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Abstract. Based on high energy expansions and Herglotz properties of Green
and Weyl m-functions we develop a self-contained theory of trace formulas for
Jacobi operators. In addition, we consider connections with inverse spectral
theory, in particular uniqueness results. As an application we work out a new
approach to the inverse spectral problem of a class of reflectionless operators
producing explicit formulas for the coefficients in terms of minimal spectral
data. Finally, trace formulas are applied to scattering theory with periodic
backgrounds.

1. Introduction

Trace formulas have a long history in the theory of one-dimensional second order
equations. One case of particular importance are periodic potentials. Let

(1.1) (Hf)(n) = a(n)f(n + 1) + a(n− 1)f(n− 1) + b(n)f(n), n ∈ Z

be our Jacobi operator with a(n + N) = a(n), b(n + N) = b(n) for some N ∈ N.
Then, using Floquet theory (cf., e.g., [7], Appendix B, [30], [32]) one can show that
the spectrum σ(H) of H consists of N bands (some of which might collide)

(1.2) σ(H) =
N⋃

j=1

[E2j−2, E2j−1], E0 < E1 ≤ E2 · · · < E2N−1.

Next, we consider finite matrices associated with H obtained by restricting H
to finite intervals from n0 to n0 + N and imposing boundary conditions at the
endpoints. Denote the matrix obtained with Dirichlet boundary conditions (i.e.,
f(n0) = 0, f(n0+N) = 0) by H̃∞

n0
and the one obtained with periodic/anti periodic

boundary conditions (i.e., f(n0) = ±f(n0 + N), f(n0 + 1) = ±f(n0 + N + 1)) by
H̃±

n0
. The eigenvalues of H̃+

n0
, H̃−

n0
are precisely the even, odd band edges E2j−2,

E2j−1, 1 ≤ j ≤ N , respectively. The eigenvalues of H̃∞
n are denoted by µj(n),

1 ≤ j ≤ N − 1. Since tr(H̃±
n ) =

∑N−1
j=0 b(n + j) and tr(H̃∞

n ) =
∑N−1

j=1 b(n + j) we
infer from b(n) = tr(H̃±

n − H̃∞
n ) = tr(H̃+

n + H̃−
n )/2 − trH̃∞

n by elementary linear
algebra

(1.3) b(n) =
1
2

2N−1∑
j=0

Ej −
N−1∑
j=1

µj(n).
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Similarly, considering tr((H̃+
n )` +(H̃−

n )`)/2− tr(H̃∞
n )`, ` ∈ N one can obtain higher

order trace relations.
The corresponding formulas for ` = 1 (i.e., (1.3)) and ` = 2 were first given in

[32]. Formula (1.3) plays a key role in the inverse spectral theory of periodic oper-
ators and the reconstruction of a, b from suitable spectral data. Those ingredients
form the basis for the solution of the periodic initial value problem of the Toda
equations (cf., e.g., [7], [10], [39]). Moreover, relation (1.3) was extended to cer-
tain reflectionless operators in [2] and successfully used in [2], [22] to solve inverse
spectral problems for these operators.

To generalize trace formulas to arbitrary operators one invokes the measure dρδ

of H associated with the vector δ ∈ `2(Z) (cf. Lemma 3.1) by the spectral theorem.
Choosing, e.g., δ = δn (the standard basis of `2(Z)) we immediately obtain

(1.4) 〈δn,H`δn〉 =
∫

R
λ`dρδn(λ),

connecting the matrix elements 〈δn,H`δn〉 with the moments of the measure dρδn
.

In the special case where H has purely discrete spectrum, the integral can be
evaluated,

(1.5) 〈δn,H`δn〉 =
∑

λ∈σ(H)

γ(λ, n, n)λ`,

where −γ(λ, n,m) is the residue of G(z, n,m) at z = λ ∈ σ(H), that is,

(1.6) γ(λ, n, n) =
u(λ, n)u(λ, m)

‖u(λ)‖2
, λ ∈ σ(H),

where u(λ) is the eigenvector corresponding to λ ∈ σ(H). In particular, for ` = 1
this gives the interesting result that (for H with purely discrete spectrum) b(n) is
equal to the sum over all eigenvalues of H weighted by γ(λ, n, n).

However, generalizations of (1.3) cannot be obtained in this way. This can be
done by using the exponential measure ξdλ (cf. Appendix A) associated with dρ(λ)
as was discovered by F. Gesztesy and B. Simon in [17]. There they extended the
analog of (1.3) for Schrödinger operators to a much larger class of potentials (in
essence, only semiboundedness of the potential is needed) based on the theory of
the Krein spectral shift [29]. In a subsequent series of papers [18], [19], [21], [25],
and [26] they, together with H. Holden and Z. Zhao, exploit the ideas of [17] and
extend them in various directions. In [17] they also give a generalization of (1.3) to
arbitrary bounded Jacobi operators. However, a comprehensive treatment of trace
formulas for Jacobi operators is still missing. Since it is desirable, for further work
in inverse spectral theory, to have these powerful tools at one’s disposal, one goal
of the present paper is to fill this gap.

Furthermore, we want to point out an annoying mismatch in formula (1.3). In
order to express b(n) for all n ∈ Z one needs {Ej}0≤j≤2N−1, {µj(n)}1≤j≤N for all
n ∈ Z. On the other hand, it is well-known that the spectral data {Ej}0≤j≤2N−1,
{µj(n0)}1≤j≤N plus some additional signs {σj(n0)}1≤j≤N for one fixed n0 ∈ Z al-
ready determine a(n)2, b(n) for all n ∈ Z. Hence it must be, in principle, possible
to express a(n)2, b(n) in terms of these spectral data for one n0 ∈ Z. This natu-
rally raises the question whether one might be able to find explicit expressions of
a(n)2, b(n) in terms of suitable minimal spectral data for certain classes of opera-
tors. To the best of our knowledge a problem of this kind has not been solved yet.
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Combining the approach of (1.4), the theory of [17], Weyl–Titchmarsh theory, and
the moment problem we will add a new wrinkle to the theory of trace formulas and
give a solution to this problem for a certain class of bounded reflectionless Jacobi
operators in Section 6.

To give the reader an overview of the results established, we briefly summarize
the content of the remaining sections.

Section 2 introduces all the necessary notation and is mainly added to make the
paper self-contained and easier to read.

Section 3 contains a comprehensive treatment of asymptotic expansions for
Weyl m and Green functions. We establish that expansions for these objects al-
ways exist up to arbitrary order. In addition, recursion relations for the expansion
coefficients are derived.

Section 4 contains an alternate (recursive) approach to inverse spectral theory
which gives simple proofs for standard uniqueness theorems. Moreover, new unique-
ness results are established as well.

In Section 5 we derive an infinite series of trace formulas for Jacobi operators
in the spirit of [17], [25]. The basic ingredients are the asymptotic expansions of
Section 3 and Herglotz properties of these objects. In particular, we extend (1.3)
to

((i)) arbitrary order ` ∈ N,
((ii)) arbitrary Jacobi operators, and
((iii)) general boundary conditions.
Section 6 applies the results of Section 5 to the theory of reflectionless Jacobi

operators, producing formulas of type (1.3) plus an explicit expression of the coef-
ficients a2, b in terms of minimal spectral data.

Section 7 considers scattering theory with periodic backgrounds. Basic objects
like transmission and reflection coefficients are introduced. In addition, the analog
of a trace formula for Schrödinger operators involving the reflection coefficient is
obtained.

Finally, an appendix collects some properties of Herglotz functions needed in the
main body of the paper.

2. Jacobi operators, resolvents, Green’s functions and all that

Throughout this paper we denote by `(I) = `(M,N), I = {n ∈ Z|M < n < N},
M,N ∈ Z ∪ {±∞} the set of complex-valued sequences {u(n)}n∈I and by `p(I),
1 ≤ p ≤ ∞ the sequences u ∈ `(I) such that |u|p is summable over I. The scalar
product in the Hilbert space `2(I) will be denoted by

(2.1) 〈u, v〉 =
∑
n∈I

u(n)v(n), u, v ∈ `2(I).

We will be concerned with operators on `2(Z) associated with the difference
expression

(2.2) (τf)(n) = a(n)f(n + 1) + a(n− 1)f(n− 1) + b(n)f(n),

where a, b ∈ `(Z) satisfy

Hypothesis H.2.1. Suppose

(2.3) a(n) ∈ R\{0}, b(n) ∈ R, n ∈ Z.
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If τ is limit point (l.p.) at both ±∞ (cf., e.g., [5], [6]), then τ gives rise to a
unique self-adjoint operator H when defined maximally. Otherwise, we need to fix
a boundary condition at each endpoint where τ is limit circle (l.c.) (cf., e.g., [5],
[6]). Throughout this paper we denote by u±(z, .), z ∈ C, nontrivial solutions of
τu = zu which satisfy the boundary condition at ±∞ (if any) with u±(z, .) ∈ `2±(Z),
respectively. Here `2±(Z) denotes the sequences in `(Z) being `2 near ±∞. The
solution u±(z, .) might not exist for z ∈ R (cf. [37], Lemma A.1), but if it exists it
is unique up to a constant multiple.

Picking a fixed z0 ∈ C\R we can characterize H by

(2.4)
H : D(H) → `2(Z)

f 7→ τf
,

where the domain of H is explicitly given by

(2.5) D(H) = {f ∈ `2(Z)| τf ∈ `2(Z), limn→+∞Wn(u+(z0), f) = 0,
limn→−∞Wn(u−(z0), f) = 0}

and

(2.6) Wn(f, g) = a(n)
(
f(n)g(n + 1)− f(n + 1)g(n)

)
denotes the (modified) Wronskian. The boundary condition at ±∞ imposes no
additional restriction on f if τ is l.p. at ±∞ and can hence be omitted in this case.

Next, consider the sequence

(2.7) δβ
n0

= cos(α)δn0 + sin(α)δn0+1, β = cot(α), α ∈ [0, π),

where δn0(n) is 1 for n = n0 and 0 otherwise. Restrict H to the orthogonal
complement of δβ

n0
in `2(Z) and denote this restriction by Hβ

n0
, that is,

(2.8) Hβ
n0

f = τf, f ∈ D(Hβ
n0

) = {f ∈ D(H)|〈δβ
n0

, f〉 = 0}.

Clearly Hβ
n0

is self-adjoint on the subspace {f ∈ `2(Z)|〈δβ
n0

, f〉 = 0} but not on
`2(Z) since D(Hβ

n0
) is not dense.

Now we turn to resolvents and introduce the Green’s function

G(z,m, n) = 〈δm, (H − z)−1δn〉

=
1

W (u−(z), u+(z))

{
u+(z, n)u−(z,m) for m ≤ n
u+(z,m)u−(z, n) for n ≤ m

,(2.9)

where z ∈ C\σ(H) and σ(H) denotes the spectrum of H. For later use we also
introduce the convenient abbreviations

g(z, n) = G(z, n, n) =
u+(z, n)u−(z, n)
W (u−(z), u+(z))

,(2.10)

h(z, n) = 2a(n)G(z, n, n + 1)− 1

=
a(n)(u+(z, n)u−(z, n + 1) + u+(z, n)u−(z, n + 1))

W (u−(z), u+(z))
.(2.11)

Similarly, the corresponding object for Hβ
n0

(viewed as a self-adjoint operator on
{f ∈ `2(Z)|〈δβ

n0
, f〉 = 0}) reads

Gβ
n0

(z,m, n) = 〈δm, (Hβ
n0
− z)−1δn〉 = G(z,m, n) + γβ(z, n0)−1 ×(

G(z,m, n0 + 1) + βG(z,m, n0)
)(

G(z, n0 + 1, n) + βG(z, n, n0)
)
,(2.12)
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where

γβ(z, n) =

(
u+(z, n + 1) + βu+(z, n)

)(
u−(z, n + 1) + βu−(z, n)

)
W (u−(z), u+(z))

= g(z, n + 1) +
β

a(n)
h(z, n) + β2g(z, n).(2.13)

The quantities g(z, n) and γβ(z, n) are most important for our purpose and satisfy
the following recurrence equations which can be verified by tedious but straightfor-
ward calculations. We use the shortcuts (f−)(n) = f(n − 1), (f+)(n) = f(n + 1),
(f++)(n) = f(n + 2), etc..

Lemma 2.2. Let u, v be two solutions of τu = zu. Then g(n) = u(n)v(n) satisfies

(2.14)
(a+)2g++ − a2g

z − b+
+

a2g+ − (a−)2g−

z − b
= (z − b+)g+ − (z − b)g,

and

(2.15)
(
a2g+ − (a−)2g− + (z − b)2g

)2

= (z − b)2
(
W (u, v)2 + 4a2gg+

)
.

Moreover, set γβ(n) = (u(n + 1) + βu(n))(v(n + 1) + βv(n)), then we have(
(a+A−)2(γβ)+ − (a−A)2(γβ)− + B2γβ

)2

= (A−B)2
(
(
A

a
W (u, v))2 + 4(a+)2γβ(γβ)+

)
,(2.16)

with

A = a + β(z − b+) + β2a+,(2.17)
B = a−(z − b+) + β((z − b+)(z − b) + a+a− − a2)

+ β2a+(z − b).(2.18)

Remark 2.3. Equations (2.14) and (2.15) are the analogs of well-known differ-
ential equations for the diagonal Green function of one-dimensional Schrödinger
operators (cf., e.g., [14], [24], equations (5.19) and (5.20)). Equation (2.16) is the
analog of equation (5.18) in [24].

Finally, we turn to half line restrictions H±,n0 of H defined by

(2.19)
H±,n0 : D(H±,n0) → `2(n0,±∞)

f 7→ τf
,

and
(2.20)

D(H±,n0) = {f ∈ `2(n0,±∞)|τf ∈ `2(n0,±∞), lim
n→±∞

Wn(u±(z0), f) = 0},

where we set f(n0) = 0 in the definition of (τf)(n0± 1). The corresponding Green
functions read

(2.21) G±,n0(z,m, n) =
±1

W (s(z), u±(z))


s(z, n, n0)u±(z,m) for m

≥
≤ n

s(z,m, n0)u±(z, n) for n
≥
≤ m

,
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where s(z, ., n0) is the solution of τu = zu satisfying the Dirichlet boundary condi-
tion s(z, n0, n0) = 0. The analogous quantities of g(z, n) are the Weyl m-functions

m±(z, n) = 〈δn±1, (H±,n − z)−1δn±1〉 = G±,n(z, n± 1, n± 1)

= − u±(z, n± 1)
a(n− 0

1 )u±(z, n)
,(2.22)

which satisfy

(2.23) a(n− 0
1 )2m±(z, n) +

1
m±(z, n∓ 1)

= b(n)− z.

Remark 2.4. We can also consider half line operators Hβ
±,n0

on `2(n0,±∞) as-
sociated with the general boundary condition

(2.24) f(n0 + 1) + βf(n0) = 0, β ∈ R ∪ {∞}

at n0 rather than only the Dirichlet boundary condition f(n0) = 0. We set

(2.25) H0
+,n0

= H+,n0+1, Hβ
+,n0

= H+,n0 − a(n0)β−1〈δn0+1, .〉δn0+1, β 6= 0,

and

(2.26) H∞
−,n0

= H−,n0 , Hβ
−,n0

= H−,n0+1 − a(n0)β〈δn0 , .〉δn0 , β 6= ∞,

implying Hβ
n0
∼= Hβ

−,n0
⊕Hβ

+,n0
.

3. Asymptotic expansions

In the sequel, asymptotic expansions for g(z, n) = G(z, n, n) and γβ(z, n) will
turn out to be very useful. Both quantities are Herglotz functions as can be seen
from

g(z, n) = 〈δn, (H − z)−1δn〉,(3.1)

γβ(z, n) = (1 + β2)〈δβ
n, (H − z)−1δβ

n〉 −
β

a(n)
(3.2)

(we note that, by (2.13), h(z, n) is the difference of two Herglotz functions) and the
following lemma which is immediate from the spectral theorem.

Lemma 3.1. Suppose δ ∈ `2(Z) with ‖δ‖ = 1. Then

(3.3) g(z) = 〈δ, (H − z)−1δ〉

is Herglotz, that is,

(3.4) g(z) =
∫

R

1
λ− z

dρδ(λ),

where dρδ(λ) = d〈δ, P(−∞,λ](H)δ〉 is the spectral measure of H associated to the
sequence δ. Moreover,

(3.5) Im(g(z)) = Im(z)‖(H − z)−1δ‖2

and

(3.6) g(z) = g(z), |g(z)| ≤ ‖(H − z)−1‖ ≤ 1
|Im(z)|

.

Next, we turn to asymptotic expansions for g(z, n), h(z, n), and γβ(z, n).
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Theorem 3.2. The quantities g(z, n), h(z, n), and γβ(z, n) have the following
asymptotic expansions for arbitrary ε > 0

g(z, n) �
|z|→∞

|Im(z)|≥ε

−
∞∑

j=0

gj(n)
zj+1

, g0 = 1,(3.7)

h(z, n) �
|z|→∞

|Im(z)|≥ε

−1−
∞∑

j=0

hj(n)
zj+1

, h0 = 0,(3.8)

γβ(z, n) �
|z|→∞

|Im(z)|≥ε

− β

a(n)
−

∞∑
j=0

γβ
j (n)
zj+1

, γβ
0 = 1 + β2.(3.9)

Moreover, the coefficients are given by

gj(n) = 〈δn,Hjδn〉, j ∈ N0,(3.10)

hj(n) = 2a(n)〈δn+1,H
jδn〉, j ∈ N0,(3.11)

γβ
j (n) = 〈(δn+1 + βδn),Hj(δn+1 + βδn)〉

= gj(n + 1) +
β

a(n)
hj(n) + β2gj(n), j ∈ N0.(3.12)

Proof. We only carry out the proof for g(z, n) since the remaining expansions are
similar. Rewriting g(z, n) as

g(z, n) = 〈δn, (H − z)−1δn〉

= −
N−1∑
j=0

〈δn,Hjδn〉
zj+1

+
1

zN
〈δn,HN (H − z)−1δn〉, N ∈ N(3.13)

shows that it suffices to vindicate that the last term is O(z−N ). This follows from

(3.14) |〈δn,HN (H − z)−1δn〉| ≤
‖HNδn‖
|Im(z)|

≤ ‖HNδn‖
ε

.

�

Remark 3.3. (i). If H is bounded, the above expansions are in fact Laurent series
converging for |z| > ‖H‖.
(ii). Pick ε(n) ∈ {−1,+1} and introduce aε(n) = ε(n)a(n) and bε(n) = b(n).
Then the operator Hε associated with aε, bε is unitarily equivalent to H. Indeed,
take the unitary operator Uε = {ε̃(n) δm,n}m,n∈Z, where ε(n + 1)ε̃(n) = ε(n), then
Hε = UεHU−1

ε . In particular, this shows that g(n), h(n) do not depend on the sign
of a, that is, they only depend on a2.

The following lemma ([7], Lemma 2.1) shows how to compute gj , hj recursively.

Lemma 3.4. The coefficients gj(n) and hj(n) for j ∈ N0 satisfy the following
recursion relation

gj+1 =
hj + h−j

2
+ bgj ,(3.15)

hj+1 − h−j+1 = 2
(
a2g+

j − (a−)2g−j
)

+ b
(
hj − h−j

)
.(3.16)
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Proof. The first equation follows from

(3.17) gj+1(n) = 〈Hδn,Hjδn〉 =
hj(n) + hj(n− 1)

2
+ b(n)gj(n).

Similarly,

hj+1(n) = b(n)hj(n) + 2a(n)2gj(n + 1) + 2a(n− 1)a(n)〈δn+1,H
jδn−1〉

= b(n + 1)hj(n) + 2a2gj(n) + 2a(n)a(n + 1)〈δn+2,H
jδn〉.(3.18)

Eliminating 〈δn+1,H
jδn−1〉 completes the proof. �

This system does not determine gj(n), hj(n) uniquely since it requires solving
a first-order recurrence relation at each step, producing an unknown summation
constant each time. To determine these constants we assign the weight one to a(n)
and b(n), n ∈ Z. Then gj+1(n) and hj(n) have weight j + 1, fixing the summation
constants.

To avoid this drawback we advocate a different approach using (2.15). First
observe that hj(n) can be determined if gj(n) is known using

(3.19) hj+1 = bhj + gj+2 − 2bgj+1 + a2g+
j − (a−)2g−j + b2gj , j ∈ N0,

which follows after inserting (3.15) into (3.16). In addition, inserting the expansion
(3.7) for g(z, n) into (2.15) and comparing coefficients of zj one infers

g0 = 1, g1 = b, g2 = a2 + (a−)2 + b2,

g3 = a2(b+ + 2b) + (a−)2(2b + b−) + b3,(3.20)

and

gj+1 = 2bgj − a2g+
j−1 + (a−)2g−j−1 − b2gj−1 −

1
2

j−1∑
`=0

kj−`−1k`

+ 2a2
( j−1∑

`=0

gj−`−1g
+
` − 2b

j−2∑
`=0

gj−`−2g
+
` + b2

j−3∑
`=0

gj−`−3g
+
`

)
,(3.21)

for j ≥ 3, where k0(n) = −b(n) and

(3.22) kj = a2g+
j−1 − (a−)2g−j−1 + b2gj−1 − 2bgj + gj+1, j ∈ N.

Analogously, one can get a recurrence relation for γβ
j using (2.16). Since this

approach gets too cumbersome we omit further details at this point but note that
γβ

j can be computed from (3.12). Invoking (3.19) one explicitly obtains

(3.23) h0 = 0, h1 = 2a2, h2 = 2a2(b+ + b)

and hence

γβ
0 = 1 + β2, γβ

1 = b+ + 2aβ + bβ2,

γβ
2 = (a+)2 + a2 + (b+)2 + 2a(b+ + b)β + (a2 + (a−)2 + b2)β2.(3.24)

Remark 3.5. Instead of (3.19) and (3.21) one can also use (3.15) and

(3.25) hj+1 = 2a2

j∑
`=0

gj−`g
+
` − 1

2

j∑
`=0

hj−`h`, j ∈ N,

together with (3.15) to determine gj , hj. The above equation follows as before using
(4.6) below.
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Next we turn to Weyl m-functions. As before we obtain

Lemma 3.6. The quantities m±(z, n) have the asymptotic expansions

(3.26) m±(z, n) �
|z|→∞

|Im(z)|≥ε

−
∞∑

j=0

m±,j(n)
zj+1

, m±,0(n) = 1.

The coefficients m±,j(n) are given by

(3.27) m±,j(n) = 〈δn±1, (H±,n)jδn±1〉, j ∈ N
and satisfy

m±,0 = 1, m±,1 = b±,

m±,j+1 = b±m±,j +
(a+)2

(a−−)2

j−1∑
`=0

m±,j−`−1m
+
±,`, j ∈ N.(3.28)

Remark 3.7. As in Remark 3.3 we have that (3.26) converges for |z| > ‖H±,n‖ if
H±,n is bounded and m±(z, n) depend only on a2.

4. Inverse spectral theory

In this section we present a simple recursive method of reconstructing the se-
quences a2, b when the Weyl matrix

M(z, n) =
(

G(z, n, n) G(z, n + 1, n)
G(z, n, n + 1) G(z, n + 1, n + 1)

)
− 1

2a(n)

(
0 1
1 0

)
=

(
g(z, n) h(z,n)

2a(n)
h(z,n)
2a(n) g(z, n + 1)

)
, z ∈ C\σ(H)(4.1)

is known for one fixed n ∈ Z. As a consequence, we are led to several uniqueness
results.

From the previous section we know

g(z, n) = −1
z
− b(n)

z2
+ O(

1
z3

),(4.2)

h(z, n) = −1− 2a(n)2

z2
+ O(

1
z3

).(4.3)

Here and in the remainder of this paper all O( 1
z` ) terms apply for |z| → ∞, |Im(z)| ≥

ε > 0. Hence

b(n) = − lim
z→i∞

z(1 + zg(z, n)),(4.4)

a(n)2 = −1
2

lim
z→i∞

z2(1 + h(z, n)).(4.5)

Moreover, we have the useful identities (use (2.10) and (2.11))

(4.6) 4a(n)2g(z, n)g(z, n + 1) = h(z, n)2 − 1

and

(4.7) h(z, n + 1) + h(z, n) = 2(z − b(n + 1))g(z, n + 1),

which show that g(z, n) and h(z, n) together with a(n)2 and b(n) can be determined
recursively if, say, g(z, n0) and h(z, n0) are given.
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In addition, we infer that a(n)2, g(z, n), g(z, n + 1) determine h(z, n) up to one
sign,

(4.8) h(z, n) =
(
1 + 4a(n)2g(z, n)g(z, n + 1)

)1/2

since h(z, n) is holomorphic with respect to z ∈ C\σ(H) and h(z, n) = h(z, n).
However, this sign can be determined from the asymptotic behavior h(z, n) =
−1 + O(z−2).

Hence we have reproved the well-known result that M(z, n0) determines the
sequences a2, b. In fact, we have proved the slightly stronger result:

Theorem 4.1. One of the following set of data
(i) g(., n0) and h(., n0)
(ii) g(., n0 + 1) and h(., n0)
(iii) g(., n0), g(., n0 + 1), and a(n0)2

for one fixed n0 ∈ Z uniquely determines the sequences a2 and b.

Remark 4.2. (i) We want to emphasize that the diagonal elements g(z, n0) and
g(z, n0 + 1) alone plus a(n0)2 are sufficient to reconstruct a(n)2, b(n). This is in
contradistinction to the case of one-dimensional Schrödinger operators, where the
diagonal elements of the Weyl matrix determine the potential only up to reflection.
It is not clear to me whether this different behavior of Jacobi operators has been
previously noted in the literature.

The reader might wonder how the Weyl matrix of the operator HR associated
with the (at n0) reflected coefficients aR, bR (i.e., aR(n0 − k − 1) = a(n0 + k),
bR(n0−k) = b(n0 +k), k ∈ Z) look like. Since reflection at n0 exchanges m±(z, n0)
(i.e., mR,±(z, n0) = m∓(z, n0)) we infer

gR(z, n0) = g(z, n0),(4.9)
hR(z, n0) = −h(z, n0) + 2(z − b(n0))g(z, n0),(4.10)

gR(z, n0 + 1) =
a(n0)2

a(n0 − 1)2
g(z, n0 + 1) +

z − b(n0)
a(n0 − 1)2

(
h(z, n0)

+ (z − b(n0))g(z, n0)
)
,(4.11)

in obvious notation.
(ii) Remark 3.3(ii) shows that the sign of a(n) cannot be determined from either
g(z, n0), h(z, n0), or g(z, n0 + 1).
(iii). Clearly, if H is l.c. at ±∞ the corresponding boundary condition is determined
by M(z, n) as well.
(iv). Equation (4.6) is equivalent to det M(z, n) = −1/(2a(n))2. The analogous
equation for the Schrödinger case was first used by Rofe-Beketov in connection with
inverse problems (see [31], Section 7.3).

The off diagonal Green function can be recovered as follows

(4.12) G(z, n, n + k) = g(z, n)
n+k−1∏

j=n

1 + h(z, j)
2a(j)g(z, j)

, k > 0,

and we remark

a(n)2g(z, n + 1)− a(n− 1)2g(z, n− 1) + (z − b(n))2g(z, n)
= (z − b(n))h(z, n).(4.13)
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A similar procedure works for H+. The asymptotic expansion

(4.14) m+(z, n) = −1
z
− b(n + 1)

z2
− a(n + 1)2 + b(n + 1)2

z3
+ O(z−4)

shows that a(n + 1)2, b(n + 1) can be recovered from m+(z, n). In addition, (2.23)
shows that m+(z, n0) determines a(n)2, b(n),m+(z, n), n > n0. Similarly, (by
reflection) m−(z, n0) determines a(n − 1)2, b(n),m−(z, n − 1), n < n0. Hence
both m±(z, n0) determine a(n)2, b(n) except for a(n0−1)2, a(n0)2, b(n0). However,
introducing m̃±(z, n) = ∓u±(z, n + 1)/(a(n)u±(z, n)) and considering

(4.15) m̃+(z, n) = m+(z, n), m̃−(z, n) =
z − b(n) + a(n− 1)−2m−(z, n)

a(n)2

we see that m̃−(z, n0) determines a(n0− 1)2, a(n0)2, b(n0) and m−(z, n0). Summa-
rizing:

Theorem 4.3. The quantities m̃±(z, n0) uniquely determine a(n)2, b(n) for all
n ∈ Z. Moreover, we have

g(z, n) =
−a(n)−2

m̃+(z, n) + m̃−(z, n)
, g(z, n + 1) =

m̃+(z, n)m̃−(z, n)
m̃+(z, n) + m̃−(z, n)

,

h(z, n) =
m̃+(z, n)− m̃−(z, n)
m̃+(z, n) + m̃−(z, n)

,(4.16)

and conversely

(4.17) m̃±(z, n) =
1± h(z, n)

2a(n)2g(z, n)
= −2g(z, n + 1)

1∓ h(z, n)
.

Next we recall the function γβ(z, n) introduced in (2.13) with asymptotic expan-
sion

(4.18) γβ(z, n) = − β

a(n)
− 1 + β2

z
− b(n + 1) + 2βa(n) + β2b(n)

z2
+ O(

1
z3

).

Our goal is to prove

Theorem 4.4. Let β1,2 ∈ R ∪ {∞} with β1 6= β2 be given. Then γβj (., n0),
j = 1, 2 for one fixed n0 ∈ Z uniquely determines a(n)2, b(n) for all n ∈ Z (set
γ∞(z, n) = g(z, n)) unless (β1, β2) = (0,∞), (∞, 0). In the latter case a(n0)2 is
needed in addition. More explicitly, we have

g(z, n) =
γβ1(z, n) + γβ2(z, n) + 2R(z)

(β2 − β1)2
,(4.19)

g(z, n + 1) =
β2

2γβ1(z, n) + β2
1γβ2(z, n) + 2β1β2R(z)

(β2 − β1)2
,(4.20)

h(z, n) =
β2γ

β1(z, n) + β1γ
β2(z, n) + (β1 + β2)R(z)

(−2a(n))−1(β2 − β1)2
,(4.21)

where R(z) is the branch of

(4.22) R(z) =
(

(β2 − β1)2

4a(n)2
+ γβ1(z, n)γβ2(z, n)

)1/2

=
β1 + β2

2a(n)
+ O(

1
z
),
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which is holomorphic for z ∈ C\R and has asymptotic behavior as indicated. If one
of the numbers β1,2 equals ∞, one has to replace all formulas by their limit using
g(z, n) = lim

β→∞
β−2γβ(z, n).

Proof. Clearly, if (β1, β2) 6= (0,∞), (∞, 0) we can determine a(n) from (4.18).
Hence by Theorem 4.1 it suffices to show (4.19) – (4.21). Since (4.19) follows
from (4.6) and the other two, it remains to establish (4.20) and (4.21). This will
follow if we prove that the system

(4.23) (g+)2 + 2
βj

2a(n)
hg+ +

β2
j

4a(n)2
(h2 − 1) = g+γβj (z, n), j = 1, 2

has a unique solution (g+, h) = (g(z, n+1), h(z, n)) for |z| large enough, |Im(z)| ≥ ε,
which is holomorphic with respect to z and satisfies the asymptotic requirements
from above. We first consider the case βj 6= 0,∞. Changing to new variables
(x1, x2), xj = (2a(n)/βj)g+ + h, our system reads

(4.24) x2
j − 1 =

β1β2

β2
j

2a(n)γβj (z, n)
β2 − β1

(x1 − x2), j = 1, 2.

Picking |z| large enough we can assume γβj (z, n) 6= 0 and the solution set of the
new system is given by the intersection of two parabolas. In particular, (4.23) has
at most four solutions. Two of them are clearly g+ = 0, h = ±1. But they do
not have the correct asymptotic behavior and hence are of no interest to us. The
remaining two solutions are given by (4.20) and (4.21) with the branch of R(z)
arbitrarily. However, we only get correct asymptotics (g+ = −z−1 + O(z−2) resp.
h = −1+O(z−2)) if we fix the branch as in (4.22). This shows that g(z, n+1), h(z, n)
can be reconstructed from γβj , j = 1, 2 and we are done. The remaining cases can
be treated similarly. �

Corollary 4.5. Suppose H has purely discrete spectrum. Then a(n0), σ(H) plus
βj, σ(Hβj

n0 ), j = 1, 2 for two values β1 6= β2 uniquely determine the coefficients
a(n)2, b(n) (and the boundary condition at ±∞ if any).

Proof. Since H has purely discrete spectrum the same is true for Hβ
n0

. Hence
γβ(z, n0) is meromorphic with poles at the eigenvalues of H and zeros at the eigen-
values of Hβ

n0
following from (2.13) (if eigenvalues of H and Hβ

n0
coincide we have a

double zero in numerator of (2.13) and a single zero in the denominator). Thus we
know when γβ(z, n0) changes sign implying that we know the exponential Herglotz
measure of γβ(z, n0) (cf. (A.2)). The remaining constant c in (A.2) follows from
the asymptotic behavior (see also (5.19)). Hence we can reconstruct γβ(z, n0) from
a(n0), σ(H) and β, σ(Hβ

n0
) completing the proof. �

Finally, let us turn to half line operators Hβ
+ = Hβ

+,0 (cf. Remark 2.4). Since the
dependence one a(0) can be removed by scaling β, we assume without restriction
a(0) = 1 for the remainder of this section. We will now prove the following general-
ization of a result by Fu and Hochstadt [13] (where the special case β1 = 0, β2 = ∞
is proved under somewhat more restrictive conditions).

Theorem 4.6. Suppose the spectrum of Hβ
+ is purely discrete for one β ∈ R∪{∞}

(and hence for all β) and let βj, j = 1, 2 be two different values which have opposite
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signs if 0 < |βj | < ∞. Then βj plus σ(Hβj

+ ), j = 1, 2 uniquely determine the
coefficients a(n)2, b(n) (and the boundary condition at +∞ if any).

Proof. Without restriction we suppose β2 6= 0 and β1 6= ∞. Then

(4.25) F (z) =
β2(m+(z) + β1)

m+(z) + β2
=

−1
−1
β2
− 1

m+(z)

+
β1β2

m+(z) + β2

is a meromorphic Herglotz function since m+(z) = m+(z, 0) is. Moreover, since
m+(z) = u+(z,1)

u+(z,0) (where u+(z, 0) has to be defined as−a(1)u+(z, 2)+(z−b(1))u(z, 1);
recall our convention a(0) = 1), we infer that the zeros of F (z) are given by the
eigenvalues of Hβ1

+ and the poles by the eigenvalues of Hβ2
+ . Thus we know the

exponential Herglotz measure ξ(λ) of F (z) (cf. (A.2)). The remaining constant
c in (A.2) can be determined from the asymptotic behavior F (z) = β1 − (1 −
β1β

−1
2 )z−1 + O(z−2). Thus F (z) is known and solving F (z) for m+(z) finishes the

proof. �

5. General trace formulas and ξ functions

In this section we will investigate trace formulas for Jacobi operators H. We
will essentially follow the philosophy of [17], [25] and use the exponential Herglotz
representation (A.2) rather than (A.1). This will produce generalizations of the
formula (1.3).

To avoid the Abelian limits of [17] we will first consider the case where H (and
thus a, b) is bounded. We abbreviate

(5.1) E0 = inf σ(H), E∞ = supσ(H),

and note that G(λ, n, n) > 0 for λ < E0, which follows from (H −λ) > 0 (implying
(H − λ)−1 > 0). Similarly, G(λ, n, n) < 0 for λ > E∞, following from (H − λ) < 0.
Our main tool will be the following exponential representation of the Herglotz
function g(z, n) = G(z, n, n) (cf. Theorem A.2)

(5.2) g(z, n) = |g(i, n)| exp
(∫

R

( 1
λ− z

− λ

1 + λ2

)
ξ(λ, n)dλ

)
, z ∈ C\σ(H),

where the ξ function ξ(λ, n) is defined by

(5.3) ξ(λ, n) =
1
π

lim
ε↓0

arg g(λ + iε, n), arg(.) ∈ (−π, π].

In addition, ξ(λ, n) (which is only defined a.e.) satisfies 0 ≤ ξ(λ, n) ≤ 1,

(5.4)
∫

R

ξ(λ, n)
1 + λ2

dλ = arg g(i, n), and ξ(λ, n) =
{

0 for z < E0

1 for z > E∞
.

Using (5.4) together with the asymptotic behavior of g(., n) we infer

(5.5) g(z, n) =
1

E∞ − z
exp

(∫ E∞

E0

ξ(λ, n)dλ

λ− z

)
.

Theorem 5.1. Suppose H is bounded and let ξ(λ, n) be defined as above. Then we
have the following trace formula

(5.6) b(`)(n) = E`
∞ − `

∫ E∞

E0

λ`−1ξ(λ, n)dλ,
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where

b(1)(n) = b(n),

b(`)(n) = ` g`(n)−
`−1∑
j=1

g`−j(n)b(j)(n), ` > 1.(5.7)

Proof. The claim follows after expanding both sides of

(5.8) ln
(
(E∞ − z)g(z, n)

)
=
∫ E∞

E0

ξ(λ, n)dλ

λ− z

and comparing coefficients using the following connections between the series of
g(z) and ln(1 + g(z)) (cf., e.g., [33]). Let g(z) have the asymptotic expansion

(5.9) g(z) =
∞∑

`=1

g`

z`

as z →∞. Then we have

(5.10) ln(1 + g(z)) =
∞∑

`=1

c`

z`
,

where

(5.11) c1 = g1, c` = g` −
`−1∑
j=1

j

`
g`−jcj , ` ≥ 2.

�

We remark that the special case ` = 1 of equation (5.6)

(5.12) b(n) = E∞ −
∫ E∞

E0

ξ(λ, n)dλ =
E0 + E∞

2
+

1
2

∫ E∞

E0

(1− 2ξ(λ, n))dλ

has first been given in [17].
Next we turn to unbounded operators. In order to avoid Abelian limits here as

well, we resort to a little trick. This will also show how our investigations tie in
with the theory of Krein [29] and rank one perturbations (see also [17], Appendix
A, [19], [34]). Consider

(5.13) Hn,θ = H + θ〈δn, .〉δn, θ ≥ 0.

Then, as in [17], Appendix A, one computes

(5.14) tr
(
(H − z)−1 − (Hn,θ − z)−1

)
=

d

dz
ln(1 + θg(z, n)) =

∫
R

ξθ(λ, n)
(λ− z)2

dλ,

where
(5.15)

1 + θg(z, n) = exp
(∫

R

ξθ(λ, n)
λ− z

dλ
)
, ξθ(λ, n) =

1
π

lim
ε↓0

arg
(
1 + θg(λ + iε, n)

)
.

By Theorem A.2 (iii) all moments of ξθ(λ, n)dλ are finite and
∫

R ξθ(λ, n)dλ = θ.
Taking logarithms in (5.15) and expanding yields as before
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Theorem 5.2. Let ξθ(λ, n) be defined as above. Then we have

(5.16) b
(`)
θ (n) = (` + 1)

∫
R

λ`ξθ(λ, n)dλ,

with

(5.17) b
(0)
θ (n) = θ, b

(`)
θ (n) = θ(` + 1)g`(n) + θ

∑̀
j=1

g`−j(n)b(j−1)
θ (n), ` ∈ N.

Again, in the special case ` = 1 we obtain

(5.18) b(n) =
1
θ

∫
R

λξθ(λ, n)dλ− θ

2
.

In addition, we remark that letting the coupling constant θ tend to ∞ implies
Hn,θ → H∞

n in a suitable sense (i.e., norm resolvent sense on {f ∈ `2(Z)|〈δn, f〉 =
0}, cf. [19]). Similarly, Hβ

n0
can be obtained as the limit of the operator H +

θ〈δβ
n, .〉δβ

n as θ →∞.
Clearly, the same procedure can be applied to (cf. Theorem A.2 (i), (iii))

(5.19) γβ(z, n) = − β

a(n)
exp

(∫
R

ξβ(λ, n)dλ

λ− z

)
, z ∈ C\σ(Hβ

n ), β ∈ R\{0},

where

(5.20) ξβ(λ, n) =
1
π

lim
ε↓0

arg
(
γβ(λ + iε, n)

)
− δβ , δβ =

{
0, βa(n) < 0
1, βa(n) > 0

and 0 ≤ sgn(−a(n)β) ξβ(λ, n) ≤ 1. This yields as before

Theorem 5.3. Let ξβ(λ, n) be defined as above. Then we have

(5.21) bβ,(`)(n) = (` + 1)
β

a(n)

∫
R

λ`ξβ(λ, n)dλ, ` ∈ N

where

bβ,(0)(n) = 1 + β2,

bβ,(`)(n) = (` + 1)γβ
` (n)− β

a(n)

∑̀
j=1

γβ
`−j(n)bβ,(j−1)(n), ` ∈ N.(5.22)

Again specializing for ` = 0 in (5.21) we obtain

(5.23) a(n) =
1

β + β−1

∫
R

ξβ(λ, n)dλ.

Finally, we want to find out when ξβj (λ, n0), j = 1, 2, for one fixed n0 determines
a(n), b(n), n ∈ Z. Since ξβ(., n0), β ∈ R and a(n0) determines γβ(z, n0) by (5.19)
we conclude from Theorem 4.4

Corollary 5.4. Let β1,2 ∈ R ∪ {∞} be given. Then (βj , ξ
βj (., n0)), j = 1, 2, and

a(n0) for one fixed n0 ∈ Z uniquely determines a(n)2, b(n) for all n ∈ Z.
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6. Reflectionless operators

Reflectionless operators have attracted a considerable amount of interest recently
in connection with inverse spectral theory [2], [22], [35], [36] and completely inte-
grable lattices [7], [32]. In this section we show that the trace formulas of the
previous section become particularly transparent in this case.

We will assume that H is a bounded self-adjoint Jacobi operator. Hence its
spectrum can be written as the complement of a countable union of disjoint open
intervals, that is,

(6.1) σ(H) = R\
⋃

j∈J0∪{∞}

ρj ,

where J ⊆ N, J0 = J ∪ {0},

ρ0 = (−∞, E0), ρ∞ = (E∞,∞),
E0 ≤ E2j−1 < E2j ≤ E∞, ρj = (E2j−1, E2j), j ∈ J,(6.2)

−∞ < E0 < E∞ < ∞, ρj ∩ ρk = ∅ for j 6= k.

In addition, we will require that H is reflectionless, that is, for all n ∈ Z,

(6.3) ξ(λ, n) =
1
2

for a.e. λ ∈ σess(H).

By [22], Lemma 3.3 the requirement (6.3) is equivalent to one of the following
(i). For some n0 ∈ Z, n1 ∈ Z\{n0, n0 + 1},

ξ(λ, n0) = ξ(λ, n0 + 1) = ξ(λ, n1) =
1
2

for a.e λ ∈ σess(H).

(ii). For some n0 ∈ Z,

m̃+(λ + i0, n0) = m̃−(λ + i0, n0) for a.e. λ ∈ σess(H),

where m̃−(λ + i0, n0) abbreviates limε↓0 m̃−(λ + iε, n0).
The last equation implies

(6.4) u+(λ + i0, n) = u−(λ + i0, n) for a.e. λ ∈ σess(H)

for u±(z, n) = c(z, n, n0)+a(n0)m̃±(z, n0)s(z, n, n0), where c, s are the solutions of
τu = zu corresponding to the initial conditions c(z, n0, n0) = s(z, n0 + 1, n0) = 1,
s(z, n0, n0) = c(z, n0 + 1, n0) = 0.

The name reflectionless will become clear in the next section. There the above
conditions will turn out to be equivalent to the vanishing of the reflection coeffi-
cients R±(z) (cf. (7.16)). For instance periodic operators, operators with purely
discrete spectrum, and stationary solutions of the Toda hierarchy are special cases
of reflectionless operators.

Next we turn to Dirichlet eigenvalues associated with τ corresponding to a Dirich-
let boundary condition at n ∈ Z. Associated with each spectral gap ρj we set

(6.5) µj(n) = sup{E2j−1} ∪ {λ ∈ ρj |g(λ, n) < 0} ∈ ρj , j ∈ J.

The numbers µj(n) are called Dirichlet eigenvalues of H since we have

(6.6) σ(H∞
n ) = σess(H) ∪ {µj(n)}j∈J .

However, we want to point out that µj(n) is not necessarily an eigenvalue of H∞
n

unless µj(n) 6∈ σess(H).



TRACE FORMULAS FOR JACOBI OPERATORS 17

The strict monotonicity of g(λ, n) with respect to λ ∈ ρj , that is,

(6.7)
d

dλ
g(λ, n) = 〈δn, (H − λ)−2δn〉 =

∑
m∈Z

G(λ, n,m)2 > 0, λ ∈ ρj ,

then yields

(6.8)
g(λ, n) < 0, λ ∈ (E2j−1, µj(n)),
g(λ, n) > 0, λ ∈ (µj(n), E2j),

j ∈ J.

Thus we conclude ξ(λ, n) = 1, λ ∈ (E2j−1, µj(n)) and ξ(λ, n) = 0, λ ∈ (µj(n), E2j),
j ∈ J . Using this information to evaluate the exponential Herglotz representation
of g(z, n) then implies ([22], Lemma 1.1)

(6.9) g(z, n) =
−1√

z − E0

√
z − E∞

∏
j∈J

z − µj(n)√
z − E2j−1

√
z − E2j

,

where the square root branch used is defined as
√

z = |
√

z| exp(i arg(z)/2), −π <
z ≤ π. In addition, denoting by χΩ(.) the characteristic function of the set Ω ⊂ R,
one can represent ξ(λ, n) by

ξ(λ, n) =
1
2

(
χ(E0,∞)(λ) + χ(E∞,∞)(λ)

)
+

1
2

∑
j∈J

(
χ(E2j−1,∞)(λ) + χ(E2j ,∞)(λ)− 2χ(µj(n),∞)(λ)

)
=

1
2
χ(E0,E∞)(λ) +

1
2

∑
j∈J

(
χ(E2j−1,µj(n))(λ)− χ(µj(n),E2j)(λ)

)
+ χ(E∞,∞)(λ) for a.e. λ ∈ R.(6.10)

Evaluation of (5.6) shows

(6.11) b(`)(n) =
1
2

(
E`

0 + E`
∞ +

∑
j∈J

(E`
2j−1 + E`

2j − 2µj(n)`)
)

and in the special case ` = 1

(6.12) b(n) =
1
2

(
E0 + E∞ +

∑
j∈J

(E2j−1 + E2j − 2µj(n))
)
.

The formulas for ` = 1, 2 were first given in [2], Theorem 5.2.
Next, we want to address the problem of expressing a(n)2 as a function of Ej

and µj(n). This endeavor turns out to be impossible unless we introduce additional
data. This will be done first by defining

(6.13) {µ̃j(n)}j∈J̃ = {µj(n)}j∈J ∪ σp(H∞
n ), J̃ ⊆ N

and Ẽ0 = E0, Ẽ∞ = E∞,

(6.14) Ẽ2j−1 = sup{E ∈ σ(H)|E < µ̃j(n)}, Ẽ2j = inf{E ∈ σ(H)|µ̃j(n) < E}.
A few remarks are in order:

Remark 6.1. (i). We note that µ̃j = µk implies Ẽ2j−1 = E2k−1, Ẽ2j = E2k and
Ẽ2j−1 < Ẽ2j implies µ̃j(n) = µk(n) for some k ∈ J . Indeed, if Ẽ2j−1 < Ẽ2j we
infer limλ→µ̃j(n), λ∈(Ẽ2j−1,Ẽ2j)

g(λ, n) = 0 and hence µ̃j(n) = µk(n) for some k ∈ J

by monotonicity of g(., n) in spectral gaps. In other words, computing all previous
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formulas with µj(n), Ej replaced by µ̃j(n), Ẽj leaves them unchanged since the new
factors drop out.
(ii). Our notation concerning Ẽj is imprecise since the list of numbers [Ẽj ]j∈J̃

might, in general, depend on n. Suppose for instance, that µ̃j(n) is also an eigen-
value of H such that Ẽ2j−1 = µ̃j(n) = Ẽ2j. Then the pair Ẽ2j−1, Ẽ2j shows up
in the list corresponding to n but not in the one corresponding to n + 1 since the
eigenfunction for µ̃j(n) cannot vanish at two consecutive points.

Moreover, following [22], we introduce the numbers

(6.15) R̃j(n) = lim
ε↓0

iεg(µ̃j(n) + iε, n)−1 ≥ 0,

and

(6.16) σ̃j(n) =

{
lim
ε↓0

h(µ̃j(n) + iε, n) if R̃j(n) > 0

2 if R̃j(n) = 0
.

The actual value of σ̃j(n) if R̃j(n) = 0 is immaterial and is chosen in accordance
with [22]. The above limits exist if µ̃j ∈ σ(H∞

n ) (i.e., if R̃j(n) > 0) and σ̃j(n) is
either ±1 (depending on whether µ̃j is an eigenvalue of H±,n) or in (−1,+1) (if µ̃j

is an eigenvalue of both H±,n and hence also of H). For more details see [22].
The numbers R̃j(n) can be evaluated using (6.9)

(6.17) R̃j(n) =

√
µ̃j(n)− E0

√
µ̃j(n)− E∞

√
µ̃j(n)− E2j−1

√
µ̃j(n)− E2j∏

k∈J\{j}
µ̃j(n)−µk(n)√

µ̃j(n)−E2k−1

√
µ̃j(n)−E2k

.

If µ̃j = µk = E2k = E2j−1 for some k (resp. µ̃j = µk = E2k−1 = E2j) the vanishing
factors µ̃j−µk in the denominator and µ̃j−E2j (resp. µ̃j−E2j−1) in the numerator
have to be omitted. In particular, we want to point out that R̃j(n) depend on Ej , µj

only.
In addition, we require that the singularly continuous spectrum of H∞

n is empty
(the absolutely continuous spectrum being taken care of by the reflectionless condi-
tion). Then it is shown in [22] that the spectral data Ej , j ∈ J∪{0,∞} plus µj(n0),
j ∈ J plus σ̃j(n0) , j ∈ J̃ for one fixed n0 ∈ Z are minimal and uniquely determine
a(n)2, b(n). (To be precise, the class of operators considered here is slightly larger
than the one in [22], however, the same proof applies.) Moreover, necessary and
sufficient conditions for given spectral data to be the spectral data of some Jacobi
operator were derived. Here we want to focus on the reconstruction of a(n)2, b(n)
from given spectral data as above and present an explicit expression of a(n)2, b(n)
in terms of the spectral data.

Our point of departure will be the formulas (use (4.15) and (4.17))

a(n)2m+(z, n)± a(n− 1)2m−(z, n) = ∓z ± b(n)−

{ 1
g(z,n)

h(z,n)
g(z,n)

= −
∞∑

j=0

c±,j(n)
zj+1

,(6.18)
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where the coefficients c±,j(n) are to be determined. Arguing similarly as for (1.4)
one obtains

(6.19) c±,`(n) =
∫

R
λ`
(
a(n)2dρ+,n(λ)± a(n− 1)2dρ−,n(λ)

)
, ` ∈ N0,

where dρ±,n(λ) are the spectral measures of H±,n associated with the vector δn±1.
The evaluation of this integral will now be done for the minus sign. Due to

the reflectionless condition, the integral over the (absolutely) continuous spectrum
is zero (there is no singularly continuous part by assumption) and it remains to
evaluate the pure point part. To do this it suffices to know the jumps of the
measure which are given by the residues of the corresponding Herglotz function.
Evaluating the residues (using (6.18) plus the notation from above) shows

(6.20) c−,`(n) =
∑
j∈J̃

σ̃j(n)R̃j(n)µ̃j(n)`, ` ∈ N0.

Clearly it suffices to sum over all µ̃j(n) ∈ σp(H∞
n ) since for all other terms we have

R̃j(n) = 0.
Next we turn to the coefficients c+,`(n). They can be determined from (cf. (5.5))

(6.21)
1

g(z, n)
= −z exp

(
−

∞∑
`=1

b(`)(n)
`z`

)
,

which implies

c+,−2(n) = 1,

c+,`−2(n) =
1
`

∑̀
j=1

c+,`−j−2(n)b(j)(n), ` ∈ N.(6.22)

Thus c+,`(n) are expressed in terms of Ej , µj(n). Here c+,−2(n) and c+,−1(n) have
been introduced for notational convenience only.

In particular, combining the case ` = 0 with our previous results we obtain

(6.23) a(n− 0
1 )2 =

b(2)(n)− b(n)
4

±
∑
j∈J̃

σ̃j(n)
2

R̃j(n).

Similarly, for ` = 1,

b(n± 1) =
1

a(n− 0
1 )2

(2b(3)(n)− 3b(n)b(2)(n) + b(n)3

12

±
∑
j∈J̃

σ̃j(n)
2

R̃j(n)µ̃j(n)
)
.(6.24)

However, these formulas are only the tip of the iceberg. Combining

(6.25) c±,`(n) = a(n)2m+,`(n)± a(n− 1)2m−,`(n)

with some basic facts from the moment problem we obtain our main result:

Theorem 6.2. Let H be a given bounded reflectionless Jacobi operator. Suppose the
singularly continuous spectrum of H∞

n is empty and the spectral data corresponding
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to H (as above) are given for one fixed n ∈ Z. Then the sequences a2, b can be
expressed explicitly in terms of the spectral data as follows

a(n± k − 0
1 )2 =

C±,n(k + 1)C±,n(k − 1)
C±,n(k)2

,(6.26)

b(n± k) =
D±,n(k)
C±,n(k)

− D±,n(k − 1)
C±,n(k − 1)

, k ∈ N,(6.27)

where C±,n(0) = 1, D±,n(0) = 0,

(6.28) C±,n(k) = det


m±,0(n) m±,1(n) · · · m±,k−1(n)
m±,1(n) m±,2(n) · · · m±,k(n)

...
...

. . .
...

m±,k−1(n) m±,k(n) · · · m±,2k−2(n)

 ,

(6.29)

D±,n(k) = det


m±,0(n) m±,1(n) · · · m±,k−2(n) m±,k(n)
m±,1(n) m±,2(n) · · · m±,k−1(n) m±,k+1(n)

...
...

. . .
...

...
m±,k−1(n) m±,k(n) · · · m±,2k−3(n) m±,2k−1(n)

 ,

and m±,`(n) = c+,`(n)±c−,`(n)

2a(n− 0
1 )

. The quantities a(n)2, a(n−1)2, and c±,`(n) have to

be expressed in terms of the spectral data using (6.23), (6.22), (6.20) and (6.11).

Proof. It remains to show the expressions (6.26) and (6.27) for a(n) and b(n) in
terms of the moments M±,`(n0), ` ∈ N. Both can be found in [1] (first equation on
page 5). However, the equation for b(n) here differs from the one in [1] since we
have performed the integration (see [38], Section 2.5 for details). �

In the special case of periodic Jacobi operators, the formula (6.23) was first given
in [7]. In addition, we get a discrete version of Borg’s theorem.

Corollary 6.3. Let H be a reflectionless Jacobi operator with spectrum consisting
of only one band, that is σ(H) = [E0, E∞]. Then the sequences a(n)2, b(n) are
necessarily constant

(6.30) a(n)2 =
(E∞ − E0)2

16
, b(n) =

E0 + E∞
2

.

The special case where H is periodic seems due to [12] (Proposition 2 on p. 451).
The formula for b(n) also follows directly from (5.12).

Remark 6.4. (i). If J is finite, that is, H has only finitely many spectral gaps,
then {µ̃j(n)}j∈J̃ = {µj(n)}j∈J and we can forget about the additional µ’s.
(ii). The reader might wonder whether a similar procedure for one-dimensional
Schrödinger operators H = − d2

dx2 + V (x) is possible. This is in fact the case but
under more restrictive conditions on V (x). Without going into technical details
we remark that in the continuous case the asymptotic expansions of the Weyl m-
functions contain the information of all derivatives of V at the base point. Hence
if V is assumed real analytic (e.g., finite gap) it can be expressed in terms of its
derivatives using Taylor’s formula.
(iii). Concerning general Jacobi operators we note that Theorem 4.4 indicates that
a(n0)2, γ

βj

` (n0), j = 1, 2, ` ∈ N is solvable for a(n)2, b(n) as well.
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Finally, we turn to general eigenvalues associated with Hβ
n . Associated with each

spectral gap ρj we set

(6.31) λβ
j (n) = sup{E2j−1} ∪ {λ ∈ ρj |γβ(λ, n) < 0} ∈ ρj , j ∈ J.

The strict monotonicity of γβ(λ, n) with respect to λ ∈ ρj , j ∈ J0 ∪ {∞}, that
is,

(6.32)
d

dλ
γβ(λ, n) = (1 + β2)〈δβ

n, (H − λ)−2δβ
n〉, λ ∈ ρj ,

then yields

(6.33)
γβ(λ, n) < 0, λ ∈ (E2j−1, λ

β
j (n)),

γβ(λ, n) > 0, λ ∈ (λβ
j (n), E2j),

j ∈ J.

Since γβ(λ, n) is positive (resp. negative) for a(n)β > 0 (resp. a(n)β < 0) as λ →∞
(resp. λ → −∞), there must be an additional zero λβ

∞ for λ ≥ E∞ (resp. λ ≤ E0).
Summarizing, ξβ(λ, n) is given by

ξβ(λ, n) =
1
2
χ(E0,E∞)(λ) +

1
2

∑
j∈J

(
χ(E2j−1,λβ

j (n))(λ)− χ(λβ
j (n),E2j)

(λ)
)

+ χ(E∞,λβ
∞)(λ), a(n)β > 0(6.34)

and

ξβ(λ, n) = −1
2
χ(E0,E∞)(λ) +

1
2

∑
j∈J

(
χ(E2j−1,λβ

j (n))(λ)− χ(λβ
j (n),E2j)

(λ)
)

− χ(λβ
∞,E0)

(λ), a(n)β < 0.(6.35)

Thus we have for β 6= 0,∞,

(6.36) γβ(z, n) =
z − λβ

∞(n)√
z − E0

√
z − E∞

∏
j∈J

z − λβ
j (n)√

z − E2j−1

√
z − E2j

,

and we remark that the numbers λβ
j (n) are related to the spectrum of Hβ

n as follows

(6.37) σ(Hβ
n ) = σess(H) ∪ {λβ

j (n)}j∈J∪{∞}.

Again we point out that λβ
j (n) is not necessarily an eigenvalue of Hβ

n unless λβ
j (n) 6∈

σess(H).
Evaluation of (5.6) shows

bβ,(`)(n) =
−β

2a(n)

(
E`+1

0 + E`+1
∞ − 2λβ

∞(n)`+1

+
∑
j∈J

(E`+1
2j−1 + E`+1

2j − 2λβ
j (n)`+1)

)
(6.38)

and in the special case ` = 0,

(6.39) a(n) =
1

2(β + β−1)

(
E0 + E∞ − 2λβ

∞(n) +
∑
j∈J

(E2j−1 + E2j − 2λβ
j (n))

)
.
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7. Scattering theory

One important class of Jacobi operators are periodic ones. In this section we
want to consider scattering theory with periodic background operators and apply
the results of Section 5. Even though this problem arises naturally if one considers
an infinite harmonic crystal (with N atoms in the base cell) with impurities, not
too many articles are available on this problem (cf., e.g., [15], [28]). The case with
constant background (i.e., only one atom in the base cell) is treated, for instance in
[9], [27]. For a comprehensive treatment in the case of Schrödinger operators with
fairly arbitrary backgrounds we refer the reader to [23] and the references therein.

We first recall some basic facts from the theory of periodic operators (cf., e.g.,
[7], Appendix B, [30], [32]). Let Hp be a Jacobi operator associated with periodic
sequences ap 6= 0, bp, that is,

(7.1) ap(n + N) = ap(n), bp(n + N) = bp(n),

for some fixed N ∈ N. The spectrum of Hp is purely absolutely continuous and
consists of a finite number of gaps, that is,

(7.2) σ(H) =
N⋃

j=1

[Ep,2j−2, Ep,2j−1], Ep,0 < · · · < Ep,2N−1

Moreover, Floquet theory implies the existence of solutions up,±(z, .) of τpu = zu,
z ∈ C (τp the difference expression corresponding to Hp) satisfying

(7.3) up,±(z, n + N) = m±(z)up,±(z, n)

and hence

(7.4) up,±(z, n) = p±(z, n) exp(±iq(z)n), p±(z, n) = p±(z, n + N),

where m±(z) = exp(±iq(z)N) ∈ C are called Floquet multipliers and q(z) is
called Floquet momentum (m±(z) is not related to the Weyl m-function m±(z, n)).
m±(z) satisfy m+(z)m−(z) = 1, m±(z)2 = 1 for z ∈ {Ep,j}2N−1

j=0 , |m±(z)| = 1
for z ∈ σ(Hp), and |m+(z)| < 1 for z ∈ C\σ(Hp). (This says in particular, that
up,±(z, .) are bounded for z ∈ σ(Hp) and linearly independent for z ∈ C\{Ej}2N−1

j=0 .)
Requiring m±(λ) = limε↓0 m±(λ + iε), λ ∈ σ(Hp) determines m±(z) uniquely.

We are going to investigate scattering theory for the pair (H,Hp), where H is a
Jacobi operator satisfying

(7.5)
∑
n∈Z

|n(a(n)− ap(n))| < ∞,
∑
n∈Z

|n(b(n)− bp(n))| < ∞.

By [37], Theorem 5.1 the requirement (7.5) implies that the essential spectrum of H
is equal to σ(Hp) and purely absolutely continuous. Moreover, the point spectrum
of H is finite and confined to the spectral gaps of Hp, that is, σp(H) ⊂ R\σ(Hp).

As in the proof of [37], Theorem 5.1 one can use the sum equation

(7.6) u±(z, n) =
ap(n− 0

1 )
a(n− 0

1 )
up,±(z, n)∓

∞
n−1∑

m= n+1
−∞

ap(n− 0
1 )

a(n− 0
1 )

K(z, n,m)u±(z,m),
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where

K(z, n,m) =
((τ − τp)up,−(z))(m)up,+(z, n)− up,−(z, n)((τ − τp)up,+(z))(m)

Wp(up,−(z), up,+(z))

=
sp(λ, n,m + 1)

ap(m + 1)
(a(m)− ap(m)) +

sp(λ, n,m)
ap(m)

(b(m)− bp(m))

+
sp(λ, n,m− 1)

ap(m− 1)
(a(m− 1)− ap(m− 1))(7.7)

(Wp(., ..) denotes the Wronskian formed with ap rather than a) to show the existence
of solutions u±(z, .) of τu = zu satisfying

(7.8) lim
n→±∞

exp(∓Im(q(z))n)|u±(z, n)− up,±(z, n)| = 0, z ∈ C.

Since we are most of the time interested in the case z ∈ σ(Hp) we shall normalize
up,±(λ, 0) = 1 for λ ∈ σ(Hp). In what follows we will freely use the notation and
results found in [7], Appendix B. In particular, note that we have up,±(λ) = up,∓(λ),
where the bar denotes complex conjugation. Since one computes

(7.9) W (u±(λ), u±(λ)) = Wp(up,±(λ), up,∓(λ)) = ∓2i sin(q(λ)N)
sp(λ, N)

, λ ∈ σ(Hp)

(sp(λ, n) is the solution of τpu = zu corresponding to the initial condition s(λ, 0) =
0, sp(λ, 1) = 1) we conclude that u±(λ), u±(λ) are linearly independent for λ in the
interior of σ(Hp) (if two bands collide at E, numerator and denominator of (7.9)
both approach zero when λ → E and have a nonzero limit). Hence we might set

(7.10) u±(λ, n) = α(λ)u∓(λ, n) + β∓(λ)u∓(λ, n), λ ∈ σ(Hp),

where

α(λ) =
W (u∓(λ), u±(λ))
W (u∓(λ), u∓(λ))

=
sp(λ, N)

2i sin(q(λ)N)
W (u−(λ), u+(λ)),(7.11)

β±(z) =
W (u∓(λ)), u±(λ)
W (u±(λ), u±(λ))

= ± sp(λ, N)
2i sin(q(λ)N)

W (u∓(λ), u±(λ)).(7.12)

The function α(λ) can be defined for all λ ∈ C\{Ep,j}. Note that we have

(7.13) |α(λ)|2 = 1 + |β±(λ)|2 and β±(λ) = −β∓(λ).

Using (7.6) one can also show
(7.14)

W (u−(λ), u+(λ)) = Wp(up,−(λ), up,+(λ)) +
∑
n∈Z

u±(λ, n)((τ − τp)up,∓(λ))(n)

and

(7.15) W (u∓(λ), u±(λ)) = ∓
∑
n∈Z

u±(λ, n)((τ − τp)up,±(λ))(n).

We now define the scattering matrix

(7.16) S(λ) =
(

T (λ) R−(λ)
R+(λ) T (λ)

)
, λ ∈ σ(Hp)

of the pair (H,Hp), where T (λ) = α(λ)−1 and R±(λ) = α(λ)−1β±(λ). The ma-
trix S(λ) is easily seen to be unitary since by (7.13) |T (λ)|2 + |R±(λ)|2 = 1 and
T (λ)R+(λ) = −T (λ)R−(λ).
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The quantities T (λ) and R±(λ) are called transmission and reflection coefficients
respectively. The following equation further explains this notation:

(7.17) T (λ)u±(λ, n) =

 T (λ)up,±(λ, n), n → ±∞

up,±(λ, n) + R∓(λ)up,∓(λ, n), n → ∓∞
, λ ∈ σ(Hp).

Clearly (6.4) implies R±(λ) = 0, explaining the term reflectionless in the previous
section. The quantities T (λ) and R±(λ) can be expressed in terms of m̃±(z) =
m̃±(z, 0) as follows

T (λ) =
u±(λ, 0)
u∓(λ, 0)

2iIm(m̃±(λ + i0))
m̃−(λ + i0) + m̃+(λ + i0)

,(7.18)

R±(λ) = −u±(λ, 0)
u±(λ, 0)

m̃∓(λ + i0) + m̃±(λ + i0)
m̃−(λ + i0) + m̃+(λ + i0)

, λ ∈ σ(Hp).(7.19)

In addition, one verifies

g(λ + i0, n) =
u−(λ, n)u+(λ, n)
W (u−(λ), u+(λ))

= T (λ)
sp(λ, N)

2i sin(q(λ)N)
u−(λ, n)u+(λ, n)

=
sp(λ, N)

2i sin(q(λ)N)
|u±(λ, n)|2

(
1 + R±(λ)

u±(λ, n)
u±(λ, n)

)
, λ ∈ σ(Hp).(7.20)

Construct the list (Ej)2M+1
j=0 by taking all Ep,j plus two copies of each eigenvalue

of H. We can assume E0 ≤ E1 < E2 ≤ · · · < E2M ≤ E2M+1 and equality holds
if and only if E2j = E2j+1 is an eigenvalue of H. Define the Dirichlet eigenvalues
µj(n) associated with each spectral gap (E2j+1, E2j+2) as in (6.5). Then we infer

ξ(λ, n) =
1
2
χ(E0,E∞)(λ) +

1
2

M∑
j=1

(
χ(E2j−1,µj(n))(λ)− χ(µj(n),E2j)(λ)

)
+ χ(E∞,∞)(λ) +

1
π

arg
(
1 + R±(λ)

u±(λ, n)
u±(λ, n)

)
χσ(Hp)(λ)(7.21)

since we have

(7.22) ξ(λ, n) =
1
2

+
1
π

arg
(
1 + R±(λ)

u±(λ, n)
u±(λ, n)

)
, λ ∈ σ(Hp).

Hence we obtain from (5.6)

b(`)(n) =
1
2

2M+1∑
j=0

E`
j −

M−1∑
j=1

µj(n)`

+
`

π

∫
σ(Hp)

λ`−1 arg
(
1 + R±(λ)

u±(λ, n)
u±(λ, n)

)
dλ,(7.23)

and in the special case ` = 1

b(n) =
1
2

2M+1∑
j=0

Ej −
M−1∑
j=1

µj(n)

+
1
π

∫
σ(Hp)

arg
(
1 + R±(λ)

u±(λ, n)
u±(λ, n)

)
dλ.(7.24)
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The analog of (7.24) in the case of Schrödinger operators with constant background
and no eigenvalues was first derived in [11]. The general case for Schrödinger oper-
ators can be found in [21]. For further trace formulas in the constant background
case, in particular in connection with the Toda lattice, we refer the reader to [8],
[16].

Remark 7.1. If R±(λ) = 0 then H can be obtained from Hp by inserting the
corresponding number of eigenvalues using the double commutation method provided
in [20] since this transformation is easily seen to preserve the reflectionless property.
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Appendix A. Herglotz functions

The results stated in this section can be found in [4] (see also [3]).
We set C± = {z ∈ C| ±Im(z) > 0}. A function F : C+ → C+ is called a Herglotz

function (sometimes also Pick or Nevanlinna–Pick function), if F is analytic in C+.
For convenience one usually defines F on C− by F (z) = F (z).

Herglotz functions can be characterized by

Theorem A.1. F is a Herglotz function if and only if

(A.1) F (z) = a + b z +
∫

R

( 1
λ− z

− λ

1 + λ2

)
dρ(λ), z ∈ C+,

where a = Re
(
F (i)

)
∈ R, b ≥ 0, and ρ is a measure on R which satisfies

∫
R(1 +

λ2)−1dρ(λ) < ∞.

Let ln(z) be defined such that ln(z) = ln |z| + i arg(z), −π < arg(z) ≤ π. Then
ln(z) is holomorphic and Im

(
ln(z)

)
> 0 for z ∈ C+. Hence ln(z) is a Herglotz

function.
The sum of two Herglotz functions is again a Herglotz function, similarly the com-

position of two Herglotz functions is Herglotz. In particular, if F (z) is a Herglotz
function, the same holds for ln

(
F (z)

)
and − 1

F (z) . Thus, using the representation
(A.1) for ln

(
F (z)

)
, we get another representation for F (z).

Theorem A.2. (i). F is a Herglotz function if and only if it has the representation

(A.2) F (z) = exp
{

c +
∫

R

( 1
λ− z

− λ

1 + λ2

)
ξ(λ) dλ

}
, z ∈ C+,

where c = ln |F (i)| ∈ R, ξ ∈ L1(R, (1+λ2)−1dλ) real-valued and ξ is not identically
zero. Moreover,

(A.3) ξ(λ) =
1
π

lim
ε↓0

Im
(

ln
(
F (λ + iε)

))
=

1
π

lim
ε↓0

arg
(
F (λ + iε)

)
for a.e. λ ∈ R, and 0 ≤ ξ(λ) ≤ 1 for a.e. λ ∈ R. Here −π < arg(F (λ + iε)) ≤ π
according to the definition of ln(z).
(ii). Fix n ∈ N and set ξ+(λ) = ξ(λ), ξ−(λ) = 1− ξ(λ). Then

(A.4)
∫

R
|λ|nξ±(λ)dλ < ∞
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if and only if

(A.5)
∫

R
|λ|n dρ(λ) < ∞ and lim

z→i∞
±F (z) = ±a∓

∫
R

λdρ(λ)
1 + λ2

> 0.

(iii). We have

(A.6) F (z) = ±1 +
∫

R

dρ(λ)
λ− z

with
∫

R
dρ(λ) < ∞

if and only if

(A.7) F (z) = ± exp
(
±
∫

R
ξ±(λ)

dλ

λ− z

)
with ξ± ∈ L1(R)

(ξ± from above). In this case

(A.8)
∫

R
dρ(λ) =

∫
R

ξ±(λ)dλ.
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