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Abstract. We investigate the eigenvalues of perturbed spherical Schrödinger

operators under the assumption that the perturbation q(x) satisfies xq(x) ∈
L1(0, 1). We show that the square roots of eigenvalues are given by the square

roots of the unperturbed eigenvalues up to an decaying error depending on the

behavior of q(x) near x = 0. Furthermore, we provide sets of spectral data
which uniquely determine q(x).

1. Introduction

Given a Schrödinger operator with a rotationally symmetric potential, separation
of variables leads to the spherical Schrödinger operator (e.g., [15], [16])

(1.1) H = − d2

dx2
+
l(l + 1)

x2
+ q(x), l = 0, 1, 2, . . . .

In this note we are interested in the case where the particle is confined to a finite ball
(of radius 1 for notational simplicity — which can always be achieved by scaling x).
This problem has attracted much interest in the past and several results concerning
the eigenvalues of these problems have been derived. The first results are based
on the seminal work by Guillot and Ralston [6] which deals with the case l = 1
and q ∈ L2(0, 1). It was later extended by Carlson [4], [5] and recently by Serier
[14] who extended their results to arbitrary l ∈ N0. However, the assumption
q ∈ L2(0, 1) clearly excludes the physically interesting case of a Coulomb type
singularity q(x) = γ

x + . . . . This case was included for l = 0 in the work of

Savchuk and Shkalikov [12], [13] who considered q ∈ W−1,2(0, 1). Their work was
later extended by Albeverio, Hryniv, and Mykytyuk who first covered the case
q ∈W−1,p(0, 1), p ∈ [1,∞), for l = 0 in [2] and later on extended this to all l ∈ N0

in [3] using the double commutation method. Their condition includes in particular
the case xq(x) ∈ Lp(0, 1), p ∈ [1,∞), which will be the condition we are interested
in here.

Our main motivation for this paper is the paper by Zhornitskaya and Serov [18]
who treat the general case l ≥ −1

2 under the assumption q ∈ L1(0, 1). We want
to extend their results in several ways: First of all we will replace the condition
q(x) ∈ L1(0, 1) by xq(x) ∈ L1(0, 1). Moreover, they show in [18] that the Dirichlet
eigenvalues satisfy

(1.2) µn =
(
jl+ 1

2 ,n
+ εn

)2
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where jl+ 1
2 ,n

= π(n + l
2 ) + O(n−1) are the zeros of the Bessel function Jl+1/2(z)

and the error satisfies |εn| ≤ π
4 (this is claimed for all n but only proven for large

n). We will show that the error satisfies

(1.3) εn = O

(∫ 1

0

y|q(y)|
1 + ny

dy

)
.

(For l = − 1
2 one has to replace q(y) by (1 − log(y))q(y).) In particular, for q ∈

L1(0, 1) we get εn = O(n−1) and for a Coulomb type singularity q(x) = γ
x +L1(0, 1)

we get εn = O(n−1 log(n)).
Based on this information we will give some sets of spectral data which, in

addition to the Dirichlet spectrum, uniquely determine q and l again generalizing
the corresponding result from [18] to the case xq(x) ∈ L1(0, 1). Moreover, in
their construction they use the fact that a certain Wronskian does not vanish.
Unfortunately this Wronskian can indeed vanish (we will give a simple counter
example due to Ralston in Remark 2.7) but we will show that the use of this fact
can be avoided.

2. The spherical Schrödinger operator

Our prototypical example will be the spherical Schrödinger operator given by

(2.1) Hl = − d2

dx2
+
l(l + 1)

x2
, x ∈ (0, 1), l ≥ −1

2
.

Note that we explicitly allow non-integer values of l such that we also cover the
case of arbitrary space dimension n ≥ 2, where l(l + 1) has to be replaced by
l(l + n− 2) + (n− 1)(n− 3)/4 [16, Sec. 17.F].

With the usual boundary conditions at x = 0 (for l ∈ [− 1
2 ,

1
2 )) and x = 1

(2.2) lim
x→0

xl((l + 1)f(x)− xf ′(x)) = 0, f(1) = 0 or f ′(1) + βf(1) = 0,

it gives rise to a self-adjoint operator in the Hilbert space L2(0, 1). Two linearly
independent solutions of

(2.3) − f ′′(x) +
l(l + 1)

x2
f(x) = zf(x)

are given by (see [1, (9.1.49)])

(2.4) φl(z, x) = z−
2l+1

4

√
πx

2
Jl+ 1

2
(
√
zx),

(2.5)

θl(z, x) = −z
2l+1

4

√
πx

2

{
−1

sin((l+ 1
2 )π)

J−l− 1
2
(
√
zx), l + 1

2 ∈ R+ \ N0,

Yl+ 1
2
(
√
zx)− 1

π log(z)Jl+ 1
2
(
√
zx), l + 1

2 ∈ N0,

where Jl+1/2 and Yl+1/2 are the usual Bessel and Neumann functions. All branch
cuts are chosen along the negative real axis unless explicitly stated otherwise. If l
is an integer they of course reduce to spherical Bessel and Neumann functions and
can be expressed in terms of trigonometric functions (cf. e.g. [1, 17] and also [15,
Sect. 10.4]).
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Using the power series for the Bessel and Neumann functions one verifies that
they have the form

(2.6) φl(z, x) = xl+1

√
π

Γ(l + 3
2 )2l+1

fl(zx
2),

(2.7)

θl(z, x) =
Γ(l + 3

2 )2l+1

xl
√
π


1

2l+1gl(zx
2), l + 1

2 ∈ R+ \ N0,

1
2l+1gl(zx

2)− (zx2)l+
1
2 log(x)

Γ(l+ 3
2 )222l+1 fl(zx

2), l + 1
2 ∈ N,

(log(2)− γ)gl(zx
2)− log(x)fl(zx

2), l = − 1
2 ,

where fl(z), gl(z) are entire functions with fl(0) = gl(0) = 1 and γ is the Euler–
Mascheroni constant.

In particular, both functions are entire and according to [1, (9.1.16)] their Wron-
skian is given by

(2.8) W (θl(z), φl(z)) = 1.

The eigenvalues of Hl with a Dirichlet boundary condition at x = 1 are given by
the zeros of the entire function φl(z, 1) which are the squares of the positive zeros
of the Bessel function Jl+1/2 of order l + 1/2:

(2.9) µl,n = (jl+1/2,n)2.

Similarly, the eigenvalues of Hl with the boundary condition f ′(1) + βf(1) = 0
are given by the zeros of the entire function φ′l(z, 1) + βφl(z, 1) and the positive
eigenvalues are the squares of the positive zeros of zJl+3/2(z)− (β+ l+ 1)Jl+1/2(z)
(cf. [17, §3.2]):

(2.10) λβl,n = (jβl+1/2,n)2.

Here the eigenvalues are counted according to λβl,0 < µl,1 < λβl,1 < . . . . In particular,

observe that the first eigenvalue λβl,0 will be zero for β = −(l + 1) and negative for

β < −(l + 1).
Note that asymptotically ([1, (9.5.12)])

√
µl,n = jl+ 1

2 ,n
=

(
n+

l

2

)
π +O(n−1),(2.11) √

λβl,n = jβ
l+ 1

2 ,n
= jl+ 3

2 ,n
+O(n−1) =

(
n+

l + 1

2

)
π +O(n−1)(2.12)

for fixed l.
Now let us look at perturbations

(2.13) H = Hl + q(x)

assuming that the potential q satisfies the following conditions:

Hypothesis 2.1. Let l ∈ [− 1
2 ,∞). Set

(2.14) q̃(x) =

{
|q(x)|, l > − 1

2 ,

(1− log(x))|q(x)|, l = − 1
2 ,

and suppose q is real-valued such that

(2.15) xq̃(x) ∈ L1(0, 1).
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Lemma 2.2. Assume Hypothesis 2.1. Then there is a solution φ(z, x) of Hf = zf
which is entire with respect to z and satisfies the integral equation

(2.16) φ(z, x) = φl(z, x) +

∫ x

0

Gl(z, x, y)q(y)φ(z, y)dy,

where

(2.17) Gl(z, x, y) = φl(z, x)θl(z, y)− φl(z, y)θl(z, x)

is the Green function of the initial value problem. Moreover, this solution satisfies
the estimate

(2.18) |φ(z, x)− φl(z, x)| ≤ C
(

x

1 + |z|1/2x

)l+1

e|Im(z1/2)|x
∫ x

0

yq̃(y)

1 + |z|1/2y
dy.

The derivative is given by

(2.19) φ′(z, x) = φ′l(z, x) +

∫ x

0

∂

∂x
Gl(z, x, y)q(y)φ(z, y)dy

and satisfies the estimate

(2.20) |φ′(z, x)− φ′l(z, x)| ≤ C
(

x

1 + |z|1/2x

)l
e|Im(z1/2)|x

∫ x

0

yq̃(y)

1 + |z|1/2y
dy.

Proof. In a way similar to [6] (see also [14]) this can be shown by iteration using
Lemmas A.1 and A.2. Namely, it is easy to show that φ given by

φ =

∞∑
n=0

φl,n, φl,0 := φl,(2.21)

φl,n+1(z, x) :=

∫ x

0

Gl(z, x, y)q(y)φl,n(z, y)dy, n ∈ N0,(2.22)

satisfies (2.16). The inequalities

|φl,n(z, x)| ≤ Cn+1

n!

(
x

1 + |z|1/2x

)l+1

e|Im(z1/2)|x
(∫ x

0

yq̃(y)

1 + |z|1/2y
dy

)n
,(2.23)

which are necessary to prove the convergence in (2.21), follow by induction from
(2.15) and Lemma A.1. By (2.21) and (2.23), we get inequality (2.18), where q̃ is
given in (2.14). Hear C is to be understood as a generic constant whose value is
different in (2.18) and in Lemma A.1. The properties of φ′ follow in a quite similar
way from (2.21)–(2.23) and Lemma A.2. Finally, using (2.8), (2.16), (2.17), and
(2.19) one can see that Hφ = zφ. �

Using the well-known asymptotic formulas for Bessel function [1, (9.2.1), (9.2.11)]
we obtain

φ(z, x) = z−
l+1
2

(
sin
(√
zx− lπ

2

)
+O

(
|z|−1/2ex|Im(

√
z)|)) ,(2.24)

φ′(z, x) = z−
l
2

(
cos
(√
zx− lπ

2

)
+O

(
|z|−1/2ex|Im(

√
z)|)) ,(2.25)

as z →∞. Next, note that

(2.26) lim
x→0

x−l−1φ(z, x) = lim
x→0

x−l−1φl(z, x) =

√
π

Γ(l + 3
2 )2l+1

.
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Moreover, using d’Alembert’s formula (cf. [8, Sect. XI.6]) a second linearly inde-
pendent solution, satisfying W (θ(z), φ(z)) = 1, is given by

(2.27) θ(z, x) = −φ(z, x)

∫ c

x

dy

φ(z, y)2
.

where c = c(z) has to be chosen such that φ(z, x) does not vanish in (0, c). In
particular it is straightforward to show

Corollary 2.3. Assume Hypothesis 2.1. The differential equation Hf = zf has
two linearly independent solutions, satisfying W (θ(z), φ(z)) = 1, of the form

(2.28) φ(z, x) = xl+1φ̃(z, x), θ(z, x) =

{
x−l

2l+1 θ̃(z, x), l > − 1
2 ,

−x1/2 log(x)θ̃(z, x), l = − 1
2 ,

where φ̃(z, x), θ̃(z, x) ∈ C(C, [0, 1]) are jointly continuous and φ̃(z, 0) = θ̃(z, 0)−1 6=
0.

Unfortunately, since c(z) → 0 as z → ∞, this simple approach to get a second
solution looses control over θ(z, x) as a function of z. In particular, it is not clear
that this second solution can be chosen to be entire as a function of z. We will
construct a second solution with better control with respect to z in Lemma 2.6
below.

In any case, the behavior of the solutions of Hf = zf near x = 0 implies

Theorem 2.4. Assume Hypothesis 2.1. The differential equation H = Hl + q is
limit circle at x = 0 if l ∈ [− 1

2 ,
1
2 ) and limit point at x = 0 for l ≥ 1

2 . In particular,

H associated with the boundary conditions at x = 0 (for l ∈ [− 1
2 ,

1
2 )) and x = 1

(2.29) lim
x→0

xl((l + 1)f(x)− xf ′(x)) = 0, f(1) = 0 or f ′(1) + βf(1) = 0

is self-adjoint. Moreover, the spectrum of H is purely discrete and bounded from
below.

Proof. Since φ(z, x) and θ(z, x) are both in L2(0, 1) if and only if l ∈ [− 1
2 ,

1
2 ) we

deduce that H is limit circle at x if and only if l ∈ [− 1
2 ,

1
2 ). Moreover, in this case

we can choose the boundary condition (cf. [15, Sect 9.2])

lim
x→0

W (φ(0, x), f(x)) =

√
π

Γ(l + 3
2 )2l+1

lim
x→0

xl((l + 1)f(x)− xf ′(x)) = 0,

where we have used (2.26) and the fact that any solution in the maximal domain
of the differential expression satisfies limx→0 x

l+1f(x) = 0.
Furthermore, since φ(z, x) has only a finite number of zeros inside (0, 1), the dif-

ferential expression is nonoscillatory for every z ∈ R, we conclude that the spectrum
is purely discrete and bounded from below (cf. [16, Thm. 14.9]). �

Now we are able to prove our eigenvalue asymptotics using a refined version of
the approach by Pöschel and Trubowitz [11].

Theorem 2.5. Assume Hypothesis 2.1. Then the Dirichlet eigenvalues correspond-
ing to the boundary condition f(1) = 0 satisfy

(2.30) µn =
(
jl+ 1

2 ,n
+ εn

)2



6 A. KOSTENKO, A. SAKHNOVICH, AND G. TESCHL

where

εn = O

(∫ 1

0

yq̃(y)

1 + ny
dy

)
.

Similarly the eigenvalues corresponding to the boundary condition f ′(1)+βf(1) = 0
satisfy

(2.31) λβn =
(
jβ
l+ 1

2 ,n
+ ε̃n

)2

where ε̃n is of the same order as εn.

Proof. We set φl(z) := φl(z, 1) =
√
π/2 z−

2l+1
4 Jl+1/2(

√
z) and φ(z) = φ(z, 1).

Then our estimate (2.18) reads

|φ(z)− φl(z)| ≤ C
e|Im

√
z|

(1 +
√
|z|)l+1

ε(z), ε(z) :=

∫ 1

0

yq̃(y)

1 + |z|1/2y
dy.

Next, using [1, (9.2.1), (9.2.11)], we have

φl(z) = z−
l+1
2

(
sin
(√
z − lπ

2

)
+O

(
|z|−1/2e|Im(z1/2)|)) ,(2.32)

φ̇l(z) =
1

2
z−

l+2
2

(
cos
(√
z − lπ

2

)
+O

(
|z|−1/2e|Im(z1/2)|)) ,(2.33)

where the dot denotes a derivative with respect to z. Hence, taking into account
(2.11), (2.32), and (2.33), we get

(2.34) φl
(
(jl+ 1

2 ,n
)2
)

= 0, φ̇l
(
(jl+ 1

2 ,n
)2
)

=
1

2
(jl+ 1

2 ,n
)−(l+2)

(
(−1)n +O(n−1)

)
.

Furthermore, (2.32)–(2.34) together with the mean value theorem yield (for suffi-
ciently large n)∣∣φl((jl+ 1

2 ,n
± εn)2

)∣∣ ≥ 1

4
(jl+ 1

2 ,n
+ εn)−(l+2)

∣∣(jl+ 1
2 ,n
± εn)2 − j2

l+ 1
2 ,n

∣∣
≥ 1

4

εn|2jl+ 1
2 ,n
− εn|

(jl+ 1
2 ,n

+ εn)l+2
>

1

4

εn
(jl+ 1

2 ,n
+ 1)l+1

= 2C
ε(jl+ 1

2 ,n
)

(jl+ 1
2 ,n

+ 1)l+1
,

where εn = 8Cε(jl+ 1
2 ,n

). Thus

∣∣φ((jl+ 1
2 ,n
± εn)2

)
− φl

(
(jl+ 1

2 ,n
± εn)2

)∣∣ ≤C ε(jl+ 1
2 ,n
− εn)

(1 + jl+ 1
2 ,n
− εn)l+1

<
∣∣φl((jl+ 1

2 ,n
± εn)2

)∣∣.
This shows that φ(z) has different signs at (jl+ 1

2 ,n
− εn)2 and (jl+ 1

2 ,n
+ εn)2, and

thus there is at least one zero in between.
Let us show that φ has no other zeros. Since | sin z| > 1

4e|Imz| if |z− πn| ≥ π
4 for

all n ∈ Z (see for instance [11, Lemma 2.1]), there exists a N ∈ N such that

|φl(z)| ≥ Cl
e|Im

√
z|

|z| l+1
2

, |z| ≥ N,
∣∣√z − πn− lπ

2

∣∣ ≥ π

4
, n ≥ N,

with some positive constant Cl > 0 independent of z (this estimate can also be
deduced from [9, Lemma 22.1]). Since ε(z) → 0 as |z| → ∞, there exists K > 0
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such that ε(z) < (ClC)−1 if |z| > K. Thus, on contours |z| = (K +N + l+1
2 )π and∣∣√z − πn− lπ

2

∣∣ = π
4 , n ≥ K +N + 1, we obtain

|φ(z)− φl(z)| < |φl(z)|.

By Rouché’s theorem, φ(z) has as many roots as φl(z) in each of the bounded
regions and the remaining unbounded region. Since all roots are simple, we are
done.

An analogous argument can be given for the general eigenvalues based on zeros
of

φβl (z) = φ′l(z, 1) + βφl(z, 1) =

√
π

2
z−

2l+1
4

(
(β + l + 1)Jl+ 1

2
(
√
z)−

√
zJl+ 3

2
(
√
z)
)
.

�

Similar results for q ∈ L2 were given by Guillot and Ralston [6], Carlson [4],
Serier [14]. Note that the case xq(x) ∈ Lp for l ∈ N is covered in [2, 12, 13] for l = 0
and in [3] for l ∈ N0, where the direct and inverse spectral problems have been
effectively studied for operators with distributional potentials q ∈W−1,p(0, 1).

Finally we come to uniqueness results for the inverse problem. Considering the
solution

(2.35) ψ∞l (z, x) = θl(z, 1)φl(z, x)− φl(z, 1)θl(z, x) = Gl(z, x, 1)

satisfying the initial conditions (ψ∞l (z, 1), (ψ∞l (z, 1))′) = (0, 1) and

ψβl (z, x) = −
(
βθl(z, 1) + θ′l(z, 1)

)
φl(z, x) +

(
βφl(z, 1) + φ′l(z, 1)

)
θl(z, x)

= −βGl(z, x, 1) +
∂Gl
∂y

(z, x, 1)(2.36)

satisfying the initial conditions (ψβl (z, 1), (ψβl (z, 1))′) = (1,−β), we obtain the ana-
log of Lemma 2.2.

Lemma 2.6. Assume Hypothesis 2.1. Then there is a solution ψβ(z, x) of Hu = zu
which is entire with respect to z and satisfies the integral equation

(2.37) ψβ(z, x) = ψβl (z, x)−
∫ 1

x

Gl(z, x, y)q(y)ψβ(z, y)dy.

Moreover, for l > −1/2 this solution satisfies the estimate

|ψ∞(z, x)− ψ∞l (z, x)| ≤ C
(

1 + |z|1/2x
x+ |z|1/2x

)l
e|Im(z1/2)|(1−x)

1 + |z|1/2

∫ 1

x

yq̃(y)

1 + |z|1/2y
dy,

(2.38)

|ψβ(z, x)− ψβl (z, x)| ≤ C
(

1 + |z|1/2x
x+ |z|1/2x

)l
e|Im(z1/2)|(1−x)

∫ 1

x

yq̃(y)

1 + |z|1/2y
dy.(2.39)

In the case l = − 1
2 an additional factor (1− log(x)) appears in the right-hand sides

of (2.38) and (2.39).
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Proof. Suppose β 6=∞ first. In a way quite similar to the proof of Lemma 2.2 one
can show that the solution ψβ admits representation

ψβ =

∞∑
n=0

ψβl,n, ψβl,0 := ψβl ,(2.40)

ψβl,n+1(z, x) := −
∫ 1

x

Gl(z, x, y)q(y)ψβl,n(z, y)dy (n ∈ N0),(2.41)

where the functions ψβl,n satisfy inequalities

|ψβl,n(z, x)| ≤ Cn+1

n!

(
1 + |z|1/2x
x+ |z|1/2x

)l
e|Im(z1/2)|(1−x)

(∫ 1

x

yq̃(y)

1 + |z|1/2y
dy

)n
(2.42)

for l > − 1
2 and inequalities

|ψβl,n(z, x)| ≤ Cn+1

n!
(1− log(x))

(
x+ |z|1/2x
1 + |z|1/2x

)1/2

(2.43)

× e|Im(z1/2)|(1−x)

(∫ 1

x

yq̃(y)

1 + |z|1/2y
dy

)n
for l = − 1

2 . Indeed, the inequality (2.42) for n = 0 and for some C > 0 follows
from (2.36), (A.22), and the fact that according to (2.17) we have Gl(z, x, y) =
−Gl(z, y, x). Next, we use (2.41) and (A.2) to prove (2.42) for all n by induction.
By (2.40)–(2.42) we get (2.37) and (2.39). Finally, according to (2.37) we have

Hψβ = zψβ and (ψβ(z, 1), (ψβ(z, 1))′) = (ψβl (z, 1), (ψβl (z, 1))′) = (1,−β).
The inequality (2.43) for n = 0 follows from (2.36) and (A.23), and the remaining

part of the proof for l = −1/2 is analogous to the case l > −1/2.
The case β =∞ can be treated in a similar way, it suffices to note that

(2.44) |ψ∞l,0(z, x)| ≤ C

1 + |z|1/2

(
1 + |z|1/2x
x+ |z|1/2x

)l
e|Im(z1/2)|(1−x)

for l > − 1
2 and

(2.45) |ψ∞−1/2,0(z, x)| ≤ (1− log(x))
C

1 + |z|1/2

(
x+ |z|1/2x
1 + |z|1/2x

)1/2

e|Im(z1/2)|(1−x)

for l = 1
2 . �

Remark 2.7. In [18] a second solution ψ̃(z, x) is constructed by considering

(2.46) ψ̃(z, x) = θl(z, x)−
∫ 1

x

Gl(z, x, y)q(y)ψ̃(z, y)dy.

It is claimed to be linearly independent for all z and a reference is made to [6],
where the corresponding claim for l = 1 was made. However, this is wrong as the
following counter example shows (a similar counter example was communicated to
us by Ralston; see also [7]):

The function ψ̃ satisfies (ψ̃(z, 1), ψ̃′(z, 1)) = (θl(z, 1), θ′l(z, 1)). Let yl+1/2,n be a
zero of θl(1, z) and chose q(x) such that yl+1/2,n is an Dirichlet eigenvalue of H.

Then W (ψ̃(yl+1/2,n), φ(yl+1/2,n)) = 0.

Now we come to our uniqueness results:
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Theorem 2.8. Assume Hypothesis 2.1. The following set of spectral data deter-
mine q and l uniquely:

(i) Two sets of eigenvalues λαn and λβn for α 6= β (including the case λ∞n = µn).
(ii) The Dirichlet eigenvalues {µn}∞n=1 together with the norming constants

γ−1
n =

1

φ′(µn, 1)2

∫ 1

0

φ(µn, x)2dx = − φ̇(µn, 1)

φ′(µn, 1)
,

or the set of eigenvalues {λβn}∞n=0 together with the norming constants

(γβn)−1 =
1

φβ(λβn)2

∫ 1

0

φ(λβn, x)2dx =
φ̇β(λβn)

(1 + β2)φ(λβn, 1)
,

where φβ(z) := φ′(z, 1) + βφ(z, 1).
(iii) The eigenvalues λβn together with φ(λβn, 1) if β 6=∞ or φ′(λβn, 1) if β 6= 0.

Here the dot and prime denote derivatives with respect to z and x, respectively.

Proof. (i) To see the first claim recall the Weyl m-function of H at the regular
endpoint x = 1, which is given by

mβ(z) =
φ(z, 1)− βφ′(z, 1)

φ′(z, 1) + βφ(z, 1)

and consider

m̃(z) = mβ(z)− αβ + 1

β − α
=

1 + β2

α− β
· φ(z, 1) + αφ′(z, 1)

φ′(z, 1) + βφ(z, 1)
.

Then the well-known asymptotics [15]

mβ(z) =

{
−
√
−z +O(1), β =∞,

β + o(1), β ∈ R,

show that m̃(z) is uniquely determined by its zeros and poles via its Hadamard
product. To complete the proof of (i) it suffices to note that the Weyl function
mβ(z) uniquely determines the potential q and the constants l and β (see [10]).

(ii) Similarly, the Herglotz function mβ(z) is uniquely determined by its poles
λβn and residues −γβn .

(iii) Let β 6=∞ and φ(λβn, 1) be given. Clearly l can be read off by the asymptotics

of λβn. So let us consider H and Ĥ associated with q and q̂, but with the same l.
Now, following [11, Chapter 3] consider the meromorphic function

(2.47)

(
φ(z, x)− φ̂(z, x)

)(
ψβ(z, x)− ψ̂β(z, x)

)
φβ(z)

.

The only poles are at the eigenvalues λβn and the residues are given by(
φ(λβn, x)− φ̂(λβn, x)

)2
φ(λβn, 1)φ̇β(λβn)

≥ 0,



10 A. KOSTENKO, A. SAKHNOVICH, AND G. TESCHL

where we have used φ(λβn, x) = φ(λβn, 1)ψβ(λβn, x) together with our assumption

φ(λβn, 1) = φ̂(λβn, 1). Using our estimates (2.18), (2.20), and (2.39), we have∣∣φ(z, x)− φ̂(z, x)
∣∣ ≤ C ( x

1 + |z|1/2x

)l+1

e|Im(z1/2)|x
∫ x

0

y(q̃(y) + ˜̂q(y))

1 + |z|1/2y
dy,

∣∣ψβ(z, x)− ψ̂β(z, x)
∣∣ ≤ C ( 1 + |z|1/2x

x+ |z|1/2x

)l
e|Im(z1/2)|(1−x)

∫ 1

x

y(q̃(y) + ˜̂q(y))

1 + |z|1/2y
dy.

Further, together with the estimate from the proof of Theorem 2.5, we get∣∣φβ(z)
∣∣ ≥ ∣∣φβl (z)

∣∣− ∣∣φβ(z)− φβl (z)
∣∣ > 1

2

∣∣φβl (z)
∣∣ ≥ Cl e|Im(z)1/2|

|z| l2

for |z| = rn =
(
n+ (l+ 1)/2

)2
π2 with n sufficiently large. Observing that for every

x ∈ (0, 1)∫ 1

x

y(q̃(y) + ˜̂q(y))

1 + |z|1/2y
dy ≤ 1

1 + |z|1/2x

∫ 1

x

y(q̃(y) + ˜̂q(y))dy = O(|z|−1/2)

we see that the function (2.47) is o(r−1
n ) along these circles and thus Lemma 3.2

from [11] shows that the residues are all zero. Hence φ(λβ1 , x) = φ̂(λβ1 , x) implying
q = q̂.

If β 6= 0 and the set φ′(λβn, 1) is given, then the proof remains essentially the same.
The only difference is that we now use φ(λβn, x) = −β−1φ′(λβn, 1)ψβ(λβn, x) if β 6=∞.
In the case β = ∞ we need to use φβ(z) = φ′(z, 1), φ(λβn, x) = φ′(λβn, 1)ψβ(λβn, x),
and the estimate (2.38) instead of (2.39). �

Appendix A. Some estimates for the spherical Schrödinger equation

In this appendix we want to provide some estimates for the solutions of the
spherical Schrödinger equation which are crucial for the main body of our paper.
These results are due to Guillot and Ralston [6] in the case l = 1. The analog
estimates for arbitrary l ≥ − 1

2 have been stated in [18] without proof. However,

the estimate (39) from [18] is clearly wrong in the case l = − 1
2 . The case of integer

l is given in [14]. Since the proof in [14] (and [6]) uses the explicit representation of
spherical Bessel functions in terms of trigonometric functions we have decided to
provide the details for the general case in this appendix. We assume that x ∈ (0, 1).

Lemma A.1. For l > − 1
2 the following estimates hold:

|φl(z, x)| ≤ C
(

x

1 + |z|1/2x

)l+1

e|Im(z1/2)|x,(A.1)

|Gl(z, x, y)| ≤ C
(

x

1 + |z|1/2x

)l+1(
1 + |z|1/2y

y

)l
e|Im(z1/2)|(x−y), y ≤ x.(A.2)

For the case l = − 1
2 formula (A.1) remains valid and one has to replace (A.2) by

|G−1/2(z, x, y)| ≤C
(

xy

(1 + |z|1/2x)(1 + |z|1/2y)

)1/2

(A.3)

× e|Im(z1/2)|(x−y)(1− log(y)), y ≤ x.
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Proof. First of all recall (2.4), (2.5), and (2.17), and note that for all l ≥ − 1
2

φl(z, x) =

√
πx

2
z−

2l+1
4 Jl+ 1

2
(
√
zx),(A.4)

Gl(z, x, y) = −π
2

√
xy
(
Jl+ 1

2
(
√
zx)Yl+ 1

2
(
√
zy)− Jl+ 1

2
(
√
zy)Yl+ 1

2
(
√
zx)
)

= −πi

4

√
xy
(
H

(1)

l+ 1
2

(
√
zx)H

(2)

l+ 1
2

(
√
zy)−H(1)

l+ 1
2

(
√
zy)H

(2)

l+ 1
2

(
√
zx)
)
.(A.5)

Here H
(1)
l+1/2(z) = Jl+1/2(z) + iYl+1/2(z) and H

(2)
l+1/2(z) = Jl+1/2(z)− iYl+1/2(z) are

the Hankel functions of the first and second kind, respectively. Moreover, recall
Yl+1/2(z) = sin((l + 1/2)π)−1(cos((l + 1/2)π)Jl+1/2(z)− J−l−1/2(z)) ([1, (9.1.2)]).

The claimed estimates (A.1) and (A.2) can be shown by combining the following
asymptotic expansions which yield estimates for |z| ≥ 1 and |z| ≤ 1, respectively.
In fact, we have [1, (9.2.7)-(9.2.10)]

H
(1)

l+ 1
2

(z) =

√
2

πz
ei(z−(l+1)π/2)

(
1 +O(1/z)

)
, −π < arg(z) < 2π,(A.6)

H
(2)

l+ 1
2

(z) =

√
2

πz
e−i(z−(l+1)π/2)

(
1 +O(1/z)

)
, −2π < arg(z) < π,(A.7)

for z →∞ with the error uniform strictly inside the indicated sectors ([17, (7.2.1)–
(7.2.2)]). Using the power series for the Bessel and Neumann functions [1, (9.1.10)–
(9.1.11)] we get

Jl+ 1
2
(z) =

1

Γ(l + 3
2 )

(z
2

)l+ 1
2

(1 +O(z)),(A.8)

Yl+ 1
2
(z) =

{
−Γ(l+ 1

2 )

π

(
z
2

)−l− 1
2 (1 +O(zmin(1,2l+1))), l + 1

2 > 0,
2
π log(z) +O(1), l = − 1

2 ,
(A.9)

for z → 0. Thus, (A.1) immediately follows from (A.6), (A.7), and (A.8). The
estimate (A.2) can be also deduced from (A.6)–(A.9). For instance, using (A.8),
(A.9), and the fact that the function x 7→ x(1 + x)−1 is increasing, we get for
|η| ≤ |ξ| ≤ 1∣∣∣Jl+ 1

2
(ξ)Yl+ 1

2
(η)− Jl+ 1

2
(η)Yl+ 1

2
(ξ)
∣∣∣

≤ C

((
|ξ|

1 + |ξ|

)l+ 1
2
(
|η|

1 + |η|

)−l− 1
2

+

(
|η|

1 + |η|

)l+ 1
2
(
|ξ|

1 + |ξ|

)−l− 1
2

)

≤ 2C

(
|ξ|

1 + |ξ|

)l+ 1
2
(
|η|

1 + |η|

)−l− 1
2

.

Similarly one handles the cases |η| ≤ 1 ≤ |ξ| and 1 ≤ |η| ≤ |ξ| to obtain the desired
result (for the last one use the expression in terms of Hankel functions).

The estimate (A.3) requires some further considerations, and we also split this
case into three subcases: a) sufficiently large values of |z|1/2y; b) the values of
|z|1/2x are sufficiently large and the values of |z|1/2y are bounded; c) |z|1/2x is
bounded. In all the subcases it is assumed that y ≤ x.
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To prove (A.3) for the subcase of sufficiently large values of |z|1/2y one can use
again the equality (A.5):

G−1/2(z, x, y) = −πi

4

√
xy
(
H

(1)
0 (
√
zx)H

(2)
0 (
√
zy)−H(1)

0 (
√
zy)H

(2)
0 (
√
zx)
)
.(A.10)

Taking into account (A.6) and (A.7) we easily derive (A.3) in the subcase a).
Assume now that the values of |z|1/2y are bounded. Note that (see (2.5), (2.17))

G−1/2(z, x, y) = φ− 1
2
(z, x)θ− 1

2
(z, y)− φ− 1

2
(z, y)θ− 1

2
(z, x),

where

θ− 1
2
(z, x) =

√
πx

2

(
Y0(
√
zx)− 1

π
log(z)J0(

√
zx)

)
.

Using the integral representations [1, (9.1.18) and (9.1.19)], we have

θ− 1
2
(z, x) = π−3/2

√
2x

∫ π

0

cos
(√
zx cos θ

){
γ + log(x) + log(2 sin2 θ)

}
dθ.(A.11)

It is immediate from (A.11) that∣∣θ− 1
2
(z, x)

∣∣ ≤ C1

√
x(1− log(x))e|Im(z1/2)|x.(A.12)

Further, since the values of |z|1/2y are bounded, by (A.1) and (A.12) we derive

∣∣φ− 1
2
(z, x)θ− 1

2
(z, y)

∣∣ ≤ C2

(
xy

1 + |z|1/2x

)1/2

(1− log(y))e|Im(z1/2)|x(A.13)

≤ C3

(
xy

(1 + |z|1/2x)(1 + |z|1/2y)

)1/2

e|Im(z1/2)|(x−y)(1− log(y)).

For large values of |z|1/2x, Hankel’s asymptotic expansions [1, (9.2.5) and (9.2.6)]
yield: ∣∣θ− 1

2
(z, x)

∣∣ ≤ C4|z|−1/4(1 + log(|z|))e|Im(z1/2)|x.(A.14)

Since |z|1/2x is sufficiently large, the values |z| and log(|z|) are also large. Moreover,
|z|1/2y is bounded and hence log(|z|)+2 log(y) is bounded from above. Thus, (A.14)
can be rewritten in the form∣∣θ− 1

2
(z, x)

∣∣ ≤ C5

(
x

1 + |z|1/2x

)1/2

e|Im(z1/2)|x(1− log(y)).(A.15)

It follows from (A.1) and (A.15) that

∣∣θ− 1
2
(z, x)φ− 1

2
(z, y)

∣∣ ≤C6

(
xy

(1 + |z|1/2x)(1 + |z|1/2y)

)1/2

(A.16)

× e|Im(z1/2)|(x−y)(1− log(y)).

Inequalities (A.13) and (A.16) yield (A.3) for the subcase b).
Finally, if |z|1/2x is bounded, according to (A.1) and (A.12) we have∣∣θ− 1

2
(z, x)φ− 1

2
(z, y)

∣∣ ≤ C7
√
xy(1− log(x)) ≤ C7

√
xy(1− log(y)).(A.17)

Inequalities (A.13) and (A.17) imply (A.3) for the subcase c). �
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To consider ∂
∂xφl(z, x) and ∂

∂xGl(z, x) one should simply use the asymptotic
relations [1, (9.2.11)–(9.2.16)] on the derivatives of the special functions, in addition
to the relations [1, (9.2.5)–(9.2.10)] which were used in the proof of the previous
lemma. In particular, for sufficiently large values of |z| we have∣∣∣∣ ∂∂z Jl+ 1

2
(z)

∣∣∣∣+

∣∣∣∣ ∂∂z Yl+ 1
2
(z)

∣∣∣∣ ≤ C8

√
2

πz
e|Im(z)|,(A.18)

and, as z →∞, we get

∂

∂z
H

(1)

l+ 1
2

(z) = i

√
2

πz
ei(z−(l+1)π/2)

(
1 +O(1/z)

)
, −π < arg(z) < 2π,(A.19)

∂

∂z
H

(2)

l+ 1
2

(z) = −i
√

2

πz
e−i(z−(l+1)π/2)

(
1 +O(1/z)

)
, −2π < arg(z) < π.(A.20)

Lemma A.2. For l > − 1
2 the following estimates hold:∣∣∣∣ ∂∂xφl(z, x)

∣∣∣∣ ≤ C ( x

1 + |z|1/2x

)l
e|Im(z1/2)|x,(A.21)

∣∣∣∣ ∂∂xGl(z, x, y)

∣∣∣∣ ≤ C ( x

1 + |z|1/2x

)l(
1 + |z|1/2y

y

)l
e|Im(z1/2)|(x−y), y ≤ x.

(A.22)

For l = −1/2 formula (A.21) remains true and one has to replace (A.22) by

∣∣∣∣ ∂∂xG−1/2(z, x, y)

∣∣∣∣ ≤ C (y + |z|1/2xy
x+ |z|1/2xy

)1/2

e|Im(z1/2)|(x−y)(1− log(y)), y ≤ x.

(A.23)

Proof. The proof is similar to the proof of Lemma A.1 and we shall prove here only
formula (A.23). For the subcase of sufficiently large values of |z|1/2y we use the
equality (A.10). Therefore, in view of (A.6), (A.7), (A.19), and (A.20) we derive

|G−1/2(z, x, y)| ≤ C9e|Im(z1/2)|(x−y), y ≤ x,(A.24)

and (A.23) is immediate.
When the values of |z|1/2y are bounded, formulas (A.12) and (A.21) imply the

inequality

∣∣∣∣ ∂∂xφ− 1
2
(z, x)θ− 1

2
(z, y)

∣∣∣∣ ≤ C10

(
y + |z|1/2xy
x+ |z|1/2xy

)1/2

e|Im(z1/2)|(x−y)(1− log(y)),

(A.25)

which we shall use instead of (A.13). For the subcase of sufficiently large values of
|z|1/2x and bounded values of |z|1/2y, it follows from (2.5), (A.15), and (A.18) that∣∣∣∣ ∂∂xθ− 1

2
(z, x)

∣∣∣∣ ≤ C11

(
1 + |z|1/2x

x

)1/2

e|Im(z1/2)|x(1− log(y)).(A.26)

Taking into account (A.1), (A.26), and boundedness of |z|1/2y we have

∣∣∣∣ ∂∂xθ− 1
2
(z, x)φ− 1

2
(z, y)

∣∣∣∣ ≤ C12

(
y + |z|1/2xy
x+ |z|1/2xy)

)1/2

e|Im(z1/2)|(x−y)(1− log(y)).

(A.27)
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Inequalities (A.25) and (A.27) yield (A.23) for the subcase of sufficiently large
values of |z|1/2x and bounded values of |z|1/2y.

Finally, if the values of |z|1/2x are bounded, formula (A.11) implies

∣∣∣∣ ∂∂xθ− 1
2
(z, x)

∣∣∣∣ ≤ C13x
−1/2(1− log(x)),(A.28)

and (A.27) follows from (A.1) and (A.28). By (A.25) and (A.27) the inequality
(A.23) holds again. �
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