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Abstract. We investigate the spatial asymptotics of decaying solutions of the

Toda lattice and show that the asymptotic behavior is preserved by the time
evolution. In particular, we show that the leading asymptotic term is time

independent. Moreover, we establish infinite propagation speed for the Toda

lattice. All results are extended to the entire Toda as well as the Kac–van
Moerbeke hierarchy.

1. Introduction

Since the seminal work of Gardner et al. [9] in 1967 it is known that completely
integrable wave equations can be solved by virtue of the inverse scattering trans-
form. In particular, this implies that short-range perturbations of the free solution
remain short-range during the time evolution. This raises the question to what
extend spatial asymptotical properties are preserved during time evolution. In [1],
[2] (see also [13]) Bondareva and Shubin considered the initial value problem for the
Korteweg–de Vries (KdV) equation in the class of initial conditions which have a
prescribed asymptotic expansion in terms of powers of the spatial variable. As part
of their analysis they obtained that the leading term of this asymptotic expansion
is time independent. Inspired by this intriguing fact, the aim of the present paper
is to prove a general result for the Toda equation which contains the analog of this
result plus the known results for short-range perturbation alluded to before as a
special case.

More specifically, recall the Toda lattice [23] (in Flaschka’s variables [8])

d

dt
a(n, t) = a(n, t)

(
b(n+ 1, t)− b(n, t)

)
,

d

dt
b(n, t) = 2

(
a(n, t)2 − a(n− 1, t)2

)
, n ∈ Z.(1.1)

It is a well studied physical model and the prototypical discrete integrable wave
equation. We refer to the monographs [7], [10], [21], [23] or the review articles [14],
[22] for further information.

Then our main result, Theorem 2.5 below, implies for example that

(1.2) a(n, t) =
1

2
+

α

nδ
+O(

1

nδ+ε
), b(n, t) =

β

nδ
+O(

1

nδ+ε
), n→∞,
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for all t ∈ R provided this holds for the initial condition t = 0. Here α, β ∈ R and
δ ≥ 0, 0 < ε ≤ 1.

A few remarks are in order: First of all, it is important to point out that the
error terms will in general grow with t (see the discussion after Theorem 2.5 for a
rough time dependent bound on the error). An analogous result holds for n→ −∞.
Moreover, there is nothing special about the powers n−δ, which can be replaced by
any bounded sequence which, roughly speaking, does decay at most exponentially
and whose difference is asymptotically of lower order. Finally, similar results hold
for the Ablowitz–Ladik equation. However, since the Ablowitz–Ladik system does
not have the same difference structure some modifications are neccessary and will
be given in Michor [17].

2. The Cauchy problem for the Toda lattice

To set the stage let us recall some basic facts for the Toda lattice. We will only
consider bounded solutions and hence require

Hypothesis H.2.1. Suppose a(t), b(t) satisfy

a(t) ∈ `∞(Z,R), b(t) ∈ `∞(Z,R), a(n, t) 6= 0, (n, t) ∈ Z× R,

and let t 7→ (a(t), b(t)) be differentiable in `∞(Z)⊕ `∞(Z).

First of all, to see complete integrability it suffices to find a so-called Lax pair
[16], that is, two operators H(t), P (t) in `2(Z) such that the Lax equation

(2.1)
d

dt
H(t) = P (t)H(t)−H(t)P (t)

is equivalent to (1.1). Here `2(Z) denotes the Hilbert space of square summable
(complex-valued) sequences over Z. One can easily convince oneself that the right
choice is

H(t) = a(t)S+ + a−(t)S− + b(t),

P (t) = a(t)S+ − a−(t)S−,(2.2)

where (S±f)(n) = f±(n) = f(n± 1) are the usual shift operators.
Now the Lax equation (2.1) implies that the operators H(t) for different t ∈ R

are unitarily equivalent (cf. [21, Thm. 12.4]):

Theorem 2.2. Let P (t) be a family of bounded skew-adjoint operators, such that
t 7→ P (t) is differentiable. Then there exists a family of unitary propagators U(t, s)
for P (t), that is,

(2.3)
d

dt
U(t, s) = P (t)U(t, s), U(s, s) = 1l.

Moreover, the Lax equation (2.1) implies

(2.4) H(t) = U(t, s)H(s)U(t, s)−1.

As pointed out in [19], this result immediately implies global existence of bounded
solutions of the Toda lattice as follows: Considering the Banach space of all bounded
real-valued coefficients (a(n), b(n)) (with the sup norm), local existence is a conse-
quence of standard results for differential equations in Banach spaces. Moreover,
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Theorem 2.2 implies that the norm ‖H(t)‖ is constant, which in turn provides a
uniform bound on the coefficients of H(t),

(2.5) ‖a(t)‖∞ + ‖b(t)‖∞ ≤ 2‖H(t)‖ = 2‖H(0)‖.
Hence solutions of the Toda lattice cannot blow up and are global in time (see [21,
Sect. 12.2] for details):

Theorem 2.3. Suppose (a0, b0) ∈ M = `∞(Z,R)⊕ `∞(Z,R). Then there exists a
unique integral curve t 7→ (a(t), b(t)) in C∞(R,M) of the Toda lattice (1.1) such
that (a(0), b(0)) = (a0, b0).

However, more can be shown. In fact, when considering the inverse scattering
transform for the Toda lattice it is desirable to establish existence of solutions
within the Marchenko class, that is, solutions satisfying

(2.6)
∑
n∈Z

(1 + |n|)
(
|a(n, t)− 1

2
|+ |b(n, t)|

)
<∞

for all t ∈ R. That this is indeed true was first established in [20] and rediscovered
in [11] using a different method. Furthermore, the weight 1 + |n| can be replaced
by an (almost) arbitrary weight function w(n).

Lemma 2.4. Suppose a(n, t), b(n, t) is some bounded solution of the Toda lattice
(1.1) satisfying (2.7) for one t0 ∈ R. Then

(2.7)
∑
n∈Z

w(n)
(
|a(n, t)− 1

2
|+ |b(n, t)|

)
<∞,

holds for all t ∈ R, where w(n) ≥ 1 is some weight with supn(|w(n+1)
w(n) |+ |

w(n)
w(n+1) |) <

∞.

Moreover, as was demonstrated in [5] (see also [6]), one can even replace |a(n, t)−
1
2 | + |b(n, t)| by |a(n, t) − ā(n, t)| + |b(n, t) − b̄(n, t)|, where ā(n, t), b̄(n, t) is some
other bounded solution of the Toda lattice. See also [12], where similar results are
shown.

This result shows that the asymptotic behavior as n → ±∞ is preserved to
leading order by the Toda lattice. The purpose of this paper is to show that even
the leading term is preserved (i.e., time independent) by the time evolution.

Set

(2.8) ‖(a, b)‖w,p =


(∑
n∈Z

w(n)
(
|a(n)|p + |b(n)|p

))1/p

, 1 ≤ p <∞

sup
n∈Z

w(n)
(
|a(n)|+ |b(n)|

)
, p =∞.

Then one has the following result:

Theorem 2.5. Let w(n) ≥ 1 be some weight with supn(|w(n+1)
w(n) | + |

w(n)
w(n+1) |) < ∞

and fix some 1 ≤ p ≤ ∞. Suppose a0, b0 and ã0, b̃0 are bounded sequences such that

(2.9) ‖(a+0 − a0, b
+
0 − b0)‖w,p <∞ and ‖(ã0, b̃0)‖w,p <∞.

Suppose a(t), b(t) is the unique solution of the Toda lattice (1.1) corresponding to
the initial conditions

(2.10) a(0) = a0 + ã0 6= 0, b(0) = b0 + b̃0.
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Then this solution is of the form

(2.11) a(t) = a0 + ã(t), b(t) = b0 + b̃(t), where ‖(ã(t), b̃(t))‖w,p <∞
for all t ∈ R.

Proof. The Toda equation (1.1) implies the differential equation

d

dt
ã(n, t) =a(n, t)

(
b̃(n+ 1, t)− b̃(n, t) + b0(n+ 1)− b0(n)

)
,

d

dt
b̃(n, t) =2

((
a(n, t) + a0(n)

)
ã(n, t)−

(
a(n− 1, t) + a0(n− 1)

)
ã(n− 1, t)

+ (a0(n) + a0(n− 1))(a0(n)− a0(n− 1))
)
, n ∈ Z(2.12)

for (ã, b̃). Since our requirement for w(n) implies that the shift operators are con-
tinuous with respect to the norm ‖.‖w,p and the same is true for the multiplication
operator with a bounded sequence, this is an inhomogeneous linear differential
equation in our Banach space which has a unique global solution in this Banach
space (e.g., [4, Sect. 1.4]). Moreover, since w(n) ≥ 1 this solution is bounded and
the corresponding coefficients (a, b) coincide with the solution of the Toda equation
from Theorem 2.3. �

Note that using Gronwall’s inequality one can easily obtain an explicit bound

(2.13) ‖(ã(t), b̃(t))‖w,p ≤ ‖(ã0(t), b̃0(t))‖w,peCt+‖(a+0 −a0, b
+
0 −b0)‖w,p

1

C
(eCt−1),

where C = 4(‖H‖+ ‖a0‖∞) (since ‖a(t)‖∞ ≤ ‖H‖ by (2.5)).
To see the claim (1.2) from the introduction, let

(2.14) a0(n) =
1

2
+

α

nδ
, b0(n) =

β

nδ
, α, β ∈ R, δ > 0,

for n > 0 and a0(n) = b0(n) = 0 for n ≤ 0. Now choose p =∞ with

(2.15) w(n) =

{
(1 + |n|)δ+ε, n > 0,

1, n ≤ 0.

and apply the previous theorem. To see Lemma 2.4, just choose a0(n) = 1
2 , b0(n) =

0 and p = 1.
Finally, let us remark that the requirement that w(n) does not grow faster than

exponentially is important. If it were not present, our result would imply that a
compact perturbation of the free solution a(n, t) = 1

2 , b(n, t) = 0 remains compact
for all time. However, this is wrong except for the free solution. This is well-known
for the KdV equation [24], but we are not aware of a reference for the Toda equation.

Theorem 2.6. Let a(n, t), b(n, t) be a bounded solution of the Toda lattice (1.1).
If the sequences a(n, t) − 1

2 , b(n, t) are zero for all except for a finite number of
n ∈ Z for two different times t0 6= t1, then they vanish identically.

Proof. Without loss we can choose t0 = 0 and suppose that the sequences a(n, 0)− 1
2 ,

b(n, 0) are zero for all except for a finite number of n. Then the associated reflection
coefficients R±(k, 0) (see [21] Chapter 10) are rational functions with respect to k
and by the inverse scattering transform ([21] Theorem 13.8) we have R±(k, t) =
R±(k, 0) exp(±(k − k−1)t), which is not rational for any t 6= 0 unless R±(k, t) ≡ 0.
Hence it must be a pure N soliton solution, which has compact support if and only
if it is trivial, N = 0. �
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For related unique continuation results for the Toda equation see Krüger and
Teschl [15].

3. Extension to the Toda and Kac–van Moerbeke hierarchy

In this section we show that our main result extends to the entire Toda hierar-
chy (which will cover the Kac–van Moerbeke hierarchy as well). To this end, we
introduce the Toda hierarchy using the standard Lax formalism following [3] (see
also [10], [21]).

Choose constants c0 = 1, cj , 1 ≤ j ≤ r, cr+1 = 0, and set

gj(n, t) =

j∑
`=0

cj−`〈δn, H(t)`δn〉,

hj(n, t) = 2a(n, t)

j∑
`=0

cj−`〈δn+1, H(t)`δn〉+ cj+1.

(3.1)

The sequences gj , hj satisfy the recursion relations

g0 = 1, h0 = c1,

2gj+1 − hj − h−j − 2bgj = 0, 0 ≤ j ≤ r,
hj+1 − h−j+1 − 2(a2g+j − (a−)2g−j )− b(hj − h−j ) = 0, 0 ≤ j < r.(3.2)

Introducing

(3.3) P2r+2(t) = −H(t)r+1 +

r∑
j=0

(2a(t)gj(t)S
+ − hj(t))H(t)r−j + gr+1(t),

a straightforward computation shows that the Lax equation

(3.4)
d

dt
H(t)− [P2r+2(t), H(t)] = 0, t ∈ R,

is equivalent to

(3.5) TLr(a(t), b(t)) =

ȧ(t)− a(t)
(
g+r+1(t)− gr+1(t)

)
ḃ(t)−

(
hr+1(t)− h−r+1(t)

)  = 0,

where the dot denotes a derivative with respect to t. Varying r ∈ N0 yields the
Toda hierarchy TLr(a, b) = 0.

All results mentioned in the previous section, Theorem 2.2, Theorem 2.3, and
Lemma 2.4 remain valid for the entire Toda hierarchy (see [21]) and so does our
main result:

Theorem 3.1. Let w(n) ≥ 1 be some weight with supn(|w(n+1)
w(n) | + |

w(n)
w(n+1) |) < ∞

and fix some 1 ≤ p ≤ ∞. Suppose a0, b0 and ã0, b̃0 are bounded sequences such that

(3.6) ‖(a+0 − a0, b
+
0 − b0)‖w,p <∞ and ‖(ã0, b̃0)‖w,p <∞.

Suppose a(t), b(t) is the unique solution of some equation of the Toda hierarchy,
TLr(a, b) = 0, corresponding to the initial conditions

(3.7) a(0) = a0 + ã0 > 0, b(0) = b0 + b̃0.

Then this solution is of the form

(3.8) a(t) = a0 + ã(t), b(t) = b0 + b̃(t), where ‖(ã(t), b̃(t))‖w,p <∞
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for all t ∈ R.

Proof. The proof is almost identical to the one of Theorem 2.5. From TLr(a, b) = 0

one obtains an inhomogeneous differential equation for (ã, b̃). The homogenous

part is a finite sum over shifts of (ã, b̃) and the inhomogeneous part is
(
a0(g+0,r+1 −

g0,r+1(t)), h0,r+1−h−0,r+1

)
, where g0,r+1, h0,r+1 are formed from (a0, b0). Finally, it

is straightforward to show that the ‖.‖w,p norm of the inhomogeneous part is finite
by induction using the recursive definition of gr+1(t) and hr+1(t). �

Similarly we also obtain

Theorem 3.2. Let a(n, t), b(n, t) be a bounded solution of the of some equation of
the Toda hierarchy, TLr(a, b) = 0. If the sequences a(n, t)− 1

2 , b(n, t) are zero for
all except for a finite number of n ∈ Z for two different times t0 6= t1, then they
vanish identically.

Finally since the Kac–van Moerbeke hierarchy can be obtained by setting b = 0
in the odd equations of the Toda hierarchy, KMr(a) = TL2r+1(a, 0) (see [18]), this
last result also coveres the Kac–van Moerbeke hierarchy.
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