spectral mapping). Let µ be a maximal spectral measure
and let f : R→ C. Then the spectrum of f(A) is given by

σ(f(A)) = {z ∈ C|µ(f−1(Bε(z))) > 0 for all ε > 0}. (3.84)

In particular,

σ(f(A)) ⊆ f(σ(A)), (3.85)

where equality holds if f is continuous and the closure can be dropped if, in
addition, σ(A) is bounded or |f(λ)| → ∞ for |λ| → ∞.

Next, we want to introduce the splitting (3.76) for arbitrary self-adjoint
operators A. It is tempting to pick a spectral basis and treat each summand
in the direct sum separately. However, since it is not clear that this approach
is independent of the spectral basis chosen, we use the more sophisticated
definition

Hac = {ψ ∈ H|µψ is absolutely continuous},
Hsc = {ψ ∈ H|µψ is singularly continuous},
Hpp = {ψ ∈ H|µψ is pure point}. (3.86)

Lemma 3.18. We have

H = Hac ⊕ Hsc ⊕ Hpp. (3.87)

There are Borel sets Mxx such that the projector onto Hxx is given by P xx =
χMxx(A), xx ∈ {ac, sc, pp}. In particular, the subspaces Hxx reduce A. For
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the sets Mxx one can choose the corresponding supports of some maximal
spectral measure µ.

Proof. We will use the unitary operator U of Lemma 3.4. Pick ϕ ∈ H and
write ϕ =

∑
n ϕn with ϕn ∈ Hψn . Let fn = Uϕn. Then, by construction

of the unitary operator U , ϕn = fn(A)ψn and hence dµϕn = |fn|2dµψn .
Moreover, since the subspaces Hψn are orthogonal, we have

dµϕ =
∑
n

|fn|2dµψn

and hence

dµϕ,xx =
∑
n

|fn|2dµψn,xx, xx ∈ {ac, sc, pp}.

This shows

UHxx =
⊕
n

L2(R, dµψn,xx), xx ∈ {ac, sc, pp},

and it reduces our problem to the considerations of the previous section.

Furthermore, note that if µ is a maximal spectral measure, then every
support for µxx is also a support for µϕ,xx for every ϕ ∈ H. �

The absolutely continuous, singularly continuous, and pure point
spectrum of A are defined as

σac(A) = σ(A|Hac), σsc(A) = σ(A|Hsc), and σpp(A) = σ(A|Hpp),
(3.88)

respectively. If µ is a maximal spectral measure, we have σac(A) = σ(µac),
σsc(A) = σ(µsc), and σpp(A) = σ(µpp).

If A and Ã are unitarily equivalent via U , then so are A|Hxx and Ã|H̃xx
by (3.54). In particular, σxx(A) = σxx(Ã).

Problem 3.20. Compute σ(A), σac(A), σsc(A), and σpp(A) for the multi-
plication operator A = 1

1+x2
in L2(R). What is its spectral multiplicity?

Problem 3.21. Show Theorem 3.17. What needs to be changed in the proof
of the second part of Lemma 3.11 to cover complex-valued functions?

3.4. Appendix: Herglotz–Nevanlinna functions

Let C± = {z ∈ C|± Im(z) > 0} be the upper, respectively, lower, half-plane.
A holomorphic function F : C+ → C+ mapping the upper half-plane to
itself is called a Herglotz–Nevanlinna function. The sum of two Herglotz–
Nevanlinna functions is again one and so is the composition. We can define
F on C− using F (z∗) = F (z)∗.
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Example. The following are examples of Herglotz–Nevanlinna functions:
F (z) = a + bz if Im(a), b ≥ 0 and F (z) = 1

λ−z if Im(λ) ≤ 0. Note that we

have F (z∗) = F (z)∗ only if a ∈ R and λ ∈ R in the previous two examples.
F (z) = log(z) and F (z) =

√
z provided we use the standard branches with

arg(z) ∈ (−π, π]. �

In Theorem 3.9 we have seen that the Borel transform of a finite measure
is a Herglotz–Nevanlinna function satisfying a growth estimate. Here we
want to show that the converse is also true. Even though our interest is
mainly in Herglotz–Nevanlinna functions, we will need the connection with
their counterparts on the unit disc which will allow for simpler proofs below.

Recall that

z 7→ i− z
i + z

(3.89)

is a conformal bijection from C+ to the unit disc D = {z ∈ C| |z| < 1} and
hence

F (z) = iC(
i− z
i + z

) (3.90)

is a Herglotz–Nevanlinna function if and only if C(z) is a Carathéodory
function; that is, C : D → {z ∈ C|Re(z) ≥ 0}. Note that the converse is
given by

C(z) = −iF (i
i− z
i + z

). (3.91)

Theorem 3.19 (Herglotz representation). Every Carathéodory function is
of the form

C(z) = ic+

∫
[−π,π]

eiϕ + z

eiϕ − z
dν(ϕ) (3.92)

for some finite measure dν and some real constant c. Explicitly, we have∫
[−π,π]

dν = Re(C(0)), c = Im(C(0)). (3.93)

Proof. Let C : D → C be a Carathéodory function and 0 < r < 1. Then,
for every z with |z| < r, we have

C(z) =
1

4πi

∫
|ζ|=r

(
ζ + z

ζ − z
+
r2/ζ + z∗

r2/ζ − z∗

)
C(ζ)

dζ

ζ

=
1

2πi

∫
|ζ|=r

Re

(
ζ + z

ζ − z

)
C(ζ)

dζ

ζ
.

Taking real parts and setting ζ = reiϕ, we see

Re(C(z)) =

∫ π

−π
P|z|/r(arg(z)− ϕ)dνr(ϕ),
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where

Pr(ϕ) = Re

(
1 + reiϕ

1− reiϕ

)
=

1− r2

1− 2r cos(ϕ) + r2
, dνr(ϕ) = Re(C(reiϕ))

dϕ

2π
.

In particular, taking z = 0, we have∫ π

−π
dνr(ϕ) = Re(C(0)) <∞

and hence (since for |z| < 1 the functions P|z|/r converge uniformly to P|z|
as r ↑ 1)

Re(C(z)) = lim
r↑1

∫ π

−π
P|z|/r(arg(z)− ϕ)dνr(ϕ)

= lim
r↑1

∫ π

−π
P|z|(arg(z)− ϕ)dνr(ϕ).

Moreover, since the sequence of measures νr is bounded, Lemma A.35 implies
that there is a subsequence which converges vaguely to some measure dν
which satisfies

Re(C(z)) =

∫
[−π,π]

P|z|(arg(z)− ϕ)dν(ϕ) =

∫
[−π,π]

Re

(
eiϕ + z

eiϕ − z

)
dν(ϕ).

Since a holomorphic function is determined by its real part up to an imagi-
nary constant, the claim follows. �

The corresponding result for Herglotz–Nevanlinna functions now follows
via the connection (3.90).

Theorem 3.20. Every Herglotz–Nevanlinna function is of the form

F (z) = bz + a+

∫
R

(
1

λ− z
− λ

1 + λ2

)
dµ(λ),

= bz + a+

∫
R

1 + zλ

λ− z
dµ(λ)

1 + λ2
(3.94)

with

b ≥ 0, a ∈ R,
∫
R

dµ(λ)

1 + λ2
<∞. (3.95)

Conversely, given a, b, µ as above, F (z) given by (3.94) is holomorphic
in C\ supp(µ) where supp(µ) is the (topological) support of µ and satisfies
F (z∗) = F (z)∗. Moreover,

Im(F (z)) = Im(z)

(
b+

∫
R

dµ(λ)

|λ− z|2

)
, z ∈ C\ supp(µ), (3.96)

as well as
dF (z)

dz
= b+

∫
R

dµ(λ)

(λ− z)2
, z ∈ C\ supp(µ). (3.97)
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Proof. The homeomorphism f : (−π, π) → R, ϕ 7→ i1−eiϕ

1+eiϕ
maps our mea-

sure ν to a finite measure µ̃ = f?µ, defined via µ̃(A) = ν(f−1(A)), such that
(Theorem A.31) ∫

R
g(f−1(λ))dµ̃(λ) =

∫
(−π,π)

g(ϕ)dν(ϕ).

In particular, with g(ϕ) = eiϕ+z
eiϕ−z , f−1(λ) = arg( i−λ

i+λ), we obtain that any

Herglotz–Nevanlinna function F (z) = iC( i−z
i+z ) is of the form (3.94) with

dµ(λ) = (1 + λ2)dµ̃(λ), a = −c, b = ν({−π, π}).

The last part follows as in Theorem 3.9, using the estimate∣∣∣∣1 + zλ

λ− z

∣∣∣∣ ≤ 1 + |z|(|Re(λ− z)|+ |Re(z)|)√
Re(λ− z)2 + Im(z)2

≤ |z|+ 1 + |Re(z)z|
dist(z, supp(µ))

�

Example. The Herglotz representations of the functions from the previous
examples are given by

1

λ0 − z
=

∫
R

1

λ− z
dΘ(λ− λ0) dλ, z ∈ C\{λ0},

log(z) =

∫ 0

−∞

( 1

λ− z
− λ

1 + λ2

)
dλ, z ∈ C\(−∞, 0],

√
z =

1√
2

+

∫ 0

−∞

( 1

λ− z
− λ

1 + λ2

)√
−λ dλ, z ∈ C\(−∞, 0].

�

The general representation (3.94) can be simplified in case of a growth
estimate as follows:

Corollary 3.21. Let µ be the measure associated with a Herglotz–
Nevanlinna function F (z). Then

b = 0,

∫
R
dµ ≤M ⇔ Im(F (iy)) ≤ M

y
. (3.98)

Moreover, in this case,

F (z) = ã+

∫
R

dµ(λ)

λ− z
, ã = a−

∫
R

λ

1 + λ2
dµ(λ) ∈ R, (3.99)

and

F (z) = ã− 1

z

∫
R
dµ+ o(z−1), (3.100)

as z →∞ in any sector in the upper (or lower) half-plane.



3.4. Appendix: Herglotz–Nevanlinna functions 123

Proof. Note that the second condition reads

y Im(F (iy)) = by2 +

∫
R

y2

λ2 + y2
dµ(λ) ≤M (3.101)

and implies b = 0 and
∫
R dµ ≤M (use monotone convergence). The converse

is straightforward.

For the last claim, observe

F (z) = ã− µ(R)

z
+

1

z

∫
R

λ

z − λ
dµ(λ)

and use dominated convergence with the elementary estimate∣∣∣∣ λ

λ− z

∣∣∣∣ ≤ |z|
| Im(z)|

.

�

In particular, note the useful formula

lim
λ→∞

λ Im(F (iλ)) = µ(R). (3.102)

If we have the stronger condition |F (iy)| ≤ M
y , then we must also have ã = 0

in the last corollary.

Theorem 3.22. A function F is a Herglotz–Nevanlinna function satisfying

|F (iy)| ≤ M

y
(3.103)

if and only if it is the Borel transform of a finite measure µ.

Our next question is if µ is uniquely determined by F . This is answered
by the following theorem:

Theorem 3.23. Let F be a Herglotz–Nevanlinna function. Then the mea-
sure µ in (3.94) is unique and can be reconstructed via the Stieltjes inversion
formula

1

2
(µ((λ1, λ2)) + µ([λ1, λ2])) = lim

ε↓0

1

π

∫ λ2

λ1

Im(F (λ+ iε))dλ (3.104)

for any λ1 < λ2. The constants a, b are given by

a = Re(F (i)), b = Im(F (i))−
∫
R

dµ(λ)

1 + λ2
. (3.105)
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Proof. Without loss of generality, we can assume b = 0. By Fubini we have

1

π

∫ λ2

λ1

Im(F (λ+ iε))dλ =
1

π

∫ λ2

λ1

∫
R

ε

(x− λ)2 + ε2
dµ(x)dλ

=

∫
R

1

π

∫ λ2

λ1

ε

(x− λ)2 + ε2
dλ dµ(x),

where

1

π

∫ λ2

λ1

ε

(x− λ)2 + ε2
dλ =

1

π

(
arctan

(λ2 − x
ε

)
− arctan

(λ1 − x
ε

))
→ 1

2

(
χ[λ1,λ2](x) + χ(λ1,λ2)(x)

)
pointwise. Hence the result follows from the dominated convergence theorem
since 0 ≤ 1

π

(
arctan(λ2−xε )− arctan(λ1−xε )

)
≤ 1. �

Of course this implies that there is a one-to-one correspondence between
Herglotz–Nevanlinna functions and triples (a, b, µ) satisfying a ∈ R, b ≥ 0,

and
∫
R
dµ(λ)
1+λ2

<∞ given by (3.94).

We can even strengthen the content of the last theorem a bit:

Corollary 3.24. Let F be a Herglotz–Nevanlinna function with associated
measure µ. The measures π−1 Im

(
F (λ + iε)

)
dλ converge vaguely to dµ as

ε ↓ 0. In fact, we have

lim
ε↓0

1

π

∫
R
f(λ) Im

(
F (λ+ iε)

)
dλ =

∫
R
f dµ (3.106)

for every continuous f satisfying |f(λ)| ≤ C
1+λ2

and for any f ∈ Cb(R)

provided b = 0 and µ(R) <∞. Furthermore,

lim
ε↓0

1

π

∫ λ1

λ0

f(λ) Im
(
F (λ+ iε)

)
dλ =

1

2

(∫
(λ0,λ1)

f dµ+

∫
[λ0,λ1]

f dµ

)
(3.107)

for any λ1 < λ2 and every f ∈ C[λ0, λ1].

Proof. As in the previous theorem, using Fubini, we have

lim
ε↓0

1

π

∫ λ1

λ0

f(λ) Im
(
F (λ+ iε)

)
dλ = lim

ε↓0

∫
R
fεdµ,

where

fε(x) =
1

π

∫ λ1

λ0

f(λ)
ε

(λ− x)2 + ε2
dλ.

Now the claim follows from dominated convergence since

|fε(x)| ≤ 1

π

∫
R

C

1 + λ2

ε

(λ− x)2 + ε2
dλ =

(1 + ε)C

(1 + ε)2 + x2
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and

lim
ε↓0

fε(x) =


f(x), x ∈ (λ0, λ1),
1
2f(λj), x = λj , j = 0, 1,
0, else.

The last case follows using |fε(x)| ≤ 1
π

∫
RC

ε
(λ−x)2+ε2

dλ = C if |f(λ)| ≤
C. �

This last result raises questions of how properties of µ can be read off
from the boundary behavior of F (λ+ iε) as ε ↓ 0. As a first result we show:

Lemma 3.25. Let F be a Herglotz–Nevanlinna function with associated
measure µ. Then

lim
ε↓0

ε Im
(
F (λ+ iε)

)
= µ({λ}). (3.108)

Proof. This follows from

lim
ε↓0

ε Im
(
F (λ+ iε)

)
= lim

ε↓0

∫
R

ε2

(x− λ)2 + ε2
dµ(x) =

∫
R
χ{λ}dµ = µ({λ})

by virtue of the dominated convergence theorem. �

Furthermore, the Radon–Nikodym derivative of µ can be obtained from
the boundary values of F .

Theorem 3.26. Let F be a Herglotz–Nevanlinna function with associated
measure µ. Then

(Dµ)(λ) ≤ lim inf
ε↓0

1

π
Im
(
F (λ+ iε)

)
≤ lim sup

ε↓0

1

π
Im
(
F (λ+ iε)

)
≤ (Dµ)(λ).

(3.109)

Proof. Without loss of generality, we can assume b = 0. We need to esti-
mate

Im(F (λ+ iε)) =

∫
R
Kε(t− λ)dµ(t), Kε(t) =

ε

t2 + ε2
.

We first split the integral into two parts:

Im(F (λ+iε)) =

∫
Iδ

Kε(t−λ)dµ(t)+

∫
R\Iδ

Kε(t−λ)dµ(t), Iδ = (λ−δ, λ+δ).

Clearly the second part can be estimated by∫
R\Iδ

Kε(t− λ)dµ(t) ≤ Kε(δ)µ(R).

To estimate the first part, we integrate

K ′ε(s) ds dµ(t)
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over the triangle {(s, t)|λ − s < t < λ + s, 0 < s < δ} = {(s, t)|λ − δ < t <
λ+ δ, |t− λ| < s < δ} and obtain∫ δ

0
µ(Is)K

′
ε(s)ds =

∫
Iδ

(Kε(δ)−Kε(t− λ))dµ(t).

Now suppose there are constants c and C such that c ≤ µ(Is)
2s ≤ C, 0 ≤ s ≤ δ.

Then

2c arctan(
δ

ε
) ≤

∫
Iδ

Kε(t− λ)dµ(t) ≤ 2C arctan(
δ

ε
)

since

δKε(δ) +

∫ δ

0
−sK ′ε(s)ds = arctan(

δ

ε
).

Thus the claim follows combining both estimates. �

As a consequence of Theorem A.45 and Theorem A.46, we obtain (cf.
also Lemma A.47)

Theorem 3.27. Let F be a Herglotz–Nevanlinna function with associated
measure µ. Then the limit

Im(F (λ)) = lim
ε↓0

Im(F (λ+ iε)) (3.110)

exists a.e. with respect to both µ and Lebesgue measure (finite or infinite)
and

(Dµ)(λ) =
1

π
Im(F (λ)) (3.111)

whenever (Dµ)(λ) exists.

Moreover, the set {λ| Im(F (λ)) = ∞} is a support for the singularly
continuous part and {λ|0 < Im(F (λ)) < ∞} is a minimal support for the
absolutely continuous part.

In particular,

Corollary 3.28. The measure µ is purely absolutely continuous on I if
lim supε↓0 Im(F (λ+ iε)) <∞ for all λ ∈ I.

The limit of the real part can be computed as well.

Corollary 3.29. The limit

lim
ε↓0

F (λ+ iε) (3.112)

exists a.e. with respect to both µ and Lebesgue measure. It is finite a.e. with
respect to Lebesgue measure.
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Proof. If F (z) is a Herglotz–Nevanlinna function, then so is
√
F (z). More-

over,
√
F (z) has values in the first quadrant; that is, both Re(

√
F (z))

and Im(
√
F (z)) are positive for z ∈ C+. Hence both

√
F (z) and i

√
F (z)

are Herglotz–Nevanlinna functions, and by virtue of Theorem 3.27, both
limits limε↓0 Re(

√
F (λ+ iε)) and limε↓0 Im(

√
F (λ+ iε)) exist and are fi-

nite a.e. with respect to Lebesgue measure. By taking squares, the same
is true for F (z) and hence limε↓0 F (λ + iε) exists and is finite a.e. with
respect to Lebesgue measure. Since limε↓0 Im(F (λ + iε)) = ∞ implies
limε↓0 F (λ+ iε) =∞, the result follows. �

Finally, we note that the growth of F along the imaginary axis is related
to the growth of its associated measure.

Lemma 3.30. Let F be a Herglotz–Nevanlinna function with associated
measure µ and b = 0. Then, for every 0 < γ < 2, we have∫

R

dµ(λ)

1 + |λ|γ
<∞ ⇐⇒

∫ ∞
1

Im(F (iy))

yγ
dy <∞. (3.113)

Proof. First of all, note that we can split F (z) = F1(z) + F2(z) according
to dµ = χ[−1,1]dµ + (1 + χ[−1,1])dµ. The part F1(z) corresponds to a finite
measure and does not contribute by (3.103). Hence we can assume that µ
is not supported near 0. Then Fubini shows∫ ∞

0

Im(F (iy))

yγ
dy =

∫ ∞
0

∫
R

y1−γ

λ2 + y2
dµ(λ)dy =

π/2

sin(γπ/2)

∫
R

1

|λ|γ
dµ(λ),

which proves the claim. Here we have used (Problem 3.36)∫ ∞
0

y1−γ

λ2 + y2
dy =

π/2

|λ|γ sin(γπ/2)
.

�

The case γ = 0 is the content of Theorem 3.22, and for the case γ = 2,
see Problem 3.37.

Problem 3.22. Let µ be a finite Borel measure and F its Borel transform.
Show that (3.103) holds with M = µ(R).

Problem 3.23. Show ∣∣∣∣ 1

λ− z

∣∣∣∣ ≤ 1

1 + |λ|
1 + |z|
| Im(z)|

(3.114)

and ∣∣∣∣ 1

λ− z
− λ

1 + λ2

∣∣∣∣ ≤ 1

1 + λ2

1 + |z|2

| Im(z)|
(3.115)

for every λ ∈ R. (Hint: First search for the maximum of |λ − z|−1 and
|λ||λ− z|−1 as a function of λ (cf. also Problem 3.7).)
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Problem 3.24. Let F be a Herglotz–Nevanlinna function. Show that

F (z) = bz + o(z)

as z → ∞ in any sector in the upper (or lower) half-plane. If in addition∫
R |λ|dµ(λ) <∞, show that

F (z) = bz + ã+

∫
R

dµ(λ)

λ− z
= bz + ã+ o(1)

as z → ∞ in any sector in the upper (or lower) half-plane. (Hint: Use
Problem 3.23.)

Problem 3.25. Let F be a Herglotz–Nevanlinna function with associated
measure µ. Show the estimate

µ([λ− ε, λ+ ε]) ≤ 2ε Im(F (λ+ iε)), ε > 0.

Conclude that µ is Hölder continuous of exponent α ∈ (0, 1] if C(λ) =
supε∈(0,1] ε

1−α Im(F (λ+ iε)) is locally bounded.

Problem 3.26. Find all rational Herglotz functions F : C → C satisfying
F (z∗) = F (z)∗ and lim|z|→∞ |zF (z)| = M < ∞. What can you say about
the zeros of F?

Problem 3.27. Show that every non-constant Herglotz–Nevanlinna func-
tion maps C+ to C+.

Problem 3.28. Let F be a Herglotz–Nevanlinna function corresponding to
a discrete measure (i.e., µ is a pure point measure with isolated masses).
Show that F has only first order zeros and poles on the real line which are
interlacing. (Hint: Note that F is strictly increasing on the real line, away
from its poles.)

Problem 3.29. A complex measure dµ is a measure which can be written
as a complex linear combination of positive measures dµj:

dµ = dµ1 − dµ2 + i(dµ3 − dµ4).

Let

F (z) =

∫
R

dµ

λ− z
be the Borel transform of a complex measure. Show that µ is uniquely de-
termined by F via the Stieltjes inversion formula

1

2
(µ((λ1, λ2)) + µ([λ1, λ2])) = lim

ε↓0

1

2πi

∫ λ2

λ1

(F (λ+ iε)− F (λ− iε))dλ.

Problem 3.30. Compute the Borel transform of the complex measure given
by dµ(λ) = dλ

(λ−i)2
.
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Problem 3.31. Show that the second part of Corollary 3.24 extends to the
case where λ1 = −∞ or λ2 =∞ under the conditions used in the first part.

Problem 3.32. Let F be a Herglotz–Nevanlinna function. Then

lim
ε↓0

εRe
(
F (λ+ iε)

)
= 0.

Problem 3.33 (Exponential Herglotz representation). Show that every Her-
glotz–Nevanlinna function can be written as

F (z) = exp

(
c+

∫
R

(
1

λ− z
− λ

1 + λ2

)
ξ(λ)dλ

)
,

where

ξ(λ) = lim
ε↓0

1

π
arg(F (λ+ iε))

for a.e. λ and c = log |F (i)|. Moreover, 0 ≤ ξ(λ) ≤ 1. (Hint: log(F (z)) is
also a Herglotz–Nevanlinna function.)

Problem 3.34. Show that

F (z) = 1 +

∫
R

dµ(λ)

λ− z
,

∫
R
dµ <∞,

if and only if

F (z) = exp

(∫
R

ξ(λ)dλ

λ− z

)
,

∫
R
ξ(λ)dλ <∞.

Moreover, in this case
∫
R dµ =

∫
R ξ(λ)dλ. (Hint: log(1 + z) = z +O(z−2).)

Problem 3.35. Suppose ‖ Im
(
F (.+iε)

)
‖p ≤ πC for some 1 < p ≤ ∞. Then

dµ(λ) = g(λ)dλ with ‖g‖p ≤ C. (Hint: Use Theorem 3.23 and Hölder’s

inequality to show µ((λ1, λ2)) ≤ C|λ2 − λ1|1/q. Now use outer regularity to
conclude that µ is absolutely continuous.)

Problem 3.36. Show∫ ∞
0

y1−γ

1 + y2
dy =

π/2

sin(γπ/2)
, γ ∈ (0, 2),

by proving ∫ ∞
−∞

eαx

1 + ex
dx =

π

sin(απ)
, α ∈ (0, 1).

(Hint: To compute the last integral, use a contour consisting of the straight
lines connecting the points −R, R, R+ 2πi, −R+ 2πi. Evaluate the contour
integral using the residue theorem and let R →∞. Show that the contribu-
tions from the vertical lines vanish in the limit and relate the integrals along
the horizontal lines.)
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Problem 3.37. In Lemma 3.30 we assumed 0 < γ < 2. Show that in the
case γ = 2 we have∫

R

log(1 + λ2)

1 + λ2
dµ(λ) <∞ ⇐⇒

∫ ∞
1

Im(F (iy))

y2
dy <∞.

(Hint:
∫∞

1
y−1

λ2+y2
dy = log(1+λ2)

2λ2
.)



Chapter 4

Applications of the
spectral theorem

This chapter can be mostly skipped on first reading. You might want to have a

look at the first section and then come back to the remaining ones later.

Now let us show how the spectral theorem can be used. We will give a
few typical applications:

First, we will derive an operator-valued version of the Stieltjes inversion
formula. To do this, we need to show how to integrate a family of functions
of A with respect to a parameter. Moreover, we will show that these integrals
can be evaluated by computing the corresponding integrals of the complex-
valued functions.

Secondly, we will consider commuting operators and show how certain
facts, which are known to hold for the resolvent of an operator A, can be
established for a larger class of functions.

Then we will show how the eigenvalues below the essential spectrum and
dimension of RanPA(Ω) can be estimated using the quadratic form.

Finally, we will investigate tensor products of operators.

4.1. Integral formulas

We begin with the first task by having a closer look at the projections PA(Ω).
They project onto subspaces corresponding to expectation values in the set
Ω. In particular, the number

〈ψ, χΩ(A)ψ〉 (4.1)

131
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is the probability for a measurement of a to lie in Ω. In addition, we have

〈ψ,Aψ〉 =

∫
Ω
λ dµψ(λ) ∈ hull(Ω), ψ ∈ PA(Ω)H, ‖ψ‖ = 1, (4.2)

where hull(Ω) is the convex hull of Ω.

The space Ranχ{λ0}(A) is called the eigenspace corresponding to λ0

since we have

〈ϕ,Aψ〉 =

∫
R
λχ{λ0}(λ)dµϕ,ψ(λ) = λ0

∫
R
dµϕ,ψ(λ) = λ0〈ϕ,ψ〉 (4.3)

and hence Aψ = λ0ψ for all ψ ∈ Ranχ{λ0}(A). The dimension of the
eigenspace is called the multiplicity of the eigenvalue.

Moreover, since

lim
ε↓0

−iε

λ− λ0 − iε
= χ{λ0}(λ), (4.4)

we infer from Theorem 3.1 that

lim
ε↓0
−iεRA(λ0 + iε)ψ = χ{λ0}(A)ψ. (4.5)

Similarly, we can obtain an operator-valued version of the Stieltjes inversion
formula. But first we need to recall a few facts from integration in Banach
spaces.

We will consider the case of mappings f : I → X where I = [t0, t1] ⊂ R is
a compact interval and X is a Banach space. As before, a function f : I → X
is called simple if the image of f is finite, f(I) = {xi}ni=1, and if each inverse
image f−1(xi), 1 ≤ i ≤ n, is a Borel set. The set of simple functions S(I,X)
forms a vector space and can be equipped with the sup norm

‖f‖∞ = sup
t∈I
‖f(t)‖. (4.6)

The corresponding Banach space obtained after completion is called the set
of regulated functions R(I,X).

Observe that C(I,X) ⊂ R(I,X). In fact, consider the simple function

fn =
∑n−1

i=0 f(si)χ[si,si+1), where si = t0 + i t1−t0n . Since f ∈ C(I,X) is
uniformly continuous, we infer that fn converges uniformly to f .

For f ∈ S(I,X) we can define a linear map
∫

: S(I,X)→ X by∫
I
f(t)dt =

n∑
i=1

xi|f−1(xi)|, (4.7)

where |Ω| denotes the Lebesgue measure of Ω. This map satisfies

‖
∫
I
f(t)dt‖ ≤ ‖f‖∞(t1 − t0) (4.8)
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and hence it can be extended uniquely to a linear map
∫

: R(I,X) → X
with the same norm (t1 − t0) by Theorem 0.29. We even have

‖
∫
I
f(t)dt‖ ≤

∫
I
‖f(t)‖dt, (4.9)

which clearly holds for f ∈ S(I,X) and thus for all f ∈ R(I,X) by conti-
nuity. In addition, if A ∈ L(X,Y ), then

A

∫
I
f(t)dt =

∫
I
Af(t)dt, f ∈ R(I,X). (4.10)

Again, this holds for simple functions and thus extends to all regulated
functions by continuity. In particular, if ` ∈ X∗ is a continuous linear
functional, then

`

(∫
I
f(t)dt

)
=

∫
I
`
(
f(t)

)
dt, f ∈ R(I,X), (4.11)

and if A(t) ∈ R(I,L(H)), then(∫
I
A(t)dt

)
ψ =

∫
I
(A(t)ψ)dt. (4.12)

If I = R, we say that f : I → X is integrable if f ∈ R([−r, r], X) for all
r > 0 and if ‖f(t)‖ is integrable. In this case, we can set∫

R
f(t)dt = lim

r→∞

∫
[−r,r]

f(t)dt (4.13)

and (4.9) and (4.11) still hold.

We will use the standard notation
∫ t3
t2
f(s)ds =

∫
I χ(t2,t3)(s)f(s)ds and∫ t2

t3
f(s)ds = −

∫ t3
t2
f(s)ds.

We write f ∈ C1(I,X) if

d

dt
f(t) = lim

ε→0

f(t+ ε)− f(t)

ε
(4.14)

exists for all t ∈ I and defines a continuous function I → X. In particular,

if f ∈ C(I,X), then F (t) =
∫ t
t0
f(s)ds ∈ C1(I,X) and dF/dt = f as can be

seen from

‖F (t+ ε)− F (t)− f(t)ε‖ = ‖
∫ t+ε

t
(f(s)− f(t))ds‖ ≤ |ε| sup

s∈[t,t+ε]
‖f(s)− f(t)‖.

(4.15)

The important facts for us are the following two results.

Lemma 4.1. Suppose f : I × R → C is a bounded uniformly continuous
function and set F (λ) =

∫
I f(t, λ)dt. Let A be self-adjoint. Then f(t, A) ∈
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R(I,L(H)) and

F (A) =

∫
I
f(t, A)dt, respectively, F (A)ψ =

∫
I
f(t, A)ψ dt. (4.16)

Proof. That f(t, A) ∈ R(I,L(H)) follows from the spectral theorem, since
it is no restriction to assume that A is multiplication by λ in some L2 space.
We compute

〈ϕ, (
∫
I
f(t, A)dt)ψ〉 =

∫
I
〈ϕ, f(t, A)ψ〉dt

=

∫
I

∫
R
f(t, λ)dµϕ,ψ(λ)dt

=

∫
R

∫
I
f(t, λ)dt dµϕ,ψ(λ)

=

∫
R
F (λ)dµϕ,ψ(λ) = 〈ϕ, F (A)ψ〉

by Fubini’s theorem and hence the first claim follows. �

Lemma 4.2. Suppose f : R→ L(H) is integrable and A ∈ L(H). Then

A

∫
R
f(t)dt =

∫
R
Af(t)dt. (4.17)

Proof. It suffices to prove the case where f is simple and of compact sup-
port. But for such functions the claim is straightforward. �

Now we can prove an operator-valued version of the Stieltjes inversion
formula.

Theorem 4.3 (Stone’s formula). Let A be self-adjoint. Then

1

2πi

∫ λ2

λ1

(
RA(λ+ iε)−RA(λ− iε)

)
dλ

s→ 1

2

(
PA([λ1, λ2]) + PA((λ1, λ2))

)
(4.18)

strongly.

Proof. By

1

2πi

∫ λ2

λ1

(
1

x− λ− iε
− 1

x− λ+ iε

)
dλ =

1

π

∫ λ2

λ1

ε

(x− λ)2 + ε2
dλ

=
1

π

(
arctan

(λ2 − x
ε

)
− arctan

(λ1 − x
ε

))
→ 1

2

(
χ[λ1,λ2](x) + χ(λ1,λ2)(x)

)
,

the result follows combining the last part of Theorem 3.1 with Lemma 4.1.
�
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Note that by using the first resolvent formula, Stone’s formula can also
be written in the form

〈ψ, 1

2

(
PA([λ1, λ2]) + PA((λ1, λ2))

)
ψ〉 = lim

ε↓0

1

π

∫ λ2

λ1

Im〈ψ,RA(λ+ iε)ψ〉dλ

= lim
ε↓0

ε

π

∫ λ2

λ1

‖RA(λ+ iε)ψ‖2dλ.

(4.19)

Problem 4.1. Let Γ be a differentiable Jordan curve in ρ(A). Show

χΩ(A) =

∫
Γ
RA(z)dz,

where Ω is the intersection of the interior of Γ with R.

Problem 4.2. Suppose f ∈ C1(I,X). Show that d
dtf(t) = 0 if and only if

f is constant. In particular, the fundamental theorem of calculus holds:

f(t) = f(t0) +

∫ t

t0

f ′(s)ds,

where f ′(t) = d
dtf(t).

Problem 4.3. Suppose f ∈ C(R) is bounded. Show that

1

2πi

∫
R
f(λ)

(
RA(λ+ iε)−RA(λ− iε)

)
dλ

s→ f(A)

and

1

2πi

∫ λ2

λ1

f(λ)
(
RA(λ+iε)−RA(λ−iε)

)
dλ

s→ 1

2

(
PA([λ1, λ2])+PA((λ1, λ2))

)
f(A).

(Hint: For the first part, show 1
π

∫
f(λ) Im( 1

x−λ−ε)dλ → f(x). Now the
second part follows from the first if f vanishes at the boundary points and it
remains to show the cases f(λ) = 1 and f(λ) = λ.)

4.2. Commuting operators

Now we come to commuting operators. As a preparation we first prove

Lemma 4.4. Let K ⊆ R be closed and let C∞(K) be the set of all continuous
functions on K which vanish at ∞ (if K is unbounded) with the sup norm.
The ∗-subalgebra generated by the function

λ 7→ 1

λ− z
(4.20)

for one z ∈ C\K is dense in C∞(K).
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Proof. If K is compact, the claim follows directly from the complex Stone–
Weierstraß theorem since (λ1−z)−1 = (λ2−z)−1 implies λ1 = λ2. Otherwise,

replace K by K̃ = K∪{∞}, which is compact, and set (∞−z)−1 = 0. Then
we can again apply the complex Stone–Weierstraß theorem to conclude that
our ∗-subalgebra is equal to {f ∈ C(K̃)|f(∞) = 0} which is equivalent to
C∞(K). �

We say that two bounded operators A, B commute if

[A,B] = AB −BA = 0. (4.21)

If A or B is unbounded, we soon run into trouble with this definition since
the above expression might not even make sense for any nonzero vector (e.g.,
take B = 〈ϕ, .〉ψ with ψ 6∈ D(A)). To avoid this nuisance, we will replace A
by a bounded function of A. A good candidate is the resolvent. Hence if A
is self-adjoint and B is bounded, we will say that A and B commute if

[RA(z), B] = [RA(z∗), B] = 0 (4.22)

for one z ∈ ρ(A).

Lemma 4.5. Suppose A is self-adjoint and B is bounded. Then B commutes
with A if and only if

BA ⊆ AB. (4.23)

Moreover, in this case,

[f(A), B] = 0 (4.24)

for every bounded Borel function f . If f is unbounded, the claim holds for
every ψ ∈ D(f(A)) in the sense that Bf(A) ⊆ f(A)B.

Proof. First of all, (4.23) implies B(A − z) ⊆ (A − z)B for all z ∈ C.
Multiplying with RA(z) from the right, we get B = (A − z)BRA(z) for
z ∈ ρ(A), and multiplying this last relation with RA(z) from the left, we
finally get (4.22) for all z ∈ ρ(A).

Conversely, (4.22) tells us that (4.24) holds for every f in the ∗-sub-
algebra generated by RA(z). Since this subalgebra is dense in C∞(σ(A)),
the claim follows for all such f ∈ C∞(σ(A)). Next, fix ψ ∈ H and let f be
bounded. Choose a sequence fn ∈ C∞(σ(A)) converging to f in L2(R, dµψ).
Then

Bf(A)ψ = lim
n→∞

Bfn(A)ψ = lim
n→∞

fn(A)Bψ = f(A)Bψ.

If f is unbounded, let ψ ∈ D(f(A)) and choose fn as in (3.27). Then

f(A)Bψ = lim
n→∞

fn(A)Bψ = lim
n→∞

Bfn(A)ψ

shows f ∈ L2(R, dµBψ) (i.e., Bψ ∈ D(f(A))) and f(A)Bψ = Bf(A)ψ. �

In the special case where B is an orthogonal projection, we obtain
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Corollary 4.6. Let A be self-adjoint and H1 a closed subspace with corre-
sponding projector P1. Then H1 reduces A if and only if P1 and A commute.

Furthermore, note

Corollary 4.7. If A is self-adjoint and bounded, then (4.22) holds if and
only if (4.21) holds.

Proof. Since σ(A) is compact, we have λ ∈ C∞(σ(A)), and hence (4.21)
follows from (4.24) by our lemma. Conversely, since B commutes with every
polynomial of A, the claim follows from the Neumann series. �

As another consequence, we obtain

Theorem 4.8. Suppose A is self-adjoint and has simple spectrum. A bound-
ed operator B commutes with A if and only if B = f(A) for some bounded
Borel function.

Proof. Let ψ be a cyclic vector for A. By our unitary equivalence it is no
restriction to assume H = L2(R, dµψ). Then

Bg(λ) = Bg(λ) · 1 = g(λ)(B1)(λ)

since B commutes with the multiplication operator g(λ). Hence B is multi-
plication by f(λ) = (B1)(λ). �

The assumption that the spectrum of A is simple is crucial as the exam-
ple A = I shows. Note also that the functions exp(−itA) can also be used
instead of resolvents.

Lemma 4.9. Suppose A is self-adjoint and B is bounded. Then B commutes
with A if and only if

[e−iAt, B] = 0 (4.25)

for all t ∈ R.

Proof. It suffices to show [f̂(A), B] = 0 for f ∈ S(R), since these functions

are dense in C∞(R) by the complex Stone–Weierstraß theorem. Here f̂
denotes the Fourier transform of f ; see Section 7.1. But for such f we have

[f̂(A), B] =
1√
2π

[

∫
R
f(t)e−iAtdt,B] =

1√
2π

∫
R
f(t)[e−iAt, B]dt = 0

by Lemma 4.2. �

The extension to the case where B is self-adjoint and unbounded is
straightforward. We say that A and B commute in this case if

[RA(z1), RB(z2)] = [RA(z∗1), RB(z2)] = 0 (4.26)
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for one z1 ∈ ρ(A) and one z2 ∈ ρ(B) (the claim for z∗2 follows by taking
adjoints). From our above analysis it follows that this is equivalent to

[e−iAt, e−iBs] = 0, t, s ∈ R, (4.27)

respectively,
[f(A), g(B)] = 0, (4.28)

for arbitrary bounded Borel functions f and g. Note that in this case e−iAt

will leave the domain of A invariant and vice versa (show this).

Given a quantum mechanical system with Hamiltonian H, every observ-
able A commuting with H corresponds to a conserved quantity. In fact,
for ψ ∈ D(A) and ψ(t) = e−iHtψ, we see that the expectations

〈ψ(t), Aψ(t)〉 = 〈e−iHtψ,Ae−iHtψ〉 = 〈e−iHtψ, e−iHtAψ〉 = 〈ψ,Aψ〉 (4.29)

are independent of time.

Problem 4.4. Let A and B be self-adjoint. Show that A and B commute if
and only if the corresponding spectral projections PA(Ω) and PB(Ω) commute
for every Borel set Ω. In particular, Ran(PB(Ω)) reduces A and vice versa.

Problem 4.5. Let A and B be self-adjoint operators with pure point spec-
trum. Show that A and B commute if and only if they have a common
orthonormal basis of eigenfunctions.

Problem 4.6. Let A1, A2 be self-adjoint, and let B be bounded. Show that

BA1 ⊆ A2B

implies
Bf(A1) ⊆ f(A2)B

for every Borel function f .

4.3. Polar decomposition

Let A be a closed operator. Recall that, by Problem 2.12, A∗A is self-adjoint
and Q(A∗A) = D(A). Hence we can define the absolute value of an operator
via

|A| =
√
A∗A. (4.30)

A straightforward calculation shows

‖|A|ψ‖ = 〈ψ, |A|2ψ〉 = 〈ψ,A∗Aψ〉 = ‖Aψ‖, ψ ∈ D(|A|) = D(A), (4.31)

which in particular implies

Ker(A) = Ker(|A|) = Ran(|A|)⊥. (4.32)

As a consequence, the operator

U =

{
ϕ = |A|ψ 7→ Aψ if ϕ ∈ Ran(|A|),
ϕ 7→ 0 if ϕ ∈ Ker(|A|) (4.33)
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extends to a well-defined partial isometry; that is, U : Ker(U)⊥ → Ran(U)
is unitary, where Ker(U) = Ker(A) and Ran(U) = Ker(A∗)⊥. Equivalently,

U∗U = PKer(A), UU∗ = PKer(A∗), (4.34)

where PM is the projection onto the subspace M . In particular, we have

Theorem 4.10 (Polar decomposition). Every closed operator A admits a
polar decomposition

A = U |A| = |A∗|U, (4.35)

where U is a unitary from Ker(U) = Ker(A) to Ran(U) = Ker(A∗)⊥.

Proof. To get the second equality, use (Problem 2.3) A∗ = |A|U∗, implying
|A∗|2 = AA∗ = (U |A|U∗)(U |A|U∗), which shows |A∗| = U |A|U∗. �

As a simple consequence, we also obtain

Corollary 4.11. Let A be a closed operator with polar decomposition A =
U |A|. Then

A = U |A| = |A∗|U = UA∗U,

A∗ = U∗|A∗| = |A|U∗ = U∗AU∗,

|A| = U∗A = A∗U = U∗|A∗|U,
|A∗| = UA∗ = AU∗ = U |A|U∗.

Problem 4.7. Show Ran(A) = Ran(|A∗|).

Problem 4.8. Compute |A| for the rank one operator A = α〈ϕ, .〉ψ. Com-
pute |A∗| also.

Problem 4.9. Let f(λ), g(λ) be two Borel functions such that f(λ)g(λ) = λ
(for a.e. λ ∈ R). Then

A = g(|A∗|)Uf(|A|).
(Hint: Begin with A = g(|A∗|)f(|A∗|)U and use Problem 4.6.)

Problem 4.10. Let A be closed. Show that A is normal if and only if
|A| = |A∗|. (Hint: Problem 2.13.)

4.4. The min-max theorem

In many applications, a self-adjoint operator has a number of eigenvalues
below the bottom of the essential spectrum. The essential spectrum is ob-
tained from the spectrum by removing all discrete eigenvalues with finite
multiplicity (we will have a closer look at this in Section 6.2). In general,
there is no way of computing the lowest eigenvalues and their corresponding
eigenfunctions explicitly. However, one often has some idea about how the
eigenfunctions might approximately look.
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So suppose we have a normalized function ψ1 which is an approximation
for the eigenfunction ϕ1 of the lowest eigenvalue E1. Then by Theorem 2.20
we know that

〈ψ1, Aψ1〉 ≥ 〈ϕ1, Aϕ1〉 = E1. (4.36)

If we add some free parameters to ψ1, one can optimize them and obtain
quite good upper bounds for the first eigenvalue. This is known as the
Rayleigh–Ritz method.

But is there also something one can say about the next eigenvalues?
Suppose we know the first eigenfunction ϕ1. Then we can restrict A to
the orthogonal complement of ϕ1 and proceed as before: E2 will be the
infimum over all expectations restricted to this subspace. If we restrict to
the orthogonal complement of an approximating eigenfunction ψ1, there will
still be a component in the direction of ϕ1 left and hence the infimum of the
expectations will be lower than E2. Thus the optimal choice ψ1 = ϕ1 will
give the maximal value E2.

More precisely, let {ϕj}Nj=1 be an orthonormal basis for the space spanned
by the eigenfunctions corresponding to eigenvalues below the essential spec-
trum. Here the essential spectrum σess(A) is given by precisely those values
in the spectrum which are not isolated eigenvalues of finite multiplicity (see
Section 6.2). Assume they satisfy (A − Ej)ϕj = 0, where Ej ≤ Ej+1 are
the eigenvalues (counted according to their multiplicity). If the number of
eigenvalues N is finite, we set Ej = inf σess(A) for j > N and choose ϕj
orthonormal such that ‖(A− Ej)ϕj‖ ≤ ε.

Define

U(ψ1, . . . , ψn) = {ψ ∈ D(A)| ‖ψ‖ = 1, ψ ∈ span{ψ1, . . . , ψn}⊥}. (4.37)

(i) We have

inf
ψ∈U(ψ1,...,ψn−1)

〈ψ,Aψ〉 ≤ En +O(ε). (4.38)

In fact, set ψ =
∑n

j=1 αjϕj and choose αj such that ψ ∈ U(ψ1, . . . , ψn−1).
Then

〈ψ,Aψ〉 =
n∑
j=1

|αj |2Ej +O(ε) ≤ En +O(ε) (4.39)

and the claim follows.

(ii) We have

inf
ψ∈U(ϕ1,...,ϕn−1)

〈ψ,Aψ〉 ≥ En −O(ε). (4.40)

In fact, set ψ = ϕn.

Since ε can be chosen arbitrarily small, we have proven the following.
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Theorem 4.12 (Max-min). Let A be self-adjoint and let E1 ≤ E2 ≤ E3 · · ·
be the eigenvalues of A below the essential spectrum, respectively, the in-
fimum of the essential spectrum, once there are no more eigenvalues left.
Then

En = sup
ψ1,...,ψn−1

inf
ψ∈U(ψ1,...,ψn−1)

〈ψ,Aψ〉, (4.41)

where U(ψ1, . . . , ψn−1) is defined in (4.37).

Clearly the same result holds if D(A) is replaced by the quadratic form
domain Q(A) in the definition of U . In addition, as long as En is an eigen-
value, the sup and inf are in fact max and min, explaining the name.

Corollary 4.13. Suppose A and B are self-adjoint operators with A ≥ B
(i.e., A−B ≥ 0). Then En(A) ≥ En(B).

Similarly we obtain (Problem 4.11):

Theorem 4.14 (Min-max). Let A be self-adjoint and let E1 ≤ E2 ≤ E3 · · ·
be the eigenvalues of A below the essential spectrum, respectively, the in-
fimum of the essential spectrum, once there are no more eigenvalues left.
Then

En = inf
ψ1,...,ψn−1

sup
ψ∈V (ψ1,...,ψn−1)

〈ψ,Aψ〉, (4.42)

where

V (ψ1, . . . , ψn) = {ψ ∈ D(A)| ‖ψ‖ = 1, ψ ∈ span{ψ1, . . . , ψn}}. (4.43)

Problem 4.11. Prove Theorem 4.14.

Problem 4.12. Suppose A, An are self-adjoint, bounded and An → A.
Then Ek(An)→ Ek(A). (Hint: ‖A−An‖ ≤ ε is equivalent to A−ε ≤ An ≤
A+ ε.)

4.5. Estimating eigenspaces

Next, we show that the dimension of the range of PA(Ω) can be estimated
if we have some functions which lie approximately in this space.

Theorem 4.15. Suppose A is a self-adjoint operator and ψj, 1 ≤ j ≤ k,
are linearly independent elements of H.

(i) Let λ ∈ R, ψj ∈ Q(A). If

〈ψ,Aψ〉 < λ‖ψ‖2 (4.44)

for any nonzero linear combination ψ =
∑k

j=1 cjψj, then

dim Ran PA((−∞, λ)) ≥ k. (4.45)

Similarly, 〈ψ,Aψ〉 > λ‖ψ‖2 implies dim Ran PA((λ,∞)) ≥ k.
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(ii) Let λ1 < λ2, ψj ∈ D(A). If

‖(A− λ2 + λ1

2
)ψ‖ < λ2 − λ1

2
‖ψ‖ (4.46)

for any nonzero linear combination ψ =
∑k

j=1 cjψj, then

dim Ran PA((λ1, λ2)) ≥ k. (4.47)

Proof. (i) Let M = span{ψj} ⊆ H. We claim dimPA((−∞, λ))M =
dimM = k. For this it suffices to show KerPA((−∞, λ))|M = {0}. Sup-
pose PA((−∞, λ))ψ = 0, ψ 6= 0. Then we see that for any nonzero linear
combination ψ,

〈ψ,Aψ〉 =

∫
R
η dµψ(η) =

∫
[λ,∞)

η dµψ(η)

≥ λ
∫

[λ,∞)
dµψ(η) = λ‖ψ‖2.

This contradicts our assumption (4.44).

(ii) This is just the previous case (i) applied to (A− (λ2 + λ1)/2)2 with
λ = (λ2 − λ1)2/4. �

Another useful estimate is

Theorem 4.16 (Temple’s inequality). Let λ1 < λ2 and ψ ∈ D(A) with
‖ψ‖ = 1 such that

λ = 〈ψ,Aψ〉 ∈ (λ1, λ2). (4.48)

If there is one isolated eigenvalue E between λ1 and λ2, that is, σ(A) ∩
(λ1, λ2) = {E}, then

λ− ‖(A− λ)ψ‖2

λ2 − λ
≤ E ≤ λ+

‖(A− λ)ψ‖2

λ− λ1
. (4.49)

Proof. First of all, we can assume λ = 0 if we replace A by A−λ. To prove
the first inequality, observe that by assumption (E, λ2) ⊂ ρ(A) and hence the
spectral theorem implies (A−λ2)(A−E) ≥ 0. Thus 〈ψ, (A−λ2)(A−E)〉 =
‖Aψ‖2 + λ2E ≥ 0 and the first inequality follows after dividing by λ2 > 0.
Similarly, (A− λ1)(A− E) ≥ 0 implies the second inequality. �

Note that the last inequality only provides additional information if
‖(A− λ)ψ‖2 ≤ (λ2 − λ)(λ− λ1).

A typical application is if E = E0 is the lowest eigenvalue. In this case
any normalized trial function ψ will give the bound E0 ≤ 〈ψ,Aψ〉. If, in
addition, we also have some estimate λ2 ≤ E1 for the second eigenvalue E1,
then Temple’s inequality can give a bound from below. For λ1 we can choose
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any value λ1 < E0; in fact, if we let λ1 → −∞, we just recover the bound
we already know.

4.6. Tensor products of operators

Recall the definition of the tensor product of Hilbert space from Section 1.4.
Suppose Aj , 1 ≤ j ≤ n, are (essentially) self-adjoint operators on Hj . For
every monomial λn1

1 · · ·λnnn , we can define

(An1
1 ⊗ · · · ⊗A

nn
n )ψ1 ⊗ · · · ⊗ ψn = (An1

1 ψ1)⊗ · · · ⊗ (Annn ψn), ψj ∈ D(A
nj
j ),

(4.50)
and extend this definition by linearity to the span of all such functions
(check that this definition is well-defined by showing that the corresponding
operator on F(H1, . . . ,Hn) vanishes on N (H1, . . . ,Hn)). Hence for every
polynomial P (λ1, . . . , λn) of degree N , we obtain an operator

P (A1, . . . , An)ψ1 ⊗ · · · ⊗ ψn, ψj ∈ D(ANj ), (4.51)

defined on the set

D = span{ψ1 ⊗ · · · ⊗ ψn |ψj ∈ D(ANj )}. (4.52)

Moreover, if P is real-valued, then the operator P (A1, . . . , An) on D is sym-
metric and we can consider its closure, which will again be denoted by
P (A1, . . . , An).

Theorem 4.17. Suppose Aj, 1 ≤ j ≤ n, are self-adjoint operators on Hj
and let P (λ1, . . . , λn) be a real-valued polynomial and define P (A1, . . . , An)
as above.

Then P (A1, . . . , An) is self-adjoint and its spectrum is the closure of the
range of P on the product of the spectra of the Aj; that is,

σ(P (A1, . . . , An)) = P (σ(A1), . . . , σ(An)). (4.53)

Proof. By the spectral theorem, it is no restriction to assume that Aj is
multiplication by λj on L2(R, dµj) and P (A1, . . . , An) is hence multiplication
by P (λ1, . . . , λn) on L2(Rn, dµ1 × · · · × dµn). Since D contains the set of
all functions ψ1(λ1) · · ·ψn(λn) for which ψj ∈ L2

c(R, dµj), it follows that the
domain of the closure of P contains L2

c(Rn, dµ1 × · · · × dµn). Hence P is
the maximally defined multiplication operator by P (λ1, . . . , λn), which is
self-adjoint.

Now let λ = P (λ1, . . . , λn) with λj ∈ σ(Aj). Then there exist Weyl
sequences ψj,k ∈ D(ANj ) with (Aj − λj)ψj,k → 0 as k → ∞. Consequently,

(P−λ)ψk → 0, where ψk = ψ1,k⊗· · ·⊗ψ1,k and hence λ ∈ σ(P ). Conversely,

if λ 6∈ P (σ(A1), . . . , σ(An)), then |P (λ1, . . . , λn) − λ| ≥ ε for a.e. λj with
respect to µj and hence (P − λ)−1 exists and is bounded; that is, λ ∈
ρ(P ). �



144 4. Applications of the spectral theorem

The two main cases of interest are A1 ⊗A2, in which case

σ(A1 ⊗A2) = σ(A1)σ(A2) = {λ1λ2|λj ∈ σ(Aj)}, (4.54)

and A1 ⊗ I + I⊗A2, in which case

σ(A1 ⊗ I + I⊗A2) = σ(A1) + σ(A2) = {λ1 + λ2|λj ∈ σ(Aj)}. (4.55)

Problem 4.13. Show that the closure can be omitted in (4.55) if at least
one operator is bounded and in (4.54) if both operators are bounded.



Chapter 5

Quantum dynamics

As in the finite dimensional case, the solution of the Schrödinger equation

i
d

dt
ψ(t) = Hψ(t) (5.1)

is given by

ψ(t) = exp(−itH)ψ(0). (5.2)

A detailed investigation of this formula will be our first task. Moreover, in
the finite dimensional case, the dynamics is understood once the eigenvalues
are known and the same is true in our case once we know the spectrum. Note
that, like any Hamiltonian system from classical mechanics, our system is
not hyperbolic (i.e., the spectrum is not away from the real axis) and hence
simple results such as all solutions tend to the equilibrium position cannot
be expected.

5.1. The time evolution and Stone’s theorem

In this section, we want to have a look at the initial value problem associated
with the Schrödinger equation (2.12) in the Hilbert space H. If H is one-
dimensional (and hence A is a real number), the solution is given by

ψ(t) = e−itAψ(0). (5.3)

Our hope is that this formula also applies in the general case and that we
can reconstruct a one-parameter unitary group U(t) from its generator A
(compare (2.11)) via U(t) = exp(−itA). We first investigate the family of
operators exp(−itA).

Theorem 5.1. Let A be self-adjoint and let U(t) = exp(−itA).

(i) U(t) is a strongly continuous one-parameter unitary group.

145
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(ii) The limit limt→0
1
t (U(t)ψ − ψ) exists if and only if ψ ∈ D(A), in

which case limt→0
1
t (U(t)ψ − ψ) = −iAψ.

(iii) U(t)D(A) = D(A) and AU(t) = U(t)A.

Proof. The group property (i) follows directly from Theorem 3.1 and the
corresponding statements for the function exp(−itλ). To prove strong con-
tinuity, observe that

lim
t→t0
‖e−itAψ − e−it0Aψ‖2 = lim

t→t0

∫
R
|e−itλ − e−it0λ|2dµψ(λ)

=

∫
R

lim
t→t0
|e−itλ − e−it0λ|2dµψ(λ) = 0

by the dominated convergence theorem.

Similarly, if ψ ∈ D(A), we obtain

lim
t→0
‖1

t
(e−itAψ − ψ) + iAψ‖2 = lim

t→0

∫
R
|1
t
(e−itλ − 1) + iλ|2dµψ(λ) = 0

since |e−itλ − 1| ≤ |tλ|. Now let Ã be the generator defined as in (2.11).

Then Ã is a symmetric extension of A since we have

〈ϕ, Ãψ〉 = lim
t→0
〈ϕ, i

t
(U(t)− 1)ψ〉 = lim

t→0
〈 i

−t
(U(−t)− 1)ϕ,ψ〉 = 〈Ãϕ, ψ〉

and hence Ã = A by Corollary 2.2. This settles (ii).

To see (iii), replace ψ → U(s)ψ in (ii). �

For our original problem, this implies that formula (5.3) is indeed the
solution to the initial value problem of the Schrödinger equation

i
d

dt
ψ(t) = Aψ(t), ψ(0) = ψ0 ∈ D(A). (5.4)

Here ψ : R→ H is said to be differentiable if

d

dt
ψ(t) = lim

ε→0

ψ(t+ ε)− ψ(t)

ε
(5.5)

exists for all t ∈ R. In fact, it is the only solution.

Lemma 5.2. The function ψ(t) = U(t)ψ0 is the only solution of (5.4).

Proof. Let ψ(t) be a solution and consider ϕ(t) = U(−t)ψ(t). Then a
straightforward calculation shows that ϕ(t) is differentiable with

d

dt
ϕ(t) = lim

ε→0

1

ε

((
U(−t+ ε)− U(t)

)(
ψ(t)− εiAψ(t) + o(ε)

)
+ U(t)

(
ψ(t+ ε)− ψ(t)

))
= 0.

Hence (Problem 5.2), ϕ(t) = ϕ(0) = ψ0, implying ψ(t) = U(t)ψ0. �
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Moreover,

〈U(t)ψ,AU(t)ψ〉 = 〈U(t)ψ,U(t)Aψ〉 = 〈ψ,Aψ〉 (5.6)

shows that the expectations of A are time independent. This corresponds
to conservation of energy.

On the other hand, the generator of the time evolution of a quantum
mechanical system should always be a self-adjoint operator since it corre-
sponds to an observable (energy). Moreover, there should be a one-to-one
correspondence between the unitary group and its generator. This is ensured
by Stone’s theorem.

Theorem 5.3 (Stone). Let U(t) be a weakly continuous one-parameter uni-
tary group. Then its generator A is self-adjoint and U(t) = exp(−itA).

Proof. First of all, observe that weak continuity together with item (iv) of
Lemma 1.12 shows that U(t) is in fact strongly continuous.

Next we show that A is densely defined. Pick ψ ∈ H and set

ψτ =

∫ τ

0
U(t)ψdt

(the integral is defined as in Section 4.1), implying limτ→0 τ
−1ψτ = ψ. More-

over,

1

t
(U(t)ψτ − ψτ ) =

1

t

∫ t+τ

t
U(s)ψds− 1

t

∫ τ

0
U(s)ψds

=
1

t

∫ τ+t

τ
U(s)ψds− 1

t

∫ t

0
U(s)ψds

=
1

t
U(τ)

∫ t

0
U(s)ψds− 1

t

∫ t

0
U(s)ψds→ U(τ)ψ − ψ

as t→ 0 shows ψτ ∈ D(A). As in the proof of the previous theorem, we can
show that A is symmetric and that U(t)D(A) = D(A).

Next, let us prove that A is essentially self-adjoint. By Corollary 2.8 it
suffices to prove Ker(A∗ − z∗) = {0} for z ∈ C\R. Suppose A∗ϕ = z∗ϕ.
Then for each ψ ∈ D(A) we have

d

dt
〈ϕ,U(t)ψ〉 = 〈ϕ,−iAU(t)ψ〉 = −i〈A∗ϕ,U(t)ψ〉 = −iz〈ϕ,U(t)ψ〉

and hence 〈ϕ,U(t)ψ〉 = exp(−izt)〈ϕ,ψ〉. Since the left-hand side is bounded
for all t ∈ R and the exponential on the right-hand side is not, we must have
〈ϕ,ψ〉 = 0 implying ϕ = 0 since D(A) is dense.

So A is essentially self-adjoint and we can introduce V (t) = exp(−itA).
We are done if we can show U(t) = V (t).
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Let ψ ∈ D(A) and abbreviate ψ(t) = (U(t)− V (t))ψ. Then

lim
s→0

ψ(t+ s)− ψ(t)

s
= iAψ(t)

and hence d
dt‖ψ(t)‖2 = 2 Re〈ψ(t), iAψ(t)〉 = 0. Since ψ(0) = 0, we have

ψ(t) = 0 and hence U(t) and V (t) coincide on D(A). Furthermore, since
D(A) is dense, we have U(t) = V (t) by continuity. �

As an immediate consequence of the proof, we also note the following
useful criterion.

Corollary 5.4. Suppose D ⊆ D(A) is dense and invariant under U(t).
Then A is essentially self-adjoint on D.

Proof. As in the above proof, it follows that 〈ϕ,ψ〉 = 0 for every ψ ∈ D
and ϕ ∈ Ker(A∗ − z∗). �

Note that by Lemma 4.9 two strongly continuous one-parameter groups
commute,

[e−itA, e−isB] = 0, (5.7)

if and only if the generators commute.

Clearly, for a physicist, one of the goals must be to understand the time
evolution of a quantum mechanical system. We have seen that the time
evolution is generated by a self-adjoint operator, the Hamiltonian, and is
given by a linear first order differential equation, the Schrödinger equation.
To understand the dynamics of such a first order differential equation, one
must understand the spectrum of the generator. Some general tools for this
endeavor will be provided in the following sections.

Problem 5.1. Let H = L2(0, 2π) and consider the one-parameter unitary
group given by U(t)f(x) = f(x− t mod 2π). What is the generator of U?

Problem 5.2. Suppose ψ(t) is differentiable on R. Show that

‖ψ(t)− ψ(s)‖ ≤M |t− s|, M = sup
τ∈[s,t]

‖dψ
dt

(τ)‖.

(Hint: Consider f(τ) = ‖ψ(τ)−ψ(s)‖−M̃(τ−s) for τ ∈ [s, t]. Suppose τ0 is

the largest τ for which the claim holds with M̃ > M and find a contradiction
if τ0 < t.)

Problem 5.3. Consider the abstract wave equation

d2

dt2
ψ(t) +Hψ(t) = 0, (5.8)
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where H ≥ 0 is some nonnegative operator. If H = −∆ is the free
Schrödinger operator (cf. Section 7.3), then (5.8) is the usual wave equa-
tion in Rd.

Introducing ϕ = (ψ, ddtψ), equation (5.8) can be written as an equivalent
first order system

i
d

dt
ϕ(t) = Hϕ(t), H =

(
0 1
−H 0

)
. (5.9)

Show that

ϕ(t) = V (t)ϕ(0) (5.10)

solves (5.9) provided ϕ(0) = D(H)⊕D(H1/2) with

V (t) = c(tH1/2)

(
1 0
0 1

)
+ t s(tH1/2)

(
0 1
−H 0

)
,

D(V (t)) = D(H1/2)⊕ H,

where c(λ) = cos(λ) and s(λ) = sin(λ)
λ .

In particular, show that V (t) is a strongly continuous one-parameter
group (which, however, is not unitary).

Problem 5.4. To make V (t) from the previous example unitary, we will
change the underlying Hilbert space.

Let A be some closed operator such that H = A∗A (cf. Problem 2.12).

(For example, one could choose A = |H|1/2 but for given H a factorization

H = A∗A might be easier to find than |H|1/2.)

Suppose Ker(A) = {0} and let H0 = Ker(A∗)⊥ = Ran(A) ⊆ H. More-
over, let H1 be the Hilbert space obtained from D(A) by taking the completion

with respect to the norm ‖ψ‖1 = ‖Aψ‖ = ‖H1/2ψ‖ (note that ‖.‖1 will be
equivalent to the graph norm if 0 ∈ ρ(A) and H1 will be just D(A) in this
case).

Show that H is self-adjoint in H1⊕H when defined on D(H) = D(A∗A)⊕
D(A) by showing that it is unitarily equivalent to a supersymmetric Dirac
operator (cf. Problem 8.4).

More precisely, show that

U =

(
0 1
iA 0

)
extends to a unitary map U : H1⊗H→ H⊗H0 and show that UHU−1 = D,
where D is given by

D =

(
0 A∗

A 0

)
, D(D) = (D(A∗) ∩ H0)⊕D(A) ⊆ H0 ⊕ H.
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In particular, conclude that V (t) defined in (5.10) extends to a unitary group
in H1 ⊕ H and hence the solution of (5.8) preserves the energy

‖Aψ(t)‖2 + ‖ d
dt
ψ(t)‖2.

Problem 5.5. How can the case Ker(A) = Ker(H) 6= {0} be reduced to the
case Ker(A) = Ker(H) = {0} in the previous problem?

5.2. The RAGE theorem

Now, let us discuss why the decomposition of the spectrum introduced in
Section 3.3 is of physical relevance. Let ‖ϕ‖ = ‖ψ‖ = 1. The vector 〈ϕ,ψ〉ϕ
is the projection of ψ onto the (one-dimensional) subspace spanned by ϕ.
Hence |〈ϕ,ψ〉|2 can be viewed as the part of ψ which is in the state ϕ. The
first question one might raise is, how does

|〈ϕ,U(t)ψ〉|2, U(t) = e−itA, (5.11)

behave as t→∞? By the spectral theorem,

µ̂ϕ,ψ(t) = 〈ϕ,U(t)ψ〉 =

∫
R

e−itλdµϕ,ψ(λ) (5.12)

is the Fourier transform of the measure µϕ,ψ. Thus our question is an-
swered by Wiener’s theorem.

Theorem 5.5 (Wiener). Let µ be a finite complex Borel measure on R and
let

µ̂(t) =

∫
R

e−itλdµ(λ) (5.13)

be its Fourier transform. Then the Cesàro time average of µ̂(t) has the limit

lim
T→∞

1

T

∫ T

0
|µ̂(t)|2dt =

∑
λ∈R
|µ({λ})|2, (5.14)

where the sum on the right-hand side is finite.

Proof. By Fubini, we have

1

T

∫ T

0
|µ̂(t)|2dt =

1

T

∫ T

0

∫
R

∫
R

e−i(x−y)tdµ(x)dµ∗(y)dt

=

∫
R

∫
R

(
1

T

∫ T

0
e−i(x−y)tdt

)
dµ(x)dµ∗(y).

The function in parentheses is bounded by one and converges pointwise to
χ{0}(x − y) as T → ∞. Thus, by the dominated convergence theorem, the
limit of the above expression is given by∫

R

∫
R
χ{0}(x− y)dµ(x)dµ∗(y) =

∫
R
µ({y})dµ∗(y) =

∑
y∈R
|µ({y})|2,
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which finishes the proof. �

To apply this result to our situation, observe that the subspaces Hac,
Hsc, and Hpp are invariant with respect to time evolution since P xxU(t) =
χMxx(A) exp(−itA) = exp(−itA)χMxx(A) = U(t)P xx, xx ∈ {ac, sc, pp}.
Moreover, if ψ ∈ Hxx, we have P xxψ = ψ, which shows 〈ϕ, f(A)ψ〉 =
〈ϕ, P xxf(A)ψ〉 = 〈P xxϕ, f(A)ψ〉, implying dµϕ,ψ = dµPxxϕ,ψ. Thus if µψ is
ac, sc, or pp, so is µϕ,ψ for every ϕ ∈ H.

That is, if ψ ∈ Hc = Hac ⊕ Hsc, then the Cesàro mean of |〈ϕ,U(t)ψ〉|2
tends to zero. In other words, the average of the probability of finding the
system in any prescribed state tends to zero if we start in the continuous
subspace Hc of A.

If ψ ∈ Hac, then dµϕ,ψ is absolutely continuous with respect to Lebesgue
measure and thus µ̂ϕ,ψ(t) is continuous and tends to zero as |t| → ∞. In
fact, this follows from the Riemann-Lebesgue lemma (see Lemma 7.7 below).

Now we want to draw some additional consequences from Wiener’s the-
orem. This will eventually yield a dynamical characterization of the contin-
uous and pure point spectrum due to Ruelle, Amrein, Georgescu, and Enß.
But first we need a few definitions.

An operator K ∈ L(H) is called a finite rank operator if its range is
finite dimensional. The dimension

rank(K) = dim Ran(K)

is called the rank of K. If {ϕj}nj=1 is an orthonormal basis for Ran(K), we
have

Kψ =
n∑
j=1

〈ϕj ,Kψ〉ϕj =
n∑
j=1

〈ψj , ψ〉ϕj , (5.15)

where ψj = K∗ϕj . The elements ψj are linearly independent since Ran(K) =

Ker(K∗)⊥. Hence every finite rank operator is of the form (5.15). In addi-
tion, the adjoint of K is also finite rank and is given by

K∗ψ =
n∑
j=1

〈ϕj , ψ〉ψj . (5.16)

The closure of the set of all finite rank operators in L(H) is called the set
of compact operators C(H). It is straightforward to verify (Problem 5.6)

Lemma 5.6. The set of all compact operators C(H) is a closed ∗-ideal in
L(H).

There is also a weaker version of compactness which is useful for us. The
operator K is called relatively compact with respect to A if

KRA(z) ∈ C(H) (5.17)
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for one z ∈ ρ(A). By the first resolvent formula this then follows for all
z ∈ ρ(A). In particular, we have D(A) ⊆ D(K).

Now let us return to our original problem.

Theorem 5.7. Let A be self-adjoint and suppose K is relatively compact.
Then

lim
T→∞

1

T

∫ T

0
‖Ke−itAP cψ‖2dt = 0 and lim

t→∞
‖Ke−itAP acψ‖ = 0

(5.18)
for every ψ ∈ D(A). If, in addition, K is bounded, then the result holds for
every ψ ∈ H.

Proof. Let ψ ∈ Hc, respectively, ψ ∈ Hac, and drop the projectors. Abbre-
viate ψ(t) = e−itAψ. Then, given a finite rank operator K as in (5.15), the
claim follows from

‖Kψ(t)‖2 =
∥∥∥ n∑
j=1

〈ψj , ψ(t)〉ϕj
∥∥∥2

=
n∑
j=1

|〈ψj , ψ(t)〉|2

together with Wiener’s theorem, respectively, the Riemann-Lebesgue lemma.
Hence it holds for every finite rank operator K.

If K is compact, there is a sequence Kn of finite rank operators such
that ‖K −Kn‖ ≤ 1/n and hence

‖Kψ(t)‖2 ≤
(
‖Knψ(t)‖+

1

n
‖ψ‖

)2 ≤ 2‖Knψ(t)‖2 +
2

n2
‖ψ‖2.

Thus the claim holds for every compact operator K.

If ψ ∈ D(A), we can set ψ = (A − i)−1ϕ, where ϕ ∈ Hc if and only if
ψ ∈ Hc (since Hc reduces A). Since K(A + i)−1 is compact by assumption,
the claim can be reduced to the previous situation. If K is also bounded,
we can find a sequence ψn ∈ D(A) such that ‖ψ − ψn‖ ≤ 1/n and hence

‖Ke−itAψ‖ ≤ ‖Ke−itAψn‖+
1

n
‖K‖,

concluding the proof. �

With the help of this result we can now prove an abstract version of the
RAGE theorem.

Theorem 5.8 (RAGE). Let A be self-adjoint. Suppose Kn ∈ L(H) is a se-
quence of relatively compact operators which converges strongly to the iden-
tity. Then

Hc = {ψ ∈ H| lim
n→∞

lim
T→∞

1

T

∫ T

0
‖Kne−itAψ‖dt = 0},

Hpp = {ψ ∈ H| lim
n→∞

sup
t≥0
‖(I−Kn)e−itAψ‖ = 0}. (5.19)



5.2. The RAGE theorem 153

Proof. Abbreviate ψ(t) = exp(−itA)ψ. We begin with the first equation.

Let ψ ∈ Hc. Then

1

T

∫ T

0
‖Knψ(t)‖dt ≤

(
1

T

∫ T

0
‖Knψ(t)‖2dt

)1/2

→ 0

by Cauchy–Schwarz and the previous theorem. Conversely, if ψ 6∈ Hc, we
can write ψ = ψc + ψpp. By our previous estimate it suffices to show
‖Knψ

pp(t)‖ ≥ ε > 0 for n large. In fact, we even claim

lim
n→∞

sup
t≥0
‖Knψ

pp(t)− ψpp(t)‖ = 0. (5.20)

By the spectral theorem, we can write ψpp(t) =
∑

j αj(t)ψj , where the ψj
are orthonormal eigenfunctions and αj(t) = exp(−itλj)αj . Truncate this
expansion after N terms. Then this part converges uniformly to the desired
limit by strong convergence of Kn. Moreover, by Lemma 1.14, we have
‖Kn‖ ≤ M , and hence the error can be made arbitrarily small by choosing
N large.

Now let us turn to the second equation. If ψ ∈ Hpp, the claim follows
by (5.20). Conversely, if ψ 6∈ Hpp, we can write ψ = ψc + ψpp and by our
previous estimate it suffices to show that ‖(I−Kn)ψc(t)‖ does not tend to
0 as n→∞. If it did, we would have

0 = lim
T→∞

1

T

∫ T

0
‖(I−Kn)ψc(t)‖dt

≥ ‖ψc(t)‖ − lim
T→∞

1

T

∫ T

0
‖Knψ

c(t)‖dt = ‖ψc(t)‖,

a contradiction. �

In summary, regularity properties of spectral measures are related to
the long-time behavior of the corresponding quantum mechanical system.
However, a more detailed investigation of this topic is beyond the scope of
this manuscript. For a survey containing several recent results, see [35].

It is often convenient to treat the observables as time dependent rather
than the states. We set

K(t) = eitAKe−itA (5.21)

and note

〈ψ(t),Kψ(t)〉 = 〈ψ,K(t)ψ〉, ψ(t) = e−itAψ. (5.22)

This point of view is often referred to as the Heisenberg picture in the
physics literature. If K is unbounded, we will assume D(A) ⊆ D(K) such
that the above equations make sense at least for ψ ∈ D(A). The main
interest is the behavior of K(t) for large t. The strong limits are called
asymptotic observables if they exist.
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Theorem 5.9. Suppose A is self-adjoint and K is relatively compact. Then

lim
T→∞

1

T

∫ T

0
eitAKe−itAψdt =

∑
λ∈σp(A)

PA({λ})KPA({λ})ψ, ψ ∈ D(A).

(5.23)
If K is in addition bounded, the result holds for every ψ ∈ H.

Proof. We will assume that K is bounded. To obtain the general result,
use the same trick as before and replace K by KRA(z). Write ψ = ψc+ψpp.
Then

lim
T→∞

1

T
‖
∫ T

0
K(t)ψcdt‖ ≤ lim

T→∞

1

T

∫ T

0
‖K(t)ψcdt‖ = 0

by Theorem 5.7. As in the proof of the previous theorem, we can write
ψpp =

∑
j αjψj and hence∑
j

αj
1

T

∫ T

0
K(t)ψjdt =

∑
j

αj

(
1

T

∫ T

0
eit(A−λj)dt

)
Kψj .

As in the proof of Wiener’s theorem, we see that the operator in parentheses
tends to PA({λj}) strongly as T →∞. Since this operator is also bounded
by 1 for all T , we can interchange the limit with the summation and the
claim follows. �

We also note the following corollary.

Corollary 5.10. Under the same assumptions as in the RAGE theorem,
we have

lim
n→∞

lim
T→∞

1

T

∫ T

0
eitAKne−itAψdt = P ppψ, (5.24)

respectively,

lim
n→∞

lim
T→∞

1

T

∫ T

0
eitA(I−Kn)e−itAψdt = P cψ. (5.25)

Problem 5.6. Prove Lemma 5.6.

Problem 5.7 (Mean ergodic theorem). Show

lim
T→∞

1

T

∫ T

0
〈ϕ, eitAψ〉 = 〈ϕ, PA({0})ψ〉

and conclude

s-lim
T→∞

1

T

∫ T

0
eitAdt = PA({0}).

(Hint: Lemma 1.12 (iv).)

Problem 5.8. Prove Corollary 5.10.
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Problem 5.9. A finite measure is called a Rajchman measure if it sat-
isfies

lim
t→∞

µ̂(t) = 0. (5.26)

Note that by the Riemann–Lebesgue lemma (cf. Lemma 7.7), every absolutely
continuous measure is Rajchman. Moreover, by the Wiener theorem (cf.
Theorem 5.5), every Rajchman measure is continuous (however, there are
examples which show that the converse of both claims is not true).

Let A be self-adjoint. Show that the set of all vectors for which the
spectral measure is a Rajchman measure,

Hrc = {ψ ∈ H| lim
t→∞
〈ψ, e−itAψ〉 = 0} ⊆ Hac, (5.27)

is a closed subspace which is invariant under e−isA.

(Hint: First show ψ ∈ Hrc if and only if limt→∞〈ϕ, e−itAψ〉 = 0 for every

ϕ ∈ H. In fact, first show this for ϕ ∈ {e−isAψ|s ∈ R} and then extend it to
the general case.)

Problem 5.10. Under the same assumptions as for Theorem 5.7, show

lim
t→∞
‖Ke−itAP rcψ‖ = 0,

where P rc is the projector onto Hrc from the previous problem.

5.3. The Trotter product formula

In many situations the operator is of the form A + B, where eitA and eitB

can be computed explicitly. Since A and B will not commute in general, we
cannot obtain eit(A+B) from eitAeitB. However, we at least have

Theorem 5.11 (Trotter product formula). Suppose A, B, and A + B are
self-adjoint. Then

eit(A+B) = s-lim
n→∞

(
ei t
n
A ei t

n
B
)n
, t ∈ R. (5.28)

Proof. First of all, note that we have(
eiτAeiτB

)n − eit(A+B)

=

n−1∑
j=0

(
eiτA eiτB

)n−1−j (
eiτA eiτB − eiτ(A+B)

)(
eiτ(A+B)

)j
,

where τ = t
n , and hence

‖(eiτAeiτB)n − eit(A+B)ψ‖ ≤ |t| max
|s|≤|t|

Fτ (s),

where

Fτ (s) = ‖1

τ
(eiτA eiτB − eiτ(A+B))eis(A+B)ψ‖.
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Now for ψ ∈ D(A+B) = D(A) ∩D(B), we have

1

τ
(eiτA eiτB − eiτ(A+B))ψ → iAψ + iBψ − i(A+B)ψ = 0

as τ → 0. So limτ→0 Fτ (s) = 0 at least pointwise, but we need this uniformly
with respect to s ∈ [−|t|, |t|].

Pointwise convergence implies

‖1

τ
(eiτA eiτB − eiτ(A+B))ψ‖ ≤ C(ψ)

and, since D(A+B) is a Hilbert space when equipped with the graph norm
‖ψ‖2Γ(A+B) = ‖ψ‖2 + ‖(A+B)ψ‖2, we can invoke the uniform boundedness

principle to obtain

‖1

τ
(eiτA eiτB − eiτ(A+B))ψ‖ ≤ C‖ψ‖Γ(A+B).

Now

|Fτ (s)− Fτ (r)| ≤ ‖1

τ
(eiτA eiτB − eiτ(A+B))(eis(A+B) − eir(A+B))ψ‖

≤ C‖(eis(A+B) − eir(A+B))ψ‖Γ(A+B)

shows that Fτ (.) is uniformly continuous and the claim follows by a standard
ε
2 argument. �

If the operators are semi-bounded from below, the same proof shows

Theorem 5.12 (Trotter product formula). Suppose A, B, and A + B are
self-adjoint and semi-bounded from below. Then

e−t(A+B) = s-lim
n→∞

(
e−

t
n
A e−

t
n
B
)n
, t ≥ 0. (5.29)

Problem 5.11. Prove Theorem 5.12.



Chapter 6

Perturbation theory for
self-adjoint operators

The Hamiltonian of a quantum mechanical system is usually the sum of
the kinetic energy H0 (free Schrödinger operator) plus an operator V cor-
responding to the potential energy. Since H0 is easy to investigate, one
usually tries to consider V as a perturbation of H0. This will only work
if V is small with respect to H0. Hence we study such perturbations of
self-adjoint operators next.

6.1. Relatively bounded operators and the Kato–Rellich
theorem

An operator B is called A bounded or relatively bounded with respect
to A if D(A) ⊆ D(B) and if there are constants a, b ≥ 0 such that

‖Bψ‖ ≤ a‖Aψ‖+ b‖ψ‖, ψ ∈ D(A). (6.1)

The infimum of all constants a for which a corresponding b exists such that
(6.1) holds is called the A-bound of B.

The triangle inequality implies

Lemma 6.1. Suppose Bj, j = 1, 2, are A bounded with respective A-bounds
ai, i = 1, 2. Then α1B1 + α2B2 is also A bounded with A-bound less than
|α1|a1 + |α2|a2. In particular, the set of all A bounded operators forms a
vector space.

There are also the following equivalent characterizations:

157
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Lemma 6.2. Suppose A is closed with nonempty resolvent set and B is
closable. Then the following are equivalent:

(i) B is A bounded.

(ii) D(A) ⊆ D(B).

(iii) BRA(z) is bounded for one (and hence for all) z ∈ ρ(A).

Moreover, the A-bound of B is no larger than infz∈ρ(A) ‖BRA(z)‖.

Proof. (i) ⇒ (ii) is true by definition. (ii) ⇒ (iii) since BRA(z) is a closed
(Problem 2.9) operator defined on all of H and hence bounded by the closed
graph theorem (Theorem 2.9). To see (iii) ⇒ (i), let ψ ∈ D(A). Then

‖Bψ‖ = ‖BRA(z)(A− z)ψ‖ ≤ a‖(A− z)ψ‖ ≤ a‖Aψ‖+ (a|z|)‖ψ‖,

where a = ‖BRA(z)‖. Finally, note that if BRA(z) is bounded for one
z ∈ ρ(A), it is bounded for all z ∈ ρ(A) by the first resolvent formula. �

Example. Let A be the self-adjoint operator A = − d2

dx2
, D(A) = {f ∈

H2[0, 1]|f(0) = f(1) = 0} in the Hilbert space L2(0, 1). If we want to add a
potential represented by a multiplication operator with a real-valued (mea-
surable) function q, then q will be relatively bounded if q ∈ L2(0, 1): Indeed,
since all functions in D(A) are continuous on [0, 1] and hence bounded, we
clearly have D(A) ⊂ D(q) in this case. �

We are mainly interested in the situation where A is self-adjoint and B
is symmetric. Hence we will restrict our attention to this case.

Lemma 6.3. Suppose A is self-adjoint and B is relatively bounded. The
A-bound of B is given by

lim
λ→∞

‖BRA(±iλ)‖. (6.2)

If A is bounded from below, we can also replace ±iλ by −λ.

Proof. Let ϕ = RA(±iλ)ψ, λ > 0, and let a∞ be the A-bound of B. Then
(use the spectral theorem to estimate the norms)

‖BRA(±iλ)ψ‖ ≤ a‖ARA(±iλ)ψ‖+ b‖RA(±iλ)ψ‖ ≤ (a+
b

λ
)‖ψ‖.

Hence lim supλ ‖BRA(±iλ)‖ ≤ a∞ which, together with the inequality a∞ ≤
infλ ‖BRA(±iλ)‖ from the previous lemma, proves the claim.

The case where A is bounded from below is similar, using

‖BRA(−λ)ψ‖ ≤
(
amax

(
1,
|γ|
λ+ γ

)
+

b

λ+ γ

)
‖ψ‖, (6.3)

for −λ < γ. �
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Now we will show the basic perturbation result due to Kato and Rellich.

Theorem 6.4 (Kato–Rellich). Suppose A is (essentially) self-adjoint and
B is symmetric with A-bound less than one. Then A + B, D(A + B) =
D(A), is (essentially) self-adjoint. If A is essentially self-adjoint, we have
D(A) ⊆ D(B) and A+B = A+B.

If A is bounded from below by γ, then A+B is bounded from below by

γ −max
(
a|γ|+ b,

b

a− 1

)
. (6.4)

Proof. Since by (6.1) the graph norm of A dominates those of B and A+B,
we obtain D(A) ⊆ D(B) and D(A) ⊆ D(A+B). Thus we can assume that
A is closed (i.e., self-adjoint). It suffices to show that Ran(A+B± iλ) = H.
By the above lemma, we can find a λ > 0 such that ‖BRA(±iλ)‖ < 1. Hence
−1 ∈ ρ(BRA(±iλ)) and thus I +BRA(±iλ) is onto. Thus

(A+B ± iλ) = (I +BRA(±iλ))(A± iλ)

is onto and the proof of the first part is complete.

If A is bounded from below, we can replace ±iλ by −λ, and the above
equation shows that RA+B exists for λ sufficiently large. The explicit bound
(6.4) follows after solving (6.3) from the proof of the previous lemma for
λ. �

Example. In our previous example, we have seen that q ∈ L2(0, 1) is
relatively bounded by checking D(A) ⊂ D(q). However, working a bit harder
(Problem 6.2), one can even show that the relative bound is 0 and hence
A+ q is self-adjoint by the Kato–Rellich theorem. �

Finally, let us show that there is also a connection between the resolvents.

Lemma 6.5. Let A, B be two given operators with D(A) ⊆ D(B) such that
A and A+B are closed. Then we have the second resolvent formula

RA+B(z)−RA(z) = −RA(z)BRA+B(z) = −RA+B(z)BRA(z) (6.5)

for z ∈ ρ(A)∩ ρ(A+B). The same conclusion holds if A+B is replaced by
a closed operator C with D(C) = D(A) and B = C −A.

Proof. We compute

RC(z) +RA(z)BRC(z) = RA(z)(C − z)RC(z) = RA(z).

The second identity follows by interchanging the roles of A and C. �

Problem 6.1. Show that (6.1) implies

‖Bψ‖2 ≤ ã2‖Aψ‖2 + b̃2‖ψ‖2
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with ã = a(1 + ε2) and b̃ = b(1 + ε−2) for every ε > 0. Conversely, show

that this inequality implies (6.1) with a = ã and b = b̃.

Problem 6.2. Let A be the self-adjoint operator A = − d2

dx2
, D(A) = {f ∈

H2[0, 1]|f(0) = f(1) = 0} in the Hilbert space L2(0, 1) and q ∈ L2(0, 1).

Show that for every f ∈ D(A) we have

‖f‖2∞ ≤
ε

2
‖f ′′‖2 +

1

2ε
‖f‖2

for every ε > 0. Conclude that the relative bound of q with respect to A is

zero. (Hint: |f(x)|2 ≤ |
∫ 1

0 f
′(t)dt|2 ≤

∫ 1
0 |f

′(t)|2dt = −
∫ 1

0 f(t)∗f ′′(t)dt.)

Problem 6.3. Let A be as in the previous example. Show that q is relatively
bounded if and only if x(1− x)q(x) ∈ L2(0, 1).

Problem 6.4. Compute the resolvent of A+ α〈ψ, .〉ψ. (Hint: Show

(I + α〈ϕ, .〉ψ)−1 = I− α

1 + α〈ϕ,ψ〉
〈ϕ, .〉ψ

and use the second resolvent formula.)

6.2. More on compact operators

Recall from Section 5.2 that we have introduced the set of compact operators
C(H) as the closure of the set of all finite rank operators in L(H). Before we
can proceed, we need to establish some further results for such operators.
We begin by investigating the spectrum of self-adjoint compact operators
and show that the spectral theorem takes a particularly simple form in this
case.

Theorem 6.6 (Spectral theorem for compact operators). Suppose the op-
erator K is self-adjoint and compact. Then the spectrum of K consists of
an at most countable number of eigenvalues which can only cluster at 0.
Moreover, the eigenspace to each nonzero eigenvalue is finite dimensional.

In addition, we have

K =
∑

λ∈σ(K)

λPK({λ}). (6.6)

Proof. It suffices to show rank(PK((λ − ε, λ + ε))) < ∞ for 0 < ε < |λ|.
Let Kn be a sequence of finite rank operators such that ‖K−Kn‖ ≤ 1/n. If
RanPK((λ−ε, λ+ε)) is infinite dimensional, we can find a vector ψn in this
range such that ‖ψn‖ = 1 and Knψn = 0. But this yields a contradiction
since

1

n
≥ |〈ψn, (K −Kn)ψn〉| = |〈ψn,Kψn〉| ≥ |λ| − ε > 0

by (4.2). �
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As a consequence, we obtain the canonical form of a general compact
operator.

Theorem 6.7 (Canonical form of compact operators). Let K be compact.

There exist orthonormal sets {φ̂j}, {φj} and positive numbers sj = sj(K)
such that

K =
∑
j

sj〈φj , .〉φ̂j , K∗ =
∑
j

sj〈φ̂j , .〉φj . (6.7)

Note Kφj =sjφ̂j and K∗φ̂j =sjφj, and hence K∗Kφj =s2
jφj and KK∗φ̂j =

s2
j φ̂j.

The numbers sj(K)2 > 0 are the nonzero eigenvalues of KK∗, respec-
tively, K∗K (counted with multiplicity), and sj(K) = sj(K

∗) = sj are called
singular values of K. There are either finitely many singular values (if K
is finite rank) or they converge to zero.

Proof. By Lemma 5.6, K∗K is compact and hence Theorem 6.6 applies.
Let {φj} be an orthonormal basis of eigenvectors for PK∗K((0,∞))H and
let s2

j be the eigenvalue corresponding to φj . Then, for any ψ ∈ H, we can
write

ψ =
∑
j

〈φj , ψ〉φj + ψ̃

with ψ̃ ∈ Ker(K∗K) = Ker(K). Then

Kψ =
∑
j

sj〈φj , ψ〉φ̂j ,

where φ̂j = s−1
j Kφj , since ‖Kψ̃‖2 = 〈ψ̃,K∗Kψ̃〉 = 0. By 〈φ̂j , φ̂k〉 =

(sjsk)
−1〈Kφj ,Kφk〉 = (sjsk)

−1〈K∗Kφj , φk〉 = sjs
−1
k 〈φj , φk〉, we see that

the {φ̂j} are orthonormal and the formula for K∗ follows by taking the
adjoint of the formula for K (Problem 6.5). The rest is straightforward. �

If K is self-adjoint, we can choose φj = σjφ̂j , σ
2
j = 1, to be the eigen-

vectors of K, and σjsj are the corresponding eigenvalues.

Moreover, note that we have (Problem 6.6)

‖K‖ = max
j
sj(K). (6.8)

From the max-min theorem (Theorem 4.12) we obtain:

Lemma 6.8. Let K be compact; then

sj(K) = min
ψ1,...,ψn−1

sup
ψ∈U(ψ1,...,ψn−1)

‖Kψ‖, (6.9)

where U(ψ1, . . . , ψn) = {ψ ∈ H| ‖ψ‖ = 1, ψ ∈ span{ψ1, . . . , ψn}⊥}.
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In particular, note

sj(AK) ≤ ‖A‖sj(K), sj(KA) ≤ ‖A‖sj(K) (6.10)

whenever K is compact and A is bounded (the second estimate follows from
the first by taking adjoints).

Finally, let me remark that there are a number of other equivalent defi-
nitions for compact operators.

Lemma 6.9. For K ∈ L(H), the following statements are equivalent:

(i) K is compact.

(i’) K∗ is compact.

(ii) An ∈ L(H) and An
s→ A strongly implies AnK → AK.

(iii) ψn ⇀ ψ weakly implies Kψn → Kψ in norm.

(iv) ψn bounded implies that Kψn has a (norm) convergent subse-
quence.

Proof. (i) ⇔ (i’). This is immediate from Theorem 6.7.

(i) ⇒ (ii). Translating An → An − A, it is no restriction to assume
that A = 0. Since ‖An‖ ≤ M , it suffices to consider the case where K is
finite rank. Then using (6.7) and applying the triangle plus Cauchy–Schwarz
inequalities yields

‖AnK‖2 ≤ sup
‖ψ‖=1

 N∑
j=1

sj |〈φj , ψ〉|‖Anφ̂j‖

2

≤
N∑
j=1

s2
j‖Anφ̂j‖2 → 0.

(ii) ⇒ (iii). Again, replace ψn → ψn − ψ and assume ψ = 0. Choose
An = 〈ψn, .〉ϕ, ‖ϕ‖ = 1. Then ‖Kψn‖ = ‖AnK∗‖ → 0.

(iii) ⇒ (iv). If ψn is bounded, it has a weakly convergent subsequence
by Lemma 1.13. Now apply (iii) to this subsequence.

(iv) ⇒ (i). Let ϕj be an orthonormal basis and set

Kn =
n∑
j=1

〈ϕj , .〉Kϕj .

Then

γn = ‖K −Kn‖ = sup
‖ψ‖=1

‖K(ψ −
n∑
j=1

〈ϕj , ψ〉Kϕj)‖

= sup
ψ∈span{ϕj}∞j=n,‖ψ‖=1

‖Kψ‖

is a decreasing sequence tending to a limit ε ≥ 0. Moreover, we can find
a sequence of unit vectors ψn ∈ span{ϕj}∞j=n for which ‖Kψn‖ ≥ ε/2. By
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assumption, Kψn has a convergent subsequence which, since ψn converges
weakly to 0, converges to 0. Hence ε must be 0 and we are done. �

The last condition explains the name compact. Moreover, note that one
cannot replace AnK → AK by KAn → KA in (ii) unless one additionally
requires An to be normal (then this follows by taking adjoints — recall
that only for normal operators is taking adjoints continuous with respect
to strong convergence). Without the requirement that An be normal, the
claim is wrong as the following example shows.

Example. Let H = `2(N), let An be the operator which shifts each sequence
n places to the left, and let K = 〈δ1, .〉δ1, where δ1 = (1, 0, . . . ). Then
s-limAn = 0 but ‖KAn‖ = 1. �

Problem 6.5. Deduce the formula for K∗ from the one for K in (6.7).

Problem 6.6. Prove (6.8).

6.3. Hilbert–Schmidt and trace class operators

Among the compact operators, two special classes are of particular impor-
tance. The first ones are integral operators

Kψ(x) =

∫
M
K(x, y)ψ(y)dµ(y), ψ ∈ L2(M,dµ), (6.11)

where K(x, y) ∈ L2(M×M,dµ⊗dµ). Such an operator is called a Hilbert–
Schmidt operator. Using Cauchy–Schwarz,∫

M
|Kψ(x)|2dµ(x) =

∫
M

∣∣∣∣∫
M
|K(x, y)ψ(y)|dµ(y)

∣∣∣∣2 dµ(x)

≤
∫
M

(∫
M
|K(x, y)|2dµ(y)

)(∫
M
|ψ(y)|2dµ(y)

)
dµ(x)

=

(∫
M

∫
M
|K(x, y)|2dµ(y) dµ(x)

)(∫
M
|ψ(y)|2dµ(y)

)
, (6.12)

we see that K is bounded. Next, pick an orthonormal basis ϕj(x) for
L2(M,dµ). Then, by Lemma 1.10, ϕi(x)ϕj(y) is an orthonormal basis for
L2(M ×M,dµ⊗ dµ) and

K(x, y) =
∑
i,j

ci,jϕi(x)ϕj(y), ci,j = 〈ϕi,Kϕ∗j 〉, (6.13)

where ∑
i,j

|ci,j |2 =

∫
M

∫
M
|K(x, y)|2dµ(y) dµ(x) <∞. (6.14)
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In particular,

Kψ(x) =
∑
i,j

ci,j〈ϕ∗j , ψ〉ϕi(x) (6.15)

shows that K can be approximated by finite rank operators (take finitely
many terms in the sum) and is hence compact.

Using (6.7), we can also give a different characterization of Hilbert–
Schmidt operators.

Lemma 6.10. If H = L2(M,dµ), then a compact operator K is Hilbert–
Schmidt if and only if

∑
j sj(K)2 <∞ and∑

j

sj(K)2 =

∫
M

∫
M
|K(x, y)|2dµ(x)dµ(y), (6.16)

in this case.

Proof. If K is compact, we can define approximating finite rank operators
Kn by considering only finitely many terms in (6.7):

Kn =
n∑
j=1

sj〈φj , .〉φ̂j .

Then Kn has the kernel Kn(x, y) =
∑n

j=1 sjφj(y)∗φ̂j(x) and∫
M

∫
M
|Kn(x, y)|2dµ(x)dµ(y) =

n∑
j=1

sj(K)2.

Now if one side converges, so does the other and, in particular, (6.16) holds
in this case.

Conversely, choose ϕi = ϕ̂i in (6.15). Then a comparison with (6.7)
shows ∑

j

c∗i,jφ̂
∗
j = si(K)φi

and thus

si(K)2 =
∑
j

|ci,j |2.

�

Hence, we will call a bounded operator Hilbert–Schmidt if it is compact
and its singular values satisfy∑

j

sj(K)2 <∞. (6.17)

By our lemma, this coincides with our previous definition if H = L2(M,dµ).
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Since every Hilbert space is isomorphic to some L2(M,dµ), we see that
the Hilbert–Schmidt operators together with the norm

‖K‖2 =
(∑

j

sj(K)2
)1/2

(6.18)

form a Hilbert space (isomorphic to L2(M×M,dµ⊗dµ)). Note that ‖K‖2 =
‖K∗‖2 (since sj(K) = sj(K

∗)). There is another useful characterization for
identifying Hilbert–Schmidt operators:

Lemma 6.11. A bounded operator K is Hilbert–Schmidt if and only if∑
j

‖Kϕj‖2 <∞ (6.19)

for some orthonormal basis and∑
j

‖Kϕj‖2 = ‖K‖22 (6.20)

for every orthonormal basis in this case.

Proof. First of all, note that (6.19) implies that K is compact. To see this,
let Pn be the projection onto the space spanned by the first n elements of
the orthonormal basis {ϕj}. Then Kn = KPn is finite rank and converges
to K since

‖(K −Kn)ψ‖ = ‖
∑
j>n

cjKϕj‖ ≤
∑
j>n

|cj |‖Kϕj‖ ≤
(∑
j>n

‖Kϕj‖2
)1/2
‖ψ‖,

where ψ =
∑

j cjϕj .

The rest follows from (6.7) and∑
j

‖Kϕj‖2 =
∑
j,k

|〈φ̂k,Kϕj〉|2 =
∑
j,k

|〈K∗φ̂k, ϕj〉|2

=
∑
k

‖K∗φ̂k‖2 =
∑
k

sk(K)2.

Here we have used span{φ̂k} = Ker(K∗)⊥ = Ran(K) in the first step. �

This approach can be generalized by defining

‖K‖p =
(∑

j

sj(K)p
)1/p

(6.21)

plus corresponding spaces

Jp(H) = {K ∈ C(H)|‖K‖p <∞}, (6.22)

which are known as Schatten p-classes. Note that by (6.8)

‖K‖ ≤ ‖K‖p (6.23)
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and that by sj(K) = sj(K
∗) we have

‖K‖p = ‖K∗‖p. (6.24)

Lemma 6.12. The spaces Jp(H) together with the norm ‖.‖p are Banach
spaces. Moreover,

‖K‖p = sup

{(∑
j

|〈ψj ,Kϕj〉|p
)1/p∣∣∣ {ψj}, {ϕj} ONS

}
, (6.25)

where the sup is taken over all orthonormal sets.

Proof. The hard part is to prove (6.25): Choose q such that 1
p + 1

q = 1 and

use Hölder’s inequality to obtain (sj |...|2 = (spj |...|2)1/p|...|2/q)∑
j

sj |〈ϕn, φj〉|2 ≤
(∑

j

spj |〈ϕn, φj〉|
2
)1/p(∑

j

|〈ϕn, φj〉|2
)1/q

≤
(∑

j

spj |〈ϕn, φj〉|
2
)1/p

.

Clearly the analogous equation holds for φ̂j , ψn. Now using Cauchy–Schwarz
and the above inequality, we have

|〈ψn,Kϕn〉|p =
∣∣∣∑

j

s
1/2
j 〈ϕn, φj〉s

1/2
j 〈φ̂j , ψn〉

∣∣∣p
≤
(∑

j

spj |〈ϕn, φj〉|
2
)1/2(∑

j

spj |〈ψn, φ̂j〉|
2
)1/2

.

Summing over n, a second appeal to Cauchy–Schwarz and interchanging the
order of summation finally gives∑

n

|〈ψn,Kϕn〉|p ≤
(∑
n,j

spj |〈ϕn, φj〉|
2
)1/2(∑

n,j

spj |〈ψn, φ̂j〉|
2
)1/2

≤
(∑

j

spj

)1/2(∑
j

spj

)1/2
=
∑
j

spj .

Since equality is attained for ϕn = φn and ψn = φ̂n, equation (6.25) holds.

Now the rest is straightforward. From(∑
j

|〈ψj , (K1 +K2)ϕj〉|p
)1/p

≤
(∑

j

|〈ψj ,K1ϕj〉|p
)1/p

+
(∑

j

|〈ψj ,K2ϕj〉|p
)1/p

≤ ‖K1‖p + ‖K2‖p,
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we infer that Jp(H) is a vector space and the triangle inequality. The other
requirements for a norm are obvious and it remains to check completeness.
If Kn is a Cauchy sequence with respect to ‖.‖p, it is also a Cauchy sequence
with respect to ‖.‖ (‖K‖ ≤ ‖K‖p). Since C(H) is closed, there is a compact
K with ‖K −Kn‖ → 0, and by ‖Kn‖p ≤ C, we have(∑

j

|〈ψj ,Kϕj〉|p
)1/p

≤ C

for every finite ONS. Since the right-hand side is independent of the ONS
(and in particular on the number of vectors), K is in Jp(H). �

In combination with (6.10), we also obtain:

Corollary 6.13. The set of J operators forms a ∗-ideal in L(H) and

‖KA‖p ≤ ‖A‖‖K‖p, respectively, ‖AK‖p ≤ ‖A‖‖K‖p. (6.26)

The two most important cases are p = 1 and p = 2: J2(H) is the space
of Hilbert–Schmidt operators investigated at the beginning of this section
and J1(H) is the space of trace class operators. Since Hilbert–Schmidt
operators are easy to identify, it is important to relate J1(H) with J2(H):

Lemma 6.14. An operator is trace class if and only if it can be written as
the product of two Hilbert–Schmidt operators, K = K1K2, and in this case
we have

‖K‖1 ≤ ‖K1‖2‖K2‖2. (6.27)

Proof. By Cauchy–Schwarz we have∑
n

|〈ϕn,Kψn〉| =
∑
n

|〈K∗1ϕn,K2ψn〉| ≤
(∑

n

‖K∗1ϕn‖2
∑
n

‖K2ψn‖2
)1/2

= ‖K1‖2‖K2‖2,

and hence K = K1K2 is trace class if both K1 and K2 are Hilbert–Schmidt
operators. To see the converse, let K be given by (6.7) and choose K1 =∑

j

√
sj(K)〈φj , .〉φ̂j , respectively, K2 =

∑
j

√
sj(K)〈φj , .〉φj . �

Now we can also explain the name trace class:

Lemma 6.15. If K is trace class, then for every orthonormal basis {ϕn}
the trace

tr(K) =
∑
n

〈ϕn,Kϕn〉 (6.28)

is finite and independent of the orthonormal basis.



168 6. Perturbation theory for self-adjoint operators

Proof. Let {ψn} be another ONB. If we write K = K1K2 with K1,K2

Hilbert–Schmidt, we have∑
n

〈ϕn,K1K2ϕn〉 =
∑
n

〈K∗1ϕn,K2ϕn〉 =
∑
n,m

〈K∗1ϕn, ψm〉〈ψm,K2ϕn〉

=
∑
m,n

〈K∗2ψm, ϕn〉〈ϕn,K1ψm〉 =
∑
m

〈K∗2ψm,K1ψm〉

=
∑
m

〈ψm,K2K1ψm〉.

Hence the trace is independent of the ONB and we even have tr(K1K2) =
tr(K2K1). �

Clearly for self-adjoint trace class operators, the trace is the sum over
all eigenvalues (counted with their multiplicity). To see this, one just has to
choose the orthonormal basis to consist of eigenfunctions. This is even true
for all trace class operators and is known as the Lidskij trace theorem (see
[53] or [24] for an easy-to-read introduction).

Finally we note the following elementary properties of the trace:

Lemma 6.16. Suppose K, K1, K2 are trace class and A is bounded.

(i) The trace is linear.

(ii) tr(K∗) = tr(K)∗.

(iii) If K1 ≤ K2, then tr(K1) ≤ tr(K2).

(iv) tr(AK) = tr(KA).

Proof. (i) and (ii) are straightforward. (iii) follows from K1 ≤ K2 if and
only if 〈ϕ,K1ϕ〉 ≤ 〈ϕ,K2ϕ〉 for every ϕ ∈ H. (iv) By Problem 6.7 and (i),
it is no restriction to assume that A is unitary. Let {ϕn} be some ONB and
note that {ψn = Aϕn} is also an ONB. Then

tr(AK) =
∑
n

〈ψn, AKψn〉 =
∑
n

〈Aϕn, AKAϕn〉

=
∑
n

〈ϕn,KAϕn〉 = tr(KA)

and the claim follows. �

Problem 6.7. Show that every bounded operator can be written as a linear
combination of two self-adjoint operators. Furthermore, show that every
bounded self-adjoint operator can be written as a linear combination of two
unitary operators. (Hint: x ± i

√
1− x2 has absolute value one for x ∈

[−1, 1].)
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Problem 6.8. Let H = `2(N) and let A be multiplication by a sequence
a(n). Show that A ∈ Jp(`2(N)) if and only if a ∈ `p(N). Furthermore, show
that ‖A‖p = ‖a‖p in this case.

Problem 6.9. Show that A ≥ 0 is trace class if (6.28) is finite for one (and

hence all) ONB. (Hint: A is self-adjoint (why?) and A =
√
A
√
A.)

Problem 6.10. Show that, for an orthogonal projection P , we have

dim Ran(P ) = tr(P ),

where we set tr(P ) =∞ if (6.28) is infinite (for one and hence all ONB by
the previous problem).

Problem 6.11. Show that, for K ∈ C, we have

|K| =
∑
j

sj〈φj , .〉φj ,

where |K| =
√
K∗K. Conclude that

‖K‖p = (tr(|K|p))1/p.

Problem 6.12. Suppose K, K0 are bounded self-adjoint operators. Show
that if −K0 ≤ K ≤ K0, then ‖K‖p ≤ ‖K0‖p. (Hint: Corollary 4.13.)

Problem 6.13. Suppose K is compact and let Kjk = 〈ϕj ,Kϕk〉 be the
matrix elements with respect to some ONB {ϕj}. Then

‖K‖p ≤

∑
k

∑
j

|Kjk|

p1/p

.

(Hint: Show that −K0 ≤ K ≤ K0, where K0 is diagonal in this ba-
sis with diagonal entries given by

∑
j |Kjk|. For this, use |Kjk〈ϕj , .〉ϕk +

Kkj〈ϕk, .〉ϕj | = |Kjk|(〈ϕj , .〉ϕj + 〈ϕk, .〉ϕk) by Problem 4.8.)

Problem 6.14. An operator of the form K : `2(N) → `2(N), f(n) 7→∑
j∈N k(n+ j)f(j) is called a Hankel operator.

• Show that K is Hilbert–Schmidt if and only if
∑

j∈N j|k(j)|2 <∞
and this number equals ‖K‖2.

• Show that K is Hilbert–Schmidt with ‖K‖2 ≤ ‖c‖1 if |k(n)| ≤ c(n),
where c(n) is decreasing and summable.

(Hint: For the first item, use summation by parts.)
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6.4. Relatively compact operators and Weyl’s theorem

In the previous section, we have seen that the sum of a self-adjoint operator
and a symmetric operator is again self-adjoint if the perturbing operator is
small. In this section, we want to study the influence of perturbations on
the spectrum. Our hope is that at least some parts of the spectrum remain
invariant.

We introduce some notation first. The discrete spectrum σd(A) is the
set of all eigenvalues which are isolated points of the spectrum and whose
corresponding eigenspace is finite dimensional. The complement of the dis-
crete spectrum is called the essential spectrum σess(A) = σ(A)\σd(A).
Hence the essential spectrum consists of all accumulation points of the spec-
trum plus all isolated eigenvalues of infinite multiplicity. In particular, note
that the essential spectrum is closed.

If A is self-adjoint, we might equivalently set

σd(A) = {λ ∈ σp(A)| rank(PA((λ− ε, λ+ ε))) <∞ for some ε > 0}, (6.29)

respectively,

σess(A) = {λ ∈ R| rank(PA((λ− ε, λ+ ε))) =∞ for all ε > 0}. (6.30)

Hence the essential spectrum consists of the absolutely continuous spectrum,
the singularly continuous spectrum, accumulation points of eigenvalues, and
isolated eigenvalues of infinite multiplicity.

Example. For a self-adjoint compact operator K we have by Theorem 6.6
that

σess(K) ⊆ {0}, (6.31)

where equality holds if and only if H is infinite dimensional. �

Let A be self-adjoint. Note that if we add a multiple of the identity to
A, we shift the entire spectrum. Hence, in general, we cannot expect a (rel-
atively) bounded perturbation to leave any part of the spectrum invariant.
Next, if λ0 is in the discrete spectrum, we can easily remove this eigenvalue
with a finite rank perturbation of arbitrarily small norm. In fact, consider

A+ εPA({λ0}). (6.32)

Our only hope is that the remainder, namely the essential spectrum, is stable
under finite rank perturbations. To show this, we first need a good criterion
for a point to be in the essential spectrum of A.

Lemma 6.17 (Weyl criterion). A point λ is in the essential spectrum of a
self-adjoint operator A if and only if there is a sequence ψn ∈ D(A) such that
‖ψn‖ = 1, ψn converges weakly to 0, and ‖(A − λ)ψn‖ → 0. Moreover, the
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sequence can be chosen orthonormal. Such a sequence is called a singular
Weyl sequence for λ.

Proof. Let ψn be a singular Weyl sequence for the point λ. By Lemma 2.17
we have λ ∈ σ(A) and hence it suffices to show λ 6∈ σd(A). If λ ∈ σd(A), we
can find an ε > 0 such that Pε = PA((λ− ε, λ+ ε)) is finite rank. Consider

ψ̃n = Pεψn. Clearly ‖(A− λ)ψ̃n‖ = ‖Pε(A− λ)ψn‖ ≤ ‖(A− λ)ψn‖ → 0 and

Lemma 6.9 (iii) implies ψ̃n → 0. However,

‖ψn − ψ̃n‖2 =

∫
R\(λ−ε,λ+ε)

dµψn ≤
1

ε2

∫
R\(λ−ε,λ+ε)

(x− λ)2dµψn(x)

≤ 1

ε2
‖(A− λ)ψn‖2

and hence ‖ψ̃n‖ → 1, a contradiction.

Conversely, if λ ∈ σess(A) is isolated, it is an eigenvalue of infinite mul-
tiplicity and we can choose an orthogonal set of eigenfunctions. Otherwise,
if λ ∈ σess(A) is not isolated, consider Pn = PA([λ − 1

n , λ −
1

n+1) ∪ (λ +
1

n+1 , λ+ 1
n ]). Then rank(Pnj ) > 0 for an infinite subsequence nj . Now pick

ψj ∈ RanPnj . �

Now let K be a self-adjoint compact operator and ψn a singular Weyl
sequence for A. Then ψn converges weakly to zero and hence

‖(A+K − λ)ψn‖ ≤ ‖(A− λ)ψn‖+ ‖Kψn‖ → 0 (6.33)

since ‖(A− λ)ψn‖ → 0 by assumption and ‖Kψn‖ → 0 by Lemma 6.9 (iii).
Hence σess(A) ⊆ σess(A + K). Reversing the roles of A + K and A shows
σess(A+K) = σess(A). In particular, note that A and A+K have the same
singular Weyl sequences.

Since we have shown that we can remove any point in the discrete spec-
trum by a self-adjoint finite rank operator, we obtain the following equivalent
characterization of the essential spectrum.

Lemma 6.18. The essential spectrum of a self-adjoint operator A is pre-
cisely the part which is invariant under compact perturbations. In particular,

σess(A) =
⋂

K∈C(H),K∗=K

σ(A+K). (6.34)

There is even a larger class of operators under which the essential spec-
trum is invariant.

Theorem 6.19 (Weyl). Suppose A and B are self-adjoint operators. If

RA(z)−RB(z) ∈ C(H) (6.35)
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for one z ∈ ρ(A) ∩ ρ(B), then

σess(A) = σess(B). (6.36)

Proof. In fact, suppose λ ∈ σess(A) and let ψn be a corresponding singular
Weyl sequence. Then

(RA(z)− 1

λ− z
)ψn =

RA(z)

z − λ
(A− λ)ψn

and thus ‖(RA(z)− 1
λ−z )ψn‖ → 0. Moreover, by our assumption we also have

‖(RB(z)− 1
λ−z )ψn‖ → 0 and thus ‖(B−λ)ϕn‖ = |z−λ|‖(RB(z)− 1

λ−z )ψn‖ →
0, where ϕn = RB(z)ψn. Since

lim
n→∞

‖ϕn‖ = lim
n→∞

‖(λ− z)−1ψn + (RB(z)− (λ− z)−1)ψn‖

= |λ− z|−1 6= 0,

we obtain a singular Weyl sequence ϕ̃n = ‖ϕn‖−1ϕn for B, showing λ ∈
σess(B). Now interchange the roles of A and B. �

As a first consequence, note the following result:

Theorem 6.20. Suppose A is symmetric with equal finite defect indices.
Then all self-adjoint extensions have the same essential spectrum.

Proof. By Lemma 2.30, the resolvent difference of two self-adjoint exten-
sions is a finite rank operator if the defect indices are finite. �

In addition, the following result is of interest.

Lemma 6.21. Suppose

RA(z)−RB(z) ∈ C(H) (6.37)

for one z ∈ ρ(A)∩ρ(B). Then this holds for all z ∈ ρ(A)∩ρ(B). In addition,
if A and B are self-adjoint, then

f(A)− f(B) ∈ C(H) (6.38)

for all f ∈ C∞(R).

Proof. If the condition holds for one z, it holds for all since we have (using
both resolvent formulas)

RA(z′)−RB(z′)

= (1− (z − z′)RB(z′))(RA(z)−RB(z))(1− (z − z′)RA(z′)).

Let A and B be self-adjoint. The set of all functions f for which the
claim holds is a closed ∗-subalgebra of C∞(R) (with sup norm). Hence the
claim follows from Lemma 4.4. �
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Remember that we have called K relatively compact with respect to
A if KRA(z) is compact (for one and hence for all z), and note that by
the second resolvent formula the resolvent difference RA+K(z) − RA(z) is
compact if K is relatively compact. In particular, Theorem 6.19 applies if
B = A+K, where K is relatively compact.

For later use, observe that the set of all operators which are relatively
compact with respect to A forms a vector space (since compact operators
do) and relatively compact operators have A-bound zero.

Lemma 6.22. Let A be self-adjoint and suppose K is relatively compact
with respect to A. Then the A-bound of K is zero.

Proof. Write
KRA(λi) = (KRA(i))((A− i)RA(λi))

and observe that the first operator is compact and the second is normal
and converges strongly to 0 (cf. Problem 3.7). Hence the claim follows from
Lemma 6.3 and the discussion after Lemma 6.9 (since RA is normal). �

In addition, note the following result which is a straightforward conse-
quence of the second resolvent formula.

Lemma 6.23. Suppose A is self-adjoint and B is symmetric with A-bound
less than one. If K is relatively compact with respect to A, then it is also
relatively compact with respect to A+B.

Proof. Since B is A bounded with A-bound less than one, we can choose
a z ∈ C such that ‖BRA(z)‖ < 1 and hence, using the second resolvent
formula,

BRA+B(z) = BRA(z)(I +BRA(z))−1 (6.39)

shows that B is also A+B bounded and the result follows from

KRA+B(z) = KRA(z)(I−BRA+B(z)) (6.40)

since KRA(z) is compact and BRA+B(z) is bounded. �

Problem 6.15. Let A and B be self-adjoint operators. Suppose B is rel-
atively bounded with respect to A and A + B is self-adjoint. Show that if
|B|1/2RA(z) is Hilbert–Schmidt for one z ∈ ρ(A), then this is true for all

z ∈ ρ(A). Moreover, |B|1/2RA+B(z) is also Hilbert–Schmidt and RA+B(z)−
RA(z) is trace class.

Problem 6.16. Show that A = − d2

dx2
+ q(x), D(A) = H2(R) is self-adjoint

if q ∈ L∞(R). Show that if −u′′(x) + q(x)u(x) = zu(x) has a solution for
which u and u′ are bounded near +∞ (or −∞) but u is not square integrable
near +∞ (or −∞), then z ∈ σess(A). (Hint: Use u to construct a Weyl
sequence by restricting it to a compact set. Now modify your construction
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to get a singular Weyl sequence by observing that functions with disjoint
support are orthogonal.)

6.5. Relatively form-bounded operators and the KLMN
theorem

In Section 6.1, we have considered the case where the operators A andB have
a common domain on which the operator sum is well-defined. In this section,
we want to look at the case where this is no longer possible, but where it
is still possible to add the corresponding quadratic forms. Under suitable
conditions this form sum will give rise to an operator via Theorem 2.14.

Example. Let A be the self-adjoint operator A = − d2

dx2
, D(A) = {f ∈

H2[0, 1]|f(0) = f(1) = 0} in the Hilbert space L2(0, 1). If we want to
add a potential represented by a multiplication operator with a real-valued
(measurable) function q, then we already have seen that q will be relatively
bounded if q ∈ L2(0, 1). Hence, if q 6∈ L2(0, 1), we are out of luck with the
theory developed so far. On the other hand, if we look at the corresponding
quadratic forms, we have Q(A) = {f ∈ H1[0, 1]|f(0) = f(1) = 0} and

Q(q) = D(|q|1/2). Thus we see that Q(A) ⊂ Q(q) if q ∈ L1(0, 1).

In summary, the operators can be added if q ∈ L2(0, 1) while the forms
can be added under the less restrictive condition q ∈ L1(0, 1).

Finally, note that in some drastic cases, there may be no way to define
the operator sum: Let xj be an enumeration of the rational numbers in (0, 1)
and set

q(x) =
∞∑
j=1

1

2j
√
|x− xj |

,

where the sum is to be understood as a limit in L1(0, 1). Then q gives
rise to a self-adjoint multiplication operator in L2(0, 1). However, note that
D(A) ∩ D(q) = {0}! In fact, let f ∈ D(A) ∩ D(q). Then f is continuous
and q(x)f(x) ∈ L2(0, 1). Now suppose f(xj) 6= 0 for some rational number
xj ∈ (0, 1). Then by continuity |f(x)| ≥ δ for x ∈ (xj − ε, xj + ε) and

q(x)|f(x)| ≥ δ2−j |x − xj |−1/2 for x ∈ (xj − ε, xj + ε), which shows that
q(x)f(x) 6∈ L2(0, 1) and hence f must vanish at every rational point. By
continuity, we conclude f = 0. �

Recall from Section 2.3 that every closed semi-bounded form q = qA
corresponds to a self-adjoint operator A (Theorem 2.14).

Given a self-adjoint operator A ≥ γ and a (hermitian) form q : Q → R
with Q(A) ⊆ Q, we call q relatively form bounded with respect to qA if
there are constants a, b ≥ 0 such that

|q(ψ)| ≤ a qA−γ(ψ) + b‖ψ‖2, ψ ∈ Q(A). (6.41)



6.5. Relatively form-bounded operators and the KLMN theorem 175

The infimum of all possible a is called the form bound of q with respect
to qA.

Note that we do not require that q be associated with some self-adjoint
operator (though it will be in most cases).

Example. Let A = − d2

dx2
, D(A) = {f ∈ H2[0, 1]|f(0) = f(1) = 0}. Then

q(f) = |f(c)|2, f ∈ H1[0, 1], c ∈ (0, 1),

is a well-defined nonnegative form. Formally, one can interpret q as the
quadratic form of the multiplication operator with the delta distribution at
x = c. But for f ∈ Q(A) = {f ∈ H1[0, 1]|f(0) = f(1) = 0}, we have by
Cauchy–Schwarz

|f(c)|2 = 2 Re

∫ c

0
f(t)∗f ′(t)dt ≤ 2

∫ 1

0
|f(t)∗f ′(t)|dt ≤ ε‖f ′‖2 +

1

ε
‖f‖2.

Consequently, q is relatively bounded with bound 0 and hence qA + q gives
rise to a well-defined operator as we will show in the next theorem. �

The following result is the analog of the Kato–Rellich theorem and is
due to Kato, Lions, Lax, Milgram, and Nelson.

Theorem 6.24 (KLMN). Suppose qA : Q(A)→ R is a semi-bounded closed
hermitian form and q a relatively bounded hermitian form with relative bound
less than one. Then qA + q defined on Q(A) is closed and hence gives rise
to a semi-bounded self-adjoint operator. Explicitly we have qA + q ≥ γ − b.

Proof. Without loss of generality, we consider only the case γ = 0. A
straightforward estimate shows qA(ψ) + q(ψ) ≥ (1 − a)qA(ψ) − b‖ψ‖2 ≥
−b‖ψ‖2; that is, qA + q is semi-bounded. Moreover, by

‖ψ‖2qA+q = qA(ψ) + q(ψ) + (b+ 1)‖ψ‖2 ≤ (1 + a)qA(ψ) + (2b+ 1)‖ψ‖2

≤ (2 + a+ 2b)‖ψ‖2qA
and

‖ψ‖2qA = qA(ψ) + ‖ψ‖2 ≤ 1

1− a
(
qA(ψ) + q(ψ) + b‖ψ‖2

)
+ ‖ψ‖2

≤ 1

1− a
‖ψ‖2qA+q,

we see that the norms ‖.‖qA and ‖.‖qA+q are equivalent. Hence qA + q is
closed and the result follows from Theorem 2.14. �

In the investigation of the spectrum of the operator A + B, a key role
is played by the second resolvent formula. In our present case, we have the
following analog.
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Theorem 6.25. Suppose A − γ ≥ 0 is self-adjoint and let q : Q → R be a
hermitian form with Q(A) ⊆ Q. Then the hermitian form

q(RA(−λ)1/2ψ), ψ ∈ H, (6.42)

corresponds to a bounded operator Cq(λ) with ‖Cq(λ)‖ ≤ a for λ > b
a − γ if

and only if q is relatively form bound with constants a and b.

In particular, the form bound is given by

lim
λ→∞

‖Cq(λ)‖. (6.43)

Moreover, if a < 1, then

RqA+q(−λ) = RA(−λ)1/2(1 + Cq(λ))−1RA(−λ)1/2. (6.44)

Here RqA+q(z) is the resolvent of the self-adjoint operator corresponding to
qA + q.

Proof. We will abbreviate C = Cq(λ) and R
1/2
A = RA(−λ)1/2. If q is form

bounded, we have for λ > b
a − γ that

|q(R1/2
A ψ)| ≤ a qA−γ(R

1/2
A ψ) + b‖R1/2

A ψ‖2

= a〈ψ, (A− γ +
b

a
)RAψ〉 ≤ a‖ψ‖2,

and hence q(R
1/2
A ψ) corresponds to a bounded operator C. The converse is

similar.

If a < 1, then (1 + C)−1 is a well-defined bounded operator and so is

R = R
1/2
A (1 + C)−1R

1/2
A . To see that R is the inverse of A1 + λ, where A1

is the operator associated with qA + q, take ϕ = R
1/2
A ϕ̃ ∈ Q(A) and ψ ∈ H.

Then

sA1+λ(ϕ,Rψ) = sA+λ(ϕ,Rψ) + s(ϕ,Rψ)

= 〈ϕ̃, (1 + C)−1R
1/2
A ψ〉+ 〈ϕ̃, C(1 + C)−1R

1/2
A ψ〉 = 〈ϕ,ψ〉.

Taking ϕ ∈ D(A1) ⊆ Q(A), we see 〈(A1 + λ)ϕ,Rψ〉 = 〈ϕ,ψ〉 and thus
R = RA1(−λ) (Problem 6.17). �

Furthermore, we can define Cq(λ) for all z ∈ ρ(A), using

Cq(z) = ((A+ λ)1/2RA(−z)1/2)∗Cq(λ)(A+ λ)1/2RA(−z)1/2. (6.45)

We will call q relatively form compact if the operator Cq(z) is compact for
one and hence all z ∈ ρ(A). As in the case of relatively compact operators
we have
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Lemma 6.26. Suppose A − γ ≥ 0 is self-adjoint and let q be a hermitian
form. If q is relatively form compact with respect to qA, then its relative
form bound is 0 and the resolvents of qA + q and qA differ by a compact
operator.

In particular, by Weyl’s theorem, the operators associated with qA and
qA + q have the same essential spectrum.

Proof. Fix λ0 > b
a − γ and let λ ≥ λ0. Consider the operator D(λ) =

(A+λ0)1/2RA(−λ)1/2 and note that D(λ) is a bounded self-adjoint operator
with ‖D(λ)‖ ≤ 1. Moreover, D(λ) converges strongly to 0 as λ → ∞ (cf.
Problem 3.7). Hence ‖D(λ)C(λ0)‖ → 0 by Lemma 6.9, and the same is
true for C(λ) = D(λ)C(λ0)D(λ). So the relative bound is zero by (6.43).
Finally, the resolvent difference is compact by (6.44) since (1 + C)−1 =
1− C(1 + C)−1. �

Corollary 6.27. Suppose A−γ ≥ 0 is self-adjoint and let q1, q2 be hermitian
forms. If q1 is relatively bounded with bound less than one and q2 is relatively
compact, then the resolvent difference of qA+q1 +q2 and qA+q1 is compact.
In particular, the operators associated with qA+ q1 and qA+ q1 + q2 have the
same essential spectrum.

Proof. Just observe that Cq1+q2 = Cq1 + Cq2 and (1 + Cq1 + Cq2)−1 =
(1 + Cq1)−1 − (1 + Cq1)−1Cq2(1 + Cq1 + Cq2)−1. �

Finally, we turn to the special case where q = qB for some self-adjoint
operator B. In this case we have

CB(z) = (|B|1/2RA(−z)1/2)∗ sign(B)|B|1/2RA(−z)1/2 (6.46)

and hence
‖CB(z)‖ ≤ ‖|B|1/2RA(−z)1/2‖2 (6.47)

with equality if V ≥ 0. Thus the following result is not too surprising.

Lemma 6.28. Suppose A−γ ≥ 0 and B is self-adjoint. Then the following
are equivalent:

(i) B is A form bounded.

(ii) Q(A) ⊆ Q(B).

(iii) |B|1/2RA(z)1/2 is bounded for one (and hence for all) z ∈ ρ(A).

Proof. (i) ⇒ (ii) is true by definition. (ii) ⇒ (iii) since |B|1/2RA(z)1/2

is a closed (Problem 2.9) operator defined on all of H and hence bounded
by the closed graph theorem (Theorem 2.9). To see (iii) ⇒ (i), observe

|B|1/2RA(z)1/2 = |B|1/2RA(z0)1/2(A − z0)1/2RA(z)1/2, which shows that

|B|1/2RA(z)1/2 is bounded for all z ∈ ρ(A) if it is bounded for one z0 ∈ ρ(A).
But then (6.47) shows that (i) holds. �
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Clearly, CB(λ) will be compact if |B|1/2RA(z)1/2 is compact. However,

since R
1/2
A (z) might be hard to compute, we provide the following more

handy criterion.

Lemma 6.29. Suppose A − γ ≥ 0 and B is self-adjoint where B is rela-
tively form bounded with bound less than one. Then the resolvent difference
RA+B(z) − RA(z) is compact if |B|1/2RA(z) is compact and trace class if

|B|1/2RA(z) is Hilbert–Schmidt.

Proof. Abbreviate RA=RA(−λ), B1 = |B|1/2, B2 = sign(B)|B|1/2. Choose
λ > γ such that ‖CB(λ)‖ < 1. Then we have

(1 + CB)−1 =
∞∑
j=0

(−1)j
(
(B1R

1/2
A )∗B2R

1/2
A

)j
= 1− (B1R

1/2
A )∗

 ∞∑
j=0

(−1)j
(
B2R

1/2
A (B1R

1/2
A )∗

)jB2R
1/2
A

= 1− (B1R
1/2
A )∗(1 + C̃B)−1B2R

1/2
A ,

where C̃B = B2R
1/2
A (B1R

1/2
A )∗. Hence by (6.44) we see RA+B − RA =

−(B1RA)∗(1 + C̃B)−1B2RA and the claim follows. �

Moreover, the second resolvent formula still holds when interpreted suit-
ably:

Lemma 6.30. Suppose A − γ ≥ 0 and B is self-adjoint. If Q(A) ⊆ Q(B)
and qA + qB is a closed semi-bounded form, then

RA+B(z) = RA(z)− (|B|1/2RA+B(z∗))∗ sign(B)|B|1/2RA(z)

= RA(z)− (|B|1/2RA(z∗))∗ sign(B)|B|1/2RA+B(z) (6.48)

for z ∈ ρ(A) ∩ ρ(A+B). Here A+B is the self-adjoint operator associated
with qA + qB.

Proof. Let ϕ ∈ D(A + B) and ψ ∈ H. Denote the right-hand side in

(6.48) by R(z) and abbreviate R = R(z), RA = RA(z), B1 = |B|1/2, B2 =

sign(B)|B|1/2. Then, using sA+B−z(ϕ,ψ) = 〈(A+B + z∗)ϕ,ψ〉,

sA+B−z(ϕ,Rψ) = sA+B−z(ϕ,RAψ)− 〈B1R
∗
A+B(A+B + z∗)ϕ,B2RAψ〉

= sA+B−z(ϕ,RAψ)− sB(ϕ,RAψ) = sA−z(ϕ,RAψ)

= 〈ϕ,ψ〉.

Thus R = RA+B(z) (Problem 6.17). The second equality follows after ex-
changing the roles of A and A+B. �
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It can be shown using abstract interpolation techniques that if B is
relatively bounded with respect to A, then it is also relatively form bounded.
In particular, if B is relatively bounded, then BRA(z) is bounded and it is
not hard to check that (6.48) coincides with (6.5). Consequently A + B
defined as operator sum is the same as A+B defined as form sum.

Problem 6.17. Suppose A is closed and R is bounded. Show that R =
RA(z) if and only if 〈(A− z)∗ϕ,Rψ〉 = 〈ϕ,ψ〉 for all ϕ ∈ D(A∗), ψ ∈ H.

Problem 6.18. Let q be relatively form bounded with constants a and b.
Show that Cq(λ) satisfies ‖Cq(λ)‖ ≤ max(a, b

λ+γ ) for λ > −γ. Furthermore,

show that ‖Cq(λ)‖ decreases as λ→∞.

6.6. Strong and norm resolvent convergence

Suppose An and A are self-adjoint operators. We say that An converges to
A in the norm, respectively, strong resolvent sense, if

lim
n→∞

RAn(z) = RA(z), respectively, s-lim
n→∞

RAn(z) = RA(z), (6.49)

for one z ∈ Γ = C\Σ, Σ = σ(A) ∪
⋃
n σ(An). In fact, in the case of

strong resolvent convergence, it will be convenient to include the case if An
is only defined on some subspace Hn ⊆ H, where we require Pn

s→ 1 for
the orthogonal projection onto Hn. In this case RAn(z) (respectively, any
other function of An) has to be understood as RAn(z)Pn, where Pn is the
orthogonal projector onto Hn. (This generalization will produce nothing
new in the norm case, since Pn → 1 implies Pn = 1 for sufficiently large n.)

Using the Stone–Weierstraß theorem, we obtain as a first consequence

Theorem 6.31. Let An, A be self-adjoint operators and suppose An con-
verges to A in the norm resolvent sense. Then f(An) converges to f(A) in
norm for every bounded continuous function f :Σ→C with limλ→−∞ f(λ) =
limλ→∞ f(λ).

If An converges to A in the strong resolvent sense, then f(An) converges
to f(A) strongly for every bounded continuous function f : Σ→ C.

Proof. The set of functions for which the claim holds clearly forms a ∗-
subalgebra (since resolvents are normal, taking adjoints is continuous even
with respect to strong convergence), and since it contains f(λ) = 1 and
f(λ) = 1

λ−z0 , this ∗-subalgebra is dense by the Stone–Weierstraß theorem

(cf. Problem 1.22). The usual ε
3 argument shows that this ∗-subalgebra is

also closed.

It remains to show the strong resolvent case for arbitrary bounded con-
tinuous functions. Let χn be a compactly supported continuous function
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(0 ≤ χm ≤ 1) which is one on the interval [−m,m]. Then χm(An)
s→ χm(A),

f(An)χm(An)
s→ f(A)χm(A) by the first part and hence

‖(f(An)− f(A))ψ‖ ≤‖f(An)‖ ‖(1− χm(A))ψ‖
+ ‖f(An)‖ ‖(χm(A)− χm(An))ψ‖
+ ‖(f(An)χm(An)− f(A)χm(A))ψ‖
+ ‖f(A)‖ ‖(1− χm(A))ψ‖

can be made arbitrarily small since ‖f(.)‖ ≤ ‖f‖∞ and χm(.)
s→ I by Theo-

rem 3.1. �

As a consequence, note that the point z ∈ Γ is of no importance, that
is,

Corollary 6.32. Suppose An converges to A in the norm or strong resolvent
sense for one z0 ∈ Γ. Then this holds for all z ∈ Γ.

Also,

Corollary 6.33. Suppose An converges to A in the strong resolvent sense.
Then

eitAn s→ eitA, t ∈ R, (6.50)

and if all operators are semi-bounded by the same bound

e−tAn
s→ e−tA, t ≥ 0. (6.51)

Next we need some good criteria to check for norm, respectively, strong,
resolvent convergence.

Lemma 6.34. Let An, A be self-adjoint operators with D(An) = D(A).
Then An converges to A in the norm resolvent sense if there are sequences
an and bn converging to zero such that

‖(An −A)ψ‖ ≤ an‖ψ‖+ bn‖Aψ‖, ψ ∈ D(A) = D(An). (6.52)

Proof. From the second resolvent formula

RAn(z)−RA(z) = RAn(z)(A−An)RA(z),

we infer

‖(RAn(i)−RA(i))ψ‖ ≤ ‖RAn(i)‖
(
an‖RA(i)ψ‖+ bn‖ARA(i)ψ‖

)
≤ (an + bn)‖ψ‖

and hence ‖RAn(i)−RA(i)‖ ≤ an + bn → 0. �

In particular, norm convergence implies norm resolvent convergence:
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Corollary 6.35. Let An, A be bounded self-adjoint operators with An → A.
Then An converges to A in the norm resolvent sense.

Similarly, if no domain problems get in the way, strong convergence
implies strong resolvent convergence:

Lemma 6.36. Let An, A be self-adjoint operators where An is defined in
Hn ⊆ H and Pn is the orthogonal projection onto Hn. Then An converges to
A in the strong resolvent sense if there is a core D0 of A such that for every
ψ ∈ D0 we have Pnψ ∈ D(An) for n sufficiently large and AnPnψ → Aψ.

Proof. We begin with the case Hn = H. Using the second resolvent formula,
we have

‖(RAn(i)−RA(i))ψ‖ ≤ ‖(A−An)RA(i)ψ‖ → 0

for ψ ∈ (A− i)D0 which is dense, since D0 is a core. The rest follows from
Lemma 1.14.

If Hn ⊂ H, we can consider Ãn = An⊕0 = AnPn and conclude RÃn(i)
s→

RA(i) from the first case. By RÃn(i) = RAn(i)⊕ i = RAnPn + i(1− Pn) the

same is true for RAn(i)Pn since 1− Pn
s→ 0 by assumption. �

If you wonder why we did not define weak resolvent convergence, here
is the answer: it is equivalent to strong resolvent convergence.

Lemma 6.37. Let An, A be self-adjoint operators. Suppose w-lim
n→∞

RAn(z) =

RA(z) for some z ∈ Γ\R. Then s-lim
n→∞

RAn(z) = RA(z) also.

Proof. By RAn(z) ⇀ RA(z) we also have RAn(z)∗ ⇀ RA(z)∗ and thus by
the first resolvent formula

‖RAn(z)ψ‖2 − ‖RA(z)ψ‖2 = 〈ψ,RAn(z∗)RAn(z)ψ −RA(z∗)RA(z)ψ〉

=
1

z − z∗
〈ψ, (RAn(z)−RAn(z∗) +RA(z)−RA(z∗))ψ〉 → 0.

Together with RAn(z)ψ ⇀ RA(z)ψ we have RAn(z)ψ → RA(z)ψ by virtue
of Lemma 1.12 (iv). �

Now what can we say about the spectrum?

Theorem 6.38. Let An and A be self-adjoint operators. If An converges
to A in the strong resolvent sense, we have σ(A) ⊆ limn→∞ σ(An). If An
converges to A in the norm resolvent sense, we have σ(A) = limn→∞ σ(An).
Here limn→∞ σ(An) denotes the set of all λ for which there is a sequence
λn ∈ σ(An) converging to λ.
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Proof. Suppose the first claim were incorrect. Then we can find a λ ∈ σ(A)
and some ε > 0 such that σ(An) ∩ (λ − ε, λ + ε) = ∅. Choose a bounded
continuous function f which is one on (λ − ε

2 , λ + ε
2) and which vanishes

outside (λ− ε, λ+ ε). Then f(An) = 0 and hence f(A)ψ = lim f(An)ψ = 0
for every ψ. On the other hand, since λ ∈ σ(A), there is a nonzero ψ ∈
RanPA((λ− ε

2 , λ+ ε
2)) implying f(A)ψ = ψ, a contradiction.

To see the second claim, it suffices to show that λ ∈ limσ(An) implies
λ ∈ σ(A). To this end, recall that the norm of RA(z) is just one over
the distance from the spectrum. In particular, λ 6∈ σ(A) if and only if
‖RA(λ + i)‖ < 1. So λ 6∈ σ(A) implies ‖RA(λ + i)‖ < 1, which implies
‖RAn(λ + i)‖ < 1 for n sufficiently large, which implies λ 6∈ σ(An) for n
sufficiently large. �

Example. Note that the spectrum can contract if we only have convergence
in the strong resolvent sense: Let An be multiplication by 1

nx in L2(R).
Then An converges to 0 in the strong resolvent sense, but σ(An) = R and
σ(0) = {0}. �

Lemma 6.39. Suppose An converges in the strong resolvent sense to A. If
PA({λ}) = 0, then

s-lim
n→∞

PAn((−∞, λ)) = s-lim
n→∞

PAn((−∞, λ]) = PA((−∞, λ)) = PA((−∞, λ]).

(6.53)

Proof. By Theorem 6.31, the spectral measures µn,ψ corresponding to An
converge vaguely to those of A. Hence ‖PAn(Ω)ψ‖2 = µn,ψ(Ω) together with
Lemma A.34 implies the claim. �

Using P ((λ0, λ1)) = P ((−∞, λ1)) − P ((−∞, λ0]), we also obtain the
following.

Corollary 6.40. Suppose An converges in the strong resolvent sense to A.
If PA({λ0}) = PA({λ1}) = 0, then

s-lim
n→∞

PAn((λ0, λ1)) = s-lim
n→∞

PAn([λ0, λ1]) = PA((λ0, λ1)) = PA([λ0, λ1]).

(6.54)

Example. The following example shows that the requirement PA({λ}) = 0
is crucial, even if we have bounded operators and norm convergence. In fact,
let H = C2 and

An =
1

n

(
1 0
0 −1

)
. (6.55)

Then An → 0 and

PAn((−∞, 0)) = PAn((−∞, 0]) =

(
0 0
0 1

)
, (6.56)
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but P0((−∞, 0)) = 0 and P0((−∞, 0]) = I. �

Problem 6.19. Suppose An → A in the norm resolvent sense and let A be
bounded. Show that An are eventually bounded and An → A in norm. (Hint:
First show ‖An‖ → ‖A‖ and conclude that RA(i) and RAn(i) are eventually
bi-Lipschitz uniformly in n. Now use the second resolvent formula.)

Problem 6.20. Show that for self-adjoint operators, strong resolvent con-
vergence is equivalent to convergence with respect to the metric

d(A,B) =
∑
n∈N

1

2n
‖(RA(i)−RB(i))ϕn‖, (6.57)

where {ϕn}n∈N is some (fixed) ONB.

Problem 6.21 (Weak convergence of spectral measures). Suppose An → A
in the strong resolvent sense and let µn,ψ, µψ be the corresponding spectral
measures. Show that ∫

f(λ)dµn,ψ(λ)→
∫
f(λ)dµψ(λ) (6.58)

for every bounded continuous f . Give a counterexample when f is not con-
tinuous.





Part 2

Schrödinger Operators





Chapter 7

The free Schrödinger
operator

7.1. The Fourier transform

We first review some basic facts concerning the Fourier transform which
will be needed in the following section.

Let C∞(Rn) be the set of all complex-valued functions which have partial
derivatives of arbitrary order. For f ∈ C∞(Rn) and α ∈ Nn0 we set

∂αf =
∂|α|f

∂xα1
1 · · · ∂x

αn
n
, xα = xα1

1 · · ·x
αn
n , |α| = α1 + · · ·+ αn. (7.1)

An element α ∈ Nn0 is called a multi-index and |α| is called its order. We

will also set (λx)α = λ|α|xα for λ ∈ R. Recall the Schwartz space

S(Rn) = {f ∈ C∞(Rn)| sup
x
|xα(∂βf)(x)| <∞, α, β ∈ Nn0} (7.2)

which is a subspace of Lp(Rn) and which is dense for 1 ≤ p < ∞ (since
C∞c (Rn) ⊂ S(Rn)). Note that if f ∈ S(Rn), then the same is true for
xαf(x) and (∂αf)(x) for every multi-index α. For f ∈ S(Rn) we define its
Fourier transform via

F(f)(p) ≡ f̂(p) =
1

(2π)n/2

∫
Rn

e−ipxf(x)dnx. (7.3)

Then,

Lemma 7.1. The Fourier transform maps the Schwartz space into itself,
F : S(Rn)→ S(Rn). Furthermore, for every multi-index α ∈ Nn0 and every

187
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f ∈ S(Rn) we have

(∂αf)∧(p) = (ip)αf̂(p), (xαf(x))∧(p) = i|α|∂αf̂(p). (7.4)

Proof. First of all, by integration by parts, we see

(
∂

∂xj
f(x))∧(p) =

1

(2π)n/2

∫
Rn

e−ipx ∂

∂xj
f(x)dnx

=
1

(2π)n/2

∫
Rn

(
− ∂

∂xj
e−ipx

)
f(x)dnx

=
1

(2π)n/2

∫
Rn

ipje
−ipxf(x)dnx = ipj f̂(p).

Since we can repeat this argument with an arbitrary number of derivatives,
the first formula follows.

Similarly, the second formula follows from

(xjf(x))∧(p) =
1

(2π)n/2

∫
Rn
xje
−ipxf(x)dnx

=
1

(2π)n/2

∫
Rn

(
i
∂

∂pj
e−ipx

)
f(x)dnx = i

∂

∂pj
f̂(p),

where interchanging the derivative and integral is permissible by Prob-
lem A.20. In particular, f̂(p) is differentiable.

To see that f̂ ∈ S(Rn) if f ∈ S(Rn), we begin with the observation

that f̂ is bounded; in fact, ‖f̂‖∞ ≤ (2π)−n/2‖f‖1. But then pα(∂β f̂)(p) =

i−|α|−|β|(∂αx
βf(x))∧(p) is bounded since ∂αx

βf(x) ∈ S(Rn) if f ∈ S(Rn).
�

Hence we will sometimes write pf(x) for −i∂f(x), where ∂ = (∂1, . . . , ∂n)
is the gradient.

Three more simple properties are left as an exercise.

Lemma 7.2. Let f ∈ S(Rn). Then

(f(x+ a))∧(p) = eiapf̂(p), a ∈ Rn, (7.5)

(eixaf(x))∧(p) = f̂(p− a), a ∈ Rn, (7.6)

(f(λx))∧(p) =
1

λn
f̂(
p

λ
), λ > 0. (7.7)

Next, we want to compute the inverse of the Fourier transform. For this,
the following lemma will be needed.

Lemma 7.3. We have e−zx
2/2 ∈ S(Rn) for Re(z) > 0 and

F(e−zx
2/2)(p) =

1

zn/2
e−p

2/(2z). (7.8)
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Here zn/2 has to be understood as (
√
z)n, where the branch cut of the root

is chosen along the negative real axis.

Proof. Due to the product structure of the exponential, one can treat each
coordinate separately, reducing the problem to the case n = 1.

Let φz(x)=exp(−zx2/2). Then φ′z(x)+zxφz(x)=0 and hence i(pφ̂z(p)+

zφ̂′z(p)) = 0. Thus φ̂z(p) = cφ1/z(p) and (Problem A.26)

c = φ̂z(0) =
1√
2π

∫
R

exp(−zx2/2)dx =
1√
z

at least for z > 0. However, since the integral is holomorphic for Re(z) > 0
by Problem A.22, this holds for all z with Re(z) > 0 if we choose the branch
cut of the root along the negative real axis. �

Now we can show

Theorem 7.4. The Fourier transform F : S(Rn) → S(Rn) is a bijection.
Its inverse is given by

F−1(g)(x) ≡ ǧ(x) =
1

(2π)n/2

∫
Rn

eipxg(p)dnp. (7.9)

We have F2(f)(x) = f(−x) and thus F4 = I.

Proof. Abbreviate φε(x) = exp(−εx2/2). By dominated convergence we
have

(f̂(p))∨(x) =
1

(2π)n/2

∫
Rn

eipxf̂(p)dnp

= lim
ε→0

1

(2π)n/2

∫
Rn
φε(p)e

ipxf̂(p)dnp

= lim
ε→0

1

(2π)n

∫
Rn

∫
Rn
φε(p)e

ipxf(y)e−ipydnydnp,

and, invoking Fubini and Lemma 7.2, we further see

= lim
ε→0

1

(2π)n/2

∫
Rn

(φε(p)e
ipx)∧(y)f(y)dny

= lim
ε→0

1

(2π)n/2

∫
Rn

1

εn/2
φ1/ε(y − x)f(y)dny

= lim
ε→0

1

(2π)n/2

∫
Rn
φ1(z)f(x+

√
εz)dnz = f(x),

which finishes the proof, where we used the change of coordinates z = y−x√
ε

and again dominated convergence in the last two steps. �
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From Fubini’s theorem we also obtain Plancherel’s identity∫
Rn
|f̂(p)|2dnp =

1

(2π)n/2

∫
Rn

∫
Rn
f(x)∗f̂(p)eipxdnp dnx

=

∫
Rn
|f(x)|2dnx (7.10)

for f ∈ S(Rn). Thus, by Theorem 0.29, we can extend F to all of L2(Rn)
by setting F(f) = limm→∞F(fm), where fm is an arbitrary sequence from
S(Rn) converging to f in the L2 norm.

Theorem 7.5 (Plancherel). The Fourier transform F extends to a unitary
operator F : L2(Rn)→ L2(Rn). Its spectrum is given by

σ(F) = {z ∈ C|z4 = 1} = {1,−1, i,−i}. (7.11)

Proof. As already noted, F extends uniquely to a bounded operator on
L2(Rn). Since Parseval’s identity remains valid by continuity of the norm
and since its range is dense, this extension is a unitary operator. It remains
to compute the spectrum. In fact, if ψn is a Weyl sequence, then (F2 +
z2)(F+z)(F −z)ψn = (F4−z4)ψn = (1−z4)ψn → 0 implies z4 = 1. Hence
σ(F) ⊆ {z ∈ C|z4 = 1}. We defer the proof for equality to Section 8.3, where
we will explicitly compute an orthonormal basis of eigenfunctions. �

We also note that this extension is still given by (7.3) whenever the
right-hand side is integrable.

Lemma 7.6. Let f ∈ L1(Rn)∩L2(Rn); then (7.3) continues to hold, where
F now denotes the extension of the Fourier transform from S(Rn) to L2(Rn).

Proof. Fix a bounded set X ⊂ Rn and let f ∈ L2(X). Then we can
approximate f by functions fn ∈ C∞c (X) in the L2 norm. Since L2(X)
is continuously embedded into L1(X) (Problem 0.36), this sequence will
also converge in L1(X). Extending all functions to Rn by setting them
zero outside X, we see that the claim holds for f ∈ L2(Rn) with compact
support. Finally, for general f ∈ L1(Rn) ∩ L2(Rn), consider fm = fχBm(0).

Then fm → f in both L1(Rn) and L2(Rn) and the claim follows. �

In particular,

f̂(p) = lim
m→∞

1

(2π)n/2

∫
|x|≤m

e−ipxf(x)dnx, (7.12)

where the limit has to be understood in L2(Rn) and can be omitted if f ∈
L1(Rn) ∩ L2(Rn).

Clearly, we can also regard the Fourier transform as a map on L1(Rn).
To this end, let C∞(Rn) denote the Banach space of all continuous functions
f : Rn → C which vanish at ∞ equipped with the sup norm (Problem 7.5).
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Lemma 7.7 (Riemann-Lebesgue). The Fourier transform as defined by
(7.3) is a bounded injective map from L1(Rn) into C∞(Rn) satisfying

‖f̂‖∞ ≤ (2π)−n/2‖f‖1. (7.13)

Proof. Clearly we have f̂ ∈ C∞(Rn) if f ∈ S(Rn). Moreover, since S(Rn)
is dense in L1(Rn), the estimate

sup
p
|f̂(p)| ≤ 1

(2π)n/2
sup
p

∫
Rn
|e−ipxf(x)|dnx =

1

(2π)n/2

∫
Rn
|f(x)|dnx

shows that the Fourier transform extends to a continuous map from L1(Rn)
into C∞(Rn).

To see that the Fourier transform is injective, suppose f̂ = 0. Then
Fubini implies

0 =

∫
Rn
ϕ(x)f̂(x)dnx =

∫
Rn
ϕ̂(x)f(x)dnx

for every ϕ ∈ S(Rn). Hence Lemma 0.41 implies f = 0. �

Note that F : L1(Rn) → C∞(Rn) is not onto (cf. Problem 7.6). More-
over, F−1Ff = f whenever f,Ff ∈ L1(Rn) since this is all that was used
in the proof of Theorem 7.4.

Another useful property is the convolution formula.

Lemma 7.8. The convolution

(f ∗ g)(x) =

∫
Rn
f(y)g(x− y)dny =

∫
Rn
f(x− y)g(y)dny (7.14)

of two functions f, g ∈ L1(Rn) is again in L1(Rn) and we have Young’s
inequality

‖f ∗ g‖1 ≤ ‖f‖1‖g‖1. (7.15)

Moreover, its Fourier transform is given by

(f ∗ g)∧(p) = (2π)n/2f̂(p)ĝ(p). (7.16)

Proof. The fact that f ∗ g is in L1 together with Young’s inequality follows
by applying Fubini’s theorem to h(x, y) = f(x − y)g(y). For the last claim
we compute

(f ∗ g)∧(p) =
1

(2π)n/2

∫
Rn

e−ipx

∫
Rn
f(y)g(x− y)dny dnx

=

∫
Rn

e−ipyf(y)
1

(2π)n/2

∫
Rn

e−ip(x−y)g(x− y)dnx dny

=

∫
Rn

e−ipyf(y)ĝ(p)dny = (2π)n/2f̂(p)ĝ(p),

where we have again used Fubini’s theorem. �
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In other words, L1(Rn) together with convolution as a product is a
Banach algebra (without identity). As a consequence we can also deal with
the case of convolution on S(Rn) as well as on L2(Rn).

Corollary 7.9. The convolution of two S(Rn) functions as well as their
product is in S(Rn) and

(f ∗ g)∧ = (2π)n/2f̂ ĝ, (fg)∧ = (2π)−n/2f̂ ∗ ĝ

in this case.

Proof. Clearly the product of two functions in S(Rn) is again in S(Rn)
(show this!). Since S(Rn) ⊂ L1(Rn), the previous lemma implies (f ∗ g)∧ =

(2π)n/2f̂ ĝ ∈ S(Rn). Moreover, since the Fourier transform is injective on

L1(Rn), we conclude f ∗ g = (2π)n/2(f̂ ĝ)∨ ∈ S(Rn). Replacing f, g by f̌ , ǧ

in the last formula finally shows f̌ ∗ ǧ = (2π)n/2(fg)∨ and the claim follows

by a simple change of variables using f̌(p) = f̂(−p). �

Corollary 7.10. The convolution of two L2(Rn) functions is in C∞(Rn)
and we have ‖f ∗ g‖∞ ≤ ‖f‖2‖g‖2 as well as

(fg)∧ = (2π)−n/2f̂ ∗ ĝ

in this case.

Proof. The inequality ‖f ∗ g‖∞ ≤ ‖f‖2‖g‖2 is immediate from Cauchy–
Schwarz and shows that the convolution is a continuous bilinear form from
L2(Rn) to L∞(Rn). Now take sequences fn, gn ∈ S(Rn) converging to f, g ∈
L2(Rn). Then using the previous corollary together with continuity of the
Fourier transform from L1(Rn) to C∞(Rn) and on L2(Rn), we obtain

(fg)∧ = lim
n→∞

(fngn)∧ = (2π)−n/2 lim
n→∞

f̂n ∗ ĝn = (2π)−n/2f̂ ∗ ĝ.

This also shows f̂ ∗ ĝ ∈ C∞(Rn) by the Riemann–Lebesgue lemma. �

Finally, note that by looking at the Gaussian’s φλ(x) = exp(−λx2/2),
one observes that a well-centered peak transforms into a broadly spread peak
and vice versa. This turns out to be a general property of the Fourier trans-
form known as uncertainty principle. One quantitative way of measuring
this fact is to look at

‖(xj − x0)f(x)‖22 =

∫
Rn

(xj − x0)2|f(x)|2dnx (7.17)

which will be small if f is well concentrated around x0 in the j’th coordinate
direction.
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Theorem 7.11 (Heisenberg uncertainty principle). Suppose f ∈ S(Rn).
Then for any x0, p0 ∈ R, we have

‖(xj − x0)f(x)‖2‖(pj − p0)f̂(p)‖2 ≥
‖f‖22

2
. (7.18)

Proof. Replacing f(x) by eixjp
0
f(x+x0ej) (where ej is the unit vector into

the j’th coordinate direction) we can assume x0 = p0 = 0 by Lemma 7.2.
Using integration by parts, we have

‖f‖22 =

∫
Rn
|f(x)|2dnx=−

∫
Rn
xj∂j |f(x)|2dnx=−2 Re

∫
Rn
xjf(x)∗∂jf(x)dnx.

Hence, by Cauchy–Schwarz,

‖f‖22 ≤ 2‖xjf(x)‖2‖∂jf(x)‖2 = 2‖xjf(x)‖2‖pj f̂(p)‖2,

and the claim follows. �

Recall that |f(x)|2 is interpreted as the probability distribution for the

position of a particle, and |f̂(x)|2 is interpreted as the probability distribu-
tion for its momentum. Equation (7.18) says that the variance of both distri-
butions cannot both be small and thus one cannot simultaneously measure
position and momentum of a particle with arbitrary precision. An abstract
version will be given in Theorem 8.2 below.

Another version states that f and f̂ cannot both have compact support.

Theorem 7.12. Suppose f ∈ L2(Rn). If both f and f̂ have compact support,
then f = 0.

Proof. Let A,B ⊂ Rn be two compact sets and consider the subspace of
all functions with supp(f) ⊆ A and supp(f̂) ⊆ B. Then

f(x) =

∫
Rn
K(x, y)f(y)dny,

where

K(x, y) =
1

(2π)n

∫
B

ei(x−p)χA(y)dnp = (2π)−n/2χ̂B(y − x)χA(y).

Since K ∈ L2(Rn × Rn), the corresponding integral operator is Hilbert–
Schmidt, and thus its eigenspace corresponding to the eigenvalue 1 can be
at most finite dimensional.

Now if there is a nonzero f , we can find a sequence of vectors xn → 0
such that the functions fn(x) = f(x − xn) are linearly independent (look

at their supports) and satisfy supp(fn) ⊆ 2A, supp(f̂n) ⊆ B. But this a
contradiction by the first part applied to the sets 2A and B. �
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Problem 7.1. Show that S(Rn) ⊂ Lp(Rn). (Hint: If f ∈ S(Rn), then
|f(x)| ≤ Cm

∏n
j=1(1 + x2

j )
−m for every m.)

Problem 7.2. Compute the Fourier transform of the following functions
f : R→ C:

(i) f(x) = χ(−1,1)(x). (ii) f(p) = 1
p2+k2

, Re(k) > 0.

Problem 7.3. Suppose f(x) ∈ L1(R) and g(x) = −ixf(x) ∈ L1(R). Then

f̂ is differentiable and f̂ ′ = ĝ.

Problem 7.4. A function f : Rn → C is called spherically symmetric if
it is invariant under rotations; that is, f(Ox) = f(x) for all O ∈ SO(Rn)
(equivalently, f depends only on the distance to the origin |x|). Show that the
Fourier transform of a spherically symmetric function is again spherically
symmetric.

Problem 7.5. Show that C∞(Rn) is indeed a Banach space. Show that
C∞c (Rn) is dense. (Hint: Lemma 0.39.)

Problem 7.6. Show that F : L1(Rn)→ C∞(Rn) is not onto as follows:

(i) The range of F is dense.

(ii) F is onto if and only if it has a bounded inverse.

(iii) F has no bounded inverse.

(Hint for (iii) in the case n = 1: Suppose ϕ ∈ C∞c (0, 1) and set fm(x) =∑m
k=1 eikxϕ(x − k). Then ‖fm‖1 = m‖ϕ‖1 and ‖f̂m‖∞ ≤ const since ϕ ∈

S(R) and hence |ϕ(p)| ≤ const(1 + |p|)−2.)

Problem 7.7 (Wiener). Suppose f ∈ L2(Rn). Then the set {f(x + a)|a ∈
Rn} is total in L2(Rn) if and only if f̂(p) 6= 0 a.e. (Hint: Use Lemma 7.2
and the fact that a subspace is total if and only if its orthogonal complement
is zero.)

Problem 7.8. Suppose f(x)ek|x| ∈ L1(R) for some k > 0. Then f̂(p) has
an analytic extension to the strip | Im(p)| < k.

7.2. Sobolev spaces

We begin by introducing the Sobolev space

Hr(Rn) = {f ∈ L2(Rn)||p|rf̂(p) ∈ L2(Rn)}. (7.19)

The most important case is when r is an integer; however, our definition
makes sense for any r ≥ 0. Moreover, note that Hr(Rn) becomes a Hilbert
space if we introduce the scalar product

〈f, g〉 =

∫
Rn
f̂(p)∗ĝ(p)(1 + |p|2)rdnp. (7.20)
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In particular, note that by construction F maps Hr(Rn) unitarily onto
L2(Rn, (1 + |p|2)rdnp). Clearly Hr(Rn) ⊂ Hr+1(Rn) with the embedding
being continuous. Moreover, S(Rn) ⊂ Hr(Rn) and this subset is dense
(since S(Rn) is dense in L2(Rn, (1 + |p|2)rdnp)).

The motivation for the definition (7.19) stems from Lemma 7.1, which
allows us to extend differentiation to a larger class. In fact, every function
in Hr(Rn) has partial derivatives up to order brc, which are defined via

∂αf = ((ip)αf̂(p))∨, f ∈ Hr(Rn), |α| ≤ r. (7.21)

Example. Consider f(x) = (1 − |x|)χ[−1,1](x). Then f̂(p) =
√

2
π

cos(p)−1
p2

and f ∈ H1(R). The weak derivative is f ′(x) = − sign(x)χ[−1,1](x). �

By Lemma 7.1 this definition coincides with the usual one for every
f ∈ S(Rn) and we have∫

Rn
g(x)(∂αf)(x)dnx = 〈g∗, (∂αf)〉 = 〈ĝ(p)∗, (ip)αf̂(p)〉

= (−1)|α|〈(ip)αĝ(p)∗, f̂(p)〉 = (−1)|α|〈∂αg∗, f〉

= (−1)|α|
∫
Rn

(∂αg)(x)f(x)dnx, (7.22)

for f, g ∈ Hr(Rn). Furthermore, recall that a function h ∈ L1
loc(Rn) satisfy-

ing∫
Rn
ϕ(x)h(x)dnx = (−1)|α|

∫
Rn

(∂αϕ)(x)f(x)dnx, ϕ ∈ C∞c (Rn), (7.23)

is also called the weak derivative or the derivative in the sense of distri-
butions of f (by Lemma 0.41 such a function is unique if it exists). Hence,
choosing g = ϕ in (7.22), we see that Hr(Rn) is the set of all functions hav-
ing partial derivatives (in the sense of distributions) up to order r, which
are in L2(Rn).

In this connection, the following norm for Hm(Rn) with m ∈ N0 is more
common:

‖f‖22,m =
∑
|α|≤m

‖∂αf‖22. (7.24)

By |pα| ≤ |p||α| ≤ (1 + |p|2)m/2 it follows that this norm is equivalent to
(7.20).

Of course, a natural question to ask is when the weak derivatives are in
fact classical derivatives. To this end, observe that the Riemann–Lebesgue
lemma implies that ∂αf(x) ∈ C∞(Rn) provided pαf(p) ∈ L1(Rn). Moreover,
in this situation the derivatives will exist as classical derivatives:
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Lemma 7.13. Suppose f ∈ L1(Rn) or f ∈ L2(Rn) with (1 + |p|k)f̂(p) ∈
L1(Rn) for some k ∈ N0. Then f ∈ Ck∞(Rn), the set of functions with
continuous partial derivatives of order k all of which vanish at∞. Moreover,

(∂αf)∧(p) = (ip)αf̂(p), |α| ≤ k, (7.25)

in this case.

Proof. We begin by observing that

f(x) =
1

(2π)n/2

∫
Rn

eipxf̂(p)dnp,

which follows from Lemma 7.6 and the discussion after Lemma 7.7. Now
the claim follows as in the proof of Lemma 7.1 by differentiating the integral
using Problem A.20. �

Now we are able to prove the following embedding theorem.

Theorem 7.14 (Sobolev embedding). Suppose r > k+ n
2 for some k ∈ N0.

Then Hr(Rn) is continuously embedded into Ck∞(Rn) with

‖∂αf‖∞ ≤ Cn,r‖f‖2,r, |α| ≤ k. (7.26)

Proof. Abbreviate 〈p〉 = (1 + |p|2)1/2. Now use |(ip)αf̂(p)| ≤ 〈p〉|α||f̂(p)| =
〈p〉−s · 〈p〉|α|+s|f̂(p)|. Now 〈p〉−s ∈ L2(Rn) if s > n

2 (use polar coordinates

to compute the norm) and 〈p〉|α|+s|f̂(p)| ∈ L2(Rn) if s+ |α| ≤ r. Hence the
claim follows from the previous lemma. �

In fact, we can even do a bit better.

Lemma 7.15 (Morrey inequality). Suppose f ∈ Hn/2+γ(Rn) for some γ ∈
(0, 1). Then f ∈ C0,γ

∞ (Rn), the set of functions which are Hölder continuous
of exponent γ and vanish at ∞. Moreover,

|f(x)− f(y)| ≤ Cn,γ‖f̂(p)‖2,n/2+γ |x− y|γ (7.27)

in this case.

Proof. We begin with

f(x+ y)− f(x) =
1

(2π)n/2

∫
Rn

eipx(eipy − 1)f̂(p)dnp

implying

|f(x+ y)− f(x)| ≤ 1

(2π)n/2

∫
Rn

|eipy − 1|
〈p〉n/2+γ

〈p〉n/2+γ |f̂(p)|dnp,
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where again 〈p〉 = (1 + |p|2)1/2. Hence, after applying Cauchy–Schwarz, it
remains to estimate (recall (A.62))∫

Rn

|eipy − 1|2

〈p〉n+2γ
dnp ≤ Sn

∫ 1/|y|

0

(|y|r)2

〈r〉n+2γ
rn−1dr

+ Sn

∫ ∞
1/|y|

4

〈r〉n+2γ
rn−1dr

≤ Sn
2(1− γ)

|y|2γ +
Sn
2γ
|y|2γ =

Sn
2γ(1− γ)

|y|2γ ,

where Sn = nVn is the volume of the unit sphere in Rn. �

Using this lemma we immediately obtain:

Corollary 7.16. Suppose r ≥ k + γ + n
2 for some k ∈ N0 and γ ∈ (0, 1).

Then Hr(Rn) is continuously embedded into Ck,γ∞ (Rn), the set of functions
in Ck∞(Rn) whose highest derivatives are Hölder continuous of exponent γ.

Problem 7.9. Suppose f ∈ L2(Rn) show that ε−1(f(x+ejε)−f(x))→ gj(x)

in L2 if and only if pj f̂(p) ∈ L2, where ej is the unit vector into the j’th
coordinate direction. Moreover, show gj = ∂jf if f ∈ H1(Rn).

7.3. The free Schrödinger operator

In Section 2.1 we have seen that the Hilbert space corresponding to one
particle in R3 is L2(R3). More generally, the Hilbert space for N particles
in Rd is L2(Rn), n = Nd. The corresponding nonrelativistic Hamilton
operator, if the particles do not interact, is given by

H0 = −∆, (7.28)

where ∆ is the Laplace operator

∆ =
n∑
j=1

∂2

∂x2
j

. (7.29)

Here we have chosen units such that all relevant physical constants disap-
pear; that is, ~ = 1 and the mass of the particles is equal to m = 1

2 . Be

aware that some authors prefer to use m = 1; that is, H0 = −1
2∆.

Our first task is to find a good domain such that H0 is a self-adjoint
operator.

By Lemma 7.1 we have that

−∆ψ(x) = (p2ψ̂(p))∨(x) (7.30)
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for ψ ∈ S(Rn). Moreover, if we work with weak derivatives, this even holds
for ψ ∈ H2(Rn), and the operator

H0ψ = −∆ψ, D(H0) = H2(Rn), (7.31)

is unitarily equivalent to the maximally defined multiplication operator

(F H0F−1)ϕ(p) = p2ϕ(p), D(p2) = {ϕ ∈ L2(Rn)|p2ϕ(p) ∈ L2(Rn)}.
(7.32)

Theorem 7.17. The free Schrödinger operator H0 is self-adjoint and its
spectrum is characterized by

σ(H0) = σac(H0) = [0,∞), σsc(H0) = σpp(H0) = ∅. (7.33)

Moreover, the spectral measure corresponding to ψ is purely absolutely con-
tinuous and given by

dµψ(λ) =
1

2
χ[0,∞)(λ)λn/2−1

(∫
Sn−1

|ψ̂(
√
λω)|2dn−1ω

)
dλ. (7.34)

Proof. It suffices to show (7.34). First, observe that

〈ψ,RH0(z)ψ〉 = 〈ψ̂, Rp2(z)ψ̂〉 =

∫
Rn

|ψ̂(p)|2

p2 − z
dnp =

∫
R

1

r2 − z
dµ̃ψ(r),

where

dµ̃ψ(r) = χ[0,∞)(r)r
n−1

(∫
Sn−1

|ψ̂(rω)|2dn−1ω

)
dr.

Hence, after a change of coordinates, we have

〈ψ,RH0(z)ψ〉 =

∫
R

1

λ− z
dµψ(λ),

where dµψ is given by (7.34). This proves the claim. �

Slightly more general, we can consider operators pj = 1
i
∂
∂xj

and define

the operator f(p) via

f(p)ψ(x) = F−1(f(p)ψ̂(p))(x) (7.35)

for any measurable function f : Rn → C. The corresponding operator will
be self-adjoint if f is real-valued, and in the special case f(p) = p2 we obtain
just H0 = −∆ and hence this provides an alternate way of defining functions
of H0. As a useful consequence of this observation we note:

Lemma 7.18. Suppose f ∈ L2(Rn). Then the operator f(p) is an integral
operator given by

f(p)ψ(x) =
1

(2π)n/2

∫
Rn
f̌(x− y)ψ(y)dny, (7.36)

and its range is a subset of C∞(Rn).
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Proof. This follows from the definition since the Fourier transform maps
multiplications to convolutions by Corollary 7.10. �

Recall that f(p) will be bounded if and only if f ∈ L∞(Rn) and the
operator norm is given by ‖f(p)‖ = ‖f‖∞.

Finally, we note that the compactly supported smooth functions are a
core for H0.

Lemma 7.19. The set C∞c (Rn) = {f ∈ S(Rn)| supp(f) is compact} is a
core for H0.

Proof. It is not hard to see that S(Rn) is a core (Problem 7.10), and hence
it suffices to show that the closure of H0|C∞c (Rn) contains H0|S(Rn). To see
this, let ϕ(x) ∈ C∞c (Rn) which is one for |x| ≤ 1 and vanishes for |x| ≥ 2. Set
ϕn(x) = ϕ( 1

nx). Then ψn(x) = ϕn(x)ψ(x) is in C∞c (Rn) for every ψ ∈ S(Rn)
and ψn → ψ, respectively, ∆ψn → ∆ψ. �

Note also that the quadratic form of H0 is given by

qH0(ψ) =
n∑
j=1

∫
Rn
|∂jψ(x)|2dnx, ψ ∈ Q(H0) = H1(Rn). (7.37)

Problem 7.10. Show that S(Rn) is a core for H0. (Hint: Show that the
closure of H0|S(Rn) contains H0.)

Problem 7.11. Show that {ψ ∈ S(R)|ψ(0) = 0} is dense but not a core for

H0 = − d2

dx2
.

7.4. The time evolution in the free case

Now let us look at the time evolution. We have

e−itH0ψ(x) = F−1e−itp2ψ̂(p). (7.38)

The right-hand side is a product and hence our operator should be express-
ible as an integral operator via the convolution formula. However, since

e−itp2 is not in L2, a more careful analysis is needed.

Consider
fε(p

2) = e−(it+ε)p2 , ε > 0. (7.39)

Then fε(H0)ψ → e−itH0ψ by Theorem 3.1. Moreover, by Lemma 7.3 and
the convolution formula, we have

fε(H0)ψ(x) =
1

(4π(it+ ε))n/2

∫
Rn

e
− |x−y|

2

4(it+ε)ψ(y)dny (7.40)

and hence

e−itH0ψ(x) =
1

(4πit)n/2

∫
Rn

ei
|x−y|2

4t ψ(y)dny (7.41)
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for t 6= 0 and ψ ∈ L1 ∩ L2. In fact, the limit of the right-hand side exists
pointwise by dominated convergence, and its pointwise limit must thus be
equal to its L2 limit. For general ψ ∈ L2, the integral has to be understood
as a limit.

Using this explicit form, it is not hard to draw some immediate conse-
quences. For example, if ψ ∈ L2(Rn)∩L1(Rn), then ψ(t) ∈ C(Rn) for t 6= 0
(use dominated convergence and continuity of the exponential) and satisfies

‖ψ(t)‖∞ ≤
1

|4πt|n/2
‖ψ(0)‖1. (7.42)

Thus we have spreading of wave functions in this case. Moreover, it is even
possible to determine the asymptotic form of the wave function for large t
as follows. Observe

e−itH0ψ(x) =
eix

2

4t

(4πit)n/2

∫
Rn

ei y
2

4t ψ(y)e−ixy
2t dny

=

(
1

2it

)n/2
eix

2

4t

(
ei y

2

4t ψ(y)

)∧
(
x

2t
). (7.43)

Moreover, since exp(iy
2

4t )ψ(y)→ ψ(y) in L2 as |t| → ∞ (dominated conver-
gence), we obtain

Lemma 7.20. For every ψ ∈ L2(Rn) we have

e−itH0ψ(x)−
(

1

2it

)n/2
eix

2

4t ψ̂(
x

2t
)→ 0 (7.44)

in L2 as |t| → ∞.

Note that this result is not too surprising from a physical point of view.
In fact, if a classical particle starts at a point x(0) = x0 with velocity v = 2p
(recall that we use units where the mass is m = 1

2), then we will find it at
x = x0 + 2pt at time t. Dividing by 2t, we get x

2t = p + x0
2t ≈ p for large t.

Hence the probability distribution for finding a particle at a point x at time
t should approach the probability distribution for the momentum at p = x

2t ;

that is, |ψ(x, t)|2dnx = |ψ( x2t)|
2 dnx

(2t)n . This could also be stated as follows:

The probability of finding the particle in a region Ω ⊆ Rn is asymptotically
for |t| → ∞ equal to the probability of finding the momentum of the particle
in 1

2tΩ. This is sometimes known as Dollard’s theorem.

Next, we want to apply the RAGE theorem in order to show that for
every initial condition, a particle will escape to infinity.

Lemma 7.21. Let g(x) be the multiplication operator by g and let f(p) be

the operator given by f(p)ψ(x) = F−1(f(p)ψ̂(p))(x). Denote by L∞∞(Rn) the
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bounded Borel functions which vanish at infinity. Then

f(p)g(x) and g(x)f(p) (7.45)

are compact if f, g ∈ L∞∞(Rn) and (extend to) Hilbert–Schmidt operators if
f, g ∈ L2(Rn).

Proof. By symmetry, it suffices to consider g(x)f(p). Let f, g ∈ L2. Then
(Corollary 7.10)

g(x)f(p)ψ(x) =
1

(2π)n/2

∫
Rn
g(x)f̌(x− y)ψ(y)dny

shows that g(x)f(p) is Hilbert–Schmidt since g(x)f̌(x− y) ∈ L2(Rn × Rn).

If f, g are bounded, then the functions fR(p) = χ{p|p2≤R}(p)f(p) and

gR(x) = χ{x|x2≤R}(x)g(x) are in L2. Thus gR(x)fR(p) is compact and by

‖g(x)f(p)− gR(x)fR(p)‖ ≤ ‖g‖∞‖f − fR‖∞ + ‖g − gR‖∞‖fR‖∞

it tends to g(x)f(p) in norm since f, g vanish at infinity. �

In particular, this lemma implies that

χΩ(H0 + i)−1 (7.46)

is compact if Ω ⊆ Rn is bounded and hence

lim
t→∞
‖χΩe−itH0ψ‖2 = 0 (7.47)

for every ψ ∈ L2(Rn) and every bounded subset Ω of Rn. In other words,
the particle will eventually escape to infinity since the probability of finding
the particle in any bounded set tends to zero. (If ψ ∈ L1(Rn), this of course
also follows from (7.42).)

7.5. The resolvent and Green’s function

Now let us compute the resolvent of H0. We will try to use an approach
similar to that for the time evolution in the previous section. Since the
function (p2 − z)−1 is not in L1(Rn) for n > 1, it is difficult to compute its
inverse Fourier transform directly, and we would need to look at some regu-
larization fε(p) = exp(−εp2)(p2− z)−1 as in the previous section. However,
since it is highly nontrivial to compute the inverse Fourier transform of this
latter function, we will use a small ruse.

Note that

RH0(z) =

∫ ∞
0

ezte−tH0dt, Re(z) < 0. (7.48)
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Indeed, by virtue of Lemma 4.1, limr→∞
∫ r

0 ezte−tH0dt = limr→∞RH0(z)(I−
e−r(H0−z)) = RH0(z). Moreover,

e−tH0ψ(x) =
1

(4πt)n/2

∫
Rn

e−
|x−y|2

4t ψ(y)dny, t > 0, (7.49)

by the same analysis as in the previous section. Hence, by Fubini, we have

RH0(z)ψ(x) =

∫
Rn
G0(z, |x− y|)ψ(y)dny, (7.50)

where

G0(z, r) =

∫ ∞
0

1

(4πt)n/2
e−

r2

4t
+ztdt, r > 0, Re(z) < 0. (7.51)

The function G0(z, r) is called Green’s function of H0. The integral can be
evaluated in terms of modified Bessel functions of the second kind as follows:
First of all, it suffices to consider z < 0 since the remaining values will follow
by analytic continuation. Then, making the substitution t = r

2
√
−z es, we

obtain∫ ∞
0

1

(4πt)n/2
e−

r2

4t
+ztdt =

1

4π

(√
−z

2πr

)n
2
−1 ∫ ∞

−∞
e−νse−x cosh(s)ds

=
1

2π

(√
−z

2πr

)n
2
−1 ∫ ∞

0
cosh(−νs)e−x cosh(s)ds,

(7.52)

where we have abbreviated x =
√
−zr and ν = n

2 − 1. But the last integral
is given by the modified Bessel function Kν(x) (see [44, (10.32.9)]) and thus

G0(z, r) =
1

2π

(√
−z

2πr

)n
2
−1

Kn
2
−1(
√
−zr). (7.53)

Note Kν(x) = K−ν(x) and Kν(x) > 0 for ν, x ∈ R. The functions Kν(x)
satisfy the differential equation (see [44, (10.25.1)])(

d2

dx2
+

1

x

d

dx
− 1− ν2

x2

)
Kν(x) = 0 (7.54)

and have the asymptotics (see [44, (10.30.2) and (10.30.3)])

Kν(x) =

{
Γ(ν)

2

(
x
2

)−ν
+O(x−ν+2), ν > 0,

− log(x2 ) +O(1), ν = 0,
(7.55)

for |x| → 0 and (see [44, (10.40.2)])

Kν(x) =

√
π

2x
e−x(1 +O(x−1)) (7.56)
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for |x| → ∞. For more information, see, for example, [44] or [69]. In
particular, G0(z, r) has an analytic continuation for z ∈ C\[0,∞) = ρ(H0).
Hence we can define the right-hand side of (7.50) for all z ∈ ρ(H0) such that∫

Rn

∫
Rn
ϕ(x)G0(z, |x− y|)ψ(y)dnydnx (7.57)

is analytic for z ∈ ρ(H0) and ϕ,ψ ∈ S(Rn) (by Morera’s theorem). Since
it is equal to 〈ϕ,RH0(z)ψ〉 for Re(z) < 0, it is equal to this function for all
z ∈ ρ(H0), since both functions are analytic in this domain. In particular,
(7.50) holds for all z ∈ ρ(H0).

If n is odd, we have the case of spherical Bessel functions which can be
expressed in terms of elementary functions. For example, we have

G0(z, r) =
1

2
√
−z

e−
√
−z r, n = 1, (7.58)

and

G0(z, r) =
1

4πr
e−
√
−z r, n = 3. (7.59)

Using Stone’s formula we can even extend this result:

Theorem 7.22. Suppose f(λ2)λ(n−1)/2 ∈ L2(R). Then

f(p2)ψ(x) =

∫
Rn
F (|x− y|)ψ(y)dy, (7.60)

where

F (r) = (2π)−n/2Hn/2−1(f(s2)(s/r)n/2−1)(r) (7.61)

satisfies F (r)r(n−1)/2 ∈ L2(R). Here Hν , ν ≥ −1
2 , is the Hankel trans-

form given by

Hν(f)(r) =

∫ ∞
0

f(s)Jν(sr)s ds, (7.62)

with Jν(z) being the Bessel function of order ν. For f(λ2)λ(n−1)/2 ∈ L2(R),

the last integral has to be understood as a limit limR→∞
∫ R

0 as with the
Fourier transform.

Proof. Note that Lemma 7.18 implies (7.60) with F (|x|) = ǧ(x), where

g(p) = f(p2). In particular, F (r)r(n−1)/2 ∈ L2(R). Moreover, we can assume
both f and ψ to be in some dense sets, say f ∈ Cc(0,∞) and ψ ∈ Cc(Rn). In
order to compute F explicitly we now use Problem 4.3 which implies (using
G0(z∗, r) = G0(z, r)∗)

f(p2)ψ(x) =
1

π
lim
ε↓0

∫ ∞
0

f(λ)

∫
Rn

Im(G0(λ+ iε, |x− y|))ψ(y)dydλ,
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where the limit has to be understood in L2(Rn). Moreover, the limit will
also exist pointwise for a.e. x and a suitable subsequence. Now using [44,
(10.27.8) and (10.4.3)], one sees

lim
ε↓0

1

π
Im(G0(λ+ iε, r)) =

1

4π

(√
λ

2πr

)n/2−1

Jn/2−1(r
√
λ)

and using Fubini we obtain (7.60) with F given as in the theorem. �

In particular, comparing with Lemma 7.18 shows that the Fourier trans-
form of a radial function can be expressed in terms of the Hankel transform
and that the Hankel transform is unitary on L2([0,∞), s ds).

Example. In the case f(p2) = χ[0,λ)(p
2) one can evaluate the integral using

[44, (10.22.1)] to obtain

PH0(λ)ψ(x) =

∫
Rn
P0(λ, |x− y|)ψ(y)dy, (7.63)

where

P0(λ, r) =

(√
λ

2πr

)n/2
Jn/2(r

√
λ)χ(0,∞)(λ). (7.64)

In particular,

P0(λ, r) = χ(0,∞)(λ)

{
sin(r

√
λ)

πr , n = 1,
sin(r

√
λ)−r

√
λ cos(r

√
λ)

2π2r3
, n = 3.

�

Problem 7.12. Verify (7.50) directly in the case n = 1.

Problem 7.13. The Bessel function of order ν ∈ C can be defined as

Jν(z) =

∞∑
j=0

(−1)j

j!Γ(ν + j + 1)

(z
2

)2j+ν
.

Show that Jν(z) is a solution of the Bessel differential equation

z2u′′ + zu′ + (z2 − ν2)u = 0.

Prove the following properties of the Bessel functions.

(i) (z±νJν(z))′ = ±z±νJν∓1(z).

(ii) Jν−1(z) + Jν+1(z) = 2ν
z Jν(z).

(iii) Jν−1(z)− Jν+1(z) = 2J ′ν(z).
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Problem 7.14. Consider the modified Hankel transform

H̃ν(f)(r) = (2π)−ν+1Hν(f(s)(s/r)ν)(r)

appearing in Theorem 7.22. Show that

H̃−1/2(f)(r) =
1

π

∫ ∞
0

cos(rs)f(s)ds =
√

2πf̂(r)

if we extend f to all of R such that f(r) = f(−r).
Moreover, show that (under suitable assumptions on f)

H̃ν+1(f)(r) =
−1

2πr

d

dr
H̃ν(f)(r).

(Hint: d
dz z
−νJν(z) = −z−νJν+1(z) by [44, (10.6.6)].)





Chapter 8

Algebraic methods

8.1. Position and momentum

Apart from the Hamiltonian H0, which corresponds to the kinetic energy,
there are several other important observables associated with a single par-
ticle in three dimensions. Using the commutation relation between these
observables, many important consequences about these observables can be
derived.

First, consider the one-parameter unitary group

(Uj(t)ψ)(x) = e−itxjψ(x), 1 ≤ j ≤ 3. (8.1)

For ψ ∈ S(R3), we compute

lim
t→0

i
e−itxjψ(x)− ψ(x)

t
= xjψ(x) (8.2)

and hence the generator is the multiplication operator by the j’th coordi-
nate function. By Corollary 5.4, it is essentially self-adjoint on ψ ∈ S(R3).
It is customary to combine all three operators into one vector-valued oper-
ator x, which is known as the position operator. Moreover, it is not hard
to see that the spectrum of xj is purely absolutely continuous and given
by σ(xj) = R. In fact, let ϕ(x) be an orthonormal basis for L2(R). Then
ϕi(x1)ϕj(x2)ϕk(x3) is an orthonormal basis for L2(R3), and x1 can be writ-
ten as an orthogonal sum of operators restricted to the subspaces spanned
by ϕj(x2)ϕk(x3). Each subspace is unitarily equivalent to L2(R), and x1 is
given by multiplication with the identity. Hence the claim follows (or use
Theorem 4.17).

Next, consider the one-parameter unitary group of translations

(Uj(t)ψ)(x) = ψ(x− tej), 1 ≤ j ≤ 3, (8.3)

207
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where ej is the unit vector in the j’th coordinate direction. For ψ ∈ S(R3),
we compute

lim
t→0

i
ψ(x− tej)− ψ(x)

t
=

1

i

∂

∂xj
ψ(x) (8.4)

and hence the generator is pj = 1
i
∂
∂xj

. Again it is essentially self-adjoint

on ψ ∈ S(R3). Moreover, since it is unitarily equivalent to xj by virtue of
the Fourier transform, we conclude that the spectrum of pj is again purely
absolutely continuous and given by σ(pj) = R. The operator p is known as
the momentum operator. Note that since

[H0, pj ]ψ(x) = 0, ψ ∈ S(R3), (8.5)

we have
d

dt
〈ψ(t), pjψ(t)〉 = 0, ψ(t) = e−itH0ψ(0) ∈ S(R3); (8.6)

that is, the momentum is a conserved quantity for the free motion. More
generally, we have

Theorem 8.1 (Noether). Suppose A is a self-adjoint operator which com-
mutes with a self-adjoint operator H. Then D(A) is invariant under e−itH ,
that is, e−itHD(A) = D(A), and A is a conserved quantity, that is,

〈ψ(t), Aψ(t)〉 = 〈ψ(0), Aψ(0)〉, ψ(t) = e−itHψ(0) ∈ D(A). (8.7)

Proof. By the second part of Lemma 4.5 (with f(λ) = λ and B = e−itH),
we see D(A) = D(e−itHA) ⊆ D(Ae−itH) = {ψ|e−itHψ ∈ D(A)}, which
implies e−itHD(A) ⊆ D(A), and [e−itH , A]ψ = 0 for ψ ∈ D(A). �

Similarly, one has

i[pj , xk]ψ(x) = δjkψ(x), ψ ∈ S(R3), (8.8)

which is known as the Weyl relations. In terms of the corresponding
unitary groups, they read

e−ispje−itxk = eistδjke−itxje−ispk . (8.9)

The Weyl relations also imply that the mean-square deviation of position
and momentum cannot be made arbitrarily small simultaneously:

Theorem 8.2 (Heisenberg Uncertainty Principle). Suppose A and B are
two symmetric operators. Then for every ψ ∈ D(AB) ∩D(BA) we have

∆ψ(A)∆ψ(B) ≥ 1

2
|Eψ([A,B])| (8.10)

with equality if

(B − Eψ(B))ψ = iλ(A− Eψ(A))ψ, λ ∈ R\{0}, (8.11)

or if ψ is an eigenstate of A or B.
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Proof. Let us fix ψ ∈ D(AB) ∩D(BA) and abbreviate

Â = A− Eψ(A), B̂ = B − Eψ(B).

Then ∆ψ(A) = ‖Âψ‖, ∆ψ(B) = ‖B̂ψ‖ and hence by Cauchy–Schwarz

|〈Âψ, B̂ψ〉| ≤ ∆ψ(A)∆ψ(B).

Now note that

ÂB̂ =
1

2
{Â, B̂}+

1

2
[A,B], {Â, B̂} = ÂB̂ + B̂Â

where {Â, B̂} and i[A,B] are symmetric. So

|〈Âψ, B̂ψ〉|2 = |〈ψ, ÂB̂ψ〉|2 =
1

2
|〈ψ, {Â, B̂}ψ〉|2 +

1

2
|〈ψ, [A,B]ψ〉|2,

which proves (8.10).

To have equality if ψ is not an eigenstate, we need B̂ψ = zÂψ for
equality in Cauchy–Schwarz and 〈ψ, {Â, B̂}ψ〉 = 0. Inserting the first into

the second requirement gives 0 = (z − z∗)‖Âψ‖2 and shows Re(z) = 0. �

In the case of position and momentum, we have (‖ψ‖ = 1)

∆ψ(pj)∆ψ(xk) ≥
δjk
2

(8.12)

and the minimum is attained for the Gaussian wave packets

ψ(x) =

(
λ

π

)n/4
e−

λ
2
|x−x0|2−ip0x, (8.13)

which satisfy Eψ(x) = x0 and Eψ(p) = p0, respectively, ∆ψ(pj)
2 = λ

2 and

∆ψ(xk)
2 = 1

2λ .

Problem 8.1. Check that (8.13) realizes the minimum.

8.2. Angular momentum

Now consider the one-parameter unitary group of rotations

(Uj(t)ψ)(x) = ψ(Mj(t)
−1x), 1 ≤ j ≤ 3, (8.14)

where Mj(t) is the matrix of rotation around ej by an angle of t:

M1 =

1 0 0
0 cos (t) − sin (t)
0 sin (t) cos (t)

 , M2 =

 cos (t) 0 sin (t)
0 1 0

− sin (t) 0 cos (t)

 ,

M3 =

cos (t) − sin (t) 0
sin (t) cos (t) 0

0 0 1

 . (8.15)
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For ψ ∈ S(R3), we compute

lim
t→0

i
ψ(Mi(t)

−1x)− ψ(x)

t
=

3∑
j,k=1

εijkxjpkψ(x), (8.16)

where

εijk =


1 if ijk is an even permutation of 123,
−1 if ijk is an odd permutation of 123,
0 otherwise.

(8.17)

Again, one combines the three components into one vector-valued operator
L = x ∧ p, which is known as the angular momentum operator. Its
components are explicitly given by

Li =

3∑
j,k=1

εijkxjpk. (8.18)

Since ei2πLj = I, we see by Theorem 3.17 that the spectrum is a subset of Z.
In particular, the continuous spectrum is empty. We will show below that
we have σ(Lj) = Z. Note that since

[H0, Lj ]ψ(x) = 0, ψ ∈ S(R3), (8.19)

we again have

d

dt
〈ψ(t), Ljψ(t)〉 = 0, ψ(t) = e−itH0ψ(0) ∈ S(R3); (8.20)

that is, the angular momentum is a conserved quantity for the free motion
as well.

Moreover, we even have

[Li,Kj ]ψ(x) = i
3∑

k=1

εijkKkψ(x), ψ ∈ S(R3),Kj ∈ {Lj , pj , xj}, (8.21)

and these algebraic commutation relations are often used to derive informa-
tion on the point spectra of these operators. In this respect, the domain

D = span{xαe−
x2

2 |α ∈ Nn0} ⊂ S(Rn) (8.22)

is often used. It has the nice property that the finite dimensional subspaces

Dk = span{xαe−
x2

2 | |α| ≤ k} (8.23)

are invariant under Lj (and hence they reduce Lj).

Lemma 8.3. The subspace D ⊂ L2(Rn) defined in (8.22) is dense.
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Proof. By Lemma 1.10, it suffices to consider the case n = 1. Suppose
〈ϕ,ψ〉 = 0 for every ψ ∈ D. Then

1√
2π

∫
ϕ(x)e−

x2

2

k∑
j=1

(itx)j

j!
dx = 0

for every finite k and hence also in the limit k → ∞ by the dominated

convergence theorem. But the limit is the Fourier transform of ϕ(x)e−
x2

2 ,
which shows that this function is zero. Hence ϕ(x) = 0. �

Since D is invariant under the unitary groups generated by Lj , the op-
erators Lj are essentially self-adjoint on D by Corollary 5.4.

Introducing L2 = L2
1 + L2

2 + L2
3, it is straightforward to check

[L2, Lj ]ψ(x) = 0, ψ ∈ S(R3). (8.24)

Moreover, Dk is invariant under L2 and L3 and hence Dk reduces L2 and
L3. In particular, L2 and L3 are given by finite matrices on Dk. Now
let Hm = Ker(L3 − m) and denote by Pk the projector onto Dk. Since
L2 and L3 commute on Dk, the space PkHm is invariant under L2, which
shows that we can choose an orthonormal basis consisting of eigenfunctions
of L2 for PkHm. Increasing k, we get an orthonormal set of simultaneous
eigenfunctions whose span is equal to D. Hence there is an orthonormal
basis of simultaneous eigenfunctions of L2 and L3.

Now let us try to draw some further consequences by using the commuta-
tion relations (8.21). (All commutation relations below hold for ψ ∈ S(R3).)
Denote by Hl,m the set of all functions in D satisfying

L3ψ = mψ, L2ψ = l(l + 1)ψ. (8.25)

By L2 ≥ 0 and σ(L3) ⊆ Z we can restrict our attention to the case l ≥ 0
and m ∈ Z.

First, introduce two new operators

L± = L1 ± iL2, [L3, L±] = ±L±. (8.26)

Then, for every ψ ∈ Hl,m, we have

L3(L±ψ) = (m± 1)(L±ψ), L2(L±ψ) = l(l + 1)(L±ψ); (8.27)

that is, L±Hl,m → Hl,m±1. Moreover, since

L2 = L2
3 ± L3 + L∓L±, (8.28)

we obtain

‖L±ψ‖2 = 〈ψ,L∓L±ψ〉 = (l(l + 1)−m(m± 1))‖ψ‖ (8.29)
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for every ψ ∈ Hl,m. If ψ 6= 0, we must have l(l + 1)−m(m± 1) ≥ 0, which
shows Hl,m = {0} for |m| > l. Moreover, L±Hl,m → Hl,m±1 is injective
unless |m| = l. Hence we must have Hl,m = {0} for l 6∈ N0.

Up to this point, we know σ(L2) ⊆ {l(l+1)|l ∈ N0}, σ(L3) ⊆ Z. In order
to show that equality holds in both cases, we need to show that Hl,m 6= {0}
for l ∈ N0, m = −l,−l + 1, . . . , l − 1, l. First of all, we observe

ψ0,0(x) =
1

π3/4
e−

x2

2 ∈ H0,0. (8.30)

Next, we note that (8.21) implies

[L3, x±] = ±x±, x± = x1 ± ix2,

[L±, x±] = 0, [L±, x∓] = ±2x3,

[L2, x±] = 2x±(1± L3)∓ 2x3L±. (8.31)

Hence if ψ ∈ Hl,l, then (x1 ± ix2)ψ ∈ Hl±1,l±1. Thus

ψl,l(x) =
1√
l!

(x1 ± ix2)lψ0,0(x) ∈ Hl,l, (8.32)

respectively,

ψl,m(x) =

√
(l +m)!

(l −m)!(2l)!
Ll−m− ψl,l(x) ∈ Hl,m. (8.33)

The constants are chosen such that ‖ψl,m‖ = 1.

In summary,

Theorem 8.4. There exists an orthonormal basis of simultaneous eigenvec-
tors for the operators L2 and Lj. Moreover, their spectra are given by

σ(L2) = {l(l + 1)|l ∈ N0}, σ(L3) = Z. (8.34)

We will give an alternate derivation of this result in Section 10.3.

8.3. The harmonic oscillator

Finally, let us consider another important model whose algebraic structure
is similar to those of the angular momentum, the harmonic oscillator

H = H0 + ω2x2, ω > 0. (8.35)

We will choose as domain

D(H) = D = span{xαe−
x2

2 |α ∈ N3
0} ⊆ L2(R3) (8.36)

from our previous section.
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We will first consider the one-dimensional case. Introducing

A± =
1√
2

(√
ωx∓ 1√

ω

d

dx

)
, D(A±) = D, (8.37)

we have

[A−, A+] = 1 (8.38)

and

H = ω(2N + 1), N = A+A−, D(N) = D, (8.39)

for every function in D. In particular, note that D is invariant under A±.

Moreover, since

[N,A±] = ±A±, (8.40)

we see that Nψ = nψ implies NA±ψ = (n± 1)A±ψ. Moreover, ‖A+ψ‖2 =
〈ψ,A−A+ψ〉 = (n+ 1)‖ψ‖2, respectively, ‖A−ψ‖2 = n‖ψ‖2, in this case and
hence we conclude that σp(N) ⊆ N0.

If Nψ0 = 0, then we must have A−ψ = 0, and the normalized solution
of this last equation is given by

ψ0(x) =
(ω
π

)1/4
e−

ωx2

2 ∈ D. (8.41)

Hence

ψn(x) =
1√
n!
An+ψ0(x) (8.42)

is a normalized eigenfunction of N corresponding to the eigenvalue n. More-
over, since

ψn(x) =
1√

2n n!

(ω
π

)1/4
Hn(
√
ωx)e−

ωx2

2 (8.43)

where Hn(x) is a polynomial of degree n given by

Hn(x) = e
x2

2

(
x− d

dx

)n
e−

x2

2 = (−1)nex
2 dn

dxn
e−x

2
, (8.44)

we conclude span{ψn} = D. The polynomials Hn(x) are called Hermite
polynomials.

In summary,

Theorem 8.5. The harmonic oscillator H is essentially self-adjoint on D
and has an orthonormal basis of eigenfunctions

ψn1,n2,n3(x) = ψn1(x1)ψn2(x2)ψn3(x3), (8.45)

with ψnj (xj) from (8.43). The spectrum is given by

σ(H) = {(2n+ 3)ω|n ∈ N0}. (8.46)
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Finally, there is also a close connection with the Fourier transformation.
Without restriction we choose ω = 1 and consider only one dimension. Then
it easy to verify that H commutes with the Fourier transformation,

FH = HF , (8.47)

on D. Moreover, by FA± = ∓iA±F , we even infer

Fψn =
1√
n!
FAn+ψ0 =

(−i)n√
n!

An+Fψ0 = (−i)nψn, (8.48)

since Fψ0 = ψ0 by Lemma 7.3. In particular,

σ(F) = {z ∈ C|z4 = 1}. (8.49)

8.4. Abstract commutation

The considerations of the previous section can be generalized as follows.
First of all, the starting point was a factorization of H according to H = A∗A
(note that A± from the previous section are adjoint to each other when
restricted to D). Then it turned out that commuting both operators just
corresponds to a shift of H; that is, AA∗ = H + c. Hence one could exploit
the close spectral relation of A∗A and AA∗ to compute both the eigenvalues
and eigenvectors.

More generally, let A be a closed operator and recall that H0 = A∗A is a
self-adjoint operator (cf. Problem 2.12) with Ker(H0) = Ker(A). Similarly,
H1 = AA∗ is a self-adjoint operator with Ker(H1) = Ker(A∗).

Theorem 8.6. Let A be a densely defined closed operator and introduce
H0 = A∗A, H1 = AA∗. Then the operators H0

∣∣
Ker(H0)⊥

and H1

∣∣
Ker(H1)⊥

are unitarily equivalent.

If H0ψ0 = Eψ0, ψ0 ∈ D(H0), then ψ1 = Aψ0 ∈ D(H1) with H1ψ1 = Eψ1

and ‖ψ1‖ =
√
E‖ψ0‖. Moreover,

RH1(z) ⊇ 1

z
(ARH0(z)A∗ − 1) , RH0(z) ⊇ 1

z
(A∗RH1(z)A− 1) . (8.50)

Proof. Introducing |A| = H
1/2
0 , we have the polar decomposition (Sec-

tion 4.3)

A = U |A|,
where

U : Ker(A)⊥ → Ker(A∗)⊥

is unitary. Taking adjoints, we have (Problem 2.3)

A∗ = |A|U∗

and thus H1 = AA∗ = U |A||A|U∗ = UH0U
∗ shows the claimed unitary

equivalence.
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The claims about the eigenvalues are straightforward (for the norm,

note that Aψ0 =
√
EUψ0). To see the connection between the resolvents,

abbreviate P1 = PH1({0}). Then

RH1(z) = RH1(z)(1− P1) +
1

z
P1 = URH0U

∗ +
1

z
P1

⊇ 1

z

(
U(|H0|1/2RH0 |H0|1/2 − 1)U∗ + P1

)
=

1

z
(ARH0A

∗ + (1− P1) + P1) =
1

z
(ARH0A

∗ + 1) ,

where we have used UU∗ = 1− P1. �

We will use this result to compute the eigenvalues and eigenfunctions of
the hydrogen atom in Section 10.4. In the physics literature, this approach
is also known as supersymmetric quantum mechanics.

Problem 8.2. Show that H0 = − d2

dx2
+ q can formally (i.e., ignoring do-

mains) be written as H0 = AA∗, where A = − d
dx + φ, if the differential

equation ψ′′ + qψ = 0 has a positive solution. Compute H1 = A∗A. (Hint:

φ = ψ′

ψ .)

Problem 8.3. Take H0 = − d2

dx2
+ λ, λ > 0, and compute H1. What about

domains?

Problem 8.4. Let A be a closed operator. Show that the supersymmetric
Dirac operator

D =

(
0 A∗

A 0

)
, D(D) = D(A∗)⊕D(A) ⊆ H2

is self-adjoint. Compute

D2 =

(
A∗A 0

0 AA∗

)
, D(D2) = D(A∗A)⊕D(AA∗) ⊆ H2.

Note that since D2 is self-adjoint this shows that A∗A (and AA∗) is self-
adjoint — see Problem 2.12.





Chapter 9

One-dimensional
Schrödinger operators

9.1. Sturm–Liouville operators

In this section, we want to illustrate some of the results obtained thus far
by investigating a specific example, the Sturm–Liouville equation

τf(x) =
1

r(x)

(
− d

dx
p(x)

d

dx
f(x) + q(x)f(x)

)
, f, pf ′ ∈ AC(a, b), (9.1)

on an arbitrary open interval I = (a, b) ⊆ R. Here AC(a, b) denotes the set
of absolutely continuous functions (cf. Section 2.7).

The case p = r = 1 can be viewed as the model of a particle in one
dimension in the external potential q. Moreover, the case of a particle in
three dimensions can in some situations be reduced to the investigation of
Sturm–Liouville equations. In particular, we will see how this works when
explicitly solving the hydrogen atom.

The suitable Hilbert space is

L2((a, b), r(x)dx), 〈f, g〉 =

∫ b

a
f(x)∗g(x)r(x)dx. (9.2)

We require

(i) p−1 ∈ L1
loc(I), positive,

(ii) q ∈ L1
loc(I), real-valued,

(iii) r ∈ L1
loc(I), positive.

217
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If a is finite and if p−1, q, r ∈ L1((a, c)) (c ∈ I), then the Sturm–Liouville
equation (9.1) is called regular at a. Similarly for b. If it is regular at both
a and b, it is called regular.

The maximal domain of definition for τ in L2(I, r dx) is given by

D(τ) = {f ∈ L2(I, r dx)|f, pf ′ ∈ AC(I), τf ∈ L2(I, r dx)}. (9.3)

It is not clear that D(τ) is dense unless (e.g.) p ∈ AC(I), p′, q ∈ L2
loc(I),

r−1 ∈ L∞loc(I) since C∞0 (I) ⊂ D(τ) in this case. We will defer the general
case to Lemma 9.4 below.

Since we are interested in self-adjoint operators H associated with (9.1),
we perform a little calculation. Using integration by parts (twice), we obtain
the Lagrange identity (a < c < d < b)∫ d

c
g∗(τf) rdy = Wc(g

∗, f)−Wd(g
∗, f) +

∫ d

c
(τg)∗f rdy, (9.4)

for f, g, pf ′, pg′ ∈ AC(I), where

Wx(f1, f2) =
(
p(f1f

′
2 − f ′1f2)

)
(x) (9.5)

is called the modified Wronskian.

Equation (9.4) also shows that the Wronskian of two solutions of τu = zu
is constant:

Wx(u1, u2) = W (u1, u2), τu1,2 = zu1,2. (9.6)

Moreover, it is nonzero if and only if u1 and u2 are linearly independent
(compare Theorem 9.1 below).

If we choose f, g ∈ D(τ) in (9.4), then we can take the limits c→ a and
d→ b, which results in

〈g, τf〉 = Wa(g
∗, f)−Wb(g

∗, f) + 〈τg, f〉, f, g ∈ D(τ). (9.7)

Here Wa,b(g
∗, f) has to be understood as a limit.

Finally, we recall the following well-known result from ordinary differ-
ential equations.

Theorem 9.1. Suppose rg ∈ L1
loc(I). Then there exists a unique solution

f, pf ′ ∈ AC(I) of the differential equation

(τ − z)f = g, z ∈ C, (9.8)

satisfying the initial condition

f(c) = α, (pf ′)(c) = β, α, β ∈ C, c ∈ I. (9.9)

In addition, f is entire with respect to z.
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Proof. Introducing

u =

(
f
pf ′

)
, v =

(
0
rg

)
,

we can rewrite (9.8) as the linear first-order system

u′ −Au = v, A(x) =

(
0 p−1(x)

q(x)− z r(x) 0

)
.

Integrating with respect to x, we see that this system is equivalent to the
Volterra integral equation

u−Ku = w, (Ku)(x) =

∫ x

c
A(y)u(y)dy, w(x) =

(
α
β

)
+

∫ x

c
v(y)dy.

We will choose some d ∈ (c, b) and consider the integral operator K in the
Banach space C([c, d]). Then for every h ∈ C([c, d]) and x ∈ [c, d] we have
the estimate

|Kn(h)(x)| ≤ a1(x)n

n!
‖h‖, a1(x) =

∫ x

c
a(y)dy, a(x) = ‖A(x)‖,

which follows from induction

|Kn+1(h)(x)| =
∣∣∣∣∫ x

c
A(y)Kn(h)(y)dy

∣∣∣∣ ≤ ∫ x

c
a(y)|Kn(h)(y)|dy

≤ ‖h‖
∫ x

c
a(y)

a1(y)n

n!
dy =

a1(x)n+1

(n+ 1)!
‖h‖.

Hence the unique solution of our integral equation is given by the Neumann
series (show this)

u(x) =

∞∑
n=0

Kn(w)(x).

To see that the solution u(x) is entire with respect to z, note that the partial
sums are entire (in fact polynomial) in z and hence so is the limit by uniform
convergence with respect to z in compact sets. An analogous argument for
d ∈ (a, c) finishes the proof. �

Note that f, pf ′ can be extended continuously to a regular endpoint.

Lemma 9.2. Suppose u1, u2 are two solutions of (τ −z)u = 0 which satisfy
W (u1, u2) = 1. Then any other solution of (9.8) can be written as (α, β ∈ C)

f(x) = u1(x)
(
α+

∫ x

c
u2g rdy

)
+ u2(x)

(
β −

∫ x

c
u1g rdy

)
,

f ′(x) = u′1(x)
(
α+

∫ x

c
u2g rdy

)
+ u′2(x)

(
β −

∫ x

c
u1g rdy

)
. (9.10)

Note that the constants α, β coincide with those from Theorem 9.1 if u1(c) =
(pu′2)(c) = 1 and (pu′1)(c) = u2(c) = 0.
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Proof. It suffices to check τf − z f = g. Differentiating the first equation
of (9.10) gives the second. Next, we compute

(pf ′)′ = (pu′1)′
(
α+

∫
u2g rdy

)
+ (pu′2)′

(
β −

∫
u1g rdy

)
−W (u1, u2)gr

= (q − zr)u1

(
α+

∫
u2g rdy

)
+ (q − zr)u2

(
β −

∫
u1g rdy

)
− gr

= (q − zr)f − gr

which proves the claim. �

Now we want to obtain a symmetric operator and hence we choose

A0f = τf, D(A0) = D(τ) ∩ACc(I), (9.11)

where ACc(I) denotes the functions in AC(I) with compact support. This
definition clearly ensures that the Wronskian of two such functions vanishes
on the boundary, implying that A0 is symmetric by virtue of (9.7). Our first
task is to compute the closure of A0 and its adjoint. For this, the following
elementary fact will be needed.

Lemma 9.3. Suppose V is a vector space and l, l1, . . . , ln are linear func-
tionals (defined on all of V ) such that

⋂n
j=1 Ker(lj) ⊆ Ker(l). Then l =∑n

j=0 αjlj for some constants αj ∈ C.

Proof. First of all, it is no restriction to assume that the functionals lj are
linearly independent. Then the map L : V → Cn, f 7→ (l1(f), . . . , ln(f)) is
surjective (since x ∈ Ran(L)⊥ implies

∑n
j=1 xjlj(f) = 0 for all f). Hence

there are vectors fk ∈ V such that lj(fk) = 0 for j 6= k and lj(fj) = 1. Then
f−

∑n
j=1 lj(f)fj ∈

⋂n
j=1 Ker(lj) and hence l(f)−

∑n
j=1 lj(f)l(fj) = 0. Thus

we can choose αj = l(fj). �

Now we are ready to prove

Lemma 9.4. The operator A0 is densely defined and its closure is given by

A0f = τf, D(A0) = {f ∈ D(τ) |Wa(f, g) = Wb(f, g) = 0, ∀g ∈ D(τ)}.
(9.12)

Its adjoint is given by

A∗0f = τf, D(A∗0) = D(τ). (9.13)

Proof. We start by computing A∗0 and ignore the fact that we do not know
whether D(A0) is dense for now.

By (9.7) we have D(τ) ⊆ D(A∗0) and it remains to show D(A∗0) ⊆ D(τ).
If h ∈ D(A∗0), we must have

〈h,A0f〉 = 〈k, f〉, ∀f ∈ D(A0),
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for some k ∈ L2(I, r dx). Using (9.10), we can find a h̃ such that τ h̃ = k,
and from integration by parts, we obtain∫ b

a
(h(x)− h̃(x))∗(τf)(x)r(x)dx = 0, ∀f ∈ D(A0). (9.14)

Clearly we expect that h− h̃ will be a solution of τu = 0 and to prove this,
we will invoke Lemma 9.3. Therefore, we consider the linear functionals

l(g) =

∫ b

a
(h(x)− h̃(x))∗g(x)r(x)dx, lj(g) =

∫ b

a
uj(x)∗g(x)r(x)dx,

on L2
c(I, r dx), where uj are two solutions of τu = 0 with W (u1, u2) 6= 0.

Then we have Ker(l1) ∩ Ker(l2) ⊆ Ker(l). In fact, if g ∈ Ker(l1) ∩ Ker(l2),
then

f(x) = u1(x)

∫ x

a
u2(y)g(y)r(y)dy + u2(x)

∫ b

x
u1(y)g(y)r(y)dy

is in D(A0) and g = τf ∈ Ker(l) by (9.14). Now Lemma 9.3 implies∫ b

a
(h(x)− h̃(x) + α1u1(x) + α2u2(x))∗g(x)r(x)dx = 0, ∀g ∈ L2

c(I, rdx)

and hence h = h̃+ α1u1 + α2u2 ∈ D(τ).

Now what if D(A0) were not dense? Then there would be some freedom
in the choice of k since we could always add a component in D(A0)⊥. So
suppose we have two choices k1 6= k2. Then by the above calculation, there
are corresponding functions h̃1 and h̃2 such that h = h̃1 +α1,1u1 +α1,2u2 =

h̃2 + α2,1u1 + α2,2u2. In particular, h̃1 − h̃2 is in the kernel of τ and hence

k1 = τ h̃1 = τ h̃2 = k2, a contradiction to our assumption.

Next we turn to A0. Denote the set on the right-hand side of (9.12)
by D. Then we have D ⊆ D(A∗∗0 ) = D(A0) by (9.7). Conversely, since
A0 ⊆ A∗0, we can use (9.7) to conclude

Wa(f, h)−Wb(f, h) = 0, f ∈ D(A0), h ∈ D(A∗0).

Now replace h by a h̃ ∈ D(A∗0) which coincides with h near a and vanishes

identically near b (Problem 9.1). Then Wa(f, h) = Wa(f, h̃)−Wb(f, h̃) = 0.
Finally, Wb(f, h) = Wa(f, h) = 0 shows f ∈ D. �

Example. If τ is regular at a, then Wa(f, g) = 0 for all g ∈ D(τ) if and
only if f(a) = (pf ′)(a) = 0. This follows since we can prescribe the values
of g(a), (pg′)(a) for g ∈ D(τ) arbitrarily. �

This result shows that every self-adjoint extension of A0 must lie between
A0 and A∗0. Moreover, self-adjointness seems to be related to the Wronskian
of two functions at the boundary. Hence we collect a few properties first.
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Lemma 9.5. Suppose v ∈ D(τ) with Wa(v
∗, v) = 0 and suppose there is a

f̂ ∈ D(τ) with Wa(v
∗, f̂) 6= 0. Then, for f, g ∈ D(τ), we have

Wa(v, f) = 0 ⇔ Wa(v, f
∗) = 0 (9.15)

and

Wa(v, f) = Wa(v, g) = 0 ⇒ Wa(g
∗, f) = 0. (9.16)

Proof. For all f1, . . . , f4 ∈ D(τ), we have the Plücker identity

Wx(f1, f2)Wx(f3, f4) +Wx(f1, f3)Wx(f4, f2) +Wx(f1, f4)Wx(f2, f3) = 0,
(9.17)

which remains valid in the limit x → a. Choosing f1 = v, f2 = f, f3 =
v∗, f4 = f̂ , we infer (9.15). Choosing f1 = f, f2 = g∗, f3 = v, f4 = f̂ , we
infer (9.16). �

Problem 9.1. Given α, β, γ, δ, show that there is a function f in D(τ)
restricted to [c, d] ⊆ (a, b) such that f(c) = α, (pf ′)(c) = β and f(d) = γ,
(pf ′)(c) = δ. (Hint: Lemma 9.2.)

Problem 9.2. Let A0 = − d2

dx2
, D(A0) = {f ∈ H2[0, 1]|f(0) = f(1) = 0}

and B = q, D(B) = {f ∈ L2(0, 1)|qf ∈ L2(0, 1)}. Find a q ∈ L1(0, 1) such
that D(A0) ∩D(B) = {0}. (Hint: Problem 0.40.)

Problem 9.3. Let φ ∈ L1
loc(I). Define

A± = ± d

dx
+ φ, D(A±) = {f ∈ L2(I)|f ∈ AC(I), ±f ′ + φf ∈ L2(I)}

and A0,± = A±|ACc(I). Show A∗0,± = A∓ and

D(A0,±) = {f ∈ D(A±)| lim
x→a,b

f(x)g(x) = 0, ∀g ∈ D(A∓)}.

In particular, show that the limits above exist.

Problem 9.4 (Liouville normal form). Show that every Sturm–Liouville
equation can be transformed into one with r = p = 1 as follows: Show that

the transformation U : L2((a, b), r dx) → L2(0, c), c =
∫ b
a

√
r(t)
p(t)dt, defined

via u(x) 7→ v(y), where

y(x) =

∫ x

a

√
r(t)

p(t)
dt, v(y) = 4

√
r(x(y))p(x(y))u(x(y)),

is unitary. Moreover, if p, r, p′, r′ ∈ AC(a, b), then

−(pu′)′ + qu = rλu

transforms into

−v′′ +Qv = λv,
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where

Q = q − (pr)1/4

r

(
p((pr)−1/4)′

)′
.

9.2. Weyl’s limit circle, limit point alternative

Inspired by Lemma 9.5, we make the following definition: We call τ limit
circle (l.c.) at a if there is a v ∈ D(τ) with Wa(v

∗, v) = 0 such that
Wa(v, f) 6= 0 for at least one f ∈ D(τ). Otherwise τ is called limit point
(l.p.) at a and similarly for b.

Example. If τ is regular at a, it is limit circle at a. Since

Wa(v, f) = (pf ′)(a)v(a)− (pv′)(a)f(a), (9.18)

any real-valued v with (v(a), (pv′)(a)) 6= (0, 0) works. �

Note that if Wa(f, v) 6= 0, then Wa(f,Re(v)) 6= 0 or Wa(f, Im(v)) 6= 0.
Hence it is no restriction to assume that v is real and Wa(v

∗, v) = 0 is
trivially satisfied in this case. In particular, τ is limit point if and only if
Wa(f, g) = 0 for all f, g ∈ D(τ).

Theorem 9.6. If τ is l.c. at a, then let v ∈ D(τ) with Wa(v
∗, v) = 0 and

Wa(v, f) 6= 0 for some f ∈ D(τ). Similarly, if τ is l.c. at b, let w be an
analogous function. Then the operator

A : D(A) → L2(I, r dx)
f 7→ τf

(9.19)

with
D(A) = {f ∈ D(τ)| Wa(v, f) = 0 if l.c. at a

Wb(w, f) = 0 if l.c. at b} (9.20)

is self-adjoint. Moreover, the set

D1 = {f ∈ D(τ)| ∃x0 ∈ I : ∀x ∈ (a, x0), Wx(v, f) = 0,
∃x1 ∈ I : ∀x ∈ (x1, b), Wx(w, f) = 0}

(9.21)

is a core for A.

Proof. By Lemma 9.5, A is symmetric and hence A ⊆ A∗ ⊆ A∗0. Let g ∈
D(A∗). As in the computation of A0 we conclude Wa(f, g) = Wb(f, g) = 0
for all f ∈ D(A). Moreover, we can choose f such that it coincides with v
near a and hence Wa(v, g) = 0. Similarly, Wb(w, g) = 0; that is, g ∈ D(A).

To see that D1 is a core, letA1 be the corresponding operator and observe
that the argument from above, with A1 in place of A, shows A∗1 = A. �

The name limit circle, respectively, limit point, stems from the original
approach of Weyl, who considered the set of solutions τu = zu, z ∈ C\R,
which satisfy Wx(u∗, u) = 0. They can be shown to lie on a circle which
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converges to a circle, respectively, a point, as x → a or x → b (see Prob-
lem 9.9).

Before proceeding, let us shed some light on the number of possible
boundary conditions. Suppose τ is l.c. at a and let u1, u2 be two real-valued
solutions of τu = 0 with W (u1, u2) = 1. Abbreviate

BCjx(f) = Wx(uj , f), f ∈ D(τ). (9.22)

Let v be as in Theorem 9.6. Then, using Lemma 9.5, it is not hard to see
that

Wa(v, f) = 0 ⇔ cos(α)BC1
a(f)− sin(α)BC2

a(f) = 0, (9.23)

where tan(α) = BC1
a(v)

BC2
a(v)

. Hence all possible boundary conditions can be

parametrized by α ∈ [0, π). If τ is regular at a and if we choose u1(a) =
(pu′2)(a) = 1 and (pu′1)(a) = u2(a) = 0, then

BC2
a(f) = −f(a), BC1

a(f) = (pf ′)(a), (9.24)

and the boundary condition takes the simple form

sin(α)(pf ′)(a)− cos(α)f(a) = 0. (9.25)

The most common choice of α = 0 is known as the Dirichlet boundary
condition f(a) = 0. The choice α = π/2 is known as the Neumann
boundary condition (pf ′)(a) = 0.

Finally, note that if τ is l.c. at both a and b, then Theorem 9.6 does not
give all possible self-adjoint extensions. For example, one could also choose

BC1
a(f) = eiαBC1

b (f), BC2
a(f) = eiαBC2

b (f). (9.26)

The case α = 0 gives rise to periodic boundary conditions in the regular
case.

Next we want to compute the resolvent of A.

Lemma 9.7. Suppose z ∈ ρ(A). Then there exists a solution ua(z, x) of
(τ − z)u = 0 which is in L2((a, c), r dx) and which satisfies the boundary
condition at a if τ is l.c. at a. Similarly, there exists a solution ub(z, x) with
the analogous properties near b.

The resolvent of A is given by

(A− z)−1g(x) =

∫ b

a
G(z, x, y)g(y)r(y)dy, (9.27)

where

G(z, x, y) =
1

W (ub(z), ua(z))

{
ub(z, x)ua(z, y), x ≥ y,
ua(z, x)ub(z, y), x ≤ y. (9.28)
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Proof. Let g ∈ L2
c(I, r dx) be real-valued and consider f = (A − z)−1g ∈

D(A). Since (τ − z)f = 0 near a, respectively, b, we obtain ua(z, x) by
setting it equal to f near a and using the differential equation to extend it
to the rest of I. Similarly, we obtain ub. The only problem is that ua or ub
might be identically zero. Hence we need to show that this can be avoided
by choosing g properly.

Fix z and let g be supported in (c, d) ⊂ I. Since (τ−z)f = g, Lemma 9.2
implies

f(x) = u1(x)

(
α+

∫ x

a
u2gr dy

)
+ u2(x)

(
β +

∫ b

x
u1gr dy

)
. (9.29)

Near a (x < c) we have f(x) = αu1(x) + β̃u2(x) and near b (x > d) we have

f(x) = α̃u1(x) + βu2(x), where α̃ = α+
∫ b
a u2gr dy and β̃ = β +

∫ b
a u1gr dy.

If f vanishes identically near both a and b, we must have α = β = α̃ = β̃ = 0

and thus α = β = 0 and
∫ b
a uj(y)g(y)r(y)dy = 0, j = 1, 2. This case can

be avoided by choosing a suitable g and hence there is at least one solution,
say ub(z).

Now choose u1 = ub and consider the behavior near b. If u2 is not square
integrable on (d, b), we must have β = 0 since βu2 = f − α̃ub is. If u2 is
square integrable, we can find two functions in D(τ) which coincide with ub
and u2 near b. Since W (ub, u2) = 1, we see that τ is l.c. at b and hence
0 = Wb(ub, f) = Wb(ub, α̃ub + βu2) = β. Thus β = 0 in both cases and we
have

f(x) = ub(x)

(
α+

∫ x

a
u2gr dy

)
+ u2(x)

∫ b

x
ubgr dy.

Now choosing g such that
∫ b
a ubgr dy 6= 0, we infer the existence of ua(z).

Choosing u2 = ua and arguing as before, we see α = 0 and hence

f(x) = ub(x)

∫ x

a
ua(y)g(y)r(y)dy + ua(x)

∫ b

x
ub(y)g(y)r(y)dy

=

∫ b

a
G(z, x, y)g(y)r(y)dy

for every g ∈ L2
c(I, r dx). Since this set is dense, the claim follows. �

Example. If τ is regular at a with a boundary condition as in the pre-
vious example, we can choose ua(z, x) to be the solution corresponding to
the initial conditions (ua(z, a), (pu′a)(z, a)) = (sin(α), cos(α)). In particular,
ua(z, x) exists for all z ∈ C.

If τ is regular at both a and b, there is a corresponding solution ub(z, x),
again for all z. So the only values of z for which (A − z)−1 does not exist
must be those with W (ub(z), ua(z)) = 0. However, in this case ua(z, x)
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and ub(z, x) are linearly dependent and ua(z, x) = γub(z, x) satisfies both
boundary conditions. That is, z is an eigenvalue in this case.

In particular, regular operators have pure point spectrum. We will see
in Theorem 9.10 below that this holds for every operator which is l.c. at
both endpoints. �

In the previous example, ua(z, x) is holomorphic with respect to z and
satisfies ua(z, x)∗ = ua(z

∗, x) (since it corresponds to real initial conditions
and our differential equation has real coefficients). In general we have:

Lemma 9.8. Suppose z ∈ ρ(A). Then ua(z, x) from the previous lemma
can be chosen locally holomorphic with respect to z such that

ua(z, x)∗ = ua(z
∗, x) (9.30)

and similarly for ub(z, x).

Proof. Since this is a local property near a, we can assume b is regular
and choose ub(z, x) such that (ub(z, b), (pu

′
b)(z, b)) = (sin(β),− cos(β)) as in

the example above. In addition, choose a second solution vb(z, x) such that
(vb(z, b), (pv

′
b)(z, b)) = (cos(β), sin(β)) and observe W (ub(z), vb(z)) = 1. If

z ∈ ρ(A), z is no eigenvalue and hence ua(z, x) cannot be a multiple of
ub(z, x). Thus we can set

ua(z, x) = vb(z, x) +m(z)ub(z, x)

and it remains to show that m(z) is holomorphic with m(z)∗ = m(z∗).

Choosing h with compact support in (a, c) and g with support in (c, b),
we have

〈h, (A− z)−1g〉 = 〈h, ua(z)〉〈g∗, ub(z)〉
= (〈h, vb(z)〉+m(z)〈h, ub(z)〉)〈g∗, ub(z)〉

(with a slight abuse of notation since ub, vb might not be square integrable).
Choosing (real-valued) functions h and g such that 〈h, ub(z)〉〈g∗, ub(z)〉 6= 0,
we can solve for m(z):

m(z) =
〈h, (A− z)−1g〉 − 〈h, vb(z)〉〈g∗, ub(z)〉

〈h, ub(z)〉〈g∗, ub(z)〉
.

This finishes the proof. �

Example. We already know that τ = − d2

dx2
on I = (−∞,∞) gives rise to

the free Schrödinger operator H0. Furthermore,

u±(z, x) = e∓
√
−zx, z ∈ C, (9.31)

are two linearly independent solutions (for z 6= 0) and since Re(
√
−z) > 0

for z ∈ C\[0,∞), there is precisely one solution (up to a constant multiple)
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which is square integrable near ±∞, namely u±. In particular, the only
choice for ua is u− and for ub is u+ and we get

G(z, x, y) =
1

2
√
−z

e−
√
−z|x−y| (9.32)

which we already found in Section 7.5. �

If, as in the previous example, there is only one square integrable solu-
tion, there is no choice for G(z, x, y). But since different boundary condi-
tions must give rise to different resolvents, there is no room for boundary
conditions in this case. This indicates a connection between our l.c., l.p.
distinction and square integrability of solutions.

Theorem 9.9 (Weyl alternative). The operator τ is l.c. at a if and only if
for one z0 ∈ C all solutions of (τ − z0)u = 0 are square integrable near a.
This then holds for all z ∈ C and similarly for b.

Proof. If all solutions are square integrable near a, τ is l.c. at a since the
Wronskian of two linearly independent solutions does not vanish.

Conversely, take two functions v, ṽ ∈ D(τ) with Wa(v, ṽ) 6= 0. By con-
sidering real and imaginary parts, it is no restriction to assume that v and ṽ
are real-valued. Thus they give rise to two different self-adjoint extensions
A and Ã (choose any fixed w for the other endpoint). Let ua and ũa be the
corresponding solutions from above. Then W (ua, ũa) 6= 0 (since otherwise

A = Ã by Lemma 9.5) and thus there are two linearly independent solutions
which are square integrable near a. Since any other solution can be written
as a linear combination of those two, every solution is square integrable near
a.

It remains to show that all solutions of (τ − z)u = 0 for all z ∈ C are
square integrable near a if τ is l.c. at a. In fact, the above argument ensures
this for every z ∈ ρ(A) ∩ ρ(Ã), that is, at least for all z ∈ C\R.

Suppose there are two linearly independent solutions u1 and u2 of
(τ − z0)u = 0. Without loss of generality, we can assume W (u1, u2) = 1.
We will show that any solution u of (τ − z)u = 0 is square integrable. Using
(τ − z0)u = (z − z0)u and (9.10), we have (a < c < x < b)

u(x) = αu1(x) + βu2(x) + (z − z0)

∫ x

c
(u1(x)u2(y)− u1(y)u2(x))u(y)r(y) dy.

Since uj ∈ L2((c, b), rdx), we can find a constant M ≥ 0 such that∫ b

c
|u1,2(y)|2r(y) dy ≤M.
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Now choose c close to b such that |z − z0|2M2 ≤ 1/8. Next, estimating the
integral using Cauchy–Schwarz gives∣∣∣ ∫ x

c
(u1(x)u2(y)− u1(y)u2(x))u(y)r(y) dy

∣∣∣2
≤
∫ x

c
|u1(x)u2(y)− u1(y)u2(x)|2r(y) dy

∫ x

c
|u(y)|2r(y) dy

≤M
(
|u1(x)|2 + |u2(x)|2

)∫ x

c
|u(y)|2r(y) dy

and hence∫ x

c
|u(y)|2r(y) dy ≤ 3(|α|2 + |β|2)M + 6|z − z0|2M2

∫ x

c
|u(y)|2r(y) dy

≤ 3(|α|2 + |β|2)M +
1

2

∫ x

c
|u(y)|2r(y) dy.

Thus ∫ x

c
|u(y)|2r(y) dy ≤ 6(|α|2 + |β|2)M

and since u ∈ AC(I), we have u ∈ L2((c, b), r dx) for every c ∈ (a, b). �

Now we turn to the investigation of the spectrum of A. If τ is l.c. at
both endpoints, then the spectrum of A is very simple.

Theorem 9.10. If τ is l.c. at both endpoints, then the resolvent is a Hilbert–
Schmidt operator; that is,∫ b

a

∫ b

a
|G(z, x, y)|2r(y)dy r(x)dx <∞. (9.33)

In particular, the spectrum of every self-adjoint extension is purely discrete,
and the eigenfunctions (which are simple) form an orthonormal basis.

Proof. This follows from the estimate∫ b

a

(∫ x

a
|ub(x)ua(y)|2r(y)dy +

∫ b

x
|ub(y)ua(x)|2r(y)dy

)
r(x)dx

≤ 2

∫ b

a
|ua(y)|2r(y)dy

∫ b

a
|ub(y)|2r(y)dy,

which shows that the resolvent is Hilbert–Schmidt and hence compact. �

Note that all eigenvalues are simple. If τ is l.p. at one endpoint, this is
clear, since there is at most one solution of (τ − λ)u = 0 which is square
integrable near this endpoint. If τ is l.c., this also follows since the fact that
two solutions of (τ − λ)u = 0 satisfy the same boundary condition implies
that their Wronskian vanishes.
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If τ is not l.c., the situation is more complicated and we can only say
something about the essential spectrum.

Theorem 9.11. All self-adjoint extensions of A0 have the same essential
spectrum. Moreover, if Aac and Acb are self-adjoint extensions of τ restricted
to (a, c) and (c, b) (for any c ∈ I), then

σess(A) = σess(Aac) ∪ σess(Acb). (9.34)

Proof. Since (τ − i)u = 0 has two linearly independent solutions, the defect
indices are at most two (they are zero if τ is l.p. at both endpoints, one if
τ is l.c. at one and l.p. at the other endpoint, and two if τ is l.c. at both
endpoints). Hence the first claim follows from Theorem 6.20.

For the second claim, restrict τ to the functions with compact support
in (a, c)∪ (c, d). Then, this operator is the orthogonal sum of the operators
A0,ac and A0,cb. Hence the same is true for the adjoints and hence the defect
indices of A0,ac ⊕ A0,cb are at most four. Now note that A and Aac ⊕ Acb
are both self-adjoint extensions of this operator. Thus the second claim also
follows from Theorem 6.20. �

In particular, this result implies that for the essential spectrum only the
behaviour near the endpoints a and b is relevant.

Another useful result to determine if q is relatively compact is the fol-
lowing:

Lemma 9.12. Suppose k ∈ L2
loc((a, b), r dx). Then kRA(z) is Hilbert–

Schmidt if and only if

‖kRA(z)‖22 =
1

Im(z)

∫ b

a
|k(x)|2 Im(G(z, x, x))r(x)dx (9.35)

is finite.

Proof. From the first resolvent formula, we have

G(z, x, y)−G(z′, x, y) = (z − z′)
∫ b

a
G(z, x, t)G(z′, t, y)r(t)dt.

Setting x = y and z′ = z∗, we obtain

Im(G(z, x, x)) = Im(z)

∫ b

a
|G(z, x, t)|2r(t)dt. (9.36)

Using this last formula to compute the Hilbert–Schmidt norm proves the
lemma. �

Problem 9.5. Compute the spectrum and the resolvent of τ = − d2

dx2
, I =

(0,∞) defined on D(A) = {f ∈ D(τ)|f(0) = 0}.
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Problem 9.6. Suppose τ is given on (a,∞), where a is a regular endpoint.

Suppose there are two solutions u± of τu = zu satisfying r(x)1/2|u±(x)| ≤
Ce∓αx for some C,α > 0. Then z is not in the essential spectrum of any self-
adjoint operator corresponding to τ . (Hint: You can take any self-adjoint
extension, say the one for which ua = u− and ub = u+. Write down what
you expect the resolvent to be and show that it is a bounded operator by
comparison with the resolvent from the previous problem.)

Problem 9.7. Suppose a is regular and limx→b q(x)/r(x) = ∞. Show that
σess(A) = ∅ for every self-adjoint extension. (Hint: Fix some positive con-
stant n, choose c ∈ (a, b) such that q(x)/r(x) ≥ n in (c, b), and use Theo-
rem 9.11.)

Problem 9.8 (Approximation by regular operators). Fix functions v, w ∈
D(τ) as in Theorem 9.6. Pick Im = (cm, dm) with cm ↓ a, dm ↑ b and define

Am : D(Am) → L2(Im, r dr)
f 7→ τf

,

where

D(Am) = {f ∈ L2(Im, r dr)| f, pf ′ ∈ AC(Im), τf ∈ L2(Im, r dr),
Wcm(v, f) = Wdm(w, f) = 0}.

Then Am converges to A in the strong resolvent sense as m → ∞. (Hint:
Lemma 6.36.)

Problem 9.9 (Weyl circles). Fix z ∈ C\R and c ∈ (a, b). Introduce

[u]x =
W (u, u∗)x
z − z∗

∈ R

and use (9.4) to show that

[u]x = [u]c +

∫ x

c
|u(y)|2 r(y)dy, (τ − z)u = 0.

Hence [u]x is increasing and exists if and only if u ∈ L2((c, b), r dx).

Let u1,2 be two solutions of (τ − z)u = 0 which satisfy [u1]c = [u2]c = 0
and W (u1, u2) = 1. Then, all (nonzero) solutions u of (τ − z)u = 0 that
satisfy [u]b = 0 can be written as

u = u2 +mu1, m ∈ C,
up to a complex multiple (note [u1]x > 0 for x > c).

Show that

[u2 +mu1]x = [u1]x

(
|m−M(x)|2 −R(x)2

)
,

where

M(x) = −W (u2, u
∗
1)x

W (u1, u∗1)x
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and

R(x)2 =
(
|W (u2, u

∗
1)x|2 +W (u2, u

∗
2)xW (u1, u

∗
1)x

)(
|z − z∗|[u1]x

)−2

=
(
|z − z∗|[u1]x

)−2
.

Hence the numbers m for which [u]x = 0 lie on a circle which either converges
to a circle (if limx→bR(x) > 0) or to a point (if limx→bR(x) = 0) as x→ b.
Show that τ is l.c. at b in the first case and l.p. in the second case.

9.3. Spectral transformations I

In this section, we want to provide some fundamental tools for investigating
the spectra of Sturm–Liouville operators and, at the same time, give some
nice illustrations of the spectral theorem.

Example. Consider again τ = − d2

dx2
on I = (−∞,∞). From Section 7.3

we know that the Fourier transform maps the associated operator H0 to the
multiplication operator with p2 in L2(R). To get multiplication by λ, as in

the spectral theorem, we set p =
√
λ and split the Fourier integral into a

positive and negative part, that is,

(Uf)(λ) =

( ∫
R ei
√
λxf(x) dx∫

R e−i
√
λxf(x) dx

)
, λ ∈ σ(H0) = [0,∞). (9.37)

Then

U : L2(R)→
2⊕
j=1

L2(R,
χ[0,∞)(λ)

2
√
λ

dλ) (9.38)

is the spectral transformation whose existence is guaranteed by the spectral
theorem (Lemma 3.4). Note, however, that the measure is not finite. This

can be easily fixed if we replace exp(±i
√
λx) by γ(λ) exp(±i

√
λx). �

Note that in the previous example the kernel e±i
√
λx of the integral trans-

form U is just a pair of linearly independent solutions of the underlying
differential equation (though no eigenfunctions, since they are not square
integrable).

More generally, if

U : L2(I, r dx)→ L2(R, dµ), f(x) 7→
∫
I
u(λ, x)f(x)r(x) dx (9.39)

is an integral transformation which maps a self-adjoint Sturm–Liouville op-
erator A to multiplication by λ, then its kernel u(λ, x) is a solution of the
underlying differential equation. This formally follows from UAf = λUf
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which implies

0 =

∫
I
u(λ, x)(τ − λ)f(x)r(x) dx =

∫
I
(τ − λ)u(λ, x)f(x)r(x) dx (9.40)

and hence (τ − λ)u(λ, .) = 0.

Lemma 9.13. Suppose

U : L2(I, r dx)→
k⊕
j=1

L2(R, dµj) (9.41)

is a spectral mapping as in Lemma 3.4. Then U is of the form

(Uf)(λ) =

∫ b

a
u(λ, x)f(x)r(x) dx, (9.42)

where u(λ, x) = (u1(λ, x), . . . , uk(λ, x)) is measurable, and for a.e. λ (with
respect to µj), each uj(λ, .) is a solution of τuj = λuj which satisfies the
boundary conditions of A (if any). Here the integral has to be understood as∫ b
a dx = limc↓a,d↑b

∫ d
c dx with limit taken in

⊕
j L

2(R, dµj).
The inverse is given by

(U−1F )(x) =
k∑
j=1

∫
R
uj(λ, x)∗Fj(λ)dµj(λ). (9.43)

Again, the integrals have to be understood as
∫
R dµj = limR→∞

∫ R
−R dµj with

limits taken in L2(I, r dx).

If the spectral measures are ordered, then the solutions uj(λ), 1 ≤ j ≤ l,
are linearly independent for a.e. λ with respect to µl. In particular, for
ordered spectral measures, we always have k ≤ 2 and even k = 1 if τ is l.c.
at one endpoint.

Proof. Using UjRA(z) = 1
λ−zUj , we have

Ujf(x) = (λ− z)Uj
∫ b

a
G(z, x, y)f(y)r(y) dy.

If we restrict RA(z) to a compact interval [c, d] ⊂ (a, b), then RA(z)χ[c,d]

is Hilbert–Schmidt since G(z, x, y)χ[c,d](y) is square integrable over (a, b)×
(a, b). Hence Ujχ[c,d] = (λ− z)UjRA(z)χ[c,d] is Hilbert–Schmidt as well and

by Lemma 6.10 there is a corresponding kernel u
[c,d]
j (λ, y) such that

(Ujχ[c,d]f)(λ) =

∫ b

a
u

[c,d]
j (λ, x)f(x)r(x) dx.
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Now take a larger compact interval [ĉ, d̂] ⊇ [c, d]. Then the kernels coincide

on [c, d], u
[c,d]
j (λ, .) = u

[ĉ,d̂]
j (λ, .)χ[c,d], since we have Ujχ[c,d] = Ujχ[ĉ,d̂]χ[c,d].

In particular, there is a kernel uj(λ, x) such that

Ujf(x) =

∫ b

a
uj(λ, x)f(x)r(x) dx

for every f with compact support in (a, b). Since functions with compact
support are dense and Uj is continuous, this formula holds for every f pro-
vided the integral is understood as the corresponding limit.

Using the fact that U is unitary, 〈F ,Ug〉 = 〈U−1F , g〉, we see that∑
j

∫
R
Fj(λ)∗

∫ b

a
uj(λ, x)g(x)r(x) dx =

∫ b

a
(U−1F )(x)∗g(x)r(x) dx.

Interchanging integrals on the right-hand side (which is permitted at least
for g, F with compact support), the formula for the inverse follows.

Next, from UjAf = λUjf , we have∫ b

a
uj(λ, x)(τf)(x)r(x) dx = λ

∫ b

a
uj(λ, x)f(x)r(x) dx

for a.e. λ and every f ∈ D(A0). Restricting everything to [c, d] ⊂ (a, b),
the above equation implies uj(λ, .)|[c,d] ∈ D(A∗cd,0) and A∗cd,0uj(λ, .)|[c,d] =

λuj(λ, .)|[c,d]. In particular, uj(λ, .) is a solution of τuj = λuj . Moreover, if
τ is l.c. near a, we can choose c = a and allow all f ∈ D(τ) which satisfy
the boundary condition at a and vanish identically near b.

Finally, assume the µj are ordered and fix l ≤ k. Suppose

l∑
j=1

cj(λ)uj(λ, x) = 0.

Then we have
l∑

j=1

cj(λ)Fj(λ) = 0, Fj = Ujf,

for every f . Since U is surjective, we can prescribe Fj arbitrarily on σ(µl),
e.g., Fj(λ) = 1 for j = j0 and Fj(λ) = 0 otherwise, which shows cj0(λ) =
0. Hence the solutions uj(λ, x), 1 ≤ j ≤ l, are linearly independent for
λ ∈ σ(µl), which shows that k ≤ 2 since there are at most two linearly
independent solutions. If τ is l.c. and uj(λ, x) must satisfy the boundary
condition, there is only one linearly independent solution and thus k = 1. �

Note that since we can replace uj(λ, x) by γj(λ)uj(λ, x) where |γj(λ)| =
1, it is no restriction to assume that uj(λ, x) is real-valued.
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For simplicity, we will only pursue the case where one endpoint, say a,
is regular. The general case can often be reduced to this case and will be
postponed until Section 9.6.

We choose a boundary condition

cos(α)f(a)− sin(α)p(a)f ′(a) = 0 (9.44)

and introduce two solutions s(z, x) and c(z, x) of τu = zu satisfying the
initial conditions

s(z, a) = sin(α), p(a)s′(z, a) = cos(α),

c(z, a) = cos(α), p(a)c′(z, a) = − sin(α). (9.45)

Note that s(z, x) is the solution which satisfies the boundary condition at
a; that is, we can choose ua(z, x) = s(z, x). In fact, if τ is not regular at a
but only l.c., everything below remains valid if one chooses s(z, x) to be a
solution satisfying the boundary condition at a and c(z, x) to be a linearly
independent solution with W (c(z), s(z)) = 1.

Moreover, in our previous lemma we have u1(λ, x) = γa(λ)s(λ, x), and
using the rescaling dµ(λ) = |γa(λ)|2dµa(λ) and (U1f)(λ) = γa(λ)(Uf)(λ),
we obtain a unitary map

U : L2(I, r dx)→ L2(R, dµ), (Uf)(λ) =

∫ b

a
s(λ, x)f(x)r(x)dx (9.46)

with inverse

(U−1F )(x) =

∫
R
s(λ, x)F (λ)dµ(λ). (9.47)

Note, however, that while this rescaling gets rid of the unknown factor γa(λ),
it destroys the normalization of the measure µ. For µ1 we know µ1(R) (if
the corresponding vector is normalized), but µ might not even be bounded!
In fact, it turns out that µ is indeed unbounded.

So up to this point we have our spectral transformation U which maps A
to multiplication by λ, but we know nothing about the measure µ. Further-
more, the measure µ is the object of desire since it contains all the spectral
information of A. So our next aim must be to compute µ. If A has only
pure point spectrum (i.e., only eigenvalues), this is straightforward as the
following example shows.

Example. Suppose E ∈ σp(A) is an eigenvalue. Then s(E, x) is the cor-
responding eigenfunction and the same is true for SE(λ) = (Us(E))(λ). In
particular, χ{E}(A)s(E, x) = s(E, x) shows SE(λ) = (Uχ{E}(A)s(E))(λ) =
χ{E}(λ)SE(λ); that is,

SE(λ) =

{
‖s(E)‖2, λ = E,
0, λ 6= E.

(9.48)
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Moreover, since U is unitary, we have

‖s(E)‖2 =

∫ b

a
s(E, x)2r(x)dx =

∫
R
SE(λ)2dµ(λ) = ‖s(E)‖4µ({E}); (9.49)

that is, µ({E}) = ‖s(E)‖−2. In particular, if A has pure point spectrum
(e.g., if τ is limit circle at both endpoints), we have

dµ(λ) =
∞∑
j=1

1

‖s(Ej)‖2
dΘ(λ− Ej), σp(A) = {Ej}∞j=1, (9.50)

where dΘ is the Dirac measure centered at 0. For arbitrary A, the above
formula holds at least for the pure point part µpp. �

In the general case, we have to work a bit harder. Since c(z, x) and
s(z, x) are linearly independent solutions,

W (c(z), s(z)) = 1, (9.51)

we can write ub(z, x) = γb(z)(c(z, x) +mb(z)s(z, x)), where

mb(z)=−W (c(z), ub(z))

W (s(z), ub(z))
=

cos(α)p(a)u′b(z, a) + sin(α)ub(z, a)

cos(α)ub(z, a)− sin(α)p(a)u′b(z, a)
, z ∈ ρ(A),

(9.52)
is known as the Weyl–Titchmarsh m-function. Note that mb(z) is holo-
morphic in ρ(A) and that

mb(z)
∗ = mb(z

∗) (9.53)

since the same is true for ub(z, x) (the denominator in (9.52) only vanishes if
ub(z, x) satisfies the boundary condition at a, that is, if z is an eigenvalue).
Moreover, the constant γb(z) is of no importance and can be chosen equal
to one,

ub(z, x) = c(z, x) +mb(z)s(z, x). (9.54)

Lemma 9.14. The Weyl m-function satisfies

mb(z)−mb(ẑ)

z − ẑ
=

∫ b

a
ub(z, y)ub(ẑ, y)r(y) dy, (9.55)

where ub(z, x) is normalized as in (9.54). In particular, for ẑ = z∗ we see
that it is a Herglotz–Nevanlinna function satisfying

Im(mb(z)) = Im(z)

∫ b

a
|ub(z, x)|2r(x) dx. (9.56)

Proof. Given two solutions u(x), v(x) of τu = zu, τv = ẑv, respectively, it
follows from the Lagrange identity (9.4) that

(z − ẑ)
∫ x

a
u(y)v(y)r(y) dy = Wx(u, v)−Wa(u, v).
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Now choose u(x) = ub(z, x) and v(x) = ub(ẑ, x),

(z − ẑ)
∫ x

a
ub(z, y)ub(ẑ, y)r(y) dy = Wx(ub(z), ub(ẑ)) + (mb(z)−mb(ẑ)),

and observe that Wx(ub(z), ub(ẑ)) vanishes as x ↑ b, since both ub(z) and
ub(ẑ) are in D(τ) near b. �

Lemma 9.15. Let

G(z, x, y) =

{
s(z, x)ub(z, y), y ≥ x,
s(z, y)ub(z, x), y ≤ x,

(9.57)

be the Green function of A. Then

(UG(z, x, .))(λ) =
s(λ, x)

λ− z
and (Up(x)∂xG(z, x, .))(λ) =

p(x)s′(λ, x)

λ− z
(9.58)

for every x ∈ (a, b) and every z ∈ ρ(A).

Proof. First of all, note that G(z, x, .) ∈ L2((a, b), r dx) for every x ∈ (a, b)
and z ∈ ρ(A). Moreover, from RA(z)f = U−1 1

λ−zUf , we have∫ b

a
G(z, x, y)f(y)r(y) dy =

∫
R

s(λ, x)F (λ)

λ− z
dµ(λ), (9.59)

where F = Uf . Here equality is to be understood in L2, that is, for a.e.
x. However, the left-hand side is continuous with respect to x and so is the
right-hand side, at least if F has compact support. Since this set is dense,
the first equality follows. Similarly, the second follows after differentiating
(9.59) with respect to x. �

Corollary 9.16. We have

(Uub(z))(λ) =
1

λ− z
, (9.60)

where ub(z, x) is normalized as in (9.54).

Proof. Choosing x = a in the lemma, we obtain the claim from the first
identity if sin(α) 6= 0 and from the second if cos(α) 6= 0. �

Now combining Lemma 9.14 and Corollary 9.16, we infer from unitarity
of U that

Im(mb(z)) = Im(z)

∫ b

a
|ub(z, x)|2r(x) dx = Im(z)

∫
R

1

|λ− z|2
dµ(λ) (9.61)

and since a holomorphic function is determined up to a real constant by its
imaginary part, we obtain
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Theorem 9.17. The Weyl m-function is given by

mb(z) = d+

∫
R

(
1

λ− z
− λ

1 + λ2

)
dµ(λ), d ∈ R, (9.62)

and

d = Re(mb(i)),

∫
R

1

1 + λ2
dµ(λ) = Im(mb(i)) <∞. (9.63)

Moreover, µ is given by the Stieltjes inversion formula

µ(λ) = lim
δ↓0

lim
ε↓0

1

π

∫ λ+δ

δ
Im(mb(t+ iε))dt, (9.64)

where

Im(mb(λ+ iε)) = ε

∫ b

a
|ub(λ+ iε, x)|2r(x) dx. (9.65)

Proof. Choosing z = i in (9.61) shows (9.63) and hence the right-hand side
of (9.62) is a well-defined holomorphic function in C\R. By

Im(
1

λ− z
− λ

1 + λ2
) =

Im(z)

|λ− z|2
,

its imaginary part coincides with that of mb(z) and hence equality follows.
The Stieltjes inversion formula follows from Theorem 3.23. �

Example. Consider τ = − d2

dx2
on I = (0,∞). Then

c(z, x) = cos(α) cos(
√
zx)− sin(α)√

z
sin(
√
zx) (9.66)

and

s(z, x) = sin(α) cos(
√
zx) +

cos(α)√
z

sin(
√
zx). (9.67)

Moreover,

ub(z, x) = ub(z, 0)e−
√
−zx (9.68)

and thus

mb(z) =
sin(α)−

√
−z cos(α)

cos(α) +
√
−z sin(α)

, (9.69)

respectively,

dµ(λ) =

√
λ

π(cos(α)2 + λ sin(α)2)
dλ. (9.70)

�

Note that if α 6= 0, we even have
∫

1
|λ−z|dµ(λ) < 0 in the previous

example and hence

mb(z) = − cot(α) +

∫
R

1

λ− z
dµ(λ) (9.71)
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in this case (the factor − cot(α) follows by considering the limit |z| → ∞
of both sides). Formally, this even follows in the general case by choosing
x = a in ub(z, x) = (U−1 1

λ−z )(x); however, since we know equality only for
a.e. x, a more careful analysis is needed. We will address this problem in
the next section.

Problem 9.10. Show

mb,α(z) =
cos(α− β)mb,β(z) + sin(α− β)

cos(α− β)− sin(α− β)mb,β(z)
. (9.72)

(Hint: The case β = 0 is (9.52).)

Problem 9.11. Suppose τ is l.c. at a. Let φ0(x), θ0(x) be two real-valued
solutions of τu = λ0u for some fixed λ0 ∈ R such that W (θ0, φ0) = 1. Show
that the limits

lim
x→a

Wx(φ0, u(z)), lim
x→a

Wx(θ0, u(z)) (9.73)

exist for every solution u(z) of τu = zu.

Introduce

φ(z, x) = Wa(c(z), φ0)s(z, x)−Wa(s(z), φ0)c(z, x),

θ(z, x) = Wa(c(z), θ0)s(z, x)−Wa(s(z), θ0)c(z, x), (9.74)

where c(z, x) and s(z, x) are chosen with respect to some base point c ∈ (a, b)
and a singular Weyl m-function Mb(z) such that

ψ(z, x) = θ(z, x) +Mb(z)φ(z, x) ∈ L2(c, b). (9.75)

Show that all claims from this section still hold true in this case for the oper-
ator associated with the boundary condition Wa(φ0, f) = 0. (Hint: Plücker’s
identity.)

9.4. Inverse spectral theory

In this section, we want to show that the Weyl m-function (respectively,
the corresponding spectral measure) uniquely determines the operator. For
simplicity, we only consider the case p = r ≡ 1.

We begin with some asymptotics for large z away from the spectrum.
We recall that

√
z always denotes the branch with arg(z) ∈ (−π, π]. In

particular, Re(
√
−z) > 0 for all z ∈ C\[0,∞) and Re(

√
−z) = 0 for all

z ∈ [0,∞). We will write c(z, x) = cα(z, x) and s(z, x) = sα(z, x) to display
the dependence on α whenever necessary. Clearly

sα(z, x) = sin(α)c0(z, x) + cos(α)s0(z, x),

cα(z, x) = cos(α)c0(z, x)− sin(α)s0(z, x). (9.76)

We first observe (Problem 9.12)
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Lemma 9.18. For α = 0, we have

c0(z, x) = cosh(
√
−z(x− a)) +O(

1√
−z

e
√
−z(x−a)),

s0(z, x) =
1√
−z

sinh(
√
−z(x− a)) +O(

1

z
e
√
−z(x−a)), (9.77)

uniformly for x ∈ (a, c) as |z| → ∞.

Note that for z ∈ C\[0,∞), this can be written as

c0(z, x) =
1

2
e
√
−z(x−a)

(
1 +O(

1√
−z

)
)
,

s0(z, x) =
1

2
√
−z

e
√
−z(x−a)

(
1 +O(

1√
−z

)
)
, (9.78)

for Im(z)→∞, and for z = λ ∈ [0,∞), we have

c0(λ, x) = cos(
√
λ(x− a)) +O(

1√
λ

),

s0(λ, x) =
1√
λ

sin(
√
λ(x− a)) +O(

1

λ
), (9.79)

as λ→∞.

From this lemma we obtain

Lemma 9.19. The Weyl m-function satisfies

mb(z) =

{
− cot(α) + 1

sin(α)2
√
−z +O(1

z ), α 6= 0,

−
√
−z +O(1), α = 0,

(9.80)

as z →∞ in any sector ε|Re(z)| ≤ | Im(z)|, ε > 0.

Proof. Evaluating (9.36) using Lemma 9.15 (as in (9.61)), we conclude as
in the proof of Theorem 9.17 that

G(z, x, x) = d(x) +

∫
R

(
1

λ− z
− λ

1 + λ2

)
s(λ, x)2dµ(λ).

Hence, Problem 3.24 implies G(z, x, x) = o(z) as z → ∞ in any sector
ε|Re(z)| ≤ | Im(z)|. Now solving G(z, x, x) = s(z, x)ub(z, x) for mb(z) and
using the asymptotic expansions from Lemma 9.18, we see

mb(z) = −c(z, x)

s(z, x)
+ o(z2e−2

√
−z(x−a))

from which the case α = 0 and the leading term in the case α 6= 0 follows.
The next term in the case α 6= 0 follows using (9.72) with β = 0. �

Note that assuming q ∈ Ck([a, b)), one can obtain further asymptotic
terms in Lemma 9.18 and hence also in the expansion of mb(z).
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Corollary 9.20. The following asymptotics are valid:

G(z, x, y) =
e−
√
−z|y−x|

2
√
−z

(
1 +O(z−1/2)

)
, (9.81)

ub(z, x) = e−
√
−z(x−a)

{
cos(α) +O( 1√

−z ), α 6= π
2 ,

1√
−z +O(1

z ), α = π
2 ,

(9.82)

mb(z) = −c(z, x)

s(z, x)
+O(z−1/2e−2

√
−z(x−a)), (9.83)

as z →∞ in any sector ε|Re(z)| ≤ | Im(z)|, ε > 0.

Proof. First of all, note that we can write

G(z, x, x) =
ua(z, x)ub(z, x)

W (ua(z), ub(z))
=

−1

ma(z, x) +mb(z, x)
,

where

ma(z, x) = −u
′
a(z, x)

ua(z, x)
and mb(z, x) =

u′b(z, x)

ub(z, x)

are the Weyl m-functions associated with H restricted to (a, x) and (x, b)
with a Dirichlet boundary condition at x, respectively. Hence (9.80) implies
(9.81) in the case y = x. Furthermore, the asymptotics for ub(z, x) follow
from ub(z, x) = G(z, x, x)/s(z, x) which in turn implies the x 6= y case since
G(z, x, y) = G(z, x, y)ub(z, y)/ub(z, x), y ≥ x. Finally, (9.83) follows after
solving (9.81) for mb(z). �

Now we come to our main result of this section:

Theorem 9.21. Suppose τj, j = 0, 1, are given on (a, b) and both are regular
at a. Moreover, Aj are some self-adjoint operators associated with τj and
the same boundary condition at a.

Let c ∈ (a, b). Then q0(x) = q1(x) for x ∈ (a, c) if and only if m1,b(z)−
m0,b(z) = o(e−2(c−a) Re(

√
−z)) as z →∞ along some nonreal ray.

Proof. The direct claim is immediate from (9.83). To see the converse,
first note that by (9.77) we have s1(z, x)/s0(z, x)→ 1 as z →∞ along any
nonreal ray. Moreover, (9.81) in the case y = x shows s0(z, x)u1,b(z, x)→ 0
and s1(z, x)u0,b(z, x)→ 0 as well. Hence the entire function

s1(z, x)c0(z, x)− s0(z, x)c1(z, x) =s1(z, x)u0,b(z, x)− s0(z, x)u1,b(z, x)

+ (m1,b(z)−m0,b(z))s0(z, x)s1(z, x)

vanishes as z → ∞ along any nonreal ray for fixed x ∈ (a, c) by the as-
sumption on m1,b(z) − m0,b(z). Moreover, by (9.77), this function has
an order of growth ≤ 1/2 and thus by the Phragmén–Lindelöf theorem
(e.g., [62, Thm. 4.3.4]) is bounded on all of C. By Liouville’s theorem it
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must be constant and since it vanishes along rays, it must be zero; that
is, s1(z, x)c0(z, x) = s0(z, x)c1(z, x) for all z ∈ C and x ∈ (a, c). Dif-
ferentiating this identity with respect to x and using W (cj(z), sj(z)) = 1
shows s1(z, x)2 = s0(z, x)2. Taking the logarithmic derivative further gives
s′1(z, x)/s1(z, x) = s′0(z, x)/s0(z, x) and differentiating once more shows
s′′1(z, x)/s1(z, x) = s′′0(z, x)/s0(z, x). This finishes the proof since qj(x) =
z + s′′j (z, x)/sj(z, x). �

By virtue of Lemma 3.30, the asymptotics of mb(z) in turn tell us more
about L2(R, dµ). For example, using (9.80) and (9.79), we obtain∫

s(λ, x)2(1 + |λ|)−γdµ(λ) <∞ for γ >
1

2
. (9.84)

As a consequence we obtain:

Lemma 9.22. We have

G(z, x, y) =

∫
R

s(λ, x)s(λ, y)

λ− z
dµ(λ), (9.85)

where the integrand is integrable.

Proof. By Lemma 9.15, this formula holds for given fixed x in the sense
of L2((a, b), r dx) with respect to y. Since our above observation implies
integrability for all y (uniformly for x, y ∈ (a, c)), both sides are continuous
and the claim follows. �

Problem 9.12. Prove Lemma 9.18. (Hint: Without loss, set a = 0. Now
use that

c(z, x) = cos(α) cosh(
√
−zx)− sin(α)√

−z
sinh(

√
−zx)

+
1√
−z

∫ x

0
sinh(

√
−z(x− y))q(y)c(z, y)dy

by Lemma 9.2 and consider c̃(z, x) = e−
√
−zxc(z, x).)

9.5. Absolutely continuous spectrum

In this section, we will show how to locate the absolutely continuous spec-
trum. We will again assume that a is a regular endpoint. Moreover, we
assume that b is l.p. since otherwise the spectrum is discrete and there will
be no absolutely continuous spectrum.

In this case, we have seen in Section 9.3 that A is unitarily equivalent to
multiplication by λ in the space L2(R, dµ), where µ is the measure associated
to the Weyl m-function. Hence by Theorem 3.27 we conclude that the set

Ms = {λ| lim sup
ε↓0

Im(mb(λ+ iε)) =∞} (9.86)
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is a support for the singularly continuous part and

Mac = {λ|0 < lim sup
ε↓0

Im(mb(λ+ iε)) <∞} (9.87)

is a minimal support for the absolutely continuous part. Moreover, σac(A)
can be recovered from the essential closure of Mac; that is,

σac(A) = M
ess
ac . (9.88)

Compare also Section 3.2.

We now begin our investigation with a crucial estimate on Im(mb(λ+iε)).
Set

‖f‖(a,x) =

√∫ x

a
|f(y)|2r(y)dy, x ∈ (a, b). (9.89)

Lemma 9.23. Let

ε = (2‖s(λ)‖(a,x)‖c(λ)‖(a,x))
−1 (9.90)

and note that since b is l.p., there is a one-to-one correspondence between
ε ∈ (0,∞) and x ∈ (a, b). Then

5−
√

24 ≤ |mb(λ+ iε)|
‖s(λ)‖(a,x)

‖c(λ)‖(a,x)
≤ 5 +

√
24. (9.91)

Proof. Let x > a. Then by Lemma 9.2,

ub(λ+ iε, x) = c(λ, x)−mb(λ+ iε)s(λ, x)

− iε

∫ x

a

(
c(λ, x)s(λ, y)− c(λ, y)s(λ, x)

)
ub(λ+ iε, y)r(y)dy.

Hence one obtains after a little calculation (as in the proof of Theorem 9.9)

‖c(λ)−mb(λ+ iε)s(λ)‖(a,x) ≤‖ub(λ+ iε)‖(a,x)

+ 2ε‖s(λ)‖(a,x)‖c(λ)‖(a,x)‖ub(λ+ iε)‖(a,x).

Using the definition of ε and (9.56), we obtain

‖c(λ)−mb(λ+ iε)s(λ)‖2(a,x) ≤ 4‖ub(λ+ iε)‖2(a,x)

≤ 4‖ub(λ+ iε)‖2(a,b) =
4

ε
Im(mb(λ+ iε))

≤ 8‖s(λ)‖(a,x)‖c(λ)‖(a,x) Im(mb(λ+ iε)).

Combining this estimate with

‖c(λ)−mb(λ+ iε)s(λ)‖2(a,x) ≥
(
‖c(λ)‖(a,x) − |mb(λ+ iε)|‖s(λ)‖(a,x)

)2

shows (1− t)2 ≤ 8t, where t = |mb(λ+ iε)|‖s(λ)‖(a,x)‖c(λ)‖−1
(a,x). �
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We now introduce the concept of subordinacy. A nonzero solution u of
τu = zu is called sequentially subordinate at b with respect to another
solution v if

lim inf
x→b

‖u‖(a,x)

‖v‖(a,x)
= 0. (9.92)

If the lim inf can be replaced by a lim, the solution is called subordinate.
Both concepts will eventually lead to the same results (cf. Remark 9.26
below). We will work with (9.92) since this will simplify proofs later on and
hence we will drop the additional sequentially.

It is easy to see that if u is subordinate with respect to v, then it is
subordinate with respect to any linearly independent solution. In particular,
a subordinate solution is unique up to a constant. Moreover, if a solution
u of τu = λu, λ ∈ R, is subordinate, then it is real up to a constant, since
both the real and the imaginary parts are subordinate. For z ∈ C\R we
know that there is always a subordinate solution near b, namely ub(z, x).
The following result considers the case z ∈ R.

Lemma 9.24. Let λ ∈ R. There is a subordinate solution u(λ) at b if and
only if there is a sequence εn ↓ 0 such that mb(λ+ iεn) converges to a limit
in R ∪ {∞} as n→∞. Moreover,

lim
n→∞

mb(λ+ iεn) =
cos(α)p(a)u′(λ, a) + sin(α)u(λ, a)

cos(α)u(λ, a)− sin(α)p(a)u′(λ, a)
(9.93)

in this case (compare (9.52)).

Proof. We will consider the number α fixing the boundary condition as a
parameter and write sα(z, x), cα(z, x), mb,α, etc., to emphasize the depen-
dence on α.

Every solution can (up to a constant) be written as sβ(λ, x) for some
β ∈ [0, π). But by Lemma 9.23, sβ(λ, x) is subordinate if and only there is
a sequence εn ↓ 0 such that limn→∞mb,β(λ+ iεn) =∞, and by (9.72), this
is the case if and only if

lim
n→∞

mb,α(λ+iεn) = lim
n→∞

cos(α− β)mb,β(λ+ iεn) + sin(α− β)

cos(α− β)− sin(α− β)mb,β(λ+ iεn)
= cot(α−β)

is a number in R ∪ {∞}. �

We are interested in N(τ), the set of all λ ∈ R for which no subordinate
solution exists, that is,

N(τ) = {λ ∈ R|No solution of τu = λu is subordinate at b} (9.94)

and the set
Sα(τ) = {λ| sα(λ, x) is subordinate at b}. (9.95)

From the previous lemma we obtain



244 9. One-dimensional Schrödinger operators

Corollary 9.25. We have λ ∈ N(τ) if and only if

lim inf
ε↓0

Im(mb(λ+ iε)) > 0 and lim sup
ε↓0

|mb(λ+ iε)| <∞.

Similarly, λ ∈ Sα(τ) if and only if lim supε↓0 |mb(λ+ iε)| =∞.

Remark 9.26. Since the set, for which the limit limε↓0mb(λ+ iε) does not
exist, is of zero spectral and Lebesgue measure (Corollary 3.29), changing
the lim inf in (9.92) to a lim will affect N(τ) only on such a set (which is
irrelevant for our purpose). Moreover, by (9.72), the set where the limit
exists (finitely or infinitely) is independent of the boundary condition α.

Then, as a consequence of the previous corollary, we have

Theorem 9.27. The set N(τ) ⊆Mac is a minimal support for the absolutely
continuous spectrum of H. In particular,

σac(H) = N(τ)
ess
. (9.96)

Moreover, the set Sα(τ) ⊇Ms is a minimal support for the singular spectrum
of H.

Proof. By our corollary we have N(τ) ⊆Mac. Moreover, if λ ∈Mac\N(τ),
then either 0 = lim inf Im(mb) < lim sup Im(mb) or lim sup Re(mb) = ∞.
The first case can only happen on a set of Lebesgue measure zero by Theo-
rem 3.27, and the same is true for the second by Corollary 3.29.

Similarly, by our corollary we also have Sα(τ) ⊇Ms, and λ ∈ Sα(τ)\Ms

happens precisely when lim sup Re(mb) = ∞, which can only happen on a
set of Lebesgue measure zero by Corollary 3.29. �

Note that if (λ1, λ2) ⊆ N(τ), then the spectrum of every self-adjoint
extension H of τ is purely absolutely continuous in the interval (λ1, λ2).

Example. Consider H0 = − d2

dx2
on (0,∞) with a Dirichlet boundary con-

dition at x = 0. Then it is easy to check H0 ≥ 0 and N(τ0) = (0,∞). Hence
σac(H0) = [0,∞). Moreover, since the singular spectrum is supported on
[0,∞)\N(τ0) = {0}, we see σsc(H0) = ∅ (since the singular continuous spec-
trum cannot be supported on a finite set) and σpp(H0) ⊆ {0}. Since 0 is no
eigenvalue, we have σpp(H0) = ∅. �

Problem 9.13. Determine the spectrum of H0 = − d2

dx2
on (0,∞) with a

general boundary condition (9.44) at a = 0.

9.6. Spectral transformations II

In Section 9.3, we have looked at the case of one regular endpoint. In this
section, we want to remove this restriction. In the case of a regular endpoint
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(or more generally an l.c. endpoint), the choice of u(λ, x) in Lemma 9.13 was
dictated by the fact that u(λ, x) is required to satisfy the boundary condition
at the regular (l.c.) endpoint. We begin by showing that in the general case
we can choose any pair of linearly independent solutions. We will choose
some arbitrary point c ∈ I and two linearly independent solutions according
to the initial conditions

c(z, c) = 1, p(c)c′(z, c) = 0, s(z, c) = 0, p(c)s′(z, c) = 1. (9.97)

We will abbreviate

s(z, x) =

(
c(z, x)
s(z, x)

)
. (9.98)

Lemma 9.28. There is a measure dµ(λ) and a nonnegative matrix R(λ)
with trace one such that

U : L2(I, r dx) → L2(R, R dµ)

f(x) 7→
∫ b
a s(λ, x)f(x)r(x) dx

(9.99)

is a spectral mapping as in Lemma 9.13. As before, the integral has to be

understood as
∫ b
a dx = limc↓a,d↑b

∫ d
c dx with limit taken in L2(R, R dµ), where

L2(R, R dµ) is the Hilbert space of all C2-valued measurable functions with
scalar product

〈f, g〉 =

∫
R
f∗Rg dµ. (9.100)

The inverse is given by

(U−1F )(x) =

∫
R
s(λ, x)R(λ)F (λ)dµ(λ). (9.101)

Proof. Let U0 be a spectral transformation as in Lemma 9.13 with corre-
sponding real solutions uj(λ, x) and measures dµj(x), 1 ≤ j ≤ k. Without
loss of generality, we can assume k = 2 since we can always choose dµ2 = 0
and u2(λ, x) such that u1 and u2 are linearly independent.

Now define the 2× 2 matrix C(λ) via(
u1(λ, x)
u2(λ, x)

)
= C(λ)

(
c(λ, x)
s(λ, x)

)
and note that C(λ) is nonsingular since u1, u2 as well as s, c are linearly
independent.

Set dµ̃ = dµ1 + dµ2. Then dµj = rjdµ̃ and we can introduce R̃ =

C∗
(
r1 0
0 r2

)
C. By construction, R̃ is a (symmetric) nonnegative matrix. More-

over, since C(λ) is nonsingular, tr(R̃) is positive a.e. with respect to µ̃. Thus

we can set R = tr(R̃)−1R̃ and dµ = tr(R̃)−1dµ̃.
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This matrix gives rise to an operator

C : L2(R, R dµ)→
⊕
j

L2(R, dµj), F (λ) 7→ C(λ)F (λ),

which, by our choice of Rdµ, is norm preserving. By CU = U0 it is onto
and hence it is unitary (this also shows that L2(R, R dµ) is a Hilbert space,
i.e., complete).

It is left as an exercise to check that C maps multiplication by λ in
L2(R, R dµ) to multiplication by λ in

⊕
j L

2(R, dµj) and the formula for

U−1. �

Clearly the matrix-valued measure Rdµ contains all the spectral in-
formation of A. Hence it remains to relate it to the resolvent of A as in
Section 9.3.

For our base point x = c there are corresponding Weyl m-functions
ma(z) and mb(z) such that

ua(z) = c(z, x)−ma(z)s(z, x), ub(z) = c(z, x) +mb(z)s(z, x). (9.102)

The different sign in front of ma(z) is introduced such that ma(z) will again
be a Herglotz–Nevanlinna function. In fact, this follows using reflection at
c, x − c 7→ −(x − c), which will interchange the roles of ma(z) and mb(z).
In particular, all considerations from Section 9.3 hold for ma(z) as well.

Furthermore, we will introduce the Weyl M-matrix

M(z) =
1

ma(z) +mb(z)

(
−1 (ma(z)−mb(z))/2

(ma(z)−mb(z))/2 ma(z)mb(z)

)
.

(9.103)
Note det(M(z)) = −1

4 . Since by virtue of (9.52)

ma(z) = −p(c)u
′
a(z, c)

ua(z, c)
and mb(z) =

p(c)u′b(z, c)

ub(z, c)
, (9.104)

it follows that W (ua(z), ub(z)) = ma(z) +mb(z) and

M(z) =(
G(z, x, x) (p(x)∂x + p(y)∂y)G(z, x, y)/2

(p(x)∂x + p(y)∂y)G(z, x, y)/2 p(x)∂xp(y)∂yG(z, x, y)

) ∣∣∣
x=y=c

,

(9.105)

where G(z, x, y) is the Green function of A. Note that while p(x)∂xG(z, x, y)
has different limits as y → x from y > x, respectively, y < x, the above off-
diagonal elements are continuous.

We begin by showing
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Lemma 9.29. Let U be the spectral mapping from the previous lemma.
Then

(UG(z, x, .))(λ) =
1

λ− z
s(λ, x),

(Up(x)∂xG(z, x, .))(λ) =
1

λ− z
p(x)s′(λ, x) (9.106)

for every x ∈ (a, b) and every z ∈ ρ(A).

Proof. First of all, note that G(z, x, .) ∈ L2((a, b), r dx) for every x ∈ (a, b)
and z ∈ ρ(A). Moreover, from RA(z)f = U−1 1

λ−zUf , we have∫ b

a
G(z, x, y)f(y)r(y)dy =

∫
R

1

λ− z
s(λ, x)R(λ)F (λ)dµ(λ)

where F = Uf . Now proceed as in the proof of Lemma 9.15. �

With the aid of this lemma, we can now show

Theorem 9.30. The Weyl M -matrix is given by

M(z) = D +

∫
R

(
1

λ− z
− λ

1 + λ2

)
R(λ)dµ(λ), Djk ∈ R, (9.107)

and

D = Re(M(i)),

∫
R

1

1 + λ2
R(λ)dµ(λ) = Im(M(i)), (9.108)

where

Re(M(z)) =
1

2

(
M(z)+M∗(z)

)
, Im(M(z)) =

1

2i

(
M(z)−M∗(z)

)
. (9.109)

Proof. By the previous lemma, we have∫ b

a
|G(z, c, y)|2r(y)dy =

∫
R

1

|z − λ|2
R11(λ)dµ(λ).

Moreover, by (9.28), (9.56), and (9.102), we infer∫ b

a
|G(z, c, y)|2r(y)dy =

1

|W (ua, ub)|2
(
|ub(z, c)|2

∫ c

a
|ua(z, y)|2r(y)dy

+ |ua(z, c)|2
∫ b

c
|ub(z, y)|2r(y)dy

)
=

Im(M11(z))

Im(z)
.

Similarly, we obtain∫
R

1

|z − λ|2
R22(λ)dµ(λ) =

Im(M22(z))

Im(z)

and ∫
R

1

|z − λ|2
R12(λ)dµ(λ) =

Im(M12(z))

Im(z)
.
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Hence the result follows as in the proof of Theorem 9.17. �

Example. Consider τ = − d2

dx2
on I = (−∞,∞). Then we already know

from the example in Section 9.3 that mb(z) is given by (9.69). Moreover, by
symmetry, we have ma(z) = mb(z), implying

M(z) =
1

2

(
1√
−z 0

0 −
√
−z

)
(9.110)

and

R(λ)dµ(λ) =
1

2π

(
1√
λ

0

0
√
λ

)
dλ. (9.111)

�

Now we are also able to extend Theorem 9.27. Note that by

tr(M(z)) = M11(z) +M22(z) = d+

∫
R

(
1

λ− z
− λ

1 + λ2

)
dµ(λ) (9.112)

(with d = tr(D) ∈ R), we have that the set

Ms = {λ| lim sup
ε↓0

Im(tr(M(λ+ iε))) =∞} (9.113)

is a support for the singularly continuous part and

Mac = {λ|0 < lim sup
ε↓0

Im(tr(M(λ+ iε))) <∞} (9.114)

is a minimal support for the absolutely continuous part.

Theorem 9.31. The set Na(τ)∪Nb(τ) ⊆Mac is a minimal support for the
absolutely continuous spectrum of A. In particular,

σac(A) = Na(τ) ∪Nb(τ)
ess
. (9.115)

Moreover, the set ⋃
α∈[0,π)

Sa,α(τ) ∩ Sb,α(τ) ⊇Ms (9.116)

is a support for the singular spectrum of A.

Proof. By Corollary 9.25 we have 0 < lim inf Im(ma) and lim sup |ma| <∞
if and only if λ ∈ Na(τ) and similarly for mb.

Now suppose λ ∈ Na(τ). Then lim sup |M11| <∞ since lim sup |M11| =
∞ is impossible by 0 = lim inf |M−1

11 | = lim inf |ma+mb| ≥ lim inf Im(ma) >
0. Similarly, lim sup |M22| < ∞. Moreover, if lim sup |mb| < ∞, we also
have

lim inf Im(M11) = lim inf
Im(ma +mb)

|ma +mb|2
≥ lim inf Im(ma)

lim sup |ma|2 + lim sup |mb|2
> 0
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and if lim sup |mb| =∞, we have

lim inf Im(M22) = lim inf Im

(
ma

1 + ma
mb

)
≥ lim inf Im(ma) > 0.

Thus Na(τ) ⊆Mac and similarly Nb(τ) ⊆Mac.

Conversely, let λ ∈ Mac. By Corollary 3.29, we can assume that the
limits limma and limmb both exist and are finite after disregarding a set of
Lebesgue measure zero. For such λ, lim Im(M11) and lim Im(M22) both exist
and are finite. Moreover, either lim Im(M11) > 0, in which case lim Im(ma+
mb) > 0, or lim Im(M11) = 0, in which case

0 < lim Im(M22) = lim
|ma|2 Im(mb) + |mb|2 Im(ma)

|ma|2 + |mb|2
= 0

yields a contradiction. Thus λ ∈ Na(τ)∪Nb(τ) and the first part is proven.

To prove the second part, let λ ∈Ms. If lim sup Im(M11) =∞, we have
lim sup |M11| = ∞ and thus lim inf |ma + mb| = 0. But this implies that
there is some subsequence such that limmb = − limma = cot(α) ∈ R∪{∞}.
Similarly, if lim sup Im(M22) = ∞, we have lim inf |m−1

a + m−1
b | = 0, and

there is some subsequence such that limm−1
b = − limm−1

a = tan(α) ∈
R ∪ {∞}. This shows Ms ⊆

⋃
α Sa,α(τ) ∩ Sb,α(τ). �

Problem 9.14. Show

R(λ)dµac(λ) =

 Im(ma(λ)+mb(λ))
|ma(λ)|2+|mb(λ)|2

Im(ma(λ)m∗b (λ))

|ma(λ)|2+|mb(λ)|2
Im(ma(λ)m∗b (λ))

|ma(λ)|2+|mb(λ)|2
|ma(λ)|2 Im(mb(λ))+|mb(λ)|2 Im(ma(λ))

|ma(λ)|2+|mb(λ)|2

 dλ

π
,

where ma(λ) = limε↓0ma(λ+ iε) and similarly for mb(λ).

Moreover, show that the choice of solutions(
ub(λ, x)
ua(λ, x)

)
= V (λ)

(
c(λ, x)
s(λ, x)

)
,

where

V (λ) =
1

ma(λ) +mb(λ)

(
1 mb(λ)
1 −ma(λ)

)
,

diagonalizes the absolutely continuous part,

V −1(λ)∗R(λ)V (λ)−1dµac(λ) =
1

π

(
Im(ma(λ)) 0

0 Im(mb(λ))

)
dλ.

Problem 9.15. Show that at an eigenvalue E, we have

R(E)µ({E}) =
1∫ b

a |u(E, x)|2dx

(
|u(E, 0)|2 u(E, 0)u′(E, 0)∗

u(E, 0)∗u′(E, 0) |u′(E, 0)|2
)
,

where u(E, x) is a corresponding eigenfunction.



250 9. One-dimensional Schrödinger operators

9.7. The spectra of one-dimensional Schrödinger operators

In this section, we want to look at the case of one-dimensional Schrödinger
operators; that is, r = p = 1 on (a, b) = (0,∞).

Recall that

H0 = − d2

dx2
, D(H0) = H2(R), (9.117)

is self-adjoint and

qH0(f) = ‖f ′‖2, Q(H0) = H1(R). (9.118)

Hence we can try to apply the results from Chapter 6. We begin with a
simple estimate:

Lemma 9.32. Suppose f ∈ H1(0, 1). Then

sup
x∈[0,1]

|f(x)|2 ≤ ε
∫ 1

0
|f ′(x)|2dx+ (1 +

1

ε
)

∫ 1

0
|f(x)|2dx (9.119)

for every ε > 0.

Proof. First, note that

|f(x)|2 = |f(c)|2 + 2

∫ x

c
Re(f(t)∗f ′(t))dt ≤ |f(c)|2 + 2

∫ 1

0

√
ε|f(t)| |f

′(t)|√
ε
dt

≤ |f(c)|2 +

∫ 1

0

(
ε|f ′(t)|2 +

1

ε
|f(t)|2

)
dt

for any c ∈ [0, 1]. But by the mean value theorem there is a c ∈ (0, 1) such

that |f(c)|2 =
∫ 1

0 |f(t)|2dt. �

As a consequence we obtain

Lemma 9.33. Suppose q ∈ L2
loc(R) and

sup
n∈Z

∫ n+1

n
|q(x)|2dx <∞. (9.120)

Then q is relatively bounded with respect to H0 with bound zero.

Similarly, if q ∈ L1
loc(R) and

sup
n∈Z

∫ n+1

n
|q(x)|dx <∞, (9.121)

then q is relatively form bounded with respect to H0 with bound zero.
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Proof. Let Q be in L2
loc(R) and abbreviate M = supn∈Z

∫ n+1
n |Q(x)|2dx.

Using the previous lemma, we have for f ∈ H1(R) that

‖Qf‖2 ≤
∑
n∈Z

∫ n+1

n
|Q(x)f(x)|2dx ≤M

∑
n∈Z

sup
x∈[n,n+1]

|f(x)|2

≤M
∑
n∈Z

(
ε

∫ n+1

n
|f ′(x)|2dx+ (1 +

1

ε
)

∫ n+1

n
|f(x)|2dx

)
= M

(
ε‖f ′‖2 + (1 +

1

ε
)‖f‖2

)
.

Choosing Q = |q|1/2, this already proves the form case since ‖f ′‖2 =
qH0(f). Choosing Q = q and observing qH0(f) = 〈f,H0f〉 ≤ ‖H0f‖‖f‖ ≤
1
2(‖H0f‖2 + ‖f‖2) for f ∈ H2(R) shows the operator case. �

Hence, in both cases, H0 + q is a well-defined (semi-bounded) operator
defined as operator sum on D(H0 + q) = D(H0) = H2(R) in the first case
and as form sum on Q(H0 + q) = Q(H0) = H1(R) in the second case. Note
also that the first case implies the second one since by Cauchy–Schwarz we
have ∫ n+1

n
|q(x)|dx ≤

(∫ n+1

n
|q(x)|2dx

)1/2

. (9.122)

This is not too surprising since we already know how to turn H0 + q into
a self-adjoint operator without imposing any conditions on q (except for
L1
loc(R)) at all. However, we get at least a simple description of the (form)

domains, and by requiring a bit more, we can even compute the essential
spectrum of the perturbed operator.

Lemma 9.34. Suppose q ∈ L1(R). Then the resolvent difference of H0 and
H0 + q is trace class.

Proof. UsingG0(z, x, x)=1/(2
√
−z), Lemma 9.12 implies that |q|1/2RH0(z)

is Hilbert–Schmidt and hence the result follows from Lemma 6.29. �

Lemma 9.35. Suppose q ∈ L1
loc(R) and

lim
|n|→∞

∫ n+1

n
|q(x)|dx = 0. (9.123)

Then RH0+q(z) − RH0(z) is compact and hence σess(H0 + q) = σess(H0) =
[0,∞).

Proof. By Weyl’s theorem it suffices to show that the resolvent difference is
compact. Let qn(x) = q(x)χR\[−n,n](x). Then RH0+q(z)−RH0+qn(z) is trace
class, which can be shown as in the previous theorem since q−qn has compact
support (no information on the corresponding diagonal Green’s function is
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needed since by continuity it is bounded on every compact set). Moreover,
by the proof of Lemma 9.33, qn is form bounded with respect to H0 with

constants a = Mn and b = 2Mn, where Mn = sup|m|≥n
∫m+1
m |q(x)|2dx.

Hence by Theorem 6.25 we see

RH0+qn(−λ) = RH0(−λ)1/2(1− Cqn(λ))−1RH0(−λ)1/2, λ > 2,

with ‖Cqn(λ)‖ ≤Mn. So we conclude

RH0+qn(−λ)−RH0(−λ) = −RH0(−λ)1/2Cqn(λ)(1− Cqn(λ))−1RH0(−λ)1/2,

λ > 2, which implies that the sequence of compact operators RH0+q(−λ)−
RH0+qn(−λ) converges to RH0+q(−λ) − RH0(−λ) in norm, which implies
that the limit is also compact and finishes the proof. �

Using Lemma 6.23, respectively, Corollary 6.27, we even obtain

Corollary 9.36. Let q = q1 + q2 where q1 and q2 satisfy the assumptions of
Lemma 9.33 and Lemma 9.35, respectively. Then H0 +q1 +q2 is self-adjoint
and σess(H0 + q1 + q2) = σess(H0 + q1).

This result applies, for example, in the case where q2 is a decaying per-
turbation of a periodic potential q1.

Finally we turn to the absolutely continuous spectrum.

Lemma 9.37. Suppose q = q1 +q2, where q1 ∈ L1(0,∞) and q2 ∈ AC[0,∞)
with q′2 ∈ L1(0,∞) and limx→∞ q2(x) = 0. Then there are two solutions
u±(λ, x) of τu = λu, λ > 0, of the form

u±(λ, x) = (1 + o(1))u0,±(λ, x), u′±(λ, x) = (1 + o(1))u′0,±(λ, x) (9.124)

as x→∞, where

u0,±(λ, x) = exp

(
±i

∫ x

0

√
λ− q2(y)dy

)
. (9.125)

Proof. We will omit the dependence on λ for notational simplicity. More-
over, we will choose x so large that Wx(u0,−, u0,+) = 2i

√
λ− q2(x) 6= 0.

Write

u(x) = U0(x)a(x), U0(x) =

(
u0,+(x) u0,−(x)
u′0,+(x) u′0,−(x)

)
, a(x) =

(
a+(x)
a−(x)

)
.

Then

u′(x) =

(
0 1

q(x)− λ 0

)
u(x)

−
(

0 0
q+(x)u0,+(x) q−(x)u0,−(x)

)
a(x) + U0(x)a′(x),
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where

q±(x) = q1(x)± i
q′2(x)

2
√
λ− q2(x)

.

Hence, u(x) will solve τu = λu if

a′(x) =
1

Wx(u0,−, u0,+)

(
−q+(x) −q−(x)u0,−(x)2

q+(x)u0,+(x)2 q−(x)

)
a(x).

Since the coefficient matrix of this linear system is integrable, the claim
follows by a simple application of Gronwall’s inequality. �

Theorem 9.38 (Weidmann). Let q1 and q2 be as in the previous lemma
and suppose q = q1 + q2 satisfies the assumptions of Lemma 9.35. Let
H = H0+q1+q2. Then σac(H) = [0,∞), σsc(H) = ∅, and σp(H) ⊆ (−∞, 0].

Proof. By the previous lemma, there is no subordinate solution for λ > 0 on
(0,∞) and hence 0 < Im(mb(λ+i0)) <∞. Similarly, there is no subordinate
solution (−∞, 0) and hence 0 < Im(ma(λ+i0)) <∞. Thus the same is true
for the diagonal entries Mjj(z) of the Weyl M -matrix, 0 < Im(Mjj(λ +
i0)) < ∞, and hence dµ is purely absolutely continuous on (0,∞). Since
σess(H) = [0,∞), we conclude σac(H) = [0,∞) and σsc(H) ⊆ {0}. Since
the singular continuous part cannot live on a single point, we are done. �

Note that the same results hold for operators on [0,∞) rather than R.
Moreover, observe that the conditions from Lemma 9.37 are only imposed
near +∞ but not near −∞. The conditions from Lemma 9.35 are only used
to ensure that there is no essential spectrum in (−∞, 0).

Having dealt with the essential spectrum, let us next look at the discrete
spectrum. In the case of decaying potentials, as in the previous theorem,
one key question is whether the number of eigenvalues below the essential
spectrum is finite.

As preparation, we shall prove Sturm’s comparison theorem:

Theorem 9.39 (Sturm). Let τ0, τ1 be associated with q0 ≥ q1 on (a, b),
respectively. Let (c, d) ⊆ (a, b) and τ0u = 0, τ1v = 0. Suppose at each end
of (c, d) either Wx(u, v) = 0 or, if c, d ∈ (a, b), u = 0. Then v is either a
multiple of u in (c, d) or v must vanish at some point in (c, d).

Proof. By decreasing d to the first zero of u in (c, d] (and perhaps flipping
signs), we can suppose u > 0 on (c, d). If v has no zeros in (c, d), we can
suppose v > 0 on (c, d) again by perhaps flipping signs. At each endpoint,
W (u, v) vanishes or else u = 0, v > 0, and u′(c) > 0 (or u′(d) < 0). Thus,
Wc(u, v) ≤ 0, Wd(u, v) ≥ 0. But this is inconsistent with

Wd(u, v)−Wc(u, v) =

∫ d

c
(q0(t)− q1(t))u(t)v(t) dt, (9.126)
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unless both sides vanish. �

In particular, choosing q0 = q− λ0 and q1 = q− λ1, this result holds for
solutions of τu = λ0u and τv = λ1v.

Now we can prove

Theorem 9.40. Suppose q satisfies (9.121) such that H is semi-bounded
and Q(H) = H1(R). Let λ0 < · · · < λn < · · · be its eigenvalues below
the essential spectrum and ψ0, . . . , ψn, . . . the corresponding eigenfunctions.
Then ψn has n zeros.

Proof. We first prove that ψn has at least n zeros and then that if ψn has
m zeros, then (−∞, λn] has at least (m+ 1) eigenvalues. If ψn has m zeros
at x1, x2, . . . , xm and we let x0 = a, xm+1 = b, then by Theorem 9.39, ψn+1

must have at least one zero in each of (x0, x1), (x1, x2), . . . , (xm, xm+1); that
is, ψn+1 has at least m+1 zeros. It follows by induction that ψn has at least
n zeros.

On the other hand, if ψn has m zeros x1, . . . , xm, define

ηj(x) =

{
ψn(x), xj ≤ x ≤ xj+1,

0 otherwise,
j = 0, . . . ,m, (9.127)

where we set x0 = −∞ and xm+1 = ∞. Then ηj is in the form domain
of H and satisfies 〈ηj , Hηj〉 = λn ‖ηj‖2. Hence if η =

∑m
j=0 cjηj , then

〈η,Hη〉 = λn‖η‖2 and it follows by Theorem 4.15 (i) that there are at least
m+ 1 eigenvalues in (−∞, λn]. �

Note that by Theorem 9.39, the zeros of ψn interlace the zeros of ψn.
The second part of the proof also shows

Corollary 9.41. Let H be as in the previous theorem. If the Weyl solution
u±(λ, .) has m zeros, then dim Ran(−∞,λ)(H) ≥ m. In particular, λ below
the spectrum of H implies that u±(λ, .) has no zeros.

The equation (τ−λ)u is called oscillating if one solution has an infinite
number of zeros. Theorem 9.39 implies that this is then true for all solu-
tions. By our previous considerations this is the case if and only if σ(H) has
infinitely many points below λ. Hence it remains to find a good oscillation
criterion.

Theorem 9.42 (Kneser). Consider q on (0,∞). Then

lim inf
x→∞

(
x2q(x)

)
> −1

4
implies nonoscillation of τ near ∞ (9.128)

and

lim sup
x→∞

(
x2q(x)

)
< −1

4
implies oscillation of τ near ∞. (9.129)
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Proof. The key idea is that the equation

τ0 = − d2

dx2
+

µ

x2

is of Euler type. Hence it is explicitly solvable with a fundamental system
given by

x
1
2
±
√
µ+ 1

4 .

There are two cases to distinguish. If µ ≥ −1/4, all solutions are nonoscil-
latory. If µ < −1/4, one has to take real/imaginary parts and all solutions
are oscillatory. Hence a straightforward application of Sturm’s comparison
theorem between τ0 and τ yields the result. �

Corollary 9.43. Suppose q satisfies (9.121). Then H has finitely many
eigenvalues below the infimum of the essential spectrum 0 if

lim
|x|→∞

inf
(
x2q(x)

)
> −1

4
(9.130)

and infinitely many if

lim
|x|→∞

sup
(
x2q(x)

)
< −1

4
. (9.131)

Problem 9.16. Suppose q(x) is symmetric, q(−x) = q(x). Show that all
eigenvectors are either symmetric or anti-symmetric. Show that under the
assumptions of Theorem 9.40 the lowest eigenvalue is symmetric.

Problem 9.17. Show that if q is relatively bounded with respect to H0, then
necessarily q ∈ L2

loc(R) and (9.120) holds. Similarly, if q is relatively form
bounded with respect to H0, then necessarily q ∈ L1

loc(R) and (9.121) holds.

Problem 9.18. Suppose q ∈ L1(R) and consider H = − d2

dx2
+ q. Show

that inf σ(H) ≤
∫
R q(x)dx. In particular, there is at least one eigenvalue

below the essential spectrum if
∫
R q(x)dx < 0. (Hint: Let ϕ ∈ C∞c (R) with

ϕ(x) = 1 for |x| ≤ 1 and investigate qH(ϕn), where ϕn(x) = ϕ(x/n).)





Chapter 10

One-particle
Schrödinger operators

10.1. Self-adjointness and spectrum

Our next goal is to apply these results to Schrödinger operators. The Hamil-
tonian of one particle in d dimensions is given by

H = H0 + V, (10.1)

where V : Rd → R is the potential energy of the particle. We are mainly
interested in the case 1 ≤ d ≤ 3 and want to find classes of potentials which
are relatively bounded, respectively, relatively compact. To do this, we need
a better understanding of the functions in the domain of H0.

Lemma 10.1. Suppose n ≤ 3 and ψ ∈ H2(Rn). Then ψ ∈ C∞(Rn) and for
every a > 0 there is a b > 0 such that

‖ψ‖∞ ≤ a‖H0ψ‖+ b‖ψ‖. (10.2)

Proof. The important observation is that (p2 + γ2)−1 ∈ L2(Rn) if n ≤ 3.

Hence, since (p2 + γ2)ψ̂ ∈ L2(Rn), the Cauchy–Schwarz inequality

‖ψ̂‖1 = ‖(p2 + γ2)−1(p2 + γ2)ψ̂(p)‖1
≤ ‖(p2 + γ2)−1‖ ‖(p2 + γ2)ψ̂(p)‖

shows ψ̂ ∈ L1(Rn). But now everything follows from the Riemann-Lebesgue
lemma, that is,

‖ψ‖∞ ≤ (2π)−n/2‖(p2 + γ2)−1‖(‖p2ψ̂(p)‖+ γ2‖ψ̂(p)‖)

= (γ/2π)n/2‖(p2 + 1)−1‖(γ−2‖H0ψ‖+ ‖ψ‖),

which finishes the proof. �

257
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Now we come to our first result.

Theorem 10.2. Let V be real-valued and V ∈ L∞∞(Rn) if n > 3 and V ∈
L∞∞(Rn)+L2(Rn) if n ≤ 3. Then V is relatively compact with respect to H0.
In particular,

H = H0 + V, D(H) = H2(Rn), (10.3)

is self-adjoint, bounded from below and

σess(H) = [0,∞). (10.4)

Moreover, C∞c (Rn) is a core for H.

Proof. Write V = V1 +V2 with V1 ∈ L∞∞(Rn) and V2 ∈ L2(Rn) if n ≤ 3 and
V2 = 0 otherwise. Clearly D(H0) ⊆ D(V1) and our previous lemma shows
that D(H0) ⊆ D(V2) as well. Moreover, invoking Lemma 7.21 with f(p) =
(p2−z)−1, z ∈ ρ(H0), and g(x) = Vj(x) (note that f ∈ L∞∞(Rn)∩L2(Rn) for
n ≤ 3) shows that both V1 and V2 are relatively compact. Hence V = V1+V2

is relatively compact. Since C∞c (Rn) is a core for H0 by Lemma 7.19, the
same is true for H by the Kato–Rellich theorem. �

Observe that since C∞c (Rn) ⊆ D(H0), we must have V ∈ L2
loc(Rn) if

D(H0) ⊆ D(V ).

Corollary 10.3. Let V be as in the previous theorem. Then χΩ, with Ω ⊆
Rn bounded, is relatively compact with respect to H = H0 +V . In particular,
the operators Kn = χBn(0) satisfy the assumptions of the RAGE theorem.

Proof. This follows from Lemma 6.23 and the discussion after Lemma 7.21.
�

10.2. The hydrogen atom

We begin with the simple model of a single electron in R3 moving in the
external potential V generated by a nucleus (which is assumed to be fixed
at the origin). If one takes only the electrostatic force into account, then
V is given by the Coulomb potential and the corresponding Hamiltonian is
given by

H(1) = −∆− γ

|x|
, D(H(1)) = H2(R3). (10.5)

If the potential is attracting, that is, if γ > 0, then it describes the hydrogen
atom and is probably the most famous model in quantum mechanics.

We have chosen as domain D(H(1)) = D(H0)∩D( 1
|x|) = D(H0), and by

Theorem 10.2, we conclude thatH(1) is self-adjoint. Moreover, Theorem 10.2
also tells us

σess(H
(1)) = [0,∞) (10.6)
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and that H(1) is bounded from below,

E0 = inf σ(H(1)) > −∞. (10.7)

If γ ≤ 0, we have H(1) ≥ 0 and hence E0 = 0, but if γ > 0, we might have
E0 < 0 and there might be some discrete eigenvalues below the essential
spectrum.

In order to say more about the eigenvalues of H(1), we will use the fact
that both H0 and V (1) = −γ/|x| have a simple behavior with respect to
scaling. Consider the dilation group

U(s)ψ(x) = e−ns/2ψ(e−sx), s ∈ R, (10.8)

which is a strongly continuous one-parameter unitary group. The generator
can be easily computed:

Dψ(x) =
1

2
(xp+ px)ψ(x) = (xp− in

2
)ψ(x), ψ ∈ S(Rn). (10.9)

Now let us investigate the action of U(s) on H(1):

H(1)(s) = U(−s)H(1)U(s) = e−2sH0 + e−sV (1), D(H(1)(s)) = D(H(1)).
(10.10)

Now suppose H(1)ψ = λψ. Then

〈ψ, [U(s), H(1)]ψ〉 = 〈U(−s)ψ, λψ〉 − 〈λψ,U(s)ψ〉 = 0 (10.11)

and hence

0 = lim
s→0

1

s
〈ψ, [U(s), H(1)]ψ〉 = lim

s→0
〈U(−s)ψ, H

(1) −H(1)(s)

s
ψ〉

= −〈ψ, (2H0 + V (1))ψ〉. (10.12)

Thus we have proven the virial theorem.

Theorem 10.4. Suppose H = H0+V with V symmetric, relatively bounded,
and U(−s)V U(s) = e−sV . Then every normalized eigenfunction ψ corre-
sponding to an eigenvalue λ satisfies

λ = −〈ψ,H0ψ〉 =
1

2
〈ψ, V ψ〉. (10.13)

In particular, all eigenvalues must be negative.

This result even has some further consequences for the point spectrum
of H(1).

Corollary 10.5. Suppose γ > 0. Then

σp(H
(1)) = σd(H

(1)) = {Ej}j∈N0 , E0 < Ej < Ej+1 < 0, (10.14)

with limj→∞Ej = 0.
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Proof. Choose ψ ∈ C∞c (R\{0}) and set ψ(s) = U(−s)ψ. Then

〈ψ(s), H(1)ψ(s)〉 = e−2s〈ψ,H0ψ〉+ e−s〈ψ, V (1)ψ〉

which is negative for s large. Now choose a sequence sn → ∞ such that
we have supp(ψ(sn)) ∩ supp(ψ(sm)) = ∅ for n 6= m. Then Theorem 4.15
(i) shows that rank(PH(1)((−∞, 0))) = ∞. Since each eigenvalue Ej has
finite multiplicity (it lies in the discrete spectrum), there must be an infinite
number of eigenvalues which accumulate at 0. �

If γ ≤ 0, we have σd(H
(1)) = ∅ since H(1) ≥ 0 in this case.

Hence we have obtained quite a complete picture of the spectrum of
H(1). Next, we could try to compute the eigenvalues of H(1) (in the case
γ > 0) by solving the corresponding eigenvalue equation, which is given by
the partial differential equation

−∆ψ(x)− γ

|x|
ψ(x) = λψ(x). (10.15)

For a general potential this is hopeless, but in our case we can use the rota-
tional symmetry of our operator to reduce our partial differential equation
to ordinary ones.

First of all, it suggests a switch from Cartesian coordinates x =
(x1, x2, x3) to spherical coordinates (r, θ, ϕ) defined by

x1 = r sin(θ) cos(ϕ), x2 = r sin(θ) sin(ϕ), x3 = r cos(θ), (10.16)

where r ∈ [0,∞), θ ∈ [0, π], and ϕ ∈ (−π, π]. This change of coordinates
corresponds to a unitary transform

L2(R3)→ L2((0,∞), r2dr)⊗ L2((0, π), sin(θ)dθ)⊗ L2((0, 2π), dϕ). (10.17)

In these new coordinates (r, θ, ϕ), our operator reads

H(1) = − 1

r2

∂

∂r
r2 ∂

∂r
+

1

r2
L2 + V (r), V (r) = −γ

r
, (10.18)

where

L2 = L2
1 + L2

2 + L2
3 = − 1

sin(θ)

∂

∂θ
sin(θ)

∂

∂θ
− 1

sin(θ)2

∂2

∂ϕ2
. (10.19)

(Recall the angular momentum operators Lj from Section 8.2.)

Making the product ansatz (separation of variables)

ψ(r, θ, ϕ) = R(r)Θ(θ)Φ(ϕ), (10.20)
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we obtain the three Sturm–Liouville equations(
− 1

r2

d

dr
r2 d

dr
+
l(l + 1)

r2
+ V (r)

)
R(r) = λR(r),

1

sin(θ)

(
− d

dθ
sin(θ)

d

dθ
+

m2

sin(θ)

)
Θ(θ) = l(l + 1)Θ(θ),

− d2

dϕ2
Φ(ϕ) = m2Φ(ϕ). (10.21)

The form chosen for the constants l(l + 1) and m2 is for convenience later
on. These equations will be investigated in the following sections.

Problem 10.1. Generalize the virial theorem to the case U(−s)V U(s) =
e−αsV , α ∈ R\{0}. What about Corollary 10.5?

10.3. Angular momentum

We start by investigating the equation for Φ(ϕ) which is associated with the
Sturm–Liouville equation

τΦ = −Φ′′, I = (0, 2π). (10.22)

Since we want ψ defined via (10.20) to be in the domain of H0 (in particular
continuous), we choose periodic boundary conditions the Sturm–Liouville
equation

AΦ = τΦ, D(A) = {Φ ∈ L2(0, 2π)| Φ ∈ AC1[0, 2π],
Φ(0) = Φ(2π),Φ′(0) = Φ′(2π)}.

(10.23)

From our analysis in Section 9.1, we immediately obtain

Theorem 10.6. The operator A defined via (10.22) is self-adjoint. Its
spectrum is purely discrete, that is,

σ(A) = σd(A) = {m2|m ∈ Z}, (10.24)

and the corresponding eigenfunctions

Φm(ϕ) =
1√
2π

eimϕ, m ∈ Z, (10.25)

form an orthonormal basis for L2(0, 2π).

Note that except for the lowest eigenvalue, all eigenvalues are twice de-
generate.

We note that this operator is essentially the square of the angular mo-
mentum in the third coordinate direction, since in polar coordinates

L3 =
1

i

∂

∂ϕ
. (10.26)



262 10. One-particle Schrödinger operators

Now we turn to the equation for Θ(θ):

τmΘ(θ) =
1

sin(θ)

(
− d

dθ
sin(θ)

d

dθ
+

m2

sin(θ)

)
Θ(θ), I = (0, π),m ∈ N0.

(10.27)

For the investigation of the corresponding operator we use the unitary
transform

L2((0, π), sin(θ)dθ)→ L2((−1, 1), dx), Θ(θ) 7→ f(x) = Θ(arccos(x)).
(10.28)

The operator τ transforms to the somewhat simpler form

τm = − d

dx
(1− x2)

d

dx
− m2

1− x2
. (10.29)

The corresponding eigenvalue equation

τmu = l(l + 1)u (10.30)

is the associated Legendre equation. For l ∈ N0 it is solved by the
associated Legendre functions [44, (14.6.1)]

Pml (x) = (−1)m(1− x2)m/2
dm

dxm
Pl(x), |m| ≤ l, (10.31)

where the

Pl(x) =
1

2ll!

dl

dxl
(x2 − 1)l, l ∈ N0, (10.32)

are the Legendre polynomials [44, (14.7.13)] (Problem 10.2). Moreover,
note that the Pl(x) are (nonzero) polynomials of degree l and since τm
depends only on m2, there must be a relation between Pml (x) and P−ml (x).
In fact (Problem 10.3),

P−ml (x) = (−1)m
(l +m)!

(l −m)!
Pml . (10.33)

A second, linearly independent, solution is given by

Qml (x) = Pml (x)

∫ x

0

dt

(1− t2)Pml (t)2
. (10.34)

In fact, for every Sturm–Liouville equation, v(x) = u(x)
∫ x dt

p(t)u(t)2
satisfies

τv = 0 whenever τu = 0. Now fix l = 0 and note P0(x) = 1. For m = 0 we
have Q0

0 = arctanh(x) ∈ L2 and so τ0 is l.c. at both endpoints. For m > 0

we have Qm0 = (x± 1)−m/2(C +O(x± 1)) which shows that it is not square
integrable. Thus τm is l.c. for m = 0 and l.p. for m > 0 at both endpoints.
In order to make sure that the eigenfunctions for m = 0 are continuous (such
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that ψ defined via (10.20) is continuous), we choose the boundary condition
generated by P0(x) = 1 in this case:

Amf = τmf,

D(Am) = {f ∈ L2(−1, 1)| f ∈ AC1(−1, 1), τmf ∈ L2(−1, 1),
limx→±1(1− x2)f ′(x) = 0 if m = 0}.

(10.35)

Theorem 10.7. The operator Am, m ∈ N0, defined via (10.35) is self-
adjoint. Its spectrum is purely discrete, that is,

σ(Am) = σd(Am) = {l(l + 1)|l ∈ N0, l ≥ m}, (10.36)

and the corresponding eigenfunctions

ul,m(x) =

√
2l + 1

2

(l −m)!

(l +m)!
Pml (x), l ∈ N0, l ≥ m, (10.37)

form an orthonormal basis for L2(−1, 1).

Proof. By Theorem 9.6, Am is self-adjoint. Moreover, Pml is an eigenfunc-
tion corresponding to the eigenvalue l(l + 1), and it suffices to show that
the Pml form a basis. To prove this, it suffices to show that the functions
Pml (x) are dense. Since (1− x2) > 0 for x ∈ (−1, 1), it suffices to show that

the functions (1−x2)−m/2Pml (x) are dense. But the span of these functions
contains every polynomial. Every continuous function can be approximated
by polynomials (in the sup norm, Theorem 0.20, and hence in the L2 norm),
and since the continuous functions are dense, so are the polynomials.

For the normalization of the eigenfunctions, see Problem 10.7, respec-
tively, [44, (14.17.6)]. �

Returning to our original setting, we conclude that the

Θm
l (θ) =

√
2l + 1

2

(l +m)!

(l −m)!
Pml (cos(θ)), |m| ≤ l, (10.38)

form an orthonormal basis for L2((0, π), sin(θ)dθ) for every fixed m ∈ N0.

Theorem 10.8. The operator L2 on L2((0, π), sin(θ)dθ) ⊗ L2((0, 2π)) has
a purely discrete spectrum given

σ(L2) = {l(l + 1)|l ∈ N0}. (10.39)

The spherical harmonics

Y m
l (θ, ϕ) = Θm

l (θ)Φm(ϕ) =

√
2l + 1

4π

(l −m)!

(l +m)!
Pml (cos(θ))eimϕ, |m| ≤ l,

(10.40)
form an orthonormal basis and satisfy L2Y m

l = l(l + 1)Y m
l and L3Y

m
l =

mY m
l .
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Proof. Everything follows from our construction, if we can show that the
Y m
l form a basis. But this follows as in the proof of Lemma 1.10. �

Note that transforming the Y m
l back to Cartesian coordinates gives

Y ±ml (x) = (−1)m

√
2l + 1

4π

(l − |m|)!
(l + |m|)!

P̃ml (
x3

r
)

(
x1 ± ix2

r

)m
, r = |x|,

(10.41)

where P̃ml is a polynomial of degree l −m given by

P̃ml (x) = (1− x2)−m/2Pml (x) =
dl+m

dxl+m
(1− x2)l. (10.42)

In particular, the Y m
l are smooth away from the origin, and by construction,

they satisfy

−∆Y m
l =

l(l + 1)

r2
Y m
l . (10.43)

Problem 10.2. Show that the associated Legendre functions satisfy the
differential equation (10.30). (Hint: Start with the Legendre polynomials
(10.32) which correspond to m = 0. Set v(x) = (x2 − 1)l and observe
(x2 − 1)v′(x) = 2lx v(x). Then differentiate this identity l + 1 times using
Leibniz’s rule. For the case of the associated Legendre functions, substitute
v(x) = (1 − x2)m/2u(x) in (10.30) and differentiate the resulting equation
once.)

Problem 10.3. Show (10.33). (Hint: Write (x2 − 1)l = (x − 1)l(x + 1)l

and use Leibniz’s rule.)

Problem 10.4 (Orthogonal polynomials). Suppose the monic polynomials
Pj(x) = xj +βjx

j−1 + . . . are orthogonal with respect to the weight function
w(x): ∫ b

a
Pi(x)Pj(x)w(x)dx =

{
α2
j , i = j,

0, otherwise.

Note that they are uniquely determined by the Gram–Schmidt procedure.
Let P̄j(x) = α−1

j P (x) and show that they satisfy the three term recurrence
relation

ajP̄j+1(x) + bjP̄j(x) + aj−1P̄j−1(x) = xP̄j(x),

where

aj =

∫ b

a
xP̄j+1(x)P̄j(x)w(x)dx, bj =

∫ b

a
xP̄j(x)2w(x)dx.

Moreover, show

aj =
αj+1

αj
, bj = βj − βj+1.

(Note that w(x)dx could be replaced by a measure dµ(x).)
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Problem 10.5. Consider the orthogonal polynomials with respect to the
weight function w(x) as in the previous problem. Suppose |w(x)| ≤ Ce−k|x|

for some C, k > 0. Show that the orthogonal polynomials are dense in
L2(R, w(x)dx). (Hint: It suffices to show that

∫
f(x)xjw(x)dx = 0 for

all j ∈ N0 implies f = 0. Consider the Fourier transform of f(x)w(x) and
note that it has an analytic extension by Problem 7.8. Hence this Fourier
transform will be zero if, e.g., all derivatives at p = 0 are zero (cf. Prob-
lem 7.3).)

Problem 10.6. Show

Pl(x) =

bl/2c∑
k=0

(−1)k(2l − 2k)!

2lk!(l − k)!(l − 2k)!
xl−2k.

Moreover, by Problem 10.4, there is a recurrence relation of the form
Pl+1(x) = (ãl+ b̃lx)Pl(x)+ c̃lPl−1(x). Find the coefficients by comparing the
highest powers in x and conclude

(l + 1)Pl+1(x) = (2l + 1)xPl(x)− lPl−1.

Use this to prove ∫ 1

−1
Pl(x)2dx =

2

2l + 1
.

Problem 10.7. Prove∫ 1

−1
Pml (x)2dx =

2

2l + 1

(l +m)!

(l −m)!
.

(Hint: Use (10.33) to compute
∫ 1
−1 P

m
l (x)P−ml (x)dx by integrating by parts

until you can use the case m = 0 from the previous problem.)

10.4. The eigenvalues of the hydrogen atom

Now we want to use the considerations from the previous section to decom-
pose the Hamiltonian of the hydrogen atom. In fact, we can even admit any
spherically symmetric potential V (x) = V (|x|) with

V (r) ∈ L∞∞((0,∞)) + L2((0,∞), r2dr) (10.44)

such that Theorem 10.2 holds.

The important observation is that the spaces

Hl,m = {ψ(x) = R(r)Y m
l (θ, ϕ)|R(r) ∈ L2((0,∞), r2dr)} (10.45)

with corresponding projectors

Pml ψ(r, θ, ϕ) =

(∫ 2π

0

∫ π

0
ψ(r, θ′, ϕ′)Y m

l (θ′, ϕ′) sin(θ′)dθ′ dϕ′
)
Y m
l (θ, ϕ)

(10.46)
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reduce our operator H = H0 + V . By Lemma 2.25 it suffices to check
this for H restricted to C∞c (R3), which is straightforward. Hence, again by
Lemma 2.25,

H = H0 + V =
⊕
l,m

H̃l, (10.47)

where

H̃lR(r) = τ̃lR(r), τ̃l = − 1

r2

d

dr
r2 d

dr
+
l(l + 1)

r2
+ V (r),

D(Hl) ⊆ L2((0,∞), r2dr). (10.48)

Using the unitary transformation

L2((0,∞), r2dr)→ L2((0,∞)), R(r) 7→ u(r) = rR(r), (10.49)

our operator transforms to

Alf = τlf, τl = − d2

dr2
+
l(l + 1)

r2
+ V (r),

D(Al) = Pml D(H) ⊆ L2((0,∞)). (10.50)

It remains to investigate this operator (that its domain is indeed independent
of m follows from the next theorem).

Theorem 10.9. Suppose (10.44). The domain of the operator Al is given
by

D(Al) = {f ∈ L2((0,∞))| f, f ′ ∈ AC((0,∞)), τf ∈ L2((0,∞)),
limr→0(f(r)− rf ′(r)) = 0 if l = 0},

(10.51)

where I = (0,∞). Moreover,

σess(Al) = [0,∞). (10.52)

If, in addition, L∞∞((0,∞)) ∩AC([0,∞]) + L2((0,∞), r2dr), then

σess(Al) = σac(Al) = [0,∞), σsc(Al) = ∅, σp ⊂ (−∞, 0]. (10.53)

Proof. By construction of Al, we know that it is self-adjoint and satisfies
σess(Al) ⊆ [0,∞) (Problem 10.8). So it remains to compute the domain. We
know at least D(Al) ⊆ D(τ) and since D(H) = D(H0), it suffices to consider

the case V = 0. In this case, the solutions of −u′′(r) + l(l+1)
r2

u(r) = 0 are

given by u(r) = αrl+1 + βr−l. Thus we are in the l.p. case at ∞ for every
l ∈ N0. However, at 0 we are in the l.p. case only if l > 0; that is, we need

an additional boundary condition at 0 if l = 0. Since we need R(r) = u(r)
r to

be bounded (such that (10.20) is in the domain of H0, that is, continuous),
we have to take the boundary condition generated by u(r) = r.

Concerning the last claim, note that under this additional assumption we
can apply Lemma 9.37. Hence we have (0,∞) ⊆ N∞(τl) and Theorem 9.31
implies σac(Al) = [0,∞), σsc(Al) = ∅, and σp ⊂ (−∞, 0]. �
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Finally, let us turn to some special choices for V , where the correspond-
ing differential equation can be explicitly solved. The simplest case is V = 0.
In this case, the solutions of

− u′′(r) +
l(l + 1)

r2
u(r) = zu(r) (10.54)

are given by

u(r) = α z−l/2r jl(
√
zr) + β z(l+1)/2r yl(

√
zr), (10.55)

where jl(r) and yl(r) are the spherical Bessel, respectively, spherical
Neumann, functions

jl(r) =

√
π

2r
Jl+1/2(r) = (−r)l

(
1

r

d

dr

)l sin(r)

r
,

yl(r) =

√
π

2r
Yl+1/2(r) = −(−r)l

(
1

r

d

dr

)l cos(r)

r
. (10.56)

Note that z−l/2r jl(
√
zr) and z(l+1)/2r yl(

√
zr) are entire as functions of z

and their Wronskian is given by W (z−l/2r jl(
√
zr), z(l+1)/2r yl(

√
zr)) = 1.

See [44, Chapter 10]. In particular,

ua(z, r) =
r

zl/2
jl(
√
zr) =

2ll!

(2l + 1)!
rl+1(1 +O(r2)),

ub(z, r) =
√
−zr

(
jl(i
√
−zr) + iyl(i

√
−zr)

)
= e−

√
−zr+ilπ/2(1 +O(

1

r
))

(10.57)

are the functions which are square integrable and satisfy the boundary con-
dition (if any) near a = 0 and b =∞, respectively.

The second case is that of our Coulomb potential

V (r) = −γ
r
, γ > 0, (10.58)

where we will try to compute the eigenvalues plus corresponding eigenfunc-
tions. It turns out that they can be expressed in terms of the Laguerre
polynomials ([44, (18.5.5)])

Lj(r) =
er

j!

dj

drj
e−rrj (10.59)

and the generalized Laguerre polynomials ([44, (18.5.5)])

L
(k)
j (r) = (−1)k

dk

drk
Lj+k(r). (10.60)
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Note that the L
(k)
j (r) are polynomials of degree j − k which are explicitly

given by

L
(k)
j (r) =

j∑
i=0

(−1)i
(
j + k

j − i

)
ri

i!
(10.61)

and satisfy the differential equation (Problem 10.9)

r y′′(r) + (k + 1− r)y′(r) + j y(r) = 0. (10.62)

Moreover, they are orthogonal in the Hilbert space L2((0,∞), rke−rdr)
(Problem 10.11):∫ ∞

0
L

(k)
i (r)L

(k)
j (r)rke−rdr =

{
(j+k)!
j! , i = j,

0, otherwise.
(10.63)

Theorem 10.10. The eigenvalues of H(1) are explicitly given by

En = −
(

γ

2(n+ 1)

)2

, n ∈ N0. (10.64)

An orthonormal basis for the corresponding eigenspace is given by the (n+1)2

functions

ψn,l,m(x) = Rn,l(r)Y
m
l (x), |m| ≤ l ≤ n, (10.65)

where

Rn,l(r) =

√
γ3(n− l)!

2(n+ 1)4(n+ l + 1)!

(
γr

n+ 1

)l
e
− γr

2(n+1)L
(2l+1)
n−l (

γr

n+ 1
).

(10.66)

In particular, the lowest eigenvalue E0 = −γ2

4 is simple and the correspond-

ing eigenfunction ψ000(x) =
√

γ3

2 e−γr/2 is positive.

Proof. Since all eigenvalues are negative, we need to look at the equation

−u′′(r) + (
l(l + 1)

r2
− γ

r
)u(r) = λu(r)

for λ < 0. Introducing new variables x = 2
√
−λ r and v(x) = ex/2

xl+1u( x
2
√
−λ),

this equation transforms into Kummer’s equation

xv′′(x) + (k + 1− x)v′(x) + j v(x) = 0, k = 2l + 1, j =
γ

2
√
−λ
− (l + 1).

Now let us search for a solution which can be expanded into a convergent
power series

v(x) =

∞∑
i=0

vix
i, v0 = 1. (10.67)
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The corresponding u(r) is square integrable near 0 and satisfies the boundary
condition (if any). Thus we need to find those values of λ for which it is
square integrable near +∞.

Substituting the ansatz (10.67) into our differential equation and com-
paring powers of x gives the following recursion for the coefficients:

vi+1 =
(i− j)

(i+ 1)(i+ k + 1)
vi

and thus

vi =
1

i!

i−1∏
`=0

`− j
`+ k + 1

.

Now there are two cases to distinguish. If j ∈ N0, then vi = 0 for i > j and
v(x) is a polynomial; namely

v(x) =

(
j + k

j

)−1

L
(k)
j (x).

In this case, u(r) is square integrable and hence an eigenfunction correspond-
ing to the eigenvalue λj = −( γ

2(n+1))2, n = j + l. This proves the formula

for Rn,l(r) except for the normalization which follows from (Problem 10.11)∫ ∞
0

L
(k)
j (r)2rk+1e−rdr =

(j + k)!

j!
(2j + k + 1). (10.68)

It remains to show that we have found all eigenfunctions, that is, that there
are no other square integrable solutions. Otherwise, if j 6∈ N, we have
vi+1

vi
≥ (1−ε)

i+1 for i sufficiently large. Hence by adding a polynomial to v(x)

(and perhaps flipping its sign), we can get a function ṽ(x) such that ṽi ≥
(1−ε)i
i! for all i. But then ṽ(x) ≥ exp((1 − ε)x) and thus the corresponding

u(r) is not square integrable near +∞. �

Finally, let us also look at an alternative algebraic approach for com-
puting the eigenvalues and eigenfunctions of Al based on the commutation
methods from Section 8.4. We begin by introducing

Qlf = − d

dr
+
l + 1

r
− γ

2(l + 1)
,

D(Ql) = {f ∈ L2((0,∞))|f ∈ AC((0,∞)), Qlf ∈ L2((0,∞))}. (10.69)

Then (Problem 9.3) Ql is closed, and its adjoint is given by

Q∗l f =
d

dr
+
l + 1

r
− γ

2(l + 1)
,

D(Q∗l ) = {f ∈ L2((0,∞))| f ∈ AC((0,∞)), Q∗l f ∈ L2((0,∞)),
limx→0,∞ f(x)g(x) = 0, ∀g ∈ D(Ql)}.

(10.70)
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It is straightforward to check

Ker(Ql) = span{ul,0}, Ker(Q∗l ) = {0}, (10.71)

where

ul,0(r) =
1√

(2l + 2)!

(
γ

l + 1

)(l+1)+1/2

rl+1e
− γ

2(l+1)
r

(10.72)

is normalized.

Theorem 10.11. The radial Schrödinger operator Al with Coulomb poten-
tial (10.58) satisfies

Al = Q∗lQl − c2
l , Al+1 = QlQ

∗
l − c2

l , (10.73)

where

cl =
γ

2(l + 1)
. (10.74)

Proof. Equality is easy to check for f ∈ AC2 with compact support. Hence
Q∗lQl − c2

l is a self-adjoint extension of τl restricted to this set. If l > 0,
there is only one self-adjoint extension and equality follows. If l = 0, we
know u0,0 ∈ D(Q∗lQl), and since Al is the only self-adjoint extension with
u0,0 ∈ D(Al), equality follows in this case as well. �

Hence, as a consequence of Theorem 8.6 we see σ(Al) = σ(Al+1)∪{−c2
l },

or, equivalently,

σp(Al) = {−c2
j |j ≥ l} (10.75)

if we use that σp(Al) ⊂ (−∞, 0), which already follows from the virial the-
orem. Moreover, using Ql, we can turn any eigenfunction of Hl into one
of Hl+1. However, we only know the lowest eigenfunction ul,0, which is
mapped to 0 by Ql. On the other hand, we can also use Q∗l to turn an
eigenfunction of Hl+1 into one of Hl. Hence Q∗l ul+1,0 will give the second
eigenfunction of Hl. Proceeding inductively, the normalized eigenfunction
of Hl corresponding to the eigenvalue −c2

l+j is given by

ul,j =

(
j−1∏
k=0

(cl+j − cl+k)

)−1

Q∗lQ
∗
l+1 · · ·Q∗l+j−1ul+j,0. (10.76)

The connection with Theorem 10.10 is given by

Rn,l(r) =
1

r
ul,n−l(r). (10.77)

Problem 10.8. Let A =
⊕

nAn. Then
⋃
n σess(An) ⊆ σess(A). Give an

example where equality does not hold.
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Problem 10.9. Show that the generalized Laguerre polynomials satisfy the
differential equation (10.62). (Hint: Start with the Laguerre polynomials
(10.59) which correspond to k = 0. Set v(r) = rje−r and observe r v′(r) =
(j − r)v(r). Then differentiate this identity j + 1 times using Leibniz’s
rule. For the case of the generalized Laguerre polynomials, start with the
differential equation for Lj+k(r) and differentiate k times.)

Problem 10.10. Show that the differential equation (10.59) can be rewritten
in Sturm–Liouville form as

−r−ker d
dr
rk+1e−r

d

dr
u = ju.

We have found one entire solution in the proof of Theorem 10.10. Show that
any linearly independent solution behaves like log(r) if k = 0, respectively,
like r−k otherwise. Show that it is l.c. at the endpoint r = 0 if k = 0 and
l.p. otherwise.

Let H = L2((0,∞), rke−rdr). The operator

Akf = τf = −r−ker d
dr
rk+1e−r

d

dr
f,

D(Ak) = {f ∈ H| f ∈ AC1(0,∞), τkf ∈ H,
limr→0 rf

′(r) = 0 if k = 0}

for k ∈ N0 is self-adjoint. Its spectrum is purely discrete, that is,

σ(Ak) = σd(Ak) = N0, (10.78)

and the corresponding eigenfunctions

L
(k)
j (r), j ∈ N0, (10.79)

form an orthogonal base for H. (Hint: Compare the argument for the asso-
ciated Legendre equation and Problem 10.5.)

Problem 10.11. By Problem 10.4 there is a recurrence relation of the form

L
(k)
j+1(r) = (ãj + b̃jr)L

(k)
j (r) + c̃jL

(k)
j−1(r). Find the coefficients by comparing

the highest powers in r and conclude

L
(k)
j+1(r) =

1

1 + j

(
(2j + k + 1− r)L(k)

j (r)− (j + k)L
(k)
j−1(r)

)
.

Use this to prove (10.63) and (10.68). (Hint: Orthogonality follows from the
previous problem, and to see the normalization in (10.63), use orthogonality
and the above recursion (twice) to relate the integral for j to the one for
j − 1.)
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10.5. Nondegeneracy of the ground state

The lowest eigenvalue (below the essential spectrum) of a Schrödinger op-
erator is called the ground state. Since the laws of physics state that a
quantum system will transfer energy to its surroundings (e.g., an atom emits
radiation) until it eventually reaches its ground state, this state is in some
sense the most important state. We have seen that the hydrogen atom has
a nondegenerate (simple) ground state with a corresponding positive eigen-
function. In particular, the hydrogen atom is stable in the sense that there
is a lowest possible energy. This is quite surprising since the corresponding
classical mechanical system is not — the electron could fall into the nucleus!

Our aim in this section is to show that the ground state is simple with a
corresponding positive eigenfunction. Note that it suffices to show that any
ground state eigenfunction is positive since nondegeneracy then follows for
free: two positive functions cannot be orthogonal.

To set the stage, let us introduce some notation. Let H = L2(Rn). We
call f ∈ L2(Rn) positive if f ≥ 0 a.e. and f 6≡ 0. We call f strictly
positive if f > 0 a.e. A bounded operator A is called positivity preserv-
ing if f ≥ 0 implies Af ≥ 0 and positivity improving if f ≥ 0 implies
Af > 0 for f 6≡ 0. Clearly A is positivity preserving (improving) if and only
if 〈g,Af〉 ≥ 0 (> 0) for f, g ≥ 0 and f, g 6≡ 0.

Example. Multiplication by a positive function is positivity preserving (but
not improving). Convolution with a strictly positive function is positivity
improving. �

We first show that positivity improving operators have positive eigen-
functions.

Theorem 10.12. Suppose A ∈ L(L2(Rn)) is a self-adjoint, positivity im-
proving and real (i.e., it maps real functions to real functions) operator. If
‖A‖ is an eigenvalue, then it is simple and the corresponding eigenfunction
is strictly positive.

Proof. Let ψ be an eigenfunction. It is no restriction to assume that ψ is
real (since A is real, both real and imaginary parts of ψ are eigenfunctions

as well). We assume ‖ψ‖ = 1 and denote by ψ± = |ψ|±ψ
2 the positive and

negative parts of ψ. Then by |Aψ| = |Aψ+ − Aψ−| ≤ Aψ+ + Aψ− = A|ψ|
we have

‖A‖ = 〈ψ,Aψ〉 ≤ 〈|ψ|, |Aψ|〉 ≤ 〈|ψ|, A|ψ|〉 ≤ ‖A‖;

that is, 〈ψ,Aψ〉 = 〈|ψ|, A|ψ|〉 and thus

〈ψ+, Aψ−〉 =
1

4
(〈|ψ|, A|ψ|〉 − 〈ψ,Aψ〉) = 0.
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Consequently ψ− = 0 or ψ+ = 0 since otherwise Aψ− > 0 and hence also
〈ψ+, Aψ−〉 > 0. Without restriction, ψ = ψ+ ≥ 0 and since A is positivity
increasing, we even have ψ = ‖A‖−1Aψ > 0.

If there were a second eigenfunction it could also be chosen positive by
the above argument and hence could not be orthogonal to the first. �

So we need a positivity improving operator. By (7.49) and (7.50) both
e−tH0 , t > 0, and Rλ(H0), λ < 0, are since they are given by convolution
with a strictly positive function. Our hope is that this property carries over
to H = H0 + V .

Theorem 10.13. Suppose H = H0 + V is self-adjoint and bounded from
below with C∞c (Rn) as a core. If E0 = minσ(H) is an eigenvalue, it is
simple and the corresponding eigenfunction is strictly positive.

Proof. We first show that e−tH , t > 0, is positivity preserving. If we set
Hn = H0 + Vn with Vn = V χ{x| |V (x)|≤n}, then Vn is bounded and e−tHn is
positivity preserving by the Trotter product formula (Theorem 5.12) since
both e−tH0 and e−tVn are. Moreover, we have Hnψ → Hψ for ψ ∈ C∞c (Rn)

(note that necessarily V ∈ L2
loc) and hence Hn

sr→ H in the strong resolvent

sense by Lemma 6.36. Hence e−tHn
s→ e−tH by Theorem 6.31, which shows

that e−tH is at least positivity preserving (since 0 cannot be an eigenvalue
of e−tH , it cannot map a positive function to 0).

Next I claim that for ψ positive the closed set

N(ψ) = {ϕ ∈ L2(Rn) |ϕ ≥ 0, 〈ϕ, e−sHψ〉 = 0 ∀s ≥ 0}

is just {0}. If ϕ ∈ N(ψ), we have by e−sHψ ≥ 0 that ϕe−sHψ = 0. Hence
etVnϕe−sHψ = 0; that is, etVnϕ ∈ N(ψ). In other words, both etVn and e−tH

leave N(ψ) invariant, and invoking Trotter’s formula again, the same is true
for

e−t(H−Vn) = s-lim
k→∞

(
e−

t
k
He

t
k
Vn
)k
.

Since e−t(H−Vn) s→ e−tH0 , we finally obtain that e−tH0 leaves N(ψ) invariant,
but this operator is positivity increasing and thus N(ψ) = {0}.

Now it remains to use (7.48), which shows

〈ϕ,RH(λ)ψ〉 =

∫ ∞
0

eλt〈ϕ, e−tHψ〉dt > 0, λ < E0,

for ϕ, ψ positive. So RH(λ) is positivity increasing for λ < E0.

If ψ is an eigenfunction of H corresponding to E0, it is an eigenfunction
of RH(λ) corresponding to 1

E0−λ , and the claim follows since ‖RH(λ)‖ =
1

E0−λ . �
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The assumptions are, for example, satisfied for the potentials V consid-
ered in Theorem 10.2.

Problem 10.12. Suppose A is a bounded integral operator in L2(Rn). Show
that it is positivity preserving if and only if its kernel A(x, y) is positive.
(Hint: Problem 0.41.)



Chapter 11

Atomic Schrödinger
operators

11.1. Self-adjointness

In this section, we want to have a look at the Hamiltonian corresponding to
more than one interacting particle. It is given by

H = −
N∑
j=1

∆j +

N∑
j<k

Vj,k(xj − xk). (11.1)

We first consider the case of two particles, which will give us a feeling
for how the many-particle case differs from the one-particle case and how
the difficulties can be overcome.

We denote the coordinates corresponding to the first particle by x1 =
(x1,1, x1,2, x1,3) and those corresponding to the second particle by x2 =
(x2,1, x2,2, x2,3). If we assume that the interaction is again of the Coulomb
type, the Hamiltonian is given by

H = −∆1 −∆2 −
γ

|x1 − x2|
, D(H) = H2(R6). (11.2)

Since Theorem 10.2 does not allow singularities for n ≥ 3, it does not tell
us whether H is self-adjoint. Let

(y1, y2) =
1√
2

(
I I
−I I

)
(x1, x2). (11.3)

275



276 11. Atomic Schrödinger operators

Then H reads in this new coordinate system as

H = (−∆1) + (−∆2 −
γ/
√

2

|y2|
). (11.4)

In particular, it is the sum of a free particle plus a particle in an external
Coulomb field. From a physics point of view, the first part corresponds to
the center of mass motion and the second part to the relative motion.

Using that γ/(
√

2|y2|) has (−∆2)-bound 0 in L2(R3), it is not hard to
see that the same is true for the (−∆1 −∆2)-bound in L2(R6) (details will
follow in the next section). In particular, H is self-adjoint and semi-bounded
for every γ ∈ R. Moreover, you might suspect that γ/(

√
2|y2|) is relatively

compact with respect to −∆1−∆2 in L2(R6) since it is with respect to −∆2

in L2(R6). However, this is not true! This is due to the fact that γ/(
√

2|y2|)
does not vanish as |y| → ∞.

Let us look at this problem from the physical viewpoint. If λ ∈ σess(H),
this means that the movement of the whole system is somehow unbounded.
There are two possibilities for this.

First, both particles are far away from each other (such that we can
neglect the interaction) and the energy corresponds to the sum of the kinetic
energies of both particles. Since both can be arbitrarily small (but positive),
we expect [0,∞) ⊆ σess(H).

Secondly, both particles remain close to each other and move together.
In the last set of coordinates, this corresponds to a bound state of the
second operator. Hence we expect [λ0,∞) ⊆ σess(H), where λ0 = −γ2/8
is the smallest eigenvalue of the second operator if the forces are attracting
(γ ≥ 0) and λ0 = 0 if they are repelling (γ ≤ 0).

It is not hard to translate this intuitive idea into a rigorous proof. Let
ψ1(y1) be a Weyl sequence corresponding to λ ∈ [0,∞) for −∆1 and let
ψ2(y2) be a Weyl sequence corresponding to λ0 for −∆2−γ/(

√
2|y2|). Then,

ψ1(y1)ψ2(y2) is a Weyl sequence corresponding to λ + λ0 for H and thus
[λ0,∞) ⊆ σess(H). Conversely, we have −∆1 ≥ 0, respectively, −∆2 −
γ/(
√

2|y2|) ≥ λ0, and hence H ≥ λ0. Thus we obtain

σ(H) = σess(H) = [λ0,∞), λ0 =

{
−γ2/8, γ ≥ 0,
0, γ ≤ 0.

(11.5)

Clearly, the physically relevant information is the spectrum of the operator
−∆2−γ/(

√
2|y2|) which is hidden by the spectrum of −∆1. Hence, in order

to reveal the physics, one first has to remove the center of mass motion.

To avoid clumsy notation, we will restrict ourselves to the case of one
atom with N electrons whose nucleus is fixed at the origin. In particular,
this implies that we do not have to deal with the center of mass motion
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encountered in our example above. In this case, the Hamiltonian is given by

H(N) = −
N∑
j=1

∆j −
N∑
j=1

Vne(xj) +

N∑
j=1

N∑
j<k

Vee(xj − xk),

D(H(N)) = H2(R3N ), (11.6)

where Vne describes the interaction of one electron with the nucleus and Vee
describes the interaction of two electrons. Explicitly, we have

Vj(x) =
γj
|x|
, γj > 0, j = ne, ee. (11.7)

We first need to establish the self-adjointness of H(N) = H0 + V (N). This
will follow from Kato’s theorem.

Theorem 11.1 (Kato). Let Vk ∈ L∞∞(Rd) + L2(Rd), d ≤ 3, be real-valued

and let Vk(y
(k)) be the multiplication operator in L2(Rn), n = Nd, obtained

by letting y(k) be the first d coordinates of a unitary transform of Rn. Then
Vk is H0 bounded with H0-bound 0. In particular,

H = H0 +
∑
k

Vk(y
(k)), D(H) = H2(Rn), (11.8)

is self-adjoint and C∞0 (Rn) is a core.

Proof. It suffices to consider one k. After a unitary transform of Rn we can
assume y(1) = (x1, . . . , xd) since such transformations leave both the scalar
product of L2(Rn) and H0 invariant. Now let ψ ∈ S(Rn). Then

‖Vkψ‖2 ≤ a2

∫
Rn
|∆1ψ(x)|2dnx+ b2

∫
Rn
|ψ(x)|2dnx,

where ∆1 =
∑d

j=1 ∂
2/∂2xj , by Theorem 10.2. Hence we obtain

‖Vkψ‖2 ≤ a2

∫
Rn
|
d∑
j=1

p2
j ψ̂(p)|2dnp+ b2‖ψ‖2

≤ a2

∫
Rn
|
n∑
j=1

p2
j ψ̂(p)|2dnp+ b2‖ψ‖2

= a2‖H0ψ‖2 + b2‖ψ‖2,

which implies that Vk is relatively bounded with bound 0. The rest follows
from the Kato–Rellich theorem. �

So V (N) is H0 bounded with H0-bound 0 and thus H(N) = H0 + V (N)

is self-adjoint on D(H(N)) = D(H0).



278 11. Atomic Schrödinger operators

11.2. The HVZ theorem

The considerations of the beginning of this section show that it is not so
easy to determine the essential spectrum of H(N) since the potential does
not decay in all directions as |x| → ∞. However, there is still something we

can do. Denote the infimum of the spectrum of H(N) by λN . Then, let us
split the system into H(N−1) plus a single electron. If the single electron is
far away from the remaining system such that there is little interaction, the
energy should be the sum of the kinetic energy of the single electron and
the energy of the remaining system. Hence, arguing as in the two-electron
example of the previous section, we expect

Theorem 11.2 (HVZ). Let H(N) be the self-adjoint operator given in (11.6).

Then H(N) is bounded from below and

σess(H
(N)) = [λN−1,∞), (11.9)

where λN−1 = minσ(H(N−1)) < 0.

In particular, the ionization energy (i.e., the energy needed to remove
one electron from the atom in its ground state) of an atom with N electrons
is given by λN − λN−1.

Our goal for the rest of this section is to prove this result which is due
to Zhislin, van Winter, and Hunziker and is known as the HVZ theorem. In
fact there is a version which holds for general N -body systems. The proof
is similar but involves some additional notation.

The idea of proof is the following. To prove [λN−1,∞) ⊆ σess(H
(N)),

we choose Weyl sequences for H(N−1) and −∆N and proceed according to
our intuitive picture from above. To prove σess(H

(N)) ⊆ [λN−1,∞), we

will localize H(N) on sets where one electron is far away from the nucleus
whenever some of the others are. On these sets, the interaction term between
this electron and the nucleus is decaying and hence does not contribute to the
essential spectrum. So it remains to estimate the infimum of the spectrum
of a system where one electron does not interact with the nucleus. Since the
interaction term with the other electrons is positive, we can finally estimate
this infimum by the infimum of the case where one electron is completely
decoupled from the rest.

We begin with the first inclusion. Let ψN−1(x1, . . . , xN−1)∈H2(R3(N−1))

such that ‖ψN−1‖ = 1, ‖(H(N−1) − λN−1)ψN−1‖ ≤ ε and ψ1 ∈ H2(R3)
such that ‖ψ1‖ = 1, ‖(−∆N − λ)ψ1‖ ≤ ε for some λ ≥ 0. Now consider
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ψr(x1, . . . , xN ) = ψN−1(x1, . . . , xN−1)ψ1
r (xN ), ψ1

r (xN ) = ψ1(xN − r). Then

‖(H(N) − λ− λN−1)ψr‖ ≤‖(H(N−1) − λN−1)ψN−1‖‖ψ1
r‖

+ ‖ψN−1‖‖(−∆N − λ)ψ1
r‖

+ ‖(VN −
N−1∑
j=1

VN,j)ψr‖, (11.10)

where VN = Vne(xN ) and VN,j = Vee(xN − xj). Using the fact that

(VN −
∑N−1

j=1 VN,j)ψ
N−1 ∈ L2(R3N ) and |ψ1

r | → 0 pointwise as |r| → ∞
(by Lemma 10.1), the third term can be made smaller than ε by choosing
|r| large (dominated convergence). In summary,

‖(H(N) − λ− λN−1)ψr‖ ≤ 3ε, (11.11)

proving [λN−1,∞) ⊆ σess(H(N)).

The second inclusion is more involved. We begin with a localization
formula.

Lemma 11.3 (IMS localization formula). Suppose φj ∈ C∞(Rn), 1 ≤ j ≤
m, is such that

m∑
j=1

φj(x)2 = 1, x ∈ Rn. (11.12)

Then

∆ψ =
m∑
j=1

(
φj∆(φjψ) + |∂φj |2ψ

)
, ψ ∈ H2(Rn). (11.13)

Proof. The proof follows from a straightforward computation using the
identities

∑
j φj∂kφj = 0 and

∑
j((∂kφj)

2 + φj∂
2
kφj) = 0, which follow by

differentiating (11.12). �

Now we will choose φj , 1 ≤ j ≤ N , in such a way that, for x outside
some ball, x ∈ supp(φj) implies that the j’th particle is far away from the
nucleus.

Lemma 11.4. Fix some C ∈ (0, 1√
N

). There exist smooth functions φj ∈
C∞(Rn, [0, 1]), 1 ≤ j ≤ N , such that (11.12) holds,

supp(φj) ∩ {x| |x| ≥ 1} ⊆ {x| |xj | ≥ C|x|}, (11.14)

and |∂φj(x)| → 0 as |x| → ∞.

Proof. The open sets

Uj = {x ∈ S3N−1| |xj | > C}
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cover the unit sphere in RN ; that is,

N⋃
j=1

Uj = S3N−1.

By Lemma 0.17, there is a partition of unity φ̃j(x) subordinate to this cover.

Extend φ̃j(x) to a smooth function from R3N\{0} to [0, 1] by

φ̃j(λx) = φ̃j(x), x ∈ S3N−1, λ > 0,

and pick a function φ̃ ∈ C∞(R3N , [0, 1]) with support inside the unit ball
which is 1 in a neighborhood of the origin. Then the

φj =
φ̃+ (1− φ̃)φ̃j√∑N
`=1(φ̃+ (1− φ̃)φ̃`)2

are the desired functions. The gradient tends to zero since φj(λx) = φj(x)
for λ ≥ 1 and |x| ≥ 1 which implies (∂φj)(λx) = λ−1(∂φj)(x). �

By our localization formula, we have

H(N) =
N∑
j=1

φjH
(N,j)φj + P −K,

K =
N∑
j=1

(
φ2
jVj + |∂φj |2

)
, P =

N∑
j=1

φ2
j

N∑
`6=j

Vj,`, (11.15)

where

H(N,j) = −
N∑
`=1

∆` −
N∑
`6=j

V` +

N∑
k<`, k, 6̀=j

Vk,` (11.16)

is the Hamiltonian with the j’th electron decoupled from the rest of the
system. Here we have abbreviated Vj(x) = Vne(xj) and Vj,` = Vee(xj − x`).

Since K vanishes as |x| → ∞, we expect it to be relatively compact with
respect to the rest. By Lemma 6.23, it suffices to check that it is relatively
compact with respect to H0. The terms |∂φj |2 are bounded and vanish at
∞; hence they are H0 compact by Lemma 7.21. However, the terms φ2

jVj
have singularities and will be covered by the following lemma.

Lemma 11.5. Let V be a multiplication operator which is H0 bounded with
H0-bound 0 and suppose that ‖χ{x||x|≥R}V RH0(z)‖ → 0 as R → ∞. Then
V is relatively compact with respect to H0.

Proof. Let ψn converge to 0 weakly. Note that ‖ψn‖ ≤ M for some
M > 0. It suffices to show that ‖V RH0(z)ψn‖ converges to 0. Choose
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φ ∈ C∞0 (Rn, [0, 1]) such that it is one for |x| ≤ R. Note φD(H0) ⊂ D(H0).
Then

‖V RH0(z)ψn‖ ≤‖(1− φ)V RH0(z)ψn‖+ ‖V φRH0(z)ψn‖
≤‖(1− φ)V RH0(z)‖‖ψn‖

+ a‖H0φRH0(z)ψn‖+ b‖φRH0(z)ψn‖.

By assumption, the first term can be made smaller than ε by choosing R
large. Next, the same is true for the second term choosing a small since
H0φRH0(z) is bounded (by Problem 2.9 and the closed graph theorem).
Finally, the last term can also be made smaller than ε by choosing n large
since φ is H0 compact. �

So K is relatively compact with respect to H(N). In particular, H(N) +
K is self-adjoint on H2(R3N ) and σess(H

(N)) = σess(H
(N) + K). Since

the operators H(N,j), 1 ≤ j ≤ N , are all of the form H(N−1) plus one
particle which does not interact with the others and the nucleus, we have
H(N,j) − λN−1 ≥ 0, 1 ≤ j ≤ N . Moreover, we have P ≥ 0 and hence

〈ψ, (H(N) +K − λN−1)ψ〉 =
N∑
j=1

〈φjψ, (H(N,j) − λN−1)φjψ〉

+ 〈ψ, Pψ〉 ≥ 0. (11.17)

Thus we obtain the remaining inclusion

σess(H
(N)) = σess(H

(N) +K) ⊆ σ(H(N) +K) ⊆ [λN−1,∞), (11.18)

which finishes the proof of the HVZ theorem.

Note that the same proof works if we add additional nuclei at fixed
locations. That is, we can also treat molecules if we assume that the nuclei
are fixed in space.

Finally, let us consider the example of helium-like atoms (N = 2). By
the HVZ theorem and the considerations of the previous section, we have

σess(H
(2)) = [−γ

2
ne

4
,∞). (11.19)

Moreover, if γee = 0 (no electron interaction), we can take products of one-
particle eigenfunctions to show that

− γ2
ne

(
1

4n2
+

1

4m2

)
∈ σp(H(2)(γee = 0)), n,m ∈ N. (11.20)

In particular, there are eigenvalues embedded in the essential spectrum in
this case. Moreover, since the electron interaction term is positive, we see

H(2) ≥ −γ
2
ne

2
. (11.21)
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Note that there can be no positive eigenvalues by the virial theorem. This
even holds for arbitrary N ,

σp(H
(N)) ⊂ (−∞, 0). (11.22)



Chapter 12

Scattering theory

12.1. Abstract theory

In physical measurements, one often has the following situation. A particle
is shot into a region where it interacts with some forces and then leaves
the region again. Outside this region the forces are negligible and hence the
time evolution should be asymptotically free. Hence one expects asymptotic
states ψ±(t) = exp(−itH0)ψ±(0) to exist such that

‖ψ(t)− ψ±(t)‖ → 0 as t→ ±∞. (12.1)

ψ(t)

ψ−(t)

ψ+(t)

�
�
�
�
�
�
�
�
�
�
�
�
�
���

���
���

���
���

���
���:

�

Rewriting this condition, we see

0 = lim
t→±∞

‖e−itHψ(0)− e−itH0ψ±(0)‖ = lim
t→±∞

‖ψ(0)− eitHe−itH0ψ±(0)‖
(12.2)

and motivated by this, we define the wave operators by

D(Ω±) = {ψ ∈ H|∃ limt→±∞ eitHe−itH0ψ},
Ω±ψ = limt→±∞ eitHe−itH0ψ.

(12.3)

283
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The set D(Ω±) is the set of all incoming/outgoing asymptotic states ψ±, and
Ran(Ω±) is the set of all states which have an incoming/outgoing asymptotic
state. If a state ψ has both, that is, ψ ∈ Ran(Ω+) ∩ Ran(Ω−), it is called a
scattering state.

By construction we have

‖Ω±ψ‖ = lim
t→±∞

‖eitHe−itH0ψ‖ = lim
t→±∞

‖ψ‖ = ‖ψ‖, (12.4)

and it is not hard to see that D(Ω±) is closed. Moreover, interchanging the
roles of H0 and H amounts to replacing Ω± by Ω−1

± and hence Ran(Ω±) is
also closed. In summary,

Lemma 12.1. The sets D(Ω±) and Ran(Ω±) are closed and Ω± : D(Ω±)→
Ran(Ω±) is unitary.

Next, observe that

lim
t→±∞

eitHe−itH0(e−isH0ψ) = lim
t→±∞

e−isH(ei(t+s)He−i(t+s)H0ψ) (12.5)

and hence

Ω±e−itH0ψ = e−itHΩ±ψ, ψ ∈ D(Ω±). (12.6)

In addition, D(Ω±) is invariant under exp(−itH0) and Ran(Ω±) is invariant
under exp(−itH). Moreover, if ψ ∈ D(Ω±)⊥, then

〈ϕ, exp(−itH0)ψ〉 = 〈exp(itH0)ϕ,ψ〉 = 0, ϕ ∈ D(Ω±). (12.7)

Hence D(Ω±)⊥ is invariant under exp(−itH0) and Ran(Ω±)⊥ is invariant
under exp(−itH). Consequently, D(Ω±) reduces exp(−itH0) and Ran(Ω±)
reduces exp(−itH). Moreover, differentiating (12.6) with respect to t, we
obtain from Theorem 5.1 the intertwining property of the wave operators.

Theorem 12.2. The subspaces D(Ω±), respectively, Ran(Ω±), reduce H0,
respectively, H, and the operators restricted to these subspaces are unitarily
equivalent:

Ω±H0ψ = HΩ±ψ, ψ ∈ D(Ω±) ∩D(H0). (12.8)

It is interesting to know the correspondence between incoming and out-
going states. Hence we define the scattering operator

S = Ω−1
+ Ω−, D(S) = {ψ ∈ D(Ω−)|Ω−ψ ∈ Ran(Ω+)}. (12.9)

Note that we have D(S) = D(Ω−) if and only if Ran(Ω−) ⊆ Ran(Ω+) and
Ran(S) = D(Ω+) if and only if Ran(Ω+) ⊆ Ran(Ω−). Moreover, S is unitary
from D(S) onto Ran(S) and we have

H0Sψ = SH0ψ, D(H0) ∩D(S). (12.10)

However, note that this whole theory is meaningless until we can show that
the domains D(Ω±) are nontrivial. We first show a criterion due to Cook.
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Lemma 12.3 (Cook). Suppose D(H0) ⊆ D(H). If∫ ∞
0
‖(H −H0) exp(∓itH0)ψ‖dt <∞, ψ ∈ D(H0), (12.11)

then ψ ∈ D(Ω±), respectively. Moreover, we even have

‖(Ω± − I)ψ‖ ≤
∫ ∞

0
‖(H −H0) exp(∓itH0)ψ‖dt (12.12)

in this case.

Proof. The result follows from

eitHe−itH0ψ = ψ + i

∫ t

0
exp(isH)(H −H0) exp(−isH0)ψds, (12.13)

which holds for ψ ∈ D(H0). �

As a simple consequence, we obtain the following result for Schrödinger
operators in R3:

Theorem 12.4. Suppose H0 is the free Schrödinger operator and H =
H0 + V with V ∈ L2(R3). Then the wave operators exist and D(Ω±) = H.

Proof. Since we want to use Cook’s lemma, we need to estimate

‖V ψ(s)‖2 =

∫
R3

|V (x)ψ(s, x)|2dx, ψ(s) = exp(isH0)ψ,

for given ψ ∈ D(H0). Invoking (7.42), we get

‖V ψ(s)‖ ≤ ‖ψ(s)‖∞‖V ‖ ≤
1

(4πs)3/2
‖ψ‖1‖V ‖, s > 0,

at least for ψ ∈ L1(R3). Moreover, this implies∫ ∞
1
‖V ψ(s)‖ds ≤ 1

4π3/2
‖ψ‖1‖V ‖

and thus every such ψ is in D(Ω+). Since such functions are dense, we
obtain D(Ω+) = H, and similarly for Ω−. �

By the intertwining property, ψ ∈ D(Ω±) is an eigenfunction of H0 if
it is an eigenfunction of H corresponding to the same eigenvalue. Hence
for ψ ∈ Hpp(H0) it is easy to check whether it is in D(Ω±), and only the
continuous subspace is of interest. We will say that the wave operators
exist if all elements of Hac(H0) are asymptotic states, that is,

Hac(H0) ⊆ D(Ω±), (12.14)

and that they are complete if, in addition, all elements of Hac(H) are
scattering states, that is,

Hac(H) ⊆ Ran(Ω±). (12.15)
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If we even have

Hc(H) ⊆ Ran(Ω±), (12.16)

they are called asymptotically complete.

We will be mainly interested in the case where H0 is the free Schrödinger
operator and hence Hac(H0) = H. In this latter case, the wave operators
exist if D(Ω±) = H, they are complete if Hac(H) = Ran(Ω±), and they are
asymptotically complete if Hc(H) = Ran(Ω±). In particular, asymptotic
completeness implies Hsc(H) = {0} since H restricted to Ran(Ω±) is uni-
tarily equivalent to H0. Completeness implies that the scattering operator
is unitary. Hence, by the intertwining property, kinetic energy is preserved
during scattering:

〈ψ−, H0ψ−〉 = 〈Sψ−, SH0ψ−〉 = 〈Sψ−, H0Sψ−〉 = 〈ψ+, H0ψ+〉 (12.17)

for ψ− ∈ D(H0) and ψ+ = Sψ−.

12.2. Incoming and outgoing states

In the remaining sections, we want to apply this theory to Schrödinger
operators. Our first goal is to give a precise meaning to some terms in
the intuitive picture of scattering theory introduced in the previous section.

This physical picture suggests that we should be able to decompose
ψ ∈ H into an incoming and an outgoing part. But how should incoming,
respectively, outgoing, be defined for ψ ∈ H? Well, incoming (outgoing)
means that the expectation of x2 should decrease (increase). Set x(t)2 =
exp(iH0t)x

2 exp(−iH0t). Then, abbreviating ψ(t) = e−itH0ψ,

d

dt
Eψ(x(t)2) = 〈ψ(t), i[H0, x

2]ψ(t)〉 = 4〈ψ(t), Dψ(t)〉, ψ ∈ S(Rn),

(12.18)
where D is the dilation operator introduced in (10.9). Hence it is natural to
consider ψ ∈ Ran(P±),

P± = PD((0,±∞)), (12.19)

as outgoing, respectively, incoming, states. If we project a state in Ran(P±)
to energies in the interval (a2, b2), we expect that it cannot be found in a
ball of radius proportional to a|t| as t → ±∞ (a is the minimal velocity of
the particle, since we have assumed the mass to be two). In fact, we will
show below that the tail decays faster then any inverse power of |t|.

We first collect some properties of D which will be needed later on. Note

FD = −DF (12.20)

and hence Ff(D) = f(−D)F . Additionally, we will look for a transforma-
tion which maps D to a multiplication operator.
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Since the dilation group acts on |x| only, it seems reasonable to switch to
polar coordinates x = rω, (t, ω) ∈ R+ × Sn−1. Since U(s) essentially trans-
forms r into r exp(s), we will replace r by ρ = log(r). In these coordinates
we have

U(s)ψ(eρω) = e−ns/2ψ(e(ρ−s)ω) (12.21)

and hence U(s) corresponds to a shift of ρ (the constant in front is absorbed
by the volume element). Thus D corresponds to differentiation with respect
to this coordinate and all we have to do to make it a multiplication operator
is to take the Fourier transform with respect to ρ.

This leads us to the Mellin transform

M : L2(Rn) → L2(R× Sn−1),

ψ(rω) → (Mψ)(λ, ω) =
1√
2π

∫ ∞
0

r−iλψ(rω)r
n
2
−1dr.

(12.22)

By construction, M is unitary; that is,∫
R

∫
Sn−1

|(Mψ)(λ, ω)|2dλdn−1ω =

∫
R+

∫
Sn−1

|ψ(rω)|2rn−1drdn−1ω,

(12.23)
where dn−1ω is the normalized surface measure on Sn−1. Moreover,

M−1U(s)M = e−isλ (12.24)

and hence

M−1DM = λ. (12.25)

From this it is straightforward to show that

σ(D) = σac(D) = R, σsc(D) = σpp(D) = ∅ (12.26)

and that S(Rn) is a core for D. In particular, we have P+ + P− = I.
Using the Mellin transform, we can now prove Perry’s estimate.

Lemma 12.5. Suppose f ∈ C∞c (R) with supp(f) ⊂ (a2, b2) for some a, b >
0. For every R ∈ R, N ∈ N there is a constant C such that

‖χ{x| |x|<2a|t|}e
−itH0f(H0)PD((±R,±∞))‖ ≤ C

(1 + |t|)N
, ±t ≥ 0, (12.27)

respectively.

Proof. We prove only the + case, the remaining one being similar. Consider
ψ ∈ S(Rn). Introducing

ψ(t, x) = e−itH0f(H0)PD((R,∞))ψ(x) = 〈Kt,x,FPD((R,∞))ψ〉

= 〈Kt,x, PD((−∞,−R))ψ̂〉,
where

Kt,x(p) =
1

(2π)n/2
ei(tp2−px)f(p2)∗,
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we see that it suffices to show

‖PD((−∞,−R))Kt,x‖2 ≤
const

(1 + |t|)2N
, for |x| < 2a|t|, t > 0.

Now we invoke the Mellin transform to estimate this norm:

‖PD((−∞,−R))Kt,x‖2 =

∫ −R
−∞

∫
Sn−1

|(MKt,x)(λ, ω)|2dλdn−1ω.

Since

(MKt,x)(λ, ω) =
1

(2π)(n+1)/2

∫ ∞
0

f̃(r)eiα(r)dr (12.28)

with f̃(r) = f(r2)∗rn/2−1 ∈ C∞c ((a, b)), α(r) = tr2 + rωx − λ log(r). Esti-
mating the derivative of α, we see

α′(r) = 2tr + ωx− λ/r > 0, r ∈ (a, b),

for λ ≤ −R and t > −R(2εa)−1, where ε is the distance of a to the support

of f̃ . Hence we can find a constant such that

|α′(r)| ≥ const(1 + |λ|+ |t|), r ∈ supp(f̃),

for λ ≤ −R, t > −R(εa)−1. Now the method of stationary phase (Prob-
lem 12.1) implies

|(MKt,x)(λ, ω)| ≤ const

(1 + |λ|+ |t|)N

for λ, t as before. By increasing the constant, we can even assume that it
holds for t ≥ 0 and λ ≤ −R. This finishes the proof. �

Corollary 12.6. Suppose that f ∈ C∞c ((0,∞)) and R ∈ R. Then the
operator PD((±R,±∞))f(H0) exp(−itH0) converges strongly to 0 as t →
∓∞.

Proof. Abbreviating PD = PD((±R,±∞)) and χ = χ{x| |x|<2a|t|}, we have

‖PDf(H0)e−itH0ψ‖ ≤ ‖χeitH0f(H0)∗PD‖ ‖ψ‖+ ‖f(H0)‖‖(I− χ)ψ‖

since ‖A‖ = ‖A∗‖. Taking t → ∓∞, the first term goes to zero by our
lemma and the second goes to zero since χψ → ψ. �

Problem 12.1 (Method of stationary phase). Consider the integral

I(t) =

∫ ∞
−∞

f(r)eitφ(r)dr

with f ∈ C∞c (R) and a real-valued phase φ ∈ C∞(R). Show that |I(t)| ≤
CN t

−N for every N ∈ N if |φ′(r)| ≥ 1 for r ∈ supp(f). (Hint: Make a
change of variables ρ = φ(r) and conclude that it suffices to show the case
φ(r) = r. Now use integration by parts.)
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12.3. Schrödinger operators with short range potentials

By the RAGE theorem we know that for ψ ∈ Hc, ψ(t) will eventually leave
every compact ball (at least on the average). Hence we expect that the
time evolution will asymptotically look like the free one for ψ ∈ Hc if the
potential decays sufficiently fast. In other words, we expect such potentials
to be asymptotically complete.

Suppose V is relatively bounded with bound less than one. Introduce

h1(r) = ‖V RH0(z)χr‖, h2(r) = ‖χrV RH0(z)‖, r ≥ 0, (12.29)

where

χr = χ{x| |x|≥r}. (12.30)

The potential V will be called short range if these quantities are integrable.
We first note that it suffices to check this for h1 or h2 and for one z ∈ ρ(H0).

Lemma 12.7. The function h1 is integrable if and only if h2 is. Moreover,
hj integrable for one z0 ∈ ρ(H0) implies hj integrable for all z ∈ ρ(H0).

Proof. Pick φ ∈ C∞(Rn, [0, 1]) such that φ(x) = 0 for 0 ≤ |x| ≤ 1/2 and
φ(x) = 1 for 1 ≤ |x|. Then it is not hard to see that hj is integrable if and

only if h̃j is integrable, where

h̃1(r) = ‖V RH0(z)φr‖, h̃2(r) = ‖φrV RH0(z)‖, r ≥ 1,

and φr(x) = φ(x/r). Using

[RH0(z), φr] = −RH0(z)[H0(z), φr]RH0(z)

= −RH0(z)(∆φr + 2(∂φr)∂)RH0(z)

and ∆φr = φr/2∆φr, ‖∆φr‖∞≤‖∆φ‖∞/r2, respectively, (∂φr)=φr/2(∂φr),
‖∂φr‖∞ ≤ ‖∂φ‖∞/r, we see

|h̃1(r)− h̃2(r)| ≤ c

r
h̃1(r/2), r ≥ 1.

Hence h̃2 is integrable if h̃1 is. Conversely,

h̃1(r) ≤ h̃2(r) +
c

r
h̃1(r/2) ≤ h̃2(r) +

c

r
h̃2(r/2) +

2c

r2
h̃1(r/4)

shows that h̃2 is integrable if h̃1 is.

Invoking the first resolvent formula

‖φrV RH0(z)‖ ≤ ‖φrV RH0(z0)‖‖I− (z − z0)RH0(z)‖

finishes the proof. �

As a first consequence, note

Lemma 12.8. If V is short range, then RH(z)−RH0(z) is compact.
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Proof. The operator RH(z)V (I−χr)RH0(z) is compact since (I−χr)RH0(z)
is by Lemma 7.21 and RH(z)V is bounded by Lemma 6.23. Moreover, by
our short range condition, it converges in norm to

RH(z)V RH0(z) = RH(z)−RH0(z)

as r →∞ (at least for some subsequence). �

In particular, by Weyl’s theorem, we have σess(H) = [0,∞). Moreover,
V short range implies that H and H0 look alike far outside.

Lemma 12.9. Suppose RH(z)−RH0(z) is compact. Then so is f(H)−f(H0)
for every f ∈ C∞(R) and

lim
r→∞

‖(f(H)− f(H0))χr‖ = 0. (12.31)

Proof. The first part is Lemma 6.21 and the second part follows from part
(ii) of Lemma 6.9 since χr converges strongly to 0. �

However, this is clearly not enough to prove asymptotic completeness,
and we need a more careful analysis.

We begin by showing that the wave operators exist. By Cook’s criterion
(Lemma 12.3), we need to show that

‖V exp(∓itH0)ψ‖ ≤‖V RH0(−1)‖‖(I− χ2a|t|) exp(∓itH0)(H0 + I)ψ‖
+ ‖V RH0(−1)χ2a|t|‖‖(H0 + I)ψ‖ (12.32)

is integrable for a dense set of vectors ψ. The second term is integrable by our
short range assumption. The same is true by Perry’s estimate (Lemma 12.5)
for the first term if we choose ψ = f(H0)PD((±R,±∞))ϕ. Since vectors of
this form are dense, we see that the wave operators exist,

D(Ω±) = H. (12.33)

Since H restricted to Ran(Ω∗±) is unitarily equivalent to H0, we obtain
[0,∞) = σac(H0) ⊆ σac(H). Furthermore, by σac(H) ⊆ σess(H) = [0,∞),
we even have σac(H) = [0,∞).

To prove asymptotic completeness of the wave operators, we will need
to show that the (Ω± − I)f(H0)P± are compact.

Lemma 12.10. Suppose V is short range. Let f ∈ C∞c ((0,∞)) and suppose
ψn converges weakly to 0. Then

lim
n→∞

‖(Ω± − I)f(H0)P±ψn‖ = 0; (12.34)

that is, (Ω± − I)f(H0)P± is compact.
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Proof. By (12.13) we see

‖RH(z)(Ω± − I)f(H0)P±ψn‖ ≤
∫ ∞

0
‖RH(z)V exp(−isH0)f(H0)P±ψn‖dt.

Since RH(z)V RH0 is compact, we see that the integrand

RH(z)V exp(−isH0)f(H0)P±ψn

= RH(z)V RH0 exp(−isH0)(H0 + 1)f(H0)P±ψn

converges pointwise to 0. Moreover, arguing as in (12.32), the integrand
is bounded by an L1 function depending only on ‖ψn‖. Thus RH(z)(Ω± −
I)f(H0)P± is compact by the dominated convergence theorem. Furthermore,
using the intertwining property, we see that

(Ω± − I)f(H0)P± =RH(z)(Ω± − I)f̃(H0)P±

+ (RH(z)−RH0(z))f̃(H0)P±

is compact by Lemma 12.8, where f̃(λ) = (λ− z)f(λ) ∈ C∞c ((0,∞)). �

Now we have gathered enough information to tackle the problem of
asymptotic completeness.

We first show that the singular continuous spectrum is absent. This
is not really necessary, but it avoids the use of Cesàro means in our main
argument.

Abbreviate P = P scH PH((a, b)), 0 < a < b. Since H restricted to
Ran(Ω±) is unitarily equivalent to H0 (which has purely absolutely continu-
ous spectrum), the singular part must live on Ran(Ω±)⊥; that is, P scH Ω± = 0.
Thus Pf(H0) = P (I−Ω+)f(H0)P+ +P (I−Ω−)f(H0)P− is compact. Since
f(H) − f(H0) is compact, it follows that Pf(H) is also compact. Choos-
ing f such that f(λ) = 1 for λ ∈ [a, b], we see that P = Pf(H) is com-
pact and hence finite dimensional. In particular, σsc(H) ∩ (a, b) is a fi-
nite set. But a continuous measure cannot be supported on a finite set,
showing σsc(H) ∩ (a, b) = ∅. Since 0 < a < b are arbitrary, we even
have σsc(H) ∩ (0,∞) = ∅ and by σsc(H) ⊆ σess(H) = [0,∞), we obtain
σsc(H) = ∅.

Observe that by replacing P scH by P ppH , the same argument shows that all
nonzero eigenvalues are finite dimensional and cannot accumulate in (0,∞).

In summary, we have shown

Theorem 12.11. Suppose V is short range. Then

σac(H) = σess(H) = [0,∞), σsc(H) = ∅. (12.35)

All nonzero eigenvalues have finite multiplicity and cannot accumulate in
(0,∞).
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Now we come to the anticipated asymptotic completeness result of Enß.
Choose

ψ ∈ Hc(H) = Hac(H) such that ψ = f(H)ψ (12.36)

for some f ∈ C∞c ((0,∞)). By the RAGE theorem, the sequence ψ(t) con-
verges weakly to zero as t → ±∞. Abbreviate ψ(t) = exp(−itH)ψ. Intro-
duce

ϕ±(t) = f(H0)P±ψ(t), (12.37)

which satisfy
lim

t→±∞
‖ψ(t)− ϕ+(t)− ϕ−(t)‖ = 0. (12.38)

Indeed, this follows from

ψ(t) = ϕ+(t) + ϕ−(t) + (f(H)− f(H0))ψ(t) (12.39)

and Lemma 6.21. Moreover, we even have

lim
t→±∞

‖(Ω± − I)ϕ±(t)‖ = 0 (12.40)

by Lemma 12.10. Now suppose ψ ∈ Ran(Ω±)⊥. Then

‖ψ‖2 = lim
t→±∞

〈ψ(t), ψ(t)〉

= lim
t→±∞

〈ψ(t), ϕ+(t) + ϕ−(t)〉

= lim
t→±∞

〈ψ(t),Ω+ϕ+(t) + Ω−ϕ−(t)〉. (12.41)

By Theorem 12.2, Ran(Ω±)⊥ is invariant under H and thus ψ(t) ∈
Ran(Ω±)⊥ implying

‖ψ‖2 = lim
t→±∞

〈ψ(t),Ω∓ϕ∓(t)〉 (12.42)

= lim
t→±∞

〈P∓f(H0)∗Ω∗∓ψ(t), ψ(t)〉.

Invoking the intertwining property, we see

‖ψ‖2 = lim
t→±∞

〈P∓f(H0)∗e−itH0Ω∗∓ψ,ψ(t)〉 = 0 (12.43)

by Corollary 12.6. Hence Ran(Ω±) = Hac(H) = Hc(H) and we thus have
shown

Theorem 12.12 (Enß). Suppose V is short range. Then the wave operators
are asymptotically complete.
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Appendix A

Almost everything
about Lebesgue
integration

In this appendix I give a brief introduction to measure theory. Good refer-
ences are [8], [39], or [56].

A.1. Borel measures in a nutshell

The first step in defining the Lebesgue integral is extending the notion of
size from intervals to arbitrary sets. Unfortunately, this turns out to be too
much, since a classical paradox by Banach and Tarski shows that one can
break the unit ball in R3 into a finite number of wild (choosing the pieces
uses the Axiom of Choice and cannot be done with a jigsaw) pieces, rotate
and translate them, and reassemble them to get two copies of the unit ball
(compare Problem A.5). Hence any reasonable notion of size (i.e., one which
is translation and rotation invariant) cannot be defined for all sets!

A collection of subsets A of a given set X such that

• X ∈ A,

• A is closed under finite unions,

• A is closed under complements,

is called an algebra. Note that ∅ ∈ A and that A is also closed under finite
intersections and relative complements: ∅ = X ′, A ∩ B = (A′ ∪ B′)′ (de
Morgan), and A\B = A ∩ B′, where A′ = X\A denotes the complement.

295
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If an algebra is closed under countable unions (and hence also countable
intersections), it is called a σ-algebra.

Example. Let X = {1, 2, 3}; then A = {∅, {1}, {2, 3}, X} is an algebra. �

Moreover, the intersection of any family of (σ-)algebras {Aα} is again
a (σ-)algebra, and for any collection S of subsets there is a unique smallest
(σ-)algebra Σ(S) containing S (namely the intersection of all (σ-)algebras
containing S). It is called the (σ-)algebra generated by S.

Example. For a given set X, the power set P(X) is clearly the largest
σ-algebra and {∅, X} is the smallest. �

Example. Let X be some set with a σ-algebra Σ. Then every subset Y ⊆ X
has a natural σ-algebra Σ∩ Y = {A∩ Y |A ∈ Σ} (show that this is indeed a
σ-algebra) known as the relative σ-algebra.

Note that if S generates Σ, then S ∩ Y generates Σ ∩ Y : Σ(S) ∩ Y =
Σ(S ∩ Y ). Indeed, since Σ ∩ Y is a σ-algebra containing S ∩ Y , we have
Σ(S∩Y ) ⊆ Σ(S)∩Y = Σ∩Y . Conversely, consider {A ∈ Σ|A∩Y ∈ Σ(S∩Y )}
which is a σ-algebra (check this). Since this last σ-algebra contains S it must
be equal to Σ = Σ(S) and thus Σ ∩ Y ⊆ Σ(S ∩ Y ). �

If X is a topological space, the Borel σ-algebra B(X) of X is defined
to be the σ-algebra generated by all open (respectively, all closed) sets. In
fact, if X is second countable, any countable base will suffice to generate
the Borel σ-algebra (recall Lemma 0.1).

Sets in the Borel σ-algebra are called Borel sets.

Example. In the case X = Rn, the Borel σ-algebra will be denoted by Bn

and we will abbreviate B = B1. Note that in order to generate B, open (or
closed) intervals with rational boundary points suffice. �

Example. If X is a topological space, then any Borel set Y ⊆ X is also a
topological space equipped with the relative topology and its Borel σ-algebra
is given by B(Y ) = B(X) ∩ Y = {A|A ∈ B(X), A ⊆ Y } (show this). �

Now let us turn to the definition of a measure: A set X together with
a σ-algebra Σ is called a measurable space. A measure µ is a map
µ : Σ→ [0,∞] on a σ-algebra Σ such that

• µ(∅) = 0,

• µ(
⋃∞
j=1Aj) =

∞∑
j=1

µ(Aj) if Aj ∩Ak = ∅ for all j 6= k (σ-additivity).

Here the sum is set equal to∞ if one of the summands is∞ or if it diverges.
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The measure µ is called σ-finite if there is a countable cover {Xj}∞j=1 of

X such that Xj ∈ Σ and µ(Xj) <∞ for all j. (Note that it is no restriction
to assume Xj ⊆ Xj+1.) It is called finite if µ(X) < ∞ and a probability
measure if µ(X) = 1. The sets in Σ are called measurable sets and the
triple (X,Σ, µ) is referred to as a measure space.

Example. Take a set X and Σ = P(X) and set µ(A) to be the number
of elements of A (respectively, ∞ if A is infinite). This is the so-called
counting measure. It will be finite if and only if X is finite and σ-finite if
and only if X is countable. �

Example. Take a set X and Σ = P(X). Fix a point x ∈ X and set
µ(A) = 1 if x ∈ A and µ(A) = 0 otherwise. This is the Dirac measure
centered at x. �

Example. Let µ1, µ2 be two measures on (X,Σ) and α1, α2 ≥ 0. Then
µ = α1µ1 + α2µ2 defined via

µ(A) = α1µ1(A) + α2µ2(A)

is again a measure. Furthermore, given a countable number of measures µn
and numbers αn ≥ 0, µ =

∑
n αnµn is again a measure (show this). �

Example. Let µ be a measure on (X,Σ) and Y ⊆ X a measurable subset.
Then

ν(A) = µ(A ∩ Y )

is again a measure on (X,Σ) (show this). �

Example. If Y ∈ Σ, we can restrict the σ-algebra Σ|Y = {A ∈ Σ|A ⊆ Y }
such that (Y,Σ|Y , µ|Y ) is again a measurable space. It will be σ-finite if
(X,Σ, µ) is. �

If we replace the σ-algebra by an algebra A, then µ is called a premea-
sure. In this case, σ-additivity clearly only needs to hold for disjoint sets
An for which

⋃
nAn ∈ A.

We will write An ↗ A if An ⊆ An+1 with A =
⋃
nAn and An ↘ A if

An+1 ⊆ An with A =
⋂
nAn.

Theorem A.1. Any measure µ satisfies the following properties:

(i) A ⊆ B implies µ(A) ≤ µ(B) (monotonicity).

(ii) µ(An)→ µ(A) if An ↗ A (continuity from below).

(iii) µ(An)→ µ(A) if An ↘ A and µ(A1) <∞ (continuity from above).

Proof. The first claim is obvious from µ(B) = µ(A) + µ(B\A). To see the

second, define Ã1 = A1, Ãn = An\An−1 and note that these sets are disjoint
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and satisfy An =
⋃n
j=1 Ãj . Hence µ(An) =

∑n
j=1 µ(Ãj) →

∑∞
j=1 µ(Ãj) =

µ(
⋃∞
j=1 Ãj) = µ(A) by σ-additivity. The third follows from the second using

Ãn = A1\An ↗ A1\A implying µ(Ãn) = µ(A1) − µ(An) → µ(A1\A) =
µ(A1)− µ(A). �

Example. Consider the counting measure on X = N and let An =
{j ∈ N|j ≥ n}. Then µ(An) = ∞, but µ(

⋂
nAn) = µ(∅) = 0, which

shows that the requirement µ(A1) < ∞ in item (iii) of Theorem A.1 is not
superfluous. �

A measure on the Borel σ-algebra is called a Borel measure if µ(K) <
∞ for every compact set K. Note that some authors do not require this last
condition.

Example. Let X = R and Σ = B. The Dirac measure is a Borel measure.
The counting measure is no Borel measure since µ([a, b]) =∞ for a < b. �

A measure on the Borel σ-algebra is called outer regular if

µ(A) = inf
O⊇A,O open

µ(O) (A.1)

and inner regular if

µ(A) = sup
K⊆A,K compact

µ(K). (A.2)

It is called regular if it is both outer and inner regular.

Example. Let X = R and Σ = B. The counting measure is inner regular
but not outer regular (every nonempty open set has infinite measure). The
Dirac measure is a regular Borel measure. �

But how can we obtain some more interesting Borel measures? We
will restrict ourselves to the case of X = R for simplicity, in which case
Borel measures are also known as Lebesgue–Stieltjes measures. Then
the strategy is as follows: Start with the algebra of finite unions of disjoint
intervals and define µ for those sets (as the sum over the intervals). This
yields a premeasure. Extend this to an outer measure for all subsets of R.
Show that the restriction to the Borel sets is a measure.

Let us first show how we should define µ for intervals: To every Borel
measure on B we can assign its distribution function

µ(x) =


−µ((x, 0]), x < 0,

0, x = 0,

µ((0, x]), x > 0,

(A.3)

which is right continuous and nondecreasing.
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Example. The distribution function of the Dirac measure centered at 0 is

µ(x) =

{
−1, x < 0,

0, x ≥ 0.

�

For a finite measure, the alternate normalization µ̃(x) = µ((−∞, x])
can be used. The resulting distribution function differs from our above
definition by a constant µ(x) = µ̃(x)−µ((−∞, 0]). In particular, this is the
normalization used in probability theory.

Conversely, to obtain a measure from a nondecreasing function m : R→
R, we proceed as follows: Recall that an interval is a subset of the real line
of the form

I = (a, b], I = [a, b], I = (a, b), or I = [a, b), (A.4)

with a ≤ b, a, b ∈ R∪{−∞,∞}. Note that (a, a), [a, a), and (a, a] denote the
empty set, whereas [a, a] denotes the singleton {a}. For any proper interval
with different endpoints (i.e. a < b), we can define its measure to be

µ(I) =


m(b+)−m(a+), I = (a, b],

m(b+)−m(a−), I = [a, b],

m(b−)−m(a+), I = (a, b),

m(b−)−m(a−), I = [a, b),

(A.5)

where m(a±) = limε↓0m(a ± ε) (which exist by monotonicity). If one of
the endpoints is infinite we agree to use m(±∞) = limx→±∞m(x). For the
empty set we of course set µ(∅) = 0 and for the singletons we set

µ({a}) = m(a+)−m(a−) (A.6)

(which agrees with (A.5) except for the case I = (a, a), which would give a
negative value for the empty set if µ jumps at a). Note that µ({a}) = 0 if
and only if m(x) is continuous at a and that there can be only countably
many points with µ({a}) > 0 since a nondecreasing function can have at
most countably many jumps. Moreover, observe that the definition of µ
does not involve the actual value of m at a jump. Hence any function m̃
with m(x−) ≤ m̃(x) ≤ m(x+) gives rise to the same µ. We will frequently
assume that m is right continuous such that it coincides with the distribu-
tion function up to a constant, µ(x) = m(x+) − m(0+). In particular, µ
determines m up to a constant and the value at the jumps.

Now we can consider the algebra of finite unions of disjoint intervals
(check that this is indeed an algebra) and extend (A.5) to finite unions of
disjoint intervals by summing over all intervals. It is straightforward to
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verify that µ is well defined (one set can be represented by different unions
of intervals) and by construction additive. In fact, it is even a premeasure.

Lemma A.2. The interval function µ defined in (A.5) gives rise to a unique
σ-finite premeasure on the algebra A of finite unions of disjoint intervals.

Proof. It remains to verify σ-additivity. We need to show that, for any
disjoint union,

µ(
⋃
k

Ik) =
∑
k

µ(Ik)

whenever Ik ∈ A and I =
⋃
k Ik ∈ A. Since each Ik is a finite union of in-

tervals, we can as well assume each Ik is just one interval (just split Ik into
its subintervals and note that the sum does not change by additivity). Sim-
ilarly, we can assume that I is just one interval (just treat each subinterval
separately).

By additivity, µ is monotone and hence
n∑
k=1

µ(Ik) = µ(

n⋃
k=1

Ik) ≤ µ(I)

which shows
∞∑
k=1

µ(Ik) ≤ µ(I).

To get the converse inequality, we need to work harder.

We can cover each Ik by some slightly larger open interval Jk such that
µ(Jk) ≤ µ(Ik) + ε

2k
(only closed endpoints need extension). First suppose

I is compact. Then finitely many of the Jk, say the first n, cover I and we
have

µ(I) ≤ µ(
n⋃
k=1

Jk) ≤
n∑
k=1

µ(Jk) ≤
∞∑
k=1

µ(Ik) + ε.

Since ε > 0 is arbitrary, this shows σ-additivity for compact intervals. By
additivity we can always add/subtract the endpoints of I and hence σ-
additivity holds for any bounded interval. If I is unbounded we can again
assume that it is closed by adding an endpoint if necessary. Then for any
x > 0 we can find an n such that {Jk}nk=1 cover at least I ∩ [−x, x] and
hence

∞∑
k=1

µ(Ik) ≥
n∑
k=1

µ(Ik) ≥
n∑
k=1

µ(Jk)− ε ≥ µ([−x, x] ∩ I)− ε.

Since x > 0 and ε > 0 are arbitrary, we are done. �

In particular, this is a premeasure on the algebra of finite unions of
intervals which can be extended to a measure:



A.1. Borel measures in a nutshell 301

Theorem A.3. For every nondecreasing function m : R → R there exists
a unique Borel measure µ which extends (A.5). Two different functions
generate the same measure if and only if the difference is a constant away
from the discontinuities.

Since the proof of this theorem is rather involved, we defer it to the next
section and look at some examples first.

Example. Suppose Θ(x) = 0 for x < 0 and Θ(x) = 1 for x ≥ 0. Then we
obtain the so-called Dirac measure at 0, which is given by Θ(A) = 1 if
0 ∈ A and Θ(A) = 0 if 0 6∈ A. �

Example. Suppose λ(x) = x. Then the associated measure is the ordinary
Lebesgue measure on R. We will abbreviate the Lebesgue measure of a
Borel set A by λ(A) = |A|. �

A set A ∈ Σ is called a support for µ if µ(X\A) = 0. Note that a
support is not unique (see the examples below). If X is a topological space
and Σ = B(X), one defines the support (also topological support) of µ
via

supp(µ) = {x ∈ X|µ(O) > 0 for every open neighborhood O of x}. (A.7)

Equivalently, one obtains supp(µ) by removing all points which have an
open neighborhood of measure zero. In particular, this shows that supp(µ)
is closed. If X is second countable, then supp(µ) is indeed a support for µ:
For every point x 6∈ supp(µ), let Ox be an open neighborhood of measure
zero. These sets cover X\ supp(µ) and by the Lindelöf theorem there is a
countable subcover, which shows that X\ supp(µ) has measure zero.

Example. Let X = R, Σ = B. The support of the Lebesgue measure λ
is all of R. However, every single point has Lebesgue measure zero and so
has every countable union of points (by σ-additivity). Hence any set whose
complement is countable is a support. There are even uncountable sets of
Lebesgue measure zero (see the Cantor set below) and hence a support might
even lack an uncountable number of points.

The support of the Dirac measure centered at 0 is the single point 0.
Any set containing 0 is a support of the Dirac measure.

In general, the support of a Borel measure on R is given by

supp(dµ) = {x ∈ R|µ(x− ε) < µ(x+ ε), ∀ε > 0}.

Here we have used dµ to emphasize that we are interested in the support
of the measure dµ which is different from the support of its distribution
function µ(x). �
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A property is said to hold µ-almost everywhere (a.e.) if it holds on a
support for µ or, equivalently, if the set where it does not hold is contained
in a set of measure zero.

Example. The set of rational numbers is countable and hence has Lebesgue
measure zero, λ(Q) = 0. So, for example, the characteristic function of the
rationals Q is zero almost everywhere with respect to Lebesgue measure.

Any function which vanishes at 0 is zero almost everywhere with respect
to the Dirac measure centered at 0. �

Example. The Cantor set is an example of a closed uncountable set of
Lebesgue measure zero. It is constructed as follows: Start with C0 = [0, 1]
and remove the middle third to obtain C1 = [0, 1

3 ]∪[2
3 , 1]. Next, again remove

the middle thirds of the remaining sets to obtain C2 = [0, 1
9 ]∪ [2

9 ,
1
3 ]∪ [2

3 ,
7
9 ]∪

[8
9 , 1]:

C0

C1

C2

C3...

Proceeding like this, we obtain a sequence of nesting sets Cn and the limit
C =

⋂
nCn is the Cantor set. Since Cn is compact, so is C. Moreover,

Cn consists of 2n intervals of length 3−n, and thus its Lebesgue measure
is λ(Cn) = (2/3)n. In particular, λ(C) = limn→∞ λ(Cn) = 0. Using the
ternary expansion, it is extremely simple to describe: C is the set of all
x ∈ [0, 1] whose ternary expansion contains no ones, which shows that C is
uncountable (why?). It has some further interesting properties: it is totally
disconnected (i.e., it contains no subintervals) and perfect (it has no isolated
points). �

Problem A.1. Find all algebras over X = {1, 2, 3}.

Problem A.2. Show that A = {A ⊆ X|A or X\A is finite} is an algebra
(with X some fixed set). Show that Σ = {A ⊆ X|A or X\A is countable}
is a σ-algebra. (Hint: To verify closedness under unions, consider the cases
where all sets are finite and where one set has finite complement.)

Problem A.3. Take some set X and Σ = {A ⊆ X|A or X\A is countable}.
Show that

ν(A) =

{
0, if A is countable,

1, otherwise

is a measure.

Problem A.4. Show that if X is finite, then every algebra is a σ-algebra.
Show that this is not true in general if X is countable.
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Problem A.5 (Vitali set). Call two numbers x, y ∈ [0, 1) equivalent if x−y
is rational. Construct the set V by choosing one representative from each
equivalence class. Show that V cannot be measurable with respect to any
nontrivial finite translation invariant measure on [0, 1). (Hint: How can
you build up [0, 1) from translations of V ?)

A.2. Extending a premeasure to a measure

The purpose of this section is to prove Theorem A.3. It is rather technical and can

be skipped on first reading.

In order to prove Theorem A.3, we need to show how a premeasure
can be extended to a measure. To show that the extension is unique, we
need a better criterion to check when a given system of sets is in fact a
σ-algebra. In many situations it is easy to show that a given set is closed
under complements and under countable unions of disjoint sets. Hence we
call a collection of sets D with these properties a Dynkin system (also
λ-system) if it also contains X.

Note that a Dynkin system is closed under proper relative complements
since A,B ∈ D implies B\A = (B′ ∪A)′ ∈ D provided A ⊆ B. Moreover, if
it is also closed under finite intersections (or arbitrary finite unions), then
it is an algebra and hence also a σ-algebra. To see the last claim, note that
if A =

⋃
j Aj then also A =

⋃
j Bj where the sets Bj = Aj\

⋃
k<j Ak are

disjoint.

As with σ-algebras, the intersection of Dynkin systems is a Dynkin sys-
tem and every collection of sets S generates a smallest Dynkin system D(S).
The important observation is that if S is closed under finite intersections (in
which case it is sometimes called a π-system), then so is D(S) and hence
it will be a σ-algebra.

Lemma A.4 (Dynkin’s π-λ theorem). Let S be a collection of subsets of X
which is closed under finite intersections (or unions). Then D(S) = Σ(S).

Proof. It suffices to show that D = D(S) is closed under finite intersections.
To this end, consider the set D(A) = {B ∈ D|A ∩ B ∈ D} for A ∈ D. I
claim that D(A) is a Dynkin system.

First of all, X ∈ D(A) since A ∩ X = A ∈ D. Next, if B ∈ D(A)
then A ∩ B′ = A\(B ∩ A) ∈ D (since D is closed under proper relative
complements) implying B′ ∈ D(A). Finally, if B =

⋃
j Bj with Bj ∈ D(A)

disjoint, then A ∩ B =
⋃
j(A ∩ Bj) ∈ D with Bj ∈ D disjoint, implying

B ∈ D(A).

Now if A ∈ S, we have S ⊆ D(A), implying D(A) = D. Consequently
A ∩B ∈ D if at least one of the sets is in S. But this shows S ⊆ D(A) and
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hence D(A) = D for every A ∈ D. So D is closed under finite intersections
and thus is a σ-algebra. The case of unions is analogous. �

The typical use of this lemma is as follows: First verify some property
for sets in a set S which is closed under finite intersections and generates
the σ-algebra. In order to show that it holds for every set in Σ(S), it suffices
to show that the collection of sets for which it holds is a Dynkin system.

As an application, we show that a premeasure determines the corre-
sponding measure µ uniquely (if there is one at all):

Theorem A.5 (Uniqueness of measures). Let S ⊆ Σ be a collection of
sets which generates Σ, which is closed under finite intersections, and which
contains a sequence of increasing sets Xn ↗ X of finite measure µ(Xn) <
∞. Then µ is uniquely determined by the values on S.

Proof. Let µ̃ be a second measure and note µ(X) = limn→∞ µ(Xn) =
limn→∞ µ̃(Xn) = µ̃(X). We first suppose µ(X) <∞.

Then
D = {A ∈ Σ|µ(A) = µ̃(A)}

is a Dynkin system. In fact, by µ(A′) = µ(X)−µ(A) = µ̃(X)−µ̃(A) = µ̃(A′)
for A ∈ D, we see that D is closed under complements. Furthermore, by
continuity of measures from below, it is also closed under countable disjoint
unions. Since D contains S by assumption, we conclude D = Σ(S) = Σ
from Lemma A.4. This finishes the finite case.

To extend our result to the general case, observe that the finite case
implies µ(A ∩Xj) = µ̃(A ∩Xj) (just restrict µ, µ̃ to Xj). Hence

µ(A) = lim
j→∞

µ(A ∩Xj) = lim
j→∞

µ̃(A ∩Xj) = µ̃(A)

and we are done. �

Corollary A.6. Let µ be a σ-finite premeasure on an algebra A. Then there
is at most one extension to Σ(A).

So it remains to ensure that there is an extension at all. For any pre-
measure µ we define

µ∗(A) = inf
{ ∞∑
n=1

µ(An)
∣∣∣A ⊆ ∞⋃

n=1

An, An ∈ A
}

(A.8)

where the infimum extends over all countable covers from A. Then the
function µ∗ : P(X) → [0,∞] is an outer measure; that is, it has the
properties (Problem A.6)

• µ∗(∅) = 0,

• A1 ⊆ A2 ⇒ µ∗(A1) ≤ µ∗(A2), and
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• µ∗(
⋃∞
n=1An) ≤

∑∞
n=1 µ

∗(An) (subadditivity).

Note that µ∗(A) = µ(A) for A ∈ A (Problem A.7).

Theorem A.7 (Extensions via outer measures). Let µ∗ be an outer measure.
Then the set Σ of all sets A satisfying the Carathéodory condition

µ∗(E) = µ∗(A ∩ E) + µ∗(A′ ∩ E), ∀E ⊆ X (A.9)

(where A′ = X\A is the complement of A) forms a σ-algebra and µ∗ re-
stricted to this σ-algebra is a measure.

Proof. We first show that Σ is an algebra. It clearly contains X and is
closed under complements. Concerning unions, let A,B ∈ Σ. Applying
Carathéodory’s condition twice shows

µ∗(E) =µ∗(A ∩B ∩ E) + µ∗(A′∩B ∩ E) + µ∗(A ∩B′∩ E)

+ µ∗(A′∩B′∩ E)

≥µ∗((A ∪B) ∩ E) + µ∗((A ∪B)′∩ E),

where we have used de Morgan and

µ∗(A ∩B ∩ E) + µ∗(A′∩B ∩ E) + µ∗(A ∩B′∩ E) ≥ µ∗((A ∪B) ∩ E),

which follows from subadditivity and (A ∪ B) ∩ E = (A ∩ B ∩ E) ∪ (A′∩
B ∩E) ∪ (A ∩B′∩E). Since the reverse inequality is just subadditivity, we
conclude that Σ is an algebra.

Next, let An be a sequence of sets from Σ. Without restriction we can
assume that they are disjoint (compare the argument for item (ii) in the

proof of Theorem A.1). Abbreviate Ãn =
⋃
k≤nAk, A =

⋃
nAn. Then for

every set E we have

µ∗(Ãn ∩ E) = µ∗(An ∩ Ãn ∩ E) + µ∗(A′n∩ Ãn ∩ E)

= µ∗(An ∩ E) + µ∗(Ãn−1 ∩ E)

= . . . =
n∑
k=1

µ∗(Ak ∩ E).

Using Ãn ∈ Σ and monotonicity of µ∗, we infer

µ∗(E) = µ∗(Ãn ∩ E) + µ∗(Ã′n∩ E)

≥
n∑
k=1

µ∗(Ak ∩ E) + µ∗(A′∩ E).
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Letting n→∞ and using subadditivity finally gives

µ∗(E) ≥
∞∑
k=1

µ∗(Ak ∩ E) + µ∗(A′∩ E)

≥ µ∗(A ∩ E) + µ∗(A′∩ E) ≥ µ∗(E) (A.10)

and we infer that Σ is a σ-algebra.

Finally, setting E = A in (A.10), we have

µ∗(A) =
∞∑
k=1

µ∗(Ak ∩A) + µ∗(A′∩A) =
∞∑
k=1

µ∗(Ak)

and we are done. �

Remark: The constructed measure µ is complete; that is, for every
measurable set A of measure zero, every subset of A is again measurable
(Problem A.8).

The only remaining question is whether there are any nontrivial sets
satisfying the Carathéodory condition.

Lemma A.8. Let µ be a premeasure on A and let µ∗ be the associated outer
measure. Then every set in A satisfies the Carathéodory condition.

Proof. Let An ∈ A be a countable cover for E. Then for every A ∈ A we
have
∞∑
n=1

µ(An) =

∞∑
n=1

µ(An ∩A) +

∞∑
n=1

µ(An ∩A′) ≥ µ∗(E ∩A) + µ∗(E ∩A′)

since An ∩A ∈ A is a cover for E ∩A and An ∩A′ ∈ A is a cover for E ∩A′.
Taking the infimum, we have µ∗(E) ≥ µ∗(E∩A)+µ∗(E∩A′), which finishes
the proof. �

Concerning regularity, we note:

Lemma A.9. Suppose outer regularity (A.1) holds for every set in the al-
gebra; then µ is outer regular.

Proof. By assumption, we can replace each set An in (A.8) by a possibly
slightly larger open set and hence the infimum in (A.8) can be realized with
open sets. �

Thus, as a consequence we obtain Theorem A.3 except for regular-
ity. Outer regularity is easy to see for a finite union of intervals since
we can replace each interval by a possibly slightly larger open interval
with only slightly larger measure. Inner regularity will be postponed un-
til Lemma A.14.
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Problem A.6. Show that µ∗ defined in (A.8) is an outer measure. (Hint
for the last property: Take a cover {Bnk}∞k=1 for An such that µ∗(An) =
ε

2n +
∑∞

k=1 µ(Bnk) and note that {Bnk}∞n,k=1 is a cover for
⋃
nAn.)

Problem A.7. Show that µ∗ defined in (A.8) extends µ. (Hint: For the
cover An it is no restriction to assume An ∩Am = ∅ and An ⊆ A.)

Problem A.8. Show that the measure constructed in Theorem A.7 is com-
plete.

Problem A.9. Let µ be a finite measure. Show that

d(A,B) = µ(A∆B), A∆B = (A ∪B)\(A ∩B) (A.11)

is a metric on Σ if we identify sets of measure zero. Show that if A is an
algebra, then it is dense in Σ(A). (Hint: Show that the sets which can be
approximated by sets in A form a Dynkin system.)

A.3. Measurable functions

The Riemann integral works by splitting the x coordinate into small intervals
and approximating f(x) on each interval by its minimum and maximum.
The problem with this approach is that the difference between maximum
and minimum will only tend to zero (as the intervals get smaller) if f(x) is
sufficiently nice. To avoid this problem, we can force the difference to go to
zero by considering, instead of an interval, the set of x for which f(x) lies
between two given numbers a < b. Now we need the size of the set of these
x, that is, the size of the preimage f−1((a, b)). For this to work, preimages
of intervals must be measurable.

Let (X,ΣX) and (Y,ΣY ) be measurable spaces. A function f : X → Y
is called measurable if f−1(A) ∈ ΣX for every A ∈ ΣY . Clearly it suffices
to check this condition for every set A in a collection of sets which generate
ΣY , since the collection of sets for which it holds forms a σ-algebra by
f−1(Y \A) = X\f−1(A) and f−1(

⋃
j Aj) =

⋃
j f
−1(Aj).

We will be mainly interested in the case where (Y,ΣY ) = (Rn,Bn).

Lemma A.10. A function f : X → Rn is measurable if and only if

f−1(I) ∈ Σ ∀ I =

n∏
j=1

(aj ,∞). (A.12)

In particular, a function f : X → Rn is measurable if and only if every
component is measurable, and a complex-valued function f : X → Cn is
measurable if and only if both its real and imaginary parts are.

Proof. We need to show that Bn is generated by rectangles of the above
form. The σ-algebra generated by these rectangles also contains all open
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rectangles of the form I =
∏n
j=1(aj , bj), which form a base for the topology.

�

Clearly the intervals (aj ,∞) can also be replaced by [aj ,∞), (−∞, aj),
or (−∞, aj ].

If X is a topological space and Σ the corresponding Borel σ-algebra,
we will also call a measurable function a Borel function. Note that, in
particular,

Lemma A.11. Let (X,ΣX), (Y,ΣY ), (Z,ΣZ) be topological spaces with
their corresponding Borel σ-algebras. Any continuous function f : X → Y
is measurable. Moreover, if f : X → Y and g : Y → Z are measurable
functions, then the composition g ◦ f is again measurable.

The set of all measurable functions forms an algebra.

Lemma A.12. Let X be a topological space and Σ its Borel σ-algebra.
Suppose f, g : X → R are measurable functions. Then the sum f + g and
the product fg are measurable.

Proof. Note that addition and multiplication are continuous functions from
R2 → R and hence the claim follows from the previous lemma. �

Sometimes it is also convenient to allow ±∞ as possible values for f ,
that is, functions f : X → R, R = R ∪ {−∞,∞}. In this case, A ⊆ R is
called Borel if A ∩ R is. This implies that f : X → R will be Borel if and
only if f−1(±∞) are Borel and f : X\f−1({−∞,∞})→ R is Borel. Since

{+∞} =
⋂
n

(n,+∞], {−∞} = R\
⋃
n

(−n,+∞], (A.13)

we see that f : X → R is measurable if and only if

f−1((a,∞]) ∈ Σ ∀ a ∈ R. (A.14)

Again the intervals (a,∞] can also be replaced by [a,∞], [−∞, a), or [−∞, a].

Hence it is not hard to check that the previous lemma still holds if one
either avoids undefined expressions of the type ∞−∞ and ±∞· 0 or makes
a definite choice, e.g., ∞−∞ = 0 and ±∞ · 0 = 0.

Moreover, the set of all measurable functions is closed under all impor-
tant limiting operations.

Lemma A.13. Suppose fn : X → R is a sequence of measurable functions.
Then

inf
n∈N

fn, sup
n∈N

fn, lim inf
n→∞

fn, lim sup
n→∞

fn (A.15)

are measurable as well.



A.4. How wild are measurable objects? 309

Proof. It suffices to prove that sup fn is measurable since the rest follows
from inf fn = − sup(−fn), lim inf fn = supn infk≥n fk, and lim sup fn =
infn supk≥n fk. But (sup fn)−1((a,∞]) =

⋃
n f
−1
n ((a,∞]) are Borel and we

are done. �

A few immediate consequences are worthwhile noting: It follows that
if f and g are measurable functions, so are min(f, g), max(f, g), |f | =
max(f,−f), and f± = max(±f, 0). Furthermore, the pointwise limit of
measurable functions is again measurable.

Sometimes the case of arbitrary suprema and infima is also of interest.
In this respect, the following observation is useful: Recall that a function
f : X → R is lower semicontinuous if the set f−1((a,∞]) is open for every
a ∈ R. Then it follows from the definition that the sup over an arbitrary
collection of lower semicontinuous functions

f(x) = sup
α
fα(x) (A.16)

is again lower semicontinuous. Similarly, f is upper semicontinuous if
the set f−1([−∞, a)) is open for every a ∈ R. In this case the infimum

f(x) = inf
α
fα(x) (A.17)

is again upper semicontinuous. Note that f is lower semicontinuous if and
only if −f is upper semicontinuous.

Problem A.10. Show that the supremum over lower semicontinuous func-
tions is again lower semicontinuous.

Problem A.11. Let X be a metric space. Show that f is lower semicon-
tinuous if and only if

lim inf
x→x0

f(x) ≥ f(x0), x0 ∈ X.

Similarly, f is upper semicontinuous if and only if

lim sup
x→x0

f(x) ≤ f(x0), x0 ∈ X.

A.4. How wild are measurable objects?

In this section, we want to investigate how far measurable objects are away
from well-understood ones. As our first task, we want to show that measur-
able sets can be well approximated by using closed sets from the inside and
open sets from the outside in nice spaces like Rn.

Lemma A.14. Let X be a metric space and µ a Borel measure which is
finite on finite balls. Then µ is σ-finite and for every A ∈ B(X) and any
given ε > 0 there exists an open set O and a closed set F such that

F ⊆ A ⊆ O and µ(O\F ) ≤ ε. (A.18)
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Proof. That µ is σ-finite is immediate from the definitions since for any
fixed x0 ∈ X, the open balls Xn = Bn(x0) have finite measure and satisfy
Xn ↗ X.

To see that (A.18) holds, we begin with the case when µ is finite. Denote
by A the set of all Borel sets satisfying (A.18). Then A contains every closed
set F : Given F , define On = {x ∈ X|d(x, F ) < 1/n} and note that On are
open sets which satisfy On ↘ F . Thus, by Theorem A.1 (iii), µ(On\F )→ 0
and hence F ∈ A.

Moreover, A is even a σ-algebra. That it is closed under complements
is easy to see (note that Õ = X\F and F̃ = X\O are the required sets

for Ã = X\A). To see that it is closed under countable unions, consider
A =

⋃∞
n=1An with An ∈ A. Then there are Fn, On such that µ(On\Fn) ≤

ε2−n−1. Now O =
⋃∞
n=1On is open and F =

⋃N
n=1 Fn is closed for any

finite N . Since µ(A) is finite, we can choose N sufficiently large such that
µ(
⋃∞
N+1 Fn\F ) ≤ ε/2. Then we have found two sets of the required type:

µ(O\F ) ≤
∑∞

n=1 µ(On\Fn) + µ(
⋃∞
n=N+1 Fn\F ) ≤ ε. Thus A is a σ-algebra

containing the open sets, and hence it is the entire Borel algebra.

Now suppose µ is not finite. Pick some x0 ∈ X and set X0 = B2/3(x0)

and Xn = Bn+2/3(x0)\Bn−2/3(x0), n ∈ N. Let An = A ∩Xn and note that

A =
⋃∞
n=0An. By the finite case we can choose Fn ⊆ An ⊆ On ⊆ Xn such

that µ(On\Fn) ≤ ε2−n−1. Now set F =
⋃
n Fn and O =

⋃
nOn and observe

that F is closed. Indeed, let x ∈ F and let xj be some sequence from F
converging to x. Since d(x0, xj) → d(x0, x) this sequence must eventually

lie in Fn∪Fn+1 for some fixed n, implying x ∈ Fn ∪ Fn+1 = Fn∪Fn+1 ⊆ F .
Finally, µ(O\F ) ≤

∑∞
n=0 µ(On\Fn) ≤ ε as required. �

This result immediately gives us outer regularity and, if we strengthen
our assumption, also inner regularity.

Corollary A.15. Under the assumptions of the previous lemma,

µ(A) = inf
O⊇A,O open

µ(O) = sup
F⊆A,F closed

µ(F ) (A.19)

and µ is outer regular. If X is proper (i.e., every closed ball is compact),
then µ is also inner regular.

µ(A) = sup
K⊆A,K compact

µ(K). (A.20)

Proof. Finally, (A.19) follows from µ(A) = µ(O) − µ(O\A) = µ(F ) +
µ(A\F ) and if every finite ball is compact, for every sequence of closed sets

Fn with µ(Fn) → µ(A) we also have compact sets Kn = Fn ∩ Bn(x0) with
µ(Kn)→ µ(A). �
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By the Heine–Borel theorem, every bounded closed ball in Rn (or Cn)
is compact and thus has finite measure by the very definition of a Borel
measure. Hence every Borel measure on Rn (or Cn) satisfies the assumptions
of Lemma A.14.

An inner regular measure on a Hausdorff space which is locally finite
(every point has a neighborhood of finite measure) is called a Radon mea-
sure. Accordingly, every Borel measure on Rn (or Cn) is automatically a
Radon measure.

Example. Since Lebesgue measure on R is regular, we can cover the rational
numbers by an open set of arbitrary small measure (it is also not hard to find
such a set directly) but we cannot cover it by an open set of measure zero
(since any open set contains an interval and hence has positive measure).
However, if we slightly extend the family of admissible sets, this will be
possible. �

Looking at the Borel σ-algebra, the next general sets after open sets
are countable intersections of open sets, known as Gδ sets (here G and δ
stand for the German words Gebiet and Durchschnitt, respectively). The
next general sets after closed sets are countable unions of closed sets, known
as Fσ sets (here F and σ stand for the French words fermé and somme,
respectively).

Example. The irrational numbers are a Gδ set in R. To see this, let xn be
an enumeration of the rational numbers and consider the intersection of the
open sets On = R\{xn}. The rational numbers are hence an Fσ set. �

Corollary A.16. A set in Rn is Borel if and only if it differs from a Gδ set
by a Borel set of measure zero. Similarly, a set in Rn is Borel if and only if
it differs from an Fσ set by a Borel set of measure zero.

Proof. Since Gδ sets are Borel, only the converse direction is nontrivial.
By Lemma A.14 we can find open sets On such that µ(On\A) ≤ 1/n. Now
let G =

⋂
nOn. Then µ(G\A) ≤ µ(On\A) ≤ 1/n for any n and thus

µ(G\A) = 0. The second claim is analogous. �

Problem A.12. Show directly (without using regularity) that for every ε > 0
there is an open set O of Lebesgue measure |O| < ε which covers the rational
numbers.

Problem A.13. Show that a Borel set A ⊆ R has Lebesgue measure zero
if and only if for every ε there exists a countable set of intervals Ij which
cover A and satisfy

∑
j |Ij | < ε.
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A.5. Integration — Sum me up, Henri

Throughout this section, (X,Σ, µ) will be a measure space. A measurable
function s : X → R is called simple if its image is finite; that is, if

s =

p∑
j=1

αj χAj , s(X) = {αj}pj=1, Aj = s−1(αj) ∈ Σ. (A.21)

Here χA is the characteristic function of A; that is, χA(x) = 1 if x ∈ A
and χA(x) = 0 otherwise. Note that the set of simple functions is a vector
space, and while there are different ways of writing a simple function as a
linear combination of characteristic functions, the representation (A.21) is
unique.

For a nonnegative simple function s as in (A.21) we define its integral
as ∫

A
s dµ =

p∑
j=1

αj µ(Aj ∩A). (A.22)

Here we use the convention 0 · ∞ = 0.

Lemma A.17. The integral has the following properties:

(i)
∫
A s dµ =

∫
X χA s dµ.

(ii)
∫⋃∞

j=1 Aj
s dµ =

∑∞
j=1

∫
Aj
s dµ, Aj ∩Ak = ∅ for j 6= k.

(iii)
∫
A α s dµ = α

∫
A s dµ, α ≥ 0.

(iv)
∫
A(s+ t)dµ =

∫
A s dµ+

∫
A t dµ.

(v) A ⊆ B ⇒
∫
A s dµ ≤

∫
B s dµ.

(vi) s ≤ t ⇒
∫
A s dµ ≤

∫
A t dµ.

Proof. (i) is clear from the definition. (ii) follows from σ-additivity of µ.
(iii) is obvious. (iv) Let s =

∑
j αj χAj , t =

∑
j βj χBj as in (A.21) and

abbreviate Cjk = (Aj ∩Bk) ∩A. Then, by (ii),∫
A
(s+ t)dµ =

∑
j,k

∫
Cjk

(s+ t)dµ =
∑
j,k

(αj + βk)µ(Cjk)

=
∑
j,k

(∫
Cjk

s dµ+

∫
Cjk

t dµ

)
=

∫
A
s dµ+

∫
A
t dµ.

(v) follows from monotonicity of µ. (vi) follows since by (iv) we can write
s =

∑
j αj χCj , t =

∑
j βj χCj where, by assumption, αj ≤ βj . �
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Our next task is to extend this definition to nonnegative measurable
functions by ∫

A
f dµ = sup

s≤f

∫
A
s dµ, (A.23)

where the supremum is taken over all simple functions s ≤ f . Note that,
except for possibly (ii) and (iv), Lemma A.17 still holds for arbitrary non-
negative functions s, t.

Theorem A.18 (Monotone convergence, Beppo Levi’s theorem). Let fn
be a monotone nondecreasing sequence of nonnegative measurable functions,
fn ↗ f . Then ∫

A
fn dµ→

∫
A
f dµ. (A.24)

Proof. By property (vi),
∫
A fn dµ is monotone and converges to some num-

ber α. By fn ≤ f and again (vi) we have

α ≤
∫
A
f dµ.

To show the converse, let s be simple such that s ≤ f and let θ ∈ (0, 1). Put
An = {x ∈ A|fn(x) ≥ θs(x)} and note An ↗ A (show this). Then∫

A
fn dµ ≥

∫
An

fn dµ ≥ θ
∫
An

s dµ.

Letting n→∞, we see that

α ≥ θ
∫
A
s dµ.

Since this is valid for every θ < 1, it still holds for θ = 1. Finally, since
s ≤ f is arbitrary, the claim follows. �

In particular, ∫
A
f dµ = lim

n→∞

∫
A
sn dµ (A.25)

for every monotone sequence sn ↗ f of simple functions. Note that there is
always such a sequence, for example,

sn(x) =
n2n∑
k=0

k

2n
χf−1(Ak)(x), Ak = [

k

2n
,
k + 1

2n
), An2n = [n,∞). (A.26)

By construction, sn converges uniformly if f is bounded, since 0 ≤ f(x) −
sn(x) < 1

2n if f(x) ≤ n.

Now what about the missing items (ii) and (iv) from Lemma A.17? Since
limits can be spread over sums, item (iv) holds, and (ii) also follows directly
from the monotone convergence theorem. We even have the following result:
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Lemma A.19. If f ≥ 0 is measurable, then dν = f dµ defined via

ν(A) =

∫
A
f dµ (A.27)

is a measure such that ∫
g dν =

∫
gf dµ (A.28)

for every measurable function g.

Proof. As already mentioned, additivity of ν is equivalent to linearity of
the integral and σ-additivity follows from Theorem A.18:

ν(

∞⋃
n=1

An) =

∫
(

∞∑
n=1

χAn)f dµ =

∞∑
n=1

∫
χAnf dµ =

∞∑
n=1

ν(An).

The second claim holds for simple functions and hence for all functions by
construction of the integral. �

If fn is not necessarily monotone, we have at least

Theorem A.20 (Fatou’s lemma). If fn is a sequence of nonnegative mea-
surable function, then∫

A
lim inf
n→∞

fn dµ ≤ lim inf
n→∞

∫
A
fn dµ. (A.29)

Proof. Set gn = infk≥n fk. Then gn ≤ fn, implying∫
A
gn dµ ≤

∫
A
fn dµ.

Now take the lim inf on both sides and note that by the monotone conver-
gence theorem,

lim inf
n→∞

∫
A
gn dµ = lim

n→∞

∫
A
gn dµ =

∫
A

lim
n→∞

gn dµ =

∫
A

lim inf
n→∞

fn dµ,

proving the claim. �

Example. Consider fn = χ[n,n+1]. Then limn→∞ fn(x) = 0 for every x ∈ R.

However,
∫
R fn(x)dx = 1. This shows that the inequality in Fatou’s lemma

cannot be replaced by equality in general. �

If the integral is finite for both the positive and negative part f± =
max(±f, 0) of an arbitrary measurable function f , we call f integrable
and set ∫

A
f dµ =

∫
A
f+dµ−

∫
A
f−dµ. (A.30)
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Similarly, we handle the case where f is complex-valued by calling f inte-
grable if both the real and imaginary parts are and setting∫

A
f dµ =

∫
A

Re(f)dµ+ i

∫
A

Im(f)dµ. (A.31)

Clearly, f is integrable if and only if |f | is. The set of all integrable functions
is denoted by L1(X, dµ).

Lemma A.21. The integral is linear and Lemma A.17 holds for integrable
functions s, t.

Furthermore, for all integrable functions f, g, we have

|
∫
A
f dµ| ≤

∫
A
|f | dµ (A.32)

and (triangle inequality)∫
A
|f + g| dµ ≤

∫
A
|f | dµ+

∫
A
|g| dµ. (A.33)

Proof. Linearity and Lemma A.17 are straightforward to check. To see
(A.32) put α = z∗

|z| , where z =
∫
A f dµ (without restriction z 6= 0). Then

|
∫
A
f dµ| = α

∫
A
f dµ =

∫
A
α f dµ =

∫
A

Re(α f) dµ ≤
∫
A
|f | dµ,

proving (A.32). The last claim follows from |f + g| ≤ |f |+ |g|. �

Lemma A.22. Let f be measurable. Then∫
X
|f | dµ = 0 ⇔ f(x) = 0 µ− a.e. (A.34)

Moreover, suppose f is nonnegative or integrable. Then

µ(A) = 0 ⇒
∫
A
f dµ = 0. (A.35)

Proof. Observe that we have A = {x|f(x) 6= 0} =
⋃
nAn, where An =

{x| |f(x)| > 1
n}. If

∫
X |f |dµ = 0, we must have µ(An) = 0 for every n and

hence µ(A) = limn→∞ µ(An) = 0.

The converse will follow from (A.35) since µ(A) = 0 (with A as before)
implies

∫
X |f |dµ =

∫
A |f |dµ = 0.

Finally, to see (A.35) note that by our convention 0 · ∞ = 0 it holds for
any simple function and hence for any nonnegative f by definition of the
integral (A.23). Since any function can be written as a linear combination of
four nonnegative functions, this also implies the case when f is integrable.

�
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Note that the proof also shows that if f is not 0 almost everywhere,
there is an ε > 0 such that µ({x| |f(x)| ≥ ε}) > 0.

In particular, the integral does not change if we restrict the domain of
integration to a support of µ or if we change f on a set of measure zero. In
particular, functions which are equal a.e. have the same integral.

Finally, our integral is well behaved with respect to limiting operations.
We first state a simple generalization of Fatou’s lemma.

Lemma A.23 (generalized Fatou lemma). If fn is a sequence of real-valued
measurable functions and g some integrable function, then∫

A
lim inf
n→∞

fn dµ ≤ lim inf
n→∞

∫
A
fn dµ (A.36)

if g ≤ fn and

lim sup
n→∞

∫
A
fn dµ ≤

∫
A

lim sup
n→∞

fn dµ (A.37)

if fn ≤ g.

Proof. To see the first, apply Fatou’s lemma to fn−g and subtract
∫
A g dµ

on both sides of the result. The second follows from the first using
lim inf(−fn) = − lim sup fn. �

If in the last lemma we even have |fn| ≤ g, we can combine both esti-
mates to obtain∫

A
lim inf
n→∞

fn dµ ≤ lim inf
n→∞

∫
A
fn dµ ≤ lim sup

n→∞

∫
A
fn dµ ≤

∫
A

lim sup
n→∞

fn dµ,

(A.38)
which is known as the Fatou–Lebesgue theorem. In particular, in the
special case where fn converges, we obtain

Theorem A.24 (Dominated convergence). Let fn be a convergent sequence
of measurable functions and set f = limn→∞ fn. Suppose there is an inte-
grable function g such that |fn| ≤ g. Then f is integrable and

lim
n→∞

∫
fndµ =

∫
fdµ. (A.39)

Proof. The real and imaginary parts satisfy the same assumptions, and
hence it suffices to prove the case where fn and f are real-valued. Moreover,
since lim inf fn = lim sup fn = f , equation (A.38) establishes the claim. �

Remark: Since sets of measure zero do not contribute to the value of the
integral, it clearly suffices if the requirements of the dominated convergence
theorem are satisfied almost everywhere (with respect to µ).

Example. Note that the existence of g is crucial: The functions fn(x) =
1

2nχ[−n,n](x) on R converge uniformly to 0 but
∫
R fn(x)dx = 1. �
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Example. If µ(x) = Θ(x) is the Dirac measure at 0, then∫
R
f(x)dµ(x) = f(0).

In fact, the integral can be restricted to any support and hence to {0}.
If µ(x) =

∑
n αnΘ(x − xn) is a sum of Dirac measures, then (Prob-

lem A.14) ∫
R
f(x)dµ(x) =

∑
n

αnf(xn).

Hence our integral contains sums as special cases. �

Finally, let me conclude this section with a remark on how to compute
Lebesgue integrals in the classical case of Lebesgue measure on some interval
(a, b) ⊆ R. Given a continuous function f ∈ C(a, b) which is integrable over
(a, b), we can introduce

F (x) =

∫
(a,x]

f(y)dy, x ∈ (a, b). (A.40)

Then one has

F (x+ ε)− F (x)

ε
= f(x) +

1

ε

∫
(x,x+ε]

(
f(y)− f(x)

)
dy

(where (x, x+ ε] has to be understood as (x+ ε, x] if ε < 0) and

lim sup
ε→0

1

ε

∫
(x,x+ε]

|f(y)− f(x)|dy ≤ lim sup
ε→0

sup
y∈(x,x+ε]

|f(y)− f(x)| = 0

by the continuity of f at x. Thus F ∈ C1(a, b) and

F ′(x) = f(x),

which is a variant of the fundamental theorem of calculus. This tells us
that the integral of a continuous function f can be computed in terms of its
antiderivative and, in particular, all tools from calculus like integration by
parts or integration by substitution are readily available for the Lebesgue
integral on R. Moreover, the Lebesgue integral must coincide with the Rie-
mann integral for (piecewise) continuous functions.

Problem A.14. Consider a countable set of measures µn and numbers αn ≥
0. Let µ =

∑
n αnµn and show∫

A
f dµ =

∑
n

αn

∫
A
f dµn (A.41)

for any measurable function which is either nonnegative or integrable.
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Problem A.15. Show that the set B(X) of bounded measurable functions
with the sup norm is a Banach space. Show that the set S(X) of simple
functions is dense in B(X). Show that the integral is a bounded linear
functional on B(X) if µ(X) < ∞. (Hence Theorem 0.29 could be used to
extend the integral from simple to bounded measurable functions.)

Problem A.16. Show that the monotone convergence holds for nondecreas-
ing sequences of real-valued measurable functions fn ↗ f provided f1 is
integrable.

Problem A.17. Show that the dominated convergence theorem implies (un-
der the same assumptions)

lim
n→∞

∫
|fn − f |dµ = 0.

Problem A.18. Let f be an integrable function satisfying f(x) ≤M . Show
that ∫

A
f dµ ≤Mµ(A)

with equality if and only if f(x) = M for a.e. x ∈ A.

Problem A.19. Let X ⊆ R, Y be some measure space, and f : X×Y → C.
Suppose y 7→ f(x, y) is measurable for every x and x 7→ f(x, y) is continuous
for every y. Show that

F (x) =

∫
A
f(x, y) dµ(y) (A.42)

is continuous if there is an integrable function g(y) such that |f(x, y)| ≤ g(y).

Problem A.20. Let X ⊆ R, Y be some measure space, and f : X×Y → C.
Suppose y 7→ f(x, y) is integrable for all x and x 7→ f(x, y) is differentiable
for a.e. y. Show that

F (x) =

∫
A
f(x, y) dµ(y) (A.43)

is differentiable if there is an integrable function g(y) such that | ∂∂xf(x, y)| ≤
g(y). Moreover, y 7→ ∂

∂xf(x, y) is measurable and

F ′(x) =

∫
A

∂

∂x
f(x, y) dµ(y) (A.44)

in this case.
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A.6. Product measures

Let µ1 and µ2 be two measures on Σ1 and Σ2, respectively. Let Σ1 ⊗Σ2 be
the σ-algebra generated by rectangles of the form A1 ×A2.

Example. Let B be the Borel sets in R. Then B2 = B⊗B are the Borel
sets in R2 (since the rectangles are a basis for the product topology). �

Any set in Σ1 ⊗ Σ2 has the section property; that is,

Lemma A.25. Suppose A ∈ Σ1 ⊗ Σ2. Then its sections

A1(x2) = {x1|(x1, x2) ∈ A} and A2(x1) = {x2|(x1, x2) ∈ A} (A.45)

are measurable.

Proof. Denote all sets A ∈ Σ1⊗Σ2 with the property that A1(x2) ∈ Σ1 by
S. Clearly all rectangles are in S and it suffices to show that S is a σ-algebra.
Now, if A ∈ S, then (A′)1(x2) = (A1(x2))′ ∈ Σ1 and thus S is closed under
complements. Similarly, if An ∈ S, then (

⋃
nAn)1(x2) =

⋃
n(An)1(x2) shows

that S is closed under countable unions. �

This implies that if f is a measurable function on X1×X2, then f(., x2) is
measurable on X1 for every x2 and f(x1, .) is measurable on X2 for every x1

(observe A1(x2) = {x1|f(x1, x2) ∈ B}, where A = {(x1, x2)|f(x1, x2) ∈ B}).
Given two measures µ1 on Σ1 and µ2 on Σ2, we now want to construct

the product measure µ1 ⊗ µ2 on Σ1 ⊗ Σ2 such that

µ1 ⊗ µ2(A1 ×A2) = µ1(A1)µ2(A2), Aj ∈ Σj , j = 1, 2. (A.46)

Since the rectangles are closed under intersection, Theorem A.5 implies that
there is at most one measure on Σ1 ⊗ Σ2 provided µ1 and µ2 are σ-finite.

Theorem A.26. Let µ1 and µ2 be two σ-finite measures on Σ1 and Σ2,
respectively. Let A ∈ Σ1 ⊗ Σ2. Then µ2(A2(x1)) and µ1(A1(x2)) are mea-
surable and ∫

X1

µ2(A2(x1))dµ1(x1) =

∫
X2

µ1(A1(x2))dµ2(x2). (A.47)

Proof. As usual, we begin with the case where µ1 and µ2 are finite. Let
D be the set of all subsets for which our claim holds. Note that D contains
at least all rectangles. Thus it suffices to show that D is a Dynkin system
by Lemma A.4. To see this, note that measurability and equality of both
integrals follow from A1(x2)′ = A′1(x2) (implying µ1(A′1(x2)) = µ1(X1) −
µ1(A1(x2))) for complements and from the monotone convergence theorem
for disjoint unions of sets.
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If µ1 and µ2 are σ-finite, let Xi,j ↗ Xi with µi(Xi,j) < ∞ for i = 1, 2.
Now µ2((A ∩X1,j ×X2,j)2(x1)) = µ2(A2(x1) ∩X2,j)χX1,j (x1) and similarly
with 1 and 2 exchanged. Hence by the finite case,∫

X1

µ2(A2 ∩X2,j)χX1,jdµ1 =

∫
X2

µ1(A1 ∩X1,j)χX2,jdµ2, (A.48)

and the σ-finite case follows from the monotone convergence theorem. �

Hence for given A ∈ Σ1 ⊗ Σ2, we can define

µ1 ⊗ µ2(A) =

∫
X1

µ2(A2(x1))dµ1(x1) =

∫
X2

µ1(A1(x2))dµ2(x2) (A.49)

or equivalently, since χA1(x2)(x1) = χA2(x1)(x2) = χA(x1, x2),

µ1 ⊗ µ2(A) =

∫
X1

(∫
X2

χA(x1, x2)dµ2(x2)

)
dµ1(x1)

=

∫
X2

(∫
X1

χA(x1, x2)dµ1(x1)

)
dµ2(x2). (A.50)

Then µ1⊗µ2 gives rise to a unique measure on A ∈ Σ1⊗Σ2 since σ-additivity
follows from the monotone convergence theorem.

Finally we have

Theorem A.27 (Fubini). Let f be a measurable function on X1 ×X2 and
let µ1, µ2 be σ-finite measures on X1, X2, respectively.

(i) If f ≥ 0, then
∫
f(., x2)dµ2(x2) and

∫
f(x1, .)dµ1(x1) are both

measurable and∫∫
f(x1, x2)dµ1 ⊗ µ2(x1, x2) =

∫ (∫
f(x1, x2)dµ1(x1)

)
dµ2(x2)

=

∫ (∫
f(x1, x2)dµ2(x2)

)
dµ1(x1). (A.51)

(ii) If f is complex-valued, then∫
|f(x1, x2)|dµ1(x1) ∈ L1(X2, dµ2), (A.52)

respectively,∫
|f(x1, x2)|dµ2(x2) ∈ L1(X1, dµ1), (A.53)

if and only if f ∈ L1(X1 × X2, dµ1 ⊗ dµ2). In this case, (A.51)
holds.

Proof. By Theorem A.26 and linearity, the claim holds for simple functions.
To see (i), let sn ↗ f be a sequence of nonnegative simple functions. Then it
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follows by applying the monotone convergence theorem (twice for the double
integrals).

For (ii) we can assume that f is real-valued by considering its real and
imaginary parts separately. Moreover, splitting f = f+−f− into its positive
and negative parts, the claim reduces to (i). �

In particular, if f(x1, x2) is either nonnegative or integrable, then the
order of integration can be interchanged. The case of nonnegative func-
tions is also called Tonelli’s theorem. In the general case the integrability
condition is crucial, as the following example shows.

Example. Let X = [0, 1]× [0, 1] with Lebesgue measure and consider

f(x, y) =
x− y

(x+ y)3
.

Then ∫ 1

0

∫ 1

0
f(x, y)dx dy = −

∫ 1

0

1

(1 + y)2
dy = −1

2

but (by symmetry)∫ 1

0

∫ 1

0
f(x, y)dy dx =

∫ 1

0

1

(1 + x)2
dx =

1

2
.

Consequently, f cannot be integrable over X (verify this directly). �

Lemma A.28. If µ1 and µ2 are outer regular measures, then so is µ1⊗µ2.

Proof. Outer regularity holds for every rectangle and hence also for the
algebra of finite disjoint unions of rectangles (Problem A.21). Thus the
claim follows from Lemma A.9. �

In connection with Theorem A.5, the following observation is of interest:

Lemma A.29. If S1 generates Σ1 and S2 generates Σ2, then S1 × S2 =
{A1 ×A2|Aj ∈ Sj , j = 1, 2} generates Σ1 ⊗ Σ2.

Proof. Denote the σ-algebra generated by S1 × S2 by Σ. Consider the set
{A1 ∈ Σ1|A1×X2 ∈ Σ} which is clearly a σ-algebra containing S1 and thus
equal to Σ1. In particular, Σ1 ×X2 ⊂ Σ and similarly X1 ×Σ2 ⊂ Σ. Hence
also (Σ1 ×X2) ∩ (X1 × Σ2) = Σ1 × Σ2 ⊂ Σ. �

Finally, note that we can iterate this procedure.

Lemma A.30. Suppose (Xj ,Σj , µj), j = 1, 2, 3, are σ-finite measure spaces.
Then (Σ1 ⊗ Σ2)⊗ Σ3 = Σ1 ⊗ (Σ2 ⊗ Σ3) and

(µ1 ⊗ µ2)⊗ µ3 = µ1 ⊗ (µ2 ⊗ µ3). (A.54)
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Proof. First of all, note that (Σ1⊗Σ2)⊗Σ3 = Σ1⊗ (Σ2⊗Σ3) is the sigma
algebra generated by the rectangles A1×A2×A3 in X1×X2×X3. Moreover,
since

((µ1 ⊗ µ2)⊗ µ3)(A1 ×A2 ×A3) = µ1(A1)µ2(A2)µ3(A3)

= (µ1 ⊗ (µ2 ⊗ µ3))(A1 ×A2 ×A3),

the two measures coincide on rectangles and hence everywhere by Theo-
rem A.5. �

Example. If λ is Lebesgue measure on R, then λn = λ⊗· · ·⊗λ is Lebesgue
measure on Rn. Since λ is outer regular, so is λn. Of course regularity also
follows from Corollary A.15.

Moreover, Lebesgue measure is translation invariant and up to normal-
ization the only measure with this property. To see this, let µ be a second
translation invariant measure. Denote by Qr a cube with side length r > 0.
Without loss, we can assume µ(Q1) = 1. Since we can split Q1 into mn

cubes of side length 1/m, we see that µ(Q1/m) = m−n by translation in-
variance and additivity. Hence we obtain µ(Qr) = rn for every rational r
and thus for every r by continuity from below. Proceeding like this, we see
that λn and µ coincide on all rectangles which are products of bounded open
intervals. Since this set is closed under intersections and generates the Borel
algebra Bn by Lemma A.29, the claim follows again from Theorem A.5. �

Problem A.21. Show that the set of all finite unions of rectangles A1×A2

forms an algebra. Moreover, every set in this algebra can be written as a
finite union of disjoint rectangles.

Problem A.22. Let U ⊆ C be a domain, Y be some measure space, and
f : U × Y → C. Suppose y 7→ f(z, y) is measurable for every z and z 7→
f(z, y) is holomorphic for every y. Show that

F (z) =

∫
A
f(z, y) dµ(y) (A.55)

is holomorphic if for every compact subset V ⊂ U there is an integrable
function g(y) such that |f(z, y)| ≤ g(y), z ∈ V . (Hint: Use Fubini and
Morera.)

A.7. Transformation of measures and integrals

Finally, we want to transform measures. Let f : X → Y be a measurable
function. Given a measure µ on X we can introduce a measure f?µ on Y
via

(f?µ)(A) = µ(f−1(A)). (A.56)
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It is straightforward to check that f?µ is indeed a measure. Moreover, note
that f?µ is supported on the range of f .

Theorem A.31. Let f : X → Y be measurable and let g : Y → C be a
Borel function. Then the Borel function g ◦ f : X → C is a.e. nonnegative
or integrable if and only if g is, and in both cases,∫

Y
g d(f?µ) =

∫
X
g ◦ f dµ. (A.57)

Proof. In fact, it suffices to check this formula for simple functions g, which
follows since χA ◦ f = χf−1(A). �

Example. Let f(x) = Mx+a be an affine transformation, where M : Rn →
Rn is some invertible matrix. Then Lebesgue measure transforms according
to

f?λ
n =

1

| det(M)|
λn.

In fact, it suffices to check f?λ
n(R) = |det(M)|−1λn(R) for finite rectangles

R by Theorem A.5. To see this, note that f?λ
n is translation invariant and

hence must be a multiple of λn. Moreover, for an orthogonal matrix, this
multiple is one (since an orthogonal matrix leaves the unit ball invariant)
and for a diagonal matrix it must be the absolute value of the product
of the diagonal elements. Finally, since every matrix can be written as
M = O1DO2, where Oj are orthogonal and D is diagonal (Problem A.24),
the claim follows.

As a consequence we obtain∫
A
g(Mx+ a)dnx =

1

|det(M)|

∫
MA+a

g(y)dny,

which applies, for example, to shifts f(x) = x + a or scaling transforms
f(x) = αx. �

This result can be generalized to diffeomorphisms (one-to-one C1 maps
with inverse again C1):

Lemma A.32. Let U, V ⊆ Rn and suppose f ∈ C1(U, V ) is a diffeomor-
phism. Then

(f−1)?d
nx = |Jf (x)|dnx, (A.58)

where Jf = det(∂f∂x ) is the Jacobi determinant of f . In particular,∫
U
g(f(x))|Jf (x)|dnx =

∫
V
g(y)dny. (A.59)
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Proof. It suffices to show∫
f(R)

dny =

∫
R
|Jf (x)|dnx

for every bounded open rectangle R ⊆ U . By Theorem A.5 it will then
follow for characteristic functions and thus for arbitrary functions by the
very definition of the integral.

To this end we consider the integral

Iε =

∫
f(R)

∫
R
|Jf (f−1(y))|ϕε(f(z)− y)dnz dny

Here ϕ = V −1
n χB1(0) and ϕε(y) = ε−nϕ(ε−1y), where Vn is the volume of

the unit ball (cf. below), such that
∫
ϕε(x)dnx = 1.

We will evaluate this integral in two ways. To begin with we consider
the inner integral

hε(y) =

∫
R
ϕε(f(z)− y)dnz.

For ε < ε0 the integrand is nonzero only for z ∈ K = f−1(Bε0(y)), where
K is some compact set containing x = f−1(y). Using the affine change of
coordinates z = x+ εw we obtain

hε(y) =

∫
Wε(x)

ϕ

(
f(x+ εw)− f(x)

ε

)
dnw, Wε(x) =

1

ε
(K − x).

By ∣∣∣∣f(x+ εw)− f(x)

ε

∣∣∣∣ ≥ 1

C
|w|, C = sup

K
‖df−1‖

the integrand is nonzero only for w ∈ BC(0). Hence, as ε → 0 the domain
Wε(x) will eventually cover all of BC(0) and dominated convergence implies

lim
ε↓0

hε(y) =

∫
BC(0)

ϕ(df(x)w)dw = |Jf (x)|−1.

Consequently, limε↓0 Iε = |f(R)| again by dominated convergence. Now we
use Fubini to interchange the order of integration

Iε =

∫
R

∫
f(R)
|Jf (f−1(y))|ϕε(f(z)− y)dny dnz.

Since f(z) is an interior point of f(R) continuity of |Jf (f−1(y))| implies

lim
ε↓0

∫
f(R)
|Jf (f−1(y))|ϕε(f(z)− y)dny = |Jf (f−1(f(z)))| = |Jf (z)|

and hence dominated convergence shows limε↓0 Iε =
∫
R |Jf (z)|dnz. �
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Example. For example we can consider polar coordinates T2 : [0,∞) ×
[0, 2π)→ R2 defined by

T2(ρ, ϕ) = (ρ cos(ϕ), ρ sin(ϕ)).

Then

det
∂T2

∂(ρ, ϕ)
= ρ

and one has ∫
U
f(ρ cos(ϕ), ρ sin(ϕ))ρ d(ρ, ϕ) =

∫
T2(U)

f(x)d2x.

Note that T2 is only bijective when restricted to (0,∞)× [0, 2π). However,
since the set {0} × [0, 2π) is of measure zero, it does not contribute to the
integral on the left. Similarly, its image T2({0} × [0, 2π)) = {0} does not
contribute to the integral on the right. �

Example. We can use the previous example to obtain the transformation
formula for spherical coordinates in Rn by induction. We illustrate the
process for n = 3. To this end, let x = (x1, x2, x3) and start with spher-
ical coordinates in R2 (which are just polar coordinates) for the first two
components:

x = (ρ cos(ϕ), ρ sin(ϕ), x3), ρ ∈ [0,∞), ϕ ∈ [0, 2π).

Next, use polar coordinates for (ρ, x3):

(ρ, x3) = (r sin(θ), r cos(θ)), r ∈ [0,∞), θ ∈ [0, π].

Note that the range for θ follows since ρ ≥ 0. Moreover, observe that
r2 = ρ2 + x2

3 = x2
1 + x2

2 + x2
3 = |x|2 as already anticipated by our notation.

In summary,

x = T3(r, ϕ, θ) = (r sin(θ) cos(ϕ), r sin(θ) sin(ϕ), r cos(θ)).

Furthermore, since T3 is the composition with T2 acting on the first two
coordinates with the last unchanged and polar coordinates P acting on the
first and last coordinate, the chain rule implies

det
∂T3

∂(r, ϕ, θ)
= det

∂T2

∂(ρ, ϕ, x3)

∣∣∣
ρ=r sin(θ)
x3=r cos(θ)

det
∂P

∂(r, ϕ, θ)
= r2 sin(θ).

Hence one has∫
U
f(T3(r, ϕ, θ))r2 sin(θ)d(r, ϕ, θ) =

∫
T3(U)

f(x)d3x.

Again T3 is only bijective on (0,∞)× [0, 2π)× (0, π).

It is left as an exercise to check that the extension Tn : [0,∞)× [0, 2π)×
[0, π]n−2 → Rn is given by

x = Tn(r, ϕ, θ1, . . . , θn−2)
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with
x1 = r cos(ϕ) sin(θ1) sin(θ2) sin(θ3) · · · sin(θn−2),
x2 = r sin(ϕ) sin(θ1) sin(θ2) sin(θ3) · · · sin(θn−2),
x3 = r cos(θ1) sin(θ2) sin(θ3) · · · sin(θn−2),
x4 = r cos(θ2) sin(θ3) · · · sin(θn−2),

...
xn−1 = r cos(θn−3) sin(θn−2),
xn = r cos(θn−2).

The Jacobi determinant is given by

det
∂Tn

∂(r, ϕ, θ1, . . . , θn−2)
= rn−1 sin(θ1) sin(θ2)2 · · · sin(θn−2)n−2.

�

Another useful consequence of Theorem A.31 is the following rule for
integrating radial functions.

Lemma A.33. There is a measure σn−1 on the unit sphere Sn−1 =
∂B1(0) = {x ∈ Rn| |x| = 1}, which is rotation invariant and satisfies∫

Rn
g(x)dnx =

∫ ∞
0

∫
Sn−1

g(rω)rn−1dσn−1(ω)dr, (A.60)

for every integrable (or positive) function g.

Moreover, the surface area of Sn−1 is given by

Sn = σn−1(Sn−1) = nVn, (A.61)

where Vn = λn(B1(0)) is the volume of the unit ball in Rn, and if g(x) =
g̃(|x|) is radial, we have∫

Rn
g̃(|x|)dnx = Sn

∫ ∞
0

g̃(r)rn−1dr. (A.62)

Proof. Consider the transformation f : Rn → [0,∞)× Sn−1, x 7→ (|x|, x|x|)
(with 0

|0| = 1). Let dµ(r) = rn−1dr and

σn−1(A) = nλn(f−1([0, 1)×A)) (A.63)

for every A ∈ B(Sn−1) = Bn ∩ Sn−1. Note that σn−1 inherits the rotation
invariance from λn. By Theorem A.31 it suffices to show f?λ

n = µ⊗ σn−1.
This follows from

(f?λ
n)([0, r)×A) = λn(f−1([0, r)×A)) = rnλn(f−1([0, 1)×A))

= µ([0, r))σn−1(A),

since these sets determine the measure uniquely. �



A.7. Transformation of measures and integrals 327

Example. Let us compute the volume of a ball in Rn:

Vn(r) =

∫
Rn
χBr(0)d

nx.

By the simple scaling transform f(x) = rx we obtain Vn(r) = Vn(1)rn and
hence it suffices to compute Vn = Vn(1).

To this end we use (Problem A.26)

πn =

∫
Rn

e−|x|
2
dnx = nVn

∫ ∞
0

e−r
2
rn−1dr =

nVn
2

∫ ∞
0

e−ssn/2−1ds

=
nVn

2
Γ(
n

2
) =

Vn
2

Γ(
n

2
+ 1)

where Γ is the gamma function (Problems A.27). Hence

Vn =
πn/2

Γ(n2 + 1)
. (A.64)

By Γ(1
2) =

√
π (see Problem A.28), this coincides with the well-known values

for n = 1, 2, 3. �

Example. The above lemma can be used to determine when a radial func-
tion is integrable. For example, we obtain

|x|α ∈ L1(B1(0)) ⇔ α > −n, |x|α ∈ L1(Rn\B1(0)) ⇔ α < −n.

�

Problem A.23. Let λ be Lebesgue measure on R. Show that if f ∈ C1(R)
with f ′ > 0, then

d(f?λ)(x) =
1

f ′(f−1(x))
dx.

Problem A.24. Show that every invertible matrix M can be written as
M = O1DO2, where D is diagonal and Oj are orthogonal. (Hint: The
matrix M∗M is nonnegative and hence there is an orthogonal matrix U
which diagonalizes M∗M = U∗D2U . Then one can choose O1 = MUD−1

and O2 = U∗.)

Problem A.25. Compute Vn using spherical coordinates.
(Hint:

∫
sin(x)ndx = − 1

n sin(x)n−1 cos(x) + n−1
n

∫
sin(x)n−2dx.)

Problem A.26. Show

In =

∫
Rn

e−|x|
2
dnx = πn/2.

(Hint: Use Fubini to show In = In1 and compute I2 using polar coordinates.)
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Problem A.27. The gamma function is defined via

Γ(z) =

∫ ∞
0

xz−1e−xdx, Re(z) > 0. (A.65)

Verify that the integral converges and defines an analytic function in the
indicated half-plane (cf. Problem A.22). Use integration by parts to show

Γ(z + 1) = zΓ(z), Γ(1) = 1. (A.66)

Conclude Γ(n) = (n− 1)! for n ∈ N.

Problem A.28. Show that Γ(1
2) =

√
π. (Hint: Use the change of coordi-

nates x = t2 and then use Problem A.26.)

Problem A.29. Let U ⊆ Rm be open and let f : U → Rn be locally Lipschitz
(i.e., for every compact set K ⊂ U there is some constant L such that
|f(x)− f(y)| ≤ L|x− y| for all x, y ∈ K). Show that if A ⊂ U has Lebesgue
measure zero, then f(A) is contained in a set of Lebesgue measure zero.
(Hint: By Lindelöf it is no restriction to assume that A is contained in a
compact ball contained in U .)

A.8. Vague convergence of measures

Let µn be a sequence of Borel measures. We will say that µn converges to
µ vaguely if ∫

X
fdµn →

∫
X
fdµ (A.67)

for every f ∈ Cc(X).

We are only interested in the case of Borel measures on R. In this case,
we have the following equivalent characterization of vague convergence.

Lemma A.34. Let µn be a sequence of Borel measures on R. Then µn → µ
vaguely if and only if the distribution functions (normalized at a point of
continuity of µ) converge at every point of continuity of µ.

Proof. Suppose µn → µ vaguely. Let I be any bounded interval (closed, half
closed, or open) with boundary points x0, x1. Moreover, choose continuous
functions f, g with compact support such that f ≤ χI ≤ g. Then we have∫
fdµ ≤ µ(I) ≤

∫
gdµ and similarly for µn. Hence

µ(I)− µn(I) ≤
∫
gdµ−

∫
fdµn ≤

∫
(g − f)dµ+

∣∣∣∣∫ fdµ−
∫
fdµn

∣∣∣∣
and

µ(I)− µn(I) ≥
∫
fdµ−

∫
gdµn ≥

∫
(f − g)dµ−

∣∣∣∣∫ gdµ−
∫
gdµn

∣∣∣∣ .
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Combining both estimates, we see

|µ(I)− µn(I)| ≤
∫

(g − f)dµ+

∣∣∣∣∫ fdµ−
∫
fdµn

∣∣∣∣+

∣∣∣∣∫ gdµ−
∫
gdµn

∣∣∣∣
and so

lim sup
n→∞

|µ(I)− µn(I)| ≤
∫

(g − f)dµ.

Choosing f , g such that g − f → χ{x0} + χ{x1} pointwise, we even get from
dominated convergence that

lim sup
n→∞

|µ(I)− µn(I)| ≤ µ({x0}) + µ({x1}),

which proves that the distribution functions converge at every point of con-
tinuity of µ.

Conversely, suppose that the distribution functions converge at every
point of continuity of µ. To see that in fact µn → µ vaguely, let f ∈ Cc(R).
Fix some ε > 0 and note that, since f is uniformly continuous, there is a
δ > 0 such that |f(x)− f(y)| ≤ ε whenever |x− y| ≤ δ. Next, choose some
points x0 < x1 < · · · < xk such that supp(f) ⊂ (x0, xk), µ is continuous at
xj , and xj−xj−1 ≤ δ (recall that a monotone function has at most countable
discontinuities). Furthermore, there is some N such that |µn(xj)−µ(xj)| ≤
ε

2k for all j and n ≥ N . Then∣∣∣∣∫ fdµn −
∫
fdµ

∣∣∣∣ ≤ k∑
j=1

∫
(xj−1,xj ]

|f(x)− f(xj)|dµn(x)

+
k∑
j=1

|f(xj)||µ((xj−1, xj ])− µn((xj−1, xj ])|

+
k∑
j=1

∫
(xj−1,xj ]

|f(x)− f(xj)|dµ(x).

Now, for n ≥ N , the first and the last terms on the right-hand side are both
bounded by (µ((x0, xk]) + ε

k )ε and the middle term is bounded by max |f |ε.
Thus the claim follows. �

Moreover, every bounded sequence of measures has a vaguely convergent
subsequence.

Lemma A.35. Suppose µn is a sequence of finite Borel measures on R such
that µn(R) ≤ M . Then there exists a subsequence which converges vaguely
to some measure µ with µ(R) ≤M .

Proof. Let µn(x) = µn((−∞, x]) be the corresponding distribution func-
tions. By 0 ≤ µn(x) ≤ M there is a convergent subsequence for fixed x.
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Moreover, by the standard diagonal series trick, we can assume that µn(x)
converges to some number µ(x) for each rational x. For irrational x we set
µ(x) = infx0>x{µ(x0)|x0 rational}. Then µ(x) is monotone, 0 ≤ µ(x1) ≤
µ(x2) ≤M for x1 ≤ x2. Furthermore,

µ(x−) ≤ lim inf µn(x) ≤ lim supµn(x) ≤ µ(x)

shows that µn(x) → µ(x) at every point of continuity of µ. So we can
redefine µ to be right continuous without changing this last fact. �

In the case where the sequence is bounded, (A.67) even holds for a larger
class of functions.

Lemma A.36. Suppose µn → µ vaguely and µn(R) ≤ M . Then (A.67)
holds for every f ∈ C∞(R). If in addition µn(R)→ µ(R), then (A.67) holds
for every f ∈ Cb(R).

Proof. Split f = f1 +f2, where f1 has compact support and |f2| ≤ ε. Then
|
∫
fdµ−

∫
fdµn| ≤ |

∫
f1dµ−

∫
f1dµn|+ 2εM and the first claim follows.

Similarly, for the second claim, let |f | ≤ C and choose R such that
µ(R\[−R,R]) < ε. Then we have µn(R\[−R,R]) < ε for n ≥ N . Now set
ϕ(x) = 1 for |x| ≤ R, ϕ(x) = 1− |x| −R for R ≤ |x| ≤ R+ 1, and ϕ(x) = 0
for |x| ≥ R. Then |

∫
fdµ −

∫
fdµn| ≤ |

∫
ϕfdµ −

∫
ϕfdµn| + 2εC and the

second claim follows. �

Example. The example dµn(λ) = dΘ(λ−n) shows that in the above claim
f cannot be replaced by a bounded continuous function. Moreover, the
example dµn(λ) = ndΘ(λ − n) also shows that the uniform bound cannot
be dropped. �

Problem A.30. Suppose µn → µ vaguely and let I be a bounded interval
with boundary points x0 and x1. Then

lim sup
n

∣∣∣∣∫
I
fdµn −

∫
I
fdµ

∣∣∣∣ ≤ |f(x1)|µ({x1}) + |f(x0)|µ({x0})

for any f ∈ C([x0, x1]).

Problem A.31. Let µn(X) ≤M and suppose (A.67) holds for all f ∈ U ⊆
C(X). Then (A.67) holds for all f in the closed span of U .

Problem A.32. Suppose (A.67) holds for all f ∈ Cc(R) as well as µn(R)→
µ(R) <∞. Then (A.67) holds for all f ∈ Cb(R). (Hint: Choose some r > 0
such that µ([−r− 1, r+ 1]) ≤ ε and let φ ∈ C(R) be one for |x| ≥ r+ 1 and
zero for |x| ≤ r. Now show that lim supµn([−r, r]) ≤ ε.)
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A.9. Decomposition of measures

Let µ, ν be two measures on a measurable space (X,Σ). They are called
mutually singular (in symbols µ ⊥ ν) if they are supported on disjoint
sets. That is, there is a measurable set N such that µ(N) = 0 and ν(X\N) =
0.

Example. Let λ be the Lebesgue measure and Θ the Dirac measure (cen-
tered at 0). Then λ ⊥ Θ: Just take N = {0}; then λ({0}) = 0 and
Θ(R\{0}) = 0. �

On the other hand, ν is called absolutely continuous with respect to
µ (in symbols ν � µ) if µ(A) = 0 implies ν(A) = 0.

Example. The prototypical example is the measure dν = f dµ (compare
Lemma A.19). Indeed, by Lemma A.22, µ(A) = 0 implies

ν(A) =

∫
A
f dµ = 0 (A.68)

and shows that ν is absolutely continuous with respect to µ. In fact, we will
show below that every absolutely continuous measure is of this form. �

The two main results will follow as simple consequence of the following
result:

Theorem A.37. Let µ, ν be σ-finite measures. Then there exists a non-
negative function f and a set N of µ measure zero, such that

ν(A) = ν(A ∩N) +

∫
A
f dµ. (A.69)

Proof. We first assume µ, ν to be finite measures. Let α = µ + ν and
consider the Hilbert space L2(X, dα). Then

`(h) =

∫
X
h dν

is a bounded linear functional on L2(X, dα) by Cauchy–Schwarz:

|`(h)|2 =

∣∣∣∣∫
X

1 · h dν
∣∣∣∣2 ≤ (∫ |1|2 dν)(∫ |h|2dν)

≤ ν(X)

(∫
|h|2dα

)
= ν(X)‖h‖2.

Hence by the Riesz lemma (Theorem 1.8), there exists a g ∈ L2(X, dα) such
that

`(h) =

∫
X
hg dα.
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By construction,

ν(A) =

∫
χA dν =

∫
χAg dα =

∫
A
g dα. (A.70)

In particular, g must be positive a.e. (take A the set where g is negative).
Moreover,

µ(A) = α(A)− ν(A) =

∫
A

(1− g)dα

which shows that g ≤ 1 a.e. Now choose N = {x|g(x) = 1} such that
µ(N) = 0 and set

f =
g

1− g
χN ′ , N ′ = X\N.

Then, since (A.70) implies dν = g dα, respectively, dµ = (1− g)dα, we have∫
A
fdµ =

∫
χA

g

1− g
χN ′ dµ =

∫
χA∩N ′g dα = ν(A ∩N ′)

as desired.

To see the σ-finite case, observe that Yn ↗ X, µ(Yn) <∞ and Zn ↗ X,
ν(Zn) < ∞ implies Xn = Yn ∩ Zn ↗ X and α(Xn) < ∞. Now we set

X̃n = Xn\Xn−1 (where X0 = ∅) and consider µn(A) = µ(A ∩ X̃n) and

νn(A) = ν(A ∩ X̃n). Then there exist corresponding sets Nn and functions
fn such that

νn(A) = νn(A ∩Nn) +

∫
A
fndµn = ν(A ∩Nn) +

∫
A
fndµ,

where for the last equality we have assumed Nn ⊆ X̃n and fn(x) = 0 for

x ∈ X̃ ′n without loss of generality. Now set N =
⋃
nNn as well as f =

∑
n fn.

Then µ(N) = 0 and

ν(A) =
∑
n

νn(A) =
∑
n

ν(A ∩Nn) +
∑
n

∫
A
fndµ = ν(A ∩N) +

∫
A
fdµ,

which finishes the proof. �

Now the anticipated results follow with no effort:

Theorem A.38 (Radon–Nikodym). Let µ, ν be two σ-finite measures on a
measurable space (X,Σ). Then ν is absolutely continuous with respect to µ
if and only if there is a nonnegative measurable function f such that

ν(A) =

∫
A
f dµ (A.71)

for every A ∈ Σ. The function f is determined uniquely a.e. with respect to
µ and is called the Radon–Nikodym derivative dν

dµ of ν with respect to
µ.
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Proof. Just observe that in this case ν(A∩N) = 0 for every A. Uniqueness
will be shown in the next theorem. �

Example. Take X = R. Let µ be the counting measure and ν Lebesgue
measure. Then ν � µ but there is no f with dν = f dµ. If there were
such an f , there must be a point x0 ∈ R with f(x0) > 0 and we have
0 = ν({x0}) =

∫
{x0} f dµ = f(x0) > 0, a contradiction. Hence the Radon–

Nikodym theorem can fail if µ is not σ-finite. �

Theorem A.39 (Lebesgue decomposition). Let µ, ν be two σ-finite mea-
sures on a measurable space (X,Σ). Then ν can be uniquely decomposed as
ν = νac+νsing, where µ and νsing are mutually singular and νac is absolutely
continuous with respect to µ.

Proof. Taking νsing(A) = ν(A ∩ N) and dνac = f dµ from the previous
theorem, there is at least one such decomposition. To show uniqueness
assume there is another one, ν = ν̃ac+ν̃sing, and let Ñ be such that µ(Ñ) = 0

and ν̃sing(Ñ
′) = 0. Then νsing(A)− ν̃sing(A) =

∫
A(f̃ − f)dµ. In particular,∫

A∩N ′∩Ñ ′(f̃ − f)dµ = 0 and hence f̃ = f a.e. away from N ∪ Ñ . Since

µ(N ∪ Ñ) = 0, we have f̃ = f a.e. and hence ν̃ac = νac as well as ν̃sing =
ν − ν̃ac = ν − νac = νsing. �

Problem A.33. Let µ be a Borel measure on B and suppose its distribution
function µ(x) is continuously differentiable. Show that the Radon–Nikodym
derivative equals the ordinary derivative µ′(x).

Problem A.34. Suppose µ is a Borel measure on R and f : R → R is
continuous. Show that f?µ is absolutely continuous if µ is. (Hint: Prob-
lem A.13.)

Problem A.35. Suppose µ and ν are inner regular measures. Show that
ν � µ if and only if µ(C) = 0 implies ν(C) = 0 for every compact set.

Problem A.36. Suppose ν(A) ≤ Cµ(A) for all A ∈ Σ. Then dν = f dµ
with 0 ≤ f ≤ C a.e.

Problem A.37. Let dν = f dµ. Suppose f > 0 a.e. with respect to µ. Then
µ� ν and dµ = f−1dν.

Problem A.38 (Chain rule). Show that ν � µ is a transitive relation. In
particular, if ω � ν � µ, show that

dω

dµ
=
dω

dν

dν

dµ
.

Problem A.39. Suppose ν � µ. Show that for every measure ω we have

dω

dµ
dµ =

dω

dν
dν + dζ,
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where ζ is a positive measure (depending on ω) which is singular with respect
to ν. Show that ζ = 0 if and only if µ� ν.

A.10. Derivatives of measures

If µ is a Borel measure on B and its distribution function µ(x) is continu-
ously differentiable, then the Radon–Nikodym derivative is just the ordinary
derivative µ′(x) (Problem A.33). Our aim in this section is to generalize this
result to arbitrary Borel measures on Bn.

Let µ be a Borel measure on Rn. We call

(Dµ)(x) = lim
ε↓0

µ(Bε(x))

|Bε(x)|
(A.72)

the derivative of µ at x ∈ Rn provided the above limit exists. (Here Br(x) ⊂
Rn is a ball of radius r centered at x ∈ Rn and |A| denotes the Lebesgue
measure of A ∈ Bn.)

Example. Consider a Borel measure on B and suppose its distribution
µ(x) (as defined in (A.3)) is differentiable at x. Then

(Dµ)(x) = lim
ε↓0

µ((x+ ε, x− ε))
2ε

= lim
ε↓0

µ(x+ ε)− µ(x− ε)
2ε

= µ′(x).

�

To compute the derivative of µ, we introduce the upper and lower
derivative,

(Dµ)(x) = lim sup
ε↓0

µ(Bε(x))

|Bε(x)|
and (Dµ)(x) = lim inf

ε↓0

µ(Bε(x))

|Bε(x)|
. (A.73)

Clearly, µ is differentiable at x if (Dµ)(x) = (Dµ)(x) <∞. Next, note that
they are measurable: In fact, this follows from

(Dµ)(x) = lim
n→∞

sup
0<ε<1/n

µ(Bε(x))

|Bε(x)|
(A.74)

since the supremum on the right-hand side is lower semicontinuous with
respect to x (cf. Problem A.10) as x 7→ µ(Bε(x)) is lower semicontinuous
(Problem A.40). Similarly for (Dµ)(x).

Next, the following geometric fact of Rn will be needed.

Lemma A.40 (Wiener covering lemma). Given open balls B1 = Br1(x1),
. . . , Bm = Brm(xm) in Rn, there is a subset of disjoint balls Bj1, . . . , Bjk
such that

m⋃
j=1

Bj ⊆
k⋃
`=1

B3rj`
(xj`). (A.75)
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Proof. Assume that the balls Bj are ordered by decreasing radius. Start
with Bj1 = B1 and remove all balls from our list which intersect Bj1 . Ob-
serve that the removed balls are all contained in B3r1(x1). Proceeding like
this, we obtain the required subset. �

The upshot of this lemma is that we can select a disjoint subset of balls
which still controls the Lebesgue volume of the original set up to a universal
constant 3n (recall |B3r(x)| = 3n|Br(x)|).

Now we can show

Lemma A.41. Let α > 0. For every Borel set A we have

|{x ∈ A | (Dµ)(x) > α}| ≤ 3n
µ(A)

α
(A.76)

and

|{x ∈ A | (Dµ)(x) > 0}| = 0, whenever µ(A) = 0. (A.77)

Proof. Let Aα = {x ∈ A|(Dµ)(x) > α}. We will show

|K| ≤ 3n
µ(O)

α

for every open set O with A ⊆ O and every compact set K ⊆ Aα. The
first claim then follows from outer regularity of µ and inner regularity of the
Lebesgue measure.

Given fixed K, O, for every x ∈ K there is some rx such that Brx(x) ⊆ O
and |Brx(x)| < α−1µ(Brx(x)). Since K is compact, we can choose a finite
subcover of K from these balls. Moreover, by Lemma A.40 we can refine
our set of balls such that

|K| ≤ 3n
k∑
i=1

|Bri(xi)| <
3n

α

k∑
i=1

µ(Bri(xi)) ≤ 3n
µ(O)

α
.

To see the second claim, observe that A0 = ∪∞j=1A1/j and by the first part

|A1/j | = 0 for every j if µ(A) = 0. �

Theorem A.42 (Lebesgue). Let f be (locally) integrable. Then for a.e.
x ∈ Rn we have

lim
r↓0

1

|Br(x)|

∫
Br(x)

|f(y)− f(x)|dy = 0. (A.78)

The points where (A.78) holds are called Lebesgue points of f .

Proof. Decompose f as f = g + h, where g is continuous and ‖h‖1 < ε
(Theorem 0.38) and abbreviate

Dr(f)(x) =
1

|Br(x)|

∫
Br(x)

|f(y)− f(x)|dy.
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Then, since limDr(g)(x) = 0 (for every x) and Dr(f) ≤ Dr(g) +Dr(h), we
have

lim sup
r↓0

Dr(f)(x) ≤ lim sup
r↓0

Dr(h)(x) ≤ (Dµ)(x) + |h(x)|,

where dµ = |h|dnx. This implies

{x | lim sup
r↓0

Dr(f)(x) ≥ 2α} ⊆ {x|(Dµ)(x) ≥ α} ∪ {x | |h(x)| ≥ α}

and using the first part of Lemma A.41 plus |{x | |h(x)| ≥ α}| ≤ α−1‖h‖1
(Problem A.43), we see

|{x | lim sup
r↓0

Dr(f)(x) ≥ 2α}| ≤ (3n + 1)
ε

α
.

Since ε is arbitrary, the Lebesgue measure of this set must be zero for every
α. That is, the set where the lim sup is positive has Lebesgue measure
zero. �

Note that the balls can be replaced by more general sets: A sequence of
sets Aj(x) is said to shrink to x nicely if there are balls Brj (x) with rj → 0
and a constant ε > 0 such that Aj(x) ⊆ Brj (x) and |Aj | ≥ ε|Brj (x)|. For
example, Aj(x) could be some balls or cubes (not necessarily containing x).
However, the portion of Brj (x) which they occupy must not go to zero! For

example, the rectangles (0, 1
j ) × (0, 2

j ) ⊂ R2 do shrink nicely to 0, but the

rectangles (0, 1
j )× (0, 2

j2
) do not.

Lemma A.43. Let f be (locally) integrable. Then at every Lebesgue point
we have

f(x) = lim
j→∞

1

|Aj(x)|

∫
Aj(x)

f(y)dy (A.79)

whenever Aj(x) shrinks to x nicely.

Proof. Let x be a Lebesgue point and choose some nicely shrinking sets
Aj(x) with corresponding Brj (x) and ε. Then

1

|Aj(x)|

∫
Aj(x)

|f(y)− f(x)|dy ≤ 1

ε|Brj (x)|

∫
Brj (x)

|f(y)− f(x)|dy

and the claim follows. �

Corollary A.44. Let µ be a Borel measure on R which is absolutely con-
tinuous with respect to Lebesgue measure. Then its distribution function is
differentiable a.e. and dµ(x) = µ′(x)dx.

Proof. By assumption, dµ(x) = f(x)dx for some locally integrable function
f . In particular, the distribution function µ(x) =

∫ x
0 f(y)dy is continuous.
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Moreover, since the sets (x, x+ r) shrink nicely to x as r → 0, Lemma A.43
implies

lim
r→0

µ((x, x+ r))

r
= lim

r→0

µ(x+ r)− µ(x)

r
= f(x)

at every Lebesgue point of f . Since the same is true for the sets (x− r, x),
µ(x) is differentiable at every Lebesgue point and µ′(x) = f(x). �

As another consequence we obtain

Theorem A.45. Let µ be a Borel measure on Rn. The derivative Dµ
exists a.e. with respect to Lebesgue measure and equals the Radon–Nikodym
derivative of the absolutely continuous part of µ with respect to Lebesgue
measure; that is,

µac(A) =

∫
A

(Dµ)(x)dnx. (A.80)

Proof. If dµ = f dnx is absolutely continuous with respect to Lebesgue
measure, then (Dµ)(x) = f(x) at every Lebesgue point of f by Lemma A.43
and the claim follows from Theorem A.42. To see the general case, use the
Lebesgue decomposition of µ and let N be a support for the singular part
with |N | = 0. Then (Dµsing)(x) = 0 for a.e. x ∈ Rn\N by the second part
of Lemma A.41. �

In particular, µ is singular with respect to Lebesgue measure if and only
if Dµ = 0 a.e. with respect to Lebesgue measure.

Using the upper and lower derivatives, we can also give supports for the
absolutely and singularly continuous parts.

Theorem A.46. The set {x|0 < (Dµ)(x) < ∞} is a support for the abso-
lutely continuous and {x|(Dµ)(x) =∞} is a support for the singular part.

Proof. The first part is immediate from the previous theorem. For the
second part, first note that by (Dµ)(x) ≥ (Dµsing)(x) we can assume that
µ is purely singular. It suffices to show that the set Ak = {x | (Dµ)(x) < k}
satisfies µ(Ak) = 0 for every k ∈ N.

Let K ⊂ Ak be compact, and let Vj ⊃ K be some open set such that
|Vj\K| ≤ 1

j . For every x ∈ K there is some ε = ε(x) such that Bε(x) ⊆ Vj
and µ(B3ε(x)) ≤ k|B3ε(x)|. By compactness, finitely many of these balls
cover K and hence

µ(K) ≤
∑
i

µ(Bεi(xi)).

Selecting disjoint balls as in Lemma A.40 further shows

µ(K) ≤
∑
`

µ(B3εi`
(xi`)) ≤ k3n

∑
`

|Bεi` (xi`)| ≤ k3n|Vj |.



338 A. Almost everything about Lebesgue integration

Letting j → ∞, we see µ(K) ≤ k3n|K| and by regularity we even have
µ(A) ≤ k3n|A| for every A ⊆ Ak. Hence µ is absolutely continuous on Ak
and since we assumed µ to be singular, we must have µ(Ak) = 0. �

Finally, we note that these supports are minimal. Here a support M of
some measure µ is called a minimal support (it is sometimes also called
an essential support) if every subset M0 ⊆ M which does not support µ
(i.e., µ(M0) = 0) has Lebesgue measure zero.

Example. Let X = R, Σ = B. If dµ(x) =
∑

n αndθ(x − xn) is a sum
of Dirac measures, then the set {xn} is clearly a minimal support for µ.
Moreover, it is clearly the smallest support as none of the xn can be removed.
If we choose {xn} to be the rational numbers, then supp(µ) = R, but R is
not a minimal support, as we can remove the irrational numbers.

On the other hand, if we consider the Lebesgue measure λ, then R is
a minimal support. However, the same is true if we remove any set of
measure zero, for example, the Cantor set. In particular, since we can
remove any single point, we see that, just like supports, minimal supports
are not unique. �

Lemma A.47. The set Mac = {x|0 < (Dµ)(x) <∞} is a minimal support
for µac.

Proof. Suppose M0 ⊆ Mac and µac(M0) = 0. Set Mε = {x ∈ M0|ε <
(Dµ)(x)} for ε > 0. Then Mε ↗M0 and

|Mε| =
∫
Mε

dnx ≤ 1

ε

∫
Mε

(Dµ)(x)dx =
1

ε
µac(Mε) ≤

1

ε
µac(M0) = 0

shows |M0| = limε↓0 |Mε| = 0. �

Note that the set M = {x|0 < (Dµ)(x)} is a minimal support of µ.

Example. The Cantor function is constructed as follows. Take the sets
Cn used in the construction of the Cantor set C: Cn is the union of 2n closed
intervals with 2n−1 open gaps in between. Set fn equal to j/2n on the j’th
gap of Cn and extend it to [0, 1] by linear interpolation. Note that, since we
are creating precisely one new gap between every old gap when going from
Cn to Cn+1, the value of fn+1 is the same as the value of fn on the gaps of
Cn. Explicitly, we have f0(x) = x and fn+1 = K(fn), where

K(f)(x) =


1
2f(3x), 0 ≤ x ≤ 1

3 ,
1
2f(3x), 1

3 ≤ x ≤
2
3 ,

1
2(1 + f(3x− 2)), 2

3 ≤ x ≤ 1.

Since ‖fn+1 − fn‖∞ ≤ 1
2‖fn+1 − fn‖∞ we can define the Cantor function

as f = limn→∞ fn. By construction, f is a continuous function which is
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constant on every subinterval of [0, 1]\C. Since C is of Lebesgue measure
zero, this set is of full Lebesgue measure and hence f ′ = 0 a.e. in [0, 1]. In
particular, the corresponding measure, the Cantor measure, is supported
on C and is purely singular with respect to Lebesgue measure. �

Problem A.40. Show that

µ(Bε(x)) ≤ lim inf
y→x

µ(Bε(y)) ≤ lim sup
y→x

µ(Bε(y)) ≤ µ(Bε(x)).

In particular, conclude that x 7→ µ(Bε(x)) is lower semicontinuous for ε > 0.

Problem A.41. Show that M = {x|0 < (Dµ)(x)} is a minimal support of
µ.

Problem A.42. Suppose Dµ ≤ α. Show that dµ = f dnx with ‖f‖∞ ≤ α.

Problem A.43 (Chebyshev inequality). For f ∈ L1(Rn), show

|{x ∈ A| |f(x)| > α}| ≤ 1

α

∫
A
|f(x)|dnx.

Problem A.44. Show that the Cantor function is Hölder continuous,
|f(x) − f(y)| ≤ |x − y|α, with exponent α = log3(2). (Hint: Show that
if g satisfies a Hölder estimate |g(x) − g(y)| ≤ M |x − y|α, then so does
K(g): |K(g)(x)−K(g)(y)| ≤ 3α

2 M |x− y|
α.)





Bibliographical notes

The aim of this section is not to give a comprehensive guide to the literature,
but to document the sources from which I have learned the materials and
which I have used during the preparation of this text. In addition, I will
point out some standard references for further reading. In some sense, all
books on this topic are inspired by von Neumann’s celebrated monograph
[74] and the present text is no exception.

General references for the first part are Akhiezer and Glazman [1],
Berthier (Boutet de Monvel) [10], Blank, Exner, and Havĺıček [11], Ed-
munds and Evans [18], Lax [32], Reed and Simon [49], Weidmann [70],
[72], or Yosida [76].

Chapter 0: A first look at Banach and Hilbert spaces

As a reference for general background I can warmly recommend Kelly’s
classical book [33]. The rest is standard material and can be found in any
book on functional analysis.

Chapter 1: Hilbert spaces

The material in this chapter is again classical and can be found in any book
on functional analysis. I mainly follow Reed and Simon [49], respectively,
Weidmann [70], with the main difference being that I use orthonormal sets
and their projections as the central theme from which everything else is
derived. For an alternate problem-based approach, see Halmos’ book [27].

Chapter 2: Self-adjointness and spectrum

This chapter is still similar in spirit to [49], [70] with some ideas taken from
Schechter [57].
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Chapter 3: The spectral theorem

The approach via the Herglotz representation theorem follows Weidmann
[70]. However, I use projection-valued measures as in Reed and Simon [49]
rather than the resolution of the identity. Moreover, I have augmented the
discussion by adding material on spectral types and the connections with
the boundary values of the resolvent. For a survey containing several recent
results, see [35].

Chapter 4: Applications of the spectral theorem

This chapter collects several applications from various sources which I have
found useful or which are needed later on. Again, Reed and Simon [49] and
Weidmann [70], [73] are the main references here.

Chapter 5: Quantum dynamics

The material is a synthesis of the lecture notes by Enß [20], Reed and Simon
[49], [51], and Weidmann [73]. See also the book by Amrein [3]. There are
also close connections with operator semigroups and we refer to the classical
monograph by Goldstein [25] for further information.

Chapter 6: Perturbation theory for self-adjoint operators

This chapter is similar to [70] (which contains more results) with the main
difference being that I have added some material on quadratic forms. In
particular, the section on quadratic forms contains, in addition to the clas-
sical results, some material which I consider useful but was unable to find
(at least not in the present form) in the literature. The prime reference
here is Kato’s monumental treatise [29] and Simon’s book [58]. For fur-
ther information on trace class operators, see Simon’s classic [61]. The idea
to extend the usual notion of strong resolvent convergence by allowing the
approximating operators to live on subspaces is taken from Weidmann [72].

Chapter 7: The free Schrödinger operator

Most of the material is classical. Much more on the Fourier transform can
be found in Reed and Simon [50] or Grafakos [23].

Chapter 8: Algebraic methods

This chapter collects some material which can be found in almost any physics
textbook on quantum mechanics. My only contribution is to provide some
mathematical details. I recommend the classical book by Thirring [68] and
the visual guides by Thaller [66], [67].

Chapter 9: One-dimensional Schrödinger operators

One-dimensional models have always played a central role in understand-
ing quantum mechanical phenomena. In particular, general wisdom used to
say that Schrödinger operators should have absolutely continuous spectrum
plus some discrete point spectrum, while singular continuous spectrum is a
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pathology that should not occur in examples with bounded V [16, Sect. 10.4].
In fact, a large part of [52] is devoted to establishing the absence of sin-
gular continuous spectrum. This was proven wrong by Pearson, who con-
structed an explicit one-dimensional example with singular continuous spec-
trum. Moreover, after the appearance of random models, it became clear
that such types of exotic spectra (singular continuous or dense pure point)
are frequently generic. The starting point is often the boundary behaviour
of the Weyl m-function and its connection with the growth properties of
solutions of the underlying differential equation, the latter being known as
Gilbert and Pearson or subordinacy theory. One of my main goals is to give
a modern introduction to this theory. The section on inverse spectral theory
presents a simple proof for the Borg–Marchenko theorem (in the local ver-
sion of Simon) from Bennewitz [9]. Again, this result is the starting point of
almost all other inverse spectral results for Sturm–Liouville equations and
should enable the reader to start reading research papers in this area.

Other references with further information are the lecture notes by Weid-
mann [71] or the classical books by Coddington and Levinson [15], Levitan
[36], Levitan and Sargsjan [37], [38], Marchenko [40], Naimark [42], Pear-
son [46]. See also the recent monographs by Rofe-Betekov and Kholkin [55],
Zettl [77] or the recent collection of historic and survey articles [4]. A com-
pilation of exactly solvable potentials can be found in Bagrov and Gitman
[6, App. I]. For a nice introduction to random models I can recommend
the recent notes by Kirsch [34] or the classical monographs by Carmona
and Lacroix [13] or Pastur and Figotin [45]. For the discrete analog of
Sturm–Liouville and Jacobi operators, see my monograph [64].

Chapter 10: One-particle Schrödinger operators

The presentation in the first two sections is influenced by Enß [20] and
Thirring [68]. The solution of the Schrödinger equation in spherical coordi-
nates can be found in any textbook on quantum mechanics. Again I tried
to provide some missing mathematical details. Several other explicitly solv-
able examples can be found in the books by Albeverio et al. [2] or Flügge
[22]. For the formulation of quantum mechanics via path integrals I suggest
Roepstorff [54] or Simon [59].

Chapter 11: Atomic Schrödinger operators

This chapter essentially follows Cycon, Froese, Kirsch, and Simon [16]. For
a recent review, see Simon [60]. For multi-particle operators from the view-
point of stability of matter, see Lieb and Seiringer [41].

Chapter 12: Scattering theory

This chapter follows the lecture notes by Enß [20] (see also [19]) using some
material from Perry [47]. Further information on mathematical scattering
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theory can be found in Amrein, Jauch, and Sinha [5], Baumgaertel and
Wollenberg [7], Chadan and Sabatier [14], Cycon, Froese, Kirsch, and Simon
[16], Komech and Kopylova [31], Newton [43], Pearson [46], Reed and
Simon [51], or Yafaev [75].

Appendix A: Almost everything about Lebesgue integration

Most parts follow Rudin’s book [56], respectively, Bauer [8], with some ideas
also taken from Weidmann [70]. I have tried to strip everything down to the
results needed here while staying self-contained. Another useful reference
is the book by Lieb and Loss [39]. A comprehensive source are the two
volumes by Bogachev [12].
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Glossary of notation

AC(I) . . . absolutely continuous functions, 95
Br(x) . . . open ball of radius r around x, 4
B = B1

Bn . . . Borel σ-field of Rn, 296
C(H) . . . set of compact operators, 151
C . . . the set of complex numbers
C(U) . . . set of continuous functions from U to C
C∞(U) . . . set of functions in C(U) which vanish at ∞
C(U, V ) . . . set of continuous functions from U to V
Cc(U, V ) . . . set of compactly supported continuous functions
C∞(U, V ) . . . set of smooth functions
Cb(U, V ) . . . set of bounded continuous functions
χΩ(.) . . . characteristic function of the set Ω
dim . . . dimension of a vector space
dist(x, Y ) = infy∈Y ‖x− y‖, distance between x and Y
D(.) . . . domain of an operator
e . . . exponential function, ez = exp(z)
E(A) . . . expectation of an operator A, 63
F . . . Fourier transform, 187
H . . . Schrödinger operator, 257
H0 . . . free Schrödinger operator, 197
Hm(a, b) . . . Sobolev space, 95
Hm

0 (a, b) . . . Sobolev space, 96
Hm(Rn) . . . Sobolev space, 194
hull(.) . . . convex hull
H . . . a separable Hilbert space
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i . . . complex unity, i2 = −1
I . . . identity operator
Im(.) . . . imaginary part of a complex number
inf . . . infimum
Ker(A) . . . kernel of an operator A, 27
L(X,Y ) . . . set of all bounded linear operators from X to Y , 29
L(X) = L(X,X)
Lp(X, dµ) . . . Lebesgue space of p integrable functions, 31
Lploc(X, dµ) . . . locally p integrable functions, 36
Lpc(X, dµ) . . . compactly supported p integrable functions
L∞(X, dµ) . . . Lebesgue space of bounded functions, 32
L∞∞(Rn) . . . Lebesgue space of bounded functions vanishing at ∞
`p(N) . . . Banach space of p summable sequences, 15
`2(N) . . . Hilbert space of square summable sequences, 21
`∞(N) . . . Banach space of bounded summable sequences, 16
λ . . . a real number
ma(z) . . . Weyl m-function, 235
M(z) . . . Weyl M -matrix, 246
max . . . maximum
M . . . Mellin transform, 287
µψ . . . spectral measure, 108
N . . . the set of positive integers
N0 = N ∪ {0}
o(x) . . . Landau symbol little-o
O(x) . . . Landau symbol big-O
Ω . . . a Borel set
Ω± . . . wave operators, 283
PA(.) . . . family of spectral projections of an operator A, 108
P± . . . projector onto outgoing/incoming states, 286
Q . . . the set of rational numbers
Q(.) . . . form domain of an operator, 109
R(I,X) . . . set of regulated functions, 132
RA(z) . . . resolvent of A, 83
Ran(A) . . . range of an operator A, 27
rank(A) = dim Ran(A), rank of an operator A, 151
Re(.) . . . real part of a complex number
ρ(A) . . . resolvent set of A, 83
R . . . the set of real numbers
S(I,X) . . . set of simple functions, 132
S(Rn) . . . set of smooth functions with rapid decay, 187
sign(x) = x/|x| for x 6= 0 and 0 for x = 0; sign function
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σ(A) . . . spectrum of an operator A, 83
σac(A) . . . absolutely continuous spectrum of A, 119
σsc(A) . . . singular continuous spectrum of A, 119
σpp(A) . . . pure point spectrum of A, 119
σp(A) . . . point spectrum (set of eigenvalues) of A, 115
σd(A) . . . discrete spectrum of A, 170
σess(A) . . . essential spectrum of A, 170
span(M) . . . set of finite linear combinations from M , 17
sup . . . supremum
supp(f) . . . support of a function f , 8
supp(µ) . . . support of a measure µ, 301
Z . . . the set of integers
z . . . a complex number

√
z . . . square root of z with branch cut along (−∞, 0]

z∗ . . . complex conjugation
A∗ . . . adjoint of A, 67

A . . . closure of A, 72

f̂ = Ff , Fourier transform of f , 187

f̌ = F−1f , inverse Fourier transform of f , 189

|x| =
√∑n

j=1 |xj |2 Euclidean norm in Rn or Cn

|Ω| . . . Lebesgue measure of a Borel set Ω
‖.‖ . . . norm in the Hilbert space H, 21
‖.‖p . . . norm in the Banach space Lp, 30
〈., ..〉 . . . scalar product in H, 21
Eψ(A) = 〈ψ,Aψ〉, expectation value, 64
∆ψ(A) = Eψ(A2)− Eψ(A)2, variance, 64
∆ . . . Laplace operator, 197
∂ . . . gradient, 188
∂α . . . derivative, 187
⊕ . . . orthogonal sum of vector spaces or operators, 52, 89
⊗ . . . tensor product, 53, 143
M⊥ . . . orthogonal complement, 49
A′ . . . complement of a set
(λ1, λ2) = {λ ∈ R |λ1 < λ < λ2}, open interval
[λ1, λ2] = {λ ∈ R |λ1 ≤ λ ≤ λ2}, closed interval
ψn → ψ . . . norm convergence, 14
ψn ⇀ ψ . . . weak convergence, 55
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An → A . . . norm convergence

An
s→ A . . . strong convergence, 57

An ⇀ A . . . weak convergence, 56

An
nr→ A . . . norm resolvent convergence, 179

An
sr→ A . . . strong resolvent convergence, 179
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a.e., see also almost everywhere

absolue value of an operator, 138

absolute convergence, 20

absolutely continuous

function, 95

measure, 331

spectrum, 119

accumulation point, 4

adjoint operator, 54, 67

algebra, 295

almost everywhere, 302

angular momentum operator, 210

B.L.T. theorem, 28

Baire category theorem, 38

ball

closed, 6

open, 4

Banach algebra, 29

Banach space, 14

Banach–Steinhaus theorem, 39

base, 5

basis, 17

orthonormal, 47

spectral, 106

Bessel function, 204

modified, 202

spherical, 267

Bessel inequality, 45

bijective, 7

Bolzano–Weierstraß theorem, 11

Borel

function, 308

measure, 298

regular, 298

set, 296

σ-algebra, 296

transform, 107, 112

boundary condition

Dirichlet, 224

Neumann, 224

periodic, 224

boundary point, 4

bounded

operator, 27

sesquilinear form, 26

set, 11

C-real, 93

canonical form of compact operators, 161

Cantor

function, 338

measure, 339

set, 302

Cauchy sequence, 6

Cauchy–Schwarz–Bunjakowski inequality,
22

Cayley transform, 91

Cesàro average, 150

characteristic function, 312

Chebyshev inequality, 339

closable

form, 80

operator, 72

closed

ball, 6

form, 80

operator, 72

set, 5

closed graph theorem, 75

closure, 6

essential, 116
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cluster point, 4

commute, 136

compact, 9

locally, 12

sequentially, 10

complete, 7, 14

completion, 26

configuration space, 64

conjugation, 93

conserved quantity, 138

continuous, 8

convergence, 6

convolution, 191

core, 71

cover, 9

C∗ algebra, 55

cyclic vector, 106

dense, 7

dilation group, 259

Dirac measure, 301, 317

Dirac operator, 149, 215

Dirichlet boundary condition, 224

discrete set, 4

discrete topology, 4

distance, 3, 12

distribution function, 298

Dollard theorem, 200

domain, 27, 64, 66

dominated convergence theorem, 316

Dynkin system, 303

Dynkin’s π-λ theorem, 303

eigenspace, 132

eigenvalue, 83

multiplicity, 132

eigenvector, 83

element

adjoint, 55

normal, 55

positive, 55

self-adjoint, 55

unitary, 55

equivalent norms, 24

essential

closure, 116

range, 84

spectrum, 170

supremum, 32

expectation, 63

Exponential Herglotz representation, 129

extension, 67

Extreme value theorem, 12

finite intersection property, 9

first resolvent formula, 85

form, 80

bound, 175

bounded, 26, 82

closable, 80

closed, 80

core, 81

domain, 77, 109

hermitian, 80

nonnegative, 80

semi-bounded, 80

Fourier

series, 47

transform, 150, 187

Friedrichs extension, 80

Fubini theorem, 320

function

absolutely continuous, 95

open, 8

fundamental theorem of calculus, 135, 317

gamma function, 328

Gaussian wave packet, 209

gradient, 188

Gram–Schmidt orthogonalization, 48

graph, 72

graph norm, 72

Green’s function, 202

ground state, 272

Hamiltonian, 65

Hankel operator, 169

Hankel transform, 203

harmonic oscillator, 212

Hausdorff space, 5

Heine–Borel theorem, 11

Heisenberg picture, 153

Heisenberg uncertainty principle, 193

Hellinger–Toeplitz theorem, 76

Herglotz

function, 107

representation theorem, 120

Hermite polynomials, 213

hermitian

form, 80

operator, 67

Hilbert space, 21, 43

separable, 47

Hölder’s inequality, 15, 32

homeomorphism, 8

HVZ theorem, 278

hydrogen atom, 258

ideal, 55

identity, 29

induced topology, 5

injective, 7

inner product, 21

inner product space, 21
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integrable, 314

integral, 312

interior, 6

interior point, 4

intertwining property, 284

involution, 55

ionization, 278

isolated point, 4

Jacobi operator, 76

Kato–Rellich theorem, 159

kernel, 27

KLMN theorem, 175

Kuratowski closure axioms, 6

λ-system, 303

l.c., see also limit circle

l.p., see also limit point

Lagrange identity, 218

Laguerre polynomial, 267

generalized, 267

Lebesgue

decomposition, 333

measure, 301

point, 335

Lebesgue–Stieltjes measure, 298

Legendre equation, 262

lemma

Riemann-Lebesgue, 191

Lidskij trace theorem, 168

limit circle, 223

limit point, 4, 223

Lindelöf theorem, 9

linear

functional, 29, 50

operator, 27

linearly independent, 17

Liouville normal form, 222

localization formula, 279

lower semicontinuous, 309

maximum norm, 14

Mean ergodic theorem, 154

mean-square deviation, 64

measurable

function, 307

set, 297

space, 296

measure, 296

absolutely continuous, 331

complete, 306

finite, 297

growth point, 112

Lebesgue, 301

minimal support, 338

mutually singular, 331

product, 319

projection-valued, 100

space, 297

spectral, 108

support, 301

topological support, 301

Mellin transform, 287

metric space, 3

Minkowski’s inequality, 32

mollifier, 35

momentum operator, 208

monotone convergence theorem, 313

Morrey inequality, 196

multi-index, 187

order, 187

multiplicity

spectral, 107

mutually singular measures, 331

neighborhood, 4

Neumann

boundary condition, 224

function

spherical, 267

series, 85

Nevanlinna function, 107

Noether theorem, 208

norm, 14

operator, 27

norm resolvent convergence, 179

normal, 12, 55, 69, 76, 104

normalized, 22, 44

normed space, 14

nowhere dense, 38

null space, 27

observable, 63

ONB, see also orthonormal basis

one-parameter unitary group, 65

ONS, see also orthonormal set

onto, 7

open

ball, 4

function, 8

set, 4

operator

adjoint, 54, 67

bounded, 27

bounded from below, 79

closable, 72

closed, 72

closure, 72

compact, 151

domain, 27, 66

finite rank, 151

hermitian, 67

Hilbert–Schmidt, 163
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linear, 27, 66

nonnegative, 77

normal, 69, 76, 104

positive, 77

relatively bounded, 157

relatively compact, 151

self-adjoint, 68

semi-bounded, 79

strong convergence, 56

symmetric, 67

unitary, 45, 65

weak convergence, 57

orthogonal, 22, 44

complement, 49

polynomials, 264

projection, 50

sum, 52

orthonormal

basis, 47

set, 44

orthonormal basis, 47

oscillating, 254

outer measure, 304

parallel, 22, 44

parallelogram law, 23

parity operator, 111

Parseval relation, 47

partial isometry, 139

partition of unity, 13

perpendicular, 22, 44

phase space, 64

π-system, 303

Plücker identity, 222

Plancherel identity, 190

polar coordinates, 325

polar decomposition, 139

polarization identity, 23, 45, 67

position operator, 207

positivity

improving, 272

preserving, 272

premeasure, 297

probability density, 63

probability measure, 297

product measure, 319

product topology, 9

projection, 55

proper metric space, 12

pseudometric, 3

pure point spectrum, 119

Pythagorean theorem, 22, 44

quadrangle inequality, 13

quadratic form, 67, see also form

quasinorm, 20

Radon measure, 311

Radon–Nikodym

derivative, 332

theorem, 332

RAGE theorem, 152

Rajchman measure, 155

range, 27

essential, 84

rank, 151

Rayleigh–Ritz method, 140

reducing subspace, 90

regulated function, 132

relative σ-algebra, 296

relative topology, 5

relatively compact, 9, 151

resolution of the identity, 101

resolvent, 83

convergence, 179

formula

first, 85

second, 159

Neumann series, 85

set, 83

Riesz lemma, 50

Ritz method, 140

scalar product, 21

scattering operator, 284

scattering state, 284

Schatten p-class, 165

Schauder basis, 17

Schrödinger equation, 65

Schur criterion, 34

Schwartz space, 187

second countable, 5

second resolvent formula, 159

self-adjoint, 55

essentially, 71

seminorm, 14

separable, 7, 18

series

absolutely convergent, 20

sesquilinear form, 21

bounded, 26

parallelogram law, 25

polarization identity, 25

short range, 289

σ-algebra, 296

σ-finite, 297

simple function, 132, 312

simple spectrum, 107

singular values, 161

singularly continuous

spectrum, 119

Sobolev space, 95, 194

span, 17

spectral
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basis, 106

ordered, 118

mapping theorem, 118

measure

maximal, 117

theorem, 109

compact operators, 160

vector, 106

maximal, 117

spectrum, 83

absolutely continuous, 119

discrete, 170

essential, 170

pure point, 119

singularly continuous, 119

spherical coordinates, 260, 325

spherical harmonics, 263

spherically symmetric, 194

∗-ideal, 55

∗-subalgebra, 55

stationary phase, 288

Stieltjes inversion formula, 107, 134

Stone theorem, 147

Stone’s formula, 134

Stone–Weierstraß theorem, 60

strong convergence, 56

strong resolvent convergence, 179

Sturm comparison theorem, 253

Sturm–Liouville equation, 217

regular, 218

subcover, 9

subordinacy, 243

subordinate solution, 243

subspace

reducing, 90

subspace topology, 5

superposition, 64

supersymmetric quantum mechanics, 215

support, 8

measure, 301

surjective, 7

Temple’s inequality, 142

tensor product, 53

theorem

B.L.T., 28

Bair, 38

Banach–Steinhaus, 39

Bolzano–Weierstraß, 11

closed graph, 75

Dollard, 200

dominated convergence, 316

Dynkin’s π-λ, 303

Fatou, 314, 316

Fatou–Lebesgue, 316

Fubini, 320

fundamental thm. of calculus, 317

Heine–Borel, 11

Hellinger–Toeplitz, 76

Herglotz, 120

HVZ, 278

Jordan–von Neumann, 23

Kato–Rellich, 159

KLMN, 175

Kneser, 254

Lebesgue, 316

Lebesgue decomposition, 333

Levi, 313

Lindelöf, 9

monotone convergence, 313

Noether, 208

Plancherel, 190

Pythagorean, 22, 44

Radon–Nikodym, 332

RAGE, 152

Riesz, 50

Schur, 34

Sobolev embedding, 196

spectral, 109

spectral mapping, 118

Stone, 147

Stone–Weierstraß, 60

Sturm, 253

Tonelli, 321

Urysohn, 12

virial, 259

Weidmann, 253

Weierstraß, 12, 19

Weyl, 171

Wiener, 150, 194

Tonelli theorem, 321

topological space, 4

topology

base, 5

product, 9

total, 18

trace, 167

class, 167

trace operator, 96

trace topology, 5

triangle inequality, 3, 14

inverse, 3, 14

trivial topology, 4

Trotter product formula, 155

uncertainty principle, 192, 208

uniform boundedness principle, 39

uniformly convex space, 25

unit sphere, 326

unit vector, 22, 44

unitary, 55, 65

unitary group, 65

generator, 65

strongly continuous, 65
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weakly continuous, 147
upper semicontinuous, 309

Urysohn lemma, 12

Vandermonde determinant, 20

variance, 64
virial theorem, 259

Vitali set, 303

wave

function, 63

operators, 283
wave equation, 148

weak

Cauchy sequence, 56
convergence, 55

derivative, 96, 195

Weierstraß approximation, 19
Weierstraß theorem, 12

Weyl
M -matrix, 246

circle, 230

relations, 208
sequence, 86

singular, 171

theorem, 171
Weyl–Titchmarsh m-function, 235

Wiener covering lemma, 334

Wiener theorem, 150
Wronskian, 218

Young inequality, 191
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