
ALGEBRO-GEOMETRIC CONSTRAINTS ON SOLITONS WITH

RESPECT TO QUASI-PERIODIC BACKGROUNDS

GERALD TESCHL

Abstract. We investigate the algebraic conditions that have to be satisfied

by the scattering data of short-range perturbations of quasi-periodic finite-gap
Jacobi operators in order to allow solvability of the inverse scattering problem.

Our main result provides a Poisson-Jensen-type formula for the transmission

coefficient in terms of Abelian integrals on the underlying hyperelliptic Rie-
mann surface and an explicit condition for its single-valuedness. In addition,

we establish trace formulas which relate the scattering data to the conserved

quantities in this case.

1. Introduction

Solitons are a key feature of completely integrable wave equations and there are
usually two ways of constructing the N -soliton solution with to respect to a given
background solution. Both are based on fact that the underlying Lax operator is
reflectionless with respect to the background, but has N additional eigenvalues.
One is via the inverse scattering transform by choosing an arbitrary number of
eigenvalues (plus corresponding norming constants) and setting the reflection coef-
ficient equal to zero. The other is by inserting the eigenvalues using commutation
methods. This works fine in case of a constant background solution and the eigen-
values can be chosen arbitrarily. However, in case of a (quasi-)periodic background
solution it turns out that the eigenvalues need to satisfy certain restrictions. This
was probably first observed in [14], where it was proven that adding one eigenvalue
to the two-gap Weierstrass solution of the Korteweg-de Vries (KdV) equation pre-
serves the asymptotics on one side, but gives a phase shift on the other side. The
general case was solved in [8]. In particular, this shows that the eigenvalues and
reflection coefficients can no longer be prescribed independently if one wants to stay
in the class of short-range perturbations of a given quasi-periodic background. It
turns out that these constraints are related to the fact that the resolvent set of the
background operator is not simply connected in the (quasi-)periodic case. In this
case we have to reconstruct the transmission coefficient from its boundary values
on this non simply connected domain which is only possible in terms of multivalued
functions in general, see [25]. Hence one needs to impose algebraic constraints on
the scattering data to obtain a single-valued transmission coefficient. It seems that
this was first emphasized in [4].

The aim of the present paper is to make this reconstruction explicit in terms of
Abelian integrals on the underlying hyperelliptic Riemann surface for the case of

1991 Mathematics Subject Classification. Primary 30E20, 30F30; Secondary 34L25, 47B36.
Key words and phrases. Jacobi operators, scattering theory, periodic, Abelian integrals.
Bull. London Math. Soc. 39-4, 677–684 (2007).

Supported by Austrian Science Fund (FWF) under Grant No. P17762.

1



2 G. TESCHL

Jacobi operators (respectively the Toda equation). However, similar results apply to
one dimensional Schrödinger operators (respectively the KdV equation). This will
then allow us to derive an explicit condition for single-valuedness and to establish
trace formulas which relate the scattering data to conserved quantities for the Toda
hierarchy. In particular, these trace formulas are extensions of well-known sum rules
(see e.g. [3], [11], [15], [17], [18], [26]) which have attracted an enormous amount of
interest recently.

To achieve this aim we will first compute the Green function, harmonic measure,
and Blaschke factors for our domain. This case seems to be hard to find in the
literature; the only example we could find is the elliptic case in the book by Akhiezer
[1]. See however also [21], [22], where similar questions are investigated.

2. Notation

To set the stage, let M be the Riemann surface associated with the function

R
1/2
2g+2(z), where

(2.1) R2g+2(z) =

2g+1∏
j=0

(z − Ej), E0 < E1 < · · · < E2g+1,

g ∈ N. M is a compact, hyperelliptic Riemann surface of genus g. We will choose

R
1/2
2g+2(z) as the fixed branch

(2.2) R
1/2
2g+2(z) = −

2g+1∏
j=0

√
z − Ej ,

where
√
. is the standard root with branch cut along (−∞, 0).

A point on M is denoted by p = (z,±R1/2
2g+2(z)) = (z,±), z ∈ C. The two points

at infinity are denoted by p = ∞±. We use π(p) = z for the projection onto the
extended complex plane C ∪ {∞}. The points {(Ej , 0), 0 ≤ j ≤ 2g + 1} ⊆ M are
called branch points and the sets

(2.3) Π± = {(z,±R1/2
2g+2(z)) | z ∈ C\Σ} ⊂M, Σ =

g⋃
j=0

[E2j , E2j+1],

are called upper and lower sheet, respectively. Note that the boundary of Π±
consists of two copies of Σ corresponding to the two limits from the upper and
lower half plane.

Let {aj , bj}gj=1 be loops on the Riemann surface M representing the canonical

generators of the fundamental group π1(M). We require aj to surround the points
E2j−1, E2j (thereby changing sheets twice) and bj to surround E0, E2j−1 counter-
clockwise on the upper sheet, with pairwise intersection indices given by

(2.4) aj ◦ ak = bj ◦ bk = 0, aj ◦ bk = δjk, 1 ≤ j, k ≤ g.

The corresponding canonical basis {ζj}gj=1 for the space of holomorphic differentials
can be constructed by

(2.5) ζ =

g∑
j=1

c(j)
πj−1dπ

R
1/2
2g+2

,
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where the constants c(.) are given by

cj(k) = C−1
jk , Cjk =

∫
ak

πj−1dπ

R
1/2
2g+2

= 2

∫ E2k

E2k−1

zj−1dz

R
1/2
2g+2(z)

∈ R.

The differentials fulfill

(2.6)

∫
aj

ζk = δj,k,

∫
bj

ζk = τj,k, τj,k = τk,j , 1 ≤ j, k ≤ g.

For further information we refer to [6], [20, App. A].

3. Algebro-geometric constraints

We are motivated by scattering theory for the pair (H,Hq) of two Jacobi opera-
tors, where H is a short-range perturbation of a quasi-periodic finite-gap operator
Hq associated with the Riemann surface introduced in the previous section (see [20,
Ch. 9]). One key quantity is the transmission coefficient T (z). It is meromorphic
in Π+ with finitely many simple poles in Π+ ∩R precisely at the eigenvalues of the
perturbed operator H. Since

(3.1) |T (λ)|2 + |R±(λ)|2 = 1, λ ∈ Σ,

it can be reconstructed from the reflection coefficients R±(λ) once we show how
to reconstruct T (z) from its boundary values |T (λ)|2 = 1 − |R±(λ)|2, λ ∈ ∂Π+.
Rather than enter into more details here, see [4] (respectively [24]), we will focus
on the reconstruction procedure only.

We begin by deriving a formula for the Green function of Π+:

Lemma 3.1. The Green function of Π+ with pole at z0 is given by

(3.2) g(z, z0) = −Re

∫ p

E0

ωp0p̃0 , p = (z,+), p0 = (z0,+),

where p̃0 = p0
∗ (i.e., the complex conjugate on the other sheet) and ωpq is the

normalized Abelian differential of the third kind with poles at p and q.

Proof. First of all observe ωp0p̃0 = ωp0E0 − ωp̃0E0 and set

(3.3) ωp0E0
= r±(z, z0)dz

on Π±. Since ωp0E0 is continuous on the branch cuts, the corresponding values of
r± must match up, that is,

(3.4) lim
ε↓0

r+(λ+ iε, z0) = lim
ε↓0

r−(λ− iε, z0), λ ∈ Σ.

Moreover,

(3.5) ωp̃0E0
= r∓(z, z0)dz

on Π± (since the differential defined by the right-hand side has the correct poles as
well as vanishing a-periods). Hence,

(3.6) ωp0p̃0 = lim
ε↓0

(
r+(λ+ iε, z0)− r−(λ− iε, z0)

)
dλ = 2i Im(r(λ, z0))dλ, λ ∈ Σ,

where r(λ, z0) = limε↓0 r+(λ+ iε, z0), shows that ωp0,p̃0 is purely imaginary on the
boundary of Π+. Together with the fact that the a-periods of ωp0p̃0 vanish this
shows

∫ p
E0
ωp0p̃0 is purely imaginary on ∂Π+. Hence g(z, z0) vanishes on ∂Π+ and

since it has the proper singularity at z0 by construction, we are done. �
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Clearly, we can extend g(z, z0) to a holomorphic function on M\{p0} by dropping
the real part. By abuse of notation we will denote this function by g(p, p0) as well.
However, note that g(p, p0) will be multivalued with jumps in the imaginary part
across b-cycles. We will choose the path of integration in C\[E0, E2g+1] to guarantee
a single-valued function.

From the Green’s function we obtain the Blaschke factor and the harmonic mea-
sure (see e.g., [23]). Since we are mainly interested in the case where the poles are
on the real line (since T (z) has all poles on the real line), we note the following
relation which will be needed later on:

Lemma 3.2. For ρ with π(ρ) ∈ R\Σ we have

(3.7) g(p, ρ) = −
∫ p

E0

ωρρ∗ = −
∫ ρ

E(ρ)

ωpp∗ ,

where E(ρ) is E0 if ρ < E0, either E2j−1 or E2j if ρ ∈ (E2j−1, E2j), 1 ≤ j ≤ g,
and E2g+1 if ρ > E2g+1.

Proof. By symmetry of the Green’s function this holds at least when taking real
parts. Since both quantities are real for π(p) < E0 it holds everywhere. �

Now we come to the Blaschke factor

(3.8) B(p, ρ) = exp
(
− g(p, ρ)

)
= exp

(∫ p

E0

ωρρ∗
)
, π(ρ) ∈ R,

and first show that it can be written in terms of theta functions.

Lemma 3.3. The Blaschke factor is given by
(3.9)

B(p, ρ) =
θ(AE0

(ρ∗) + αE0
(D) + ΞE0

)

θ(AE0
(ρ) + αE0

(D) + ΞE0
)

θ(AE0
(p)−AE0

(ρ)− αE0
(D)− ΞE0

)

θ(AE0
(p)−AE0

(ρ∗)− αE0
(D)− ΞE0

)
,

where D is any divisor of degree g−1 such that Dρ+D and Dρ∗ +D are nonspecial.
In addition, it satisfies

(3.10) B(E0, ρ) = 1, and B(p∗, ρ) = B(p, ρ∗) = B(p, ρ)−1;

it is real-valued for π(p) ∈ (−∞, E0).

Proof. Both the Blaschke factor and the quotient of theta functions are multivalued
meromorphic functions. Invoking the bilinear relations shows that we have the same
jumps

∫ ρ
ρ∗
ζ` around b-cycles. Hence their quotient is single-valued. Moreover both

have the same divisor Dρ − Dρ∗ and hence the quotient is holomorphic and thus
constant.

To see that B(p∗, ρ)B(p, ρ) = 1, note that this function has no jumps and no
poles and hence is constant. Since it is one at E0 it is one everywhere. �

Next we compute the harmonic measure of ∂Π+.

Lemma 3.4. The harmonic measure of ∂Π+ with pole at p is given by

(3.11) µ(p, λ)dλ =
1

π
ImωpE0

(λ) =
1

π
Im

(∫ p

E0

ωλ,0

)
dλ,

where ωλ,0 is the normalized Abelian differential of the second kind with a second-
order pole at λ.
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Proof. All we have to do is to compute (2π)−1 limε↓0
∂
∂εg(z, λ± iε) (where the sign

is chosen according to which side of Σ one is interested):

(3.12) − ∂

∂ε
Re

∫ λ±iε

E0

ωpp̃

∣∣∣
ε=0

= Imωpp̃ = 2ImωpE0

since ωpp̃ = ωpE0
− ωp̃E0

.
The other formula follows similarly:

(3.13) − ∂

∂ε
Re

∫ p

E0

ωp0p̃0

∣∣∣
ε=0

= 2Im

∫ p

E0

ωλ,0

since ∂
∂z0

ωp0E0
= ωz0,0. �

Note that

ωpE0
=

(
−1

2(λ− E0)
+ o(1)

)
dλ

for λ near E0 and that the imaginary part has no singularity for λ ∈ ∂Π+.
Now we can characterize the scattering data ([4], [5]):

Theorem 3.5. Let T (z) be meromorphic in Π+ with simple poles at {ρj}qj=1 ⊆ R\Σ
such that T is continuous up to the boundary with the only possible simple zeros at
the branch points.

Then T (z) can be recovered from the boundary values ln |T (λ)|, λ ∈ Σ, via the
Poisson-Jensen-type formula

(3.14) T (z) =

 q∏
j=1

B(p, ρj)
−1

 exp

(
1

2πi

∫
∂Π+

ln |T |2ωpE0

)
, p = (z,+),

where we have identified ρj with (ρj ,+) and defined T (p) = limε↓0 T (λ ± ε), p =
(λ,±) ∈ ∂Π+.

Proof. The formula for T (z) holds by [25, Thm. 1], when taking absolute values.
Since both sides are analytic and have equal absolute values, they can only differ
by a constant of absolute value one. But both sides are positive at z = ∞ and
hence this constant is one. �

Remark 3.6. A few remarks are in order:

(i) The integrand in (3.14) is not integrable at E0 and the integral has to be
understood as a principal value. Otherwise, one can move the singularity
away from ∂Π+ which just alters the value by a constant.

(ii) In scattering theory one has |T (p∗)| = |T (p)|, p ∈ ∂Π+, and under this
assumption we have

T (z) =

 q∏
j=1

exp

(
−
∫ ρj

E(ρj)

ωpp∗

) exp

(
1

2πi

∫
Σ

ln(1− |R±|2)ωpp∗

)
,

where E(ρ) is defined in Lemma 3.2 and the integral over Σ is taken on
the upper sheet.

(iii) The Abelian differential is explicitly given by

ωpq =

(
R

1/2
2g+2 +R

1/2
2g+2(p)

2(π − π(p))
−
R

1/2
2g+2 +R

1/2
2g+2(q)

2(π − π(q))
+ Ppq(π)

)
dπ

R
1/2
2g+2

,
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where Ppq(z) is a polynomial of degree g − 1 which has to be determined
from the normalization

∫
a`
ωpq = 0. In particular,

ωpp∗ =

(
R

1/2
2g+2(p)

π − π(p)
+ Ppp∗(π)

)
dπ

R
1/2
2g+2

.

In inverse scattering theory one uses (3.1) to reconstruct T from the reflection
coefficient R+ (or R−). Since neither the Blaschke factors nor the outer function
in (3.14) are in general single-valued on Π+, we are naturally interested in when T
is single-valued for given R±.

Theorem 3.7. The transmission coefficient T defined via (3.14) is single-valued if
and only if the eigenvalues ρj and the reflection coefficient R± satisfy

(3.15) −
∑
j

∫ ρj

ρ∗j

ζ` +
1

2πi

∫
∂Π+

ln(1− |R±|2)ζ` ∈ Z.

Proof. For T (z) to be single-valued we need limε↓0 T (x − iε) = limε↓0 T (x + iε)
for every x in a spectral gap. If x ∈ (E2`−1, E2`) is in the `’th gap, the path of
integration from E0 to λ from above and back from λ to E0 from below just gives
the b-cycle b`. Hence,
(3.16)

lim
ε↓0

T (x+ iε)

T (x− iε)
= exp

− q∑
j=1

∫
b`

ωρj ,ρ̃j +
1

2πi

∫
∂Π+

ln(1− |R±(λ)|2)

∫
b`

ωλ,0dλ

 .

Evaluating the b`-cycle using the usual bilinear relations finally yields

(3.17) lim
ε↓0

T (x+ iε)

T (x− iε)
= exp

−2πi

q∑
j=1

∫ ρj

ρ̃j

ζ` +

∫
∂Π+

ln(1− |R±|2)ζ`


and if the limit is supposed to be one, we are lead to (3.15). �

The special case for an elliptic background with zero reflection coefficient was first
obtained in [14]. An analogous result was obtained in a different context by [21].
One should also emphasize that (3.15) is only a necessary condition for the solv-
ability of the inverse scattering problem. Necessary and sufficient conditions are
given in [4].

4. Trace formulas

The transmission coefficient also plays a central role in the inverse scattering
transform. Since it turns out to be the perturbation determinant of the pair (H,Hq),
in the sense of Krein ([12], [13]), its asymptotic expansion provides the conserved
quantities of the Toda hierarchy ([5], [19], [16]),

(4.1)
d

dz
lnT (z) = −

∞∑
k=1

τk
zk+1

, τk = tr(Hk − (Hq)
k).

Relating this expansion with the one obtained by expanding (3.14) near z = ∞,
one obtains the usual trace formulas (also known as Case-type sum rules, [3]).

Next, let ωj be the meromorphic differential

(4.2) ω0 = ω∞+∞− , ωk = ω∞+;k−1 − ω∞−;k−1,
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where ωp,k is the Abelian differential of the second kind with a pole of order k + 2
at p. Note that ωk is of the form

(4.3) ωk =
Pk(π)

R
1/2
2g+2

dπ,

where Pk(z) is a monic polynomial of degree g + k whose coefficients have to be
determined from the fact that the a-cycles vanish and from the behavior at ∞±
(see [20, Eq. (13.30)]).

Theorem 4.1. The following trace formulas are valid:

ln(T (∞)) = −
q∑
j=1

∫ ρj

E(ρj)

ω∞+∞− +
1

πi

∫
Σ

ln |T |ω∞+∞− ,

1

k
τk = −

q∑
j=1

∫ ρj

E(ρj)

ωk +
1

πi

∫
Σ

ln |T |ωk,(4.4)

where E(ρ) is defined in Lemma 3.2 and the integral over Σ is taken on the upper
sheet.

Proof. By dk

dzk
ωp(z)E0

|z=0 = k!ωp0,k−1, where z is a coordinate centered at p0, we
have

(4.5) ωpE0
= ω∞+E0

+

∞∑
k=1

zkω∞+,k−1, p = (
1

z
,+),

and the claim follows. �
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