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Abstract. We study perturbations of the self-adjoint periodic Sturm–Liouville

operator

A0 =
1

r0

(
−

d

dx
p0

d

dx
+ q0

)
and conclude under L1-assumptions on the differences of the coefficients that
the essential spectrum and absolutely continuous spectrum remain the same. If

a finite first moment condition holds for the differences of the coefficients, then

at most finitely many eigenvalues appear in the spectral gaps. This observation
extends a seminal result by Rofe-Beketov from the 1960s. Finally, imposing a

second moment condition we show that the band edges are no eigenvalues of

the perturbed operator.

1. Introduction

Consider a periodic Sturm–Liouville differential expression of the form

τ0 =
1

r0

(
− d

dx
p0

d

dx
+ q0

)
on R, where 1/p0, q0, r0 ∈ L1

loc(R) are real-valued and ω-periodic, and r0 > 0, p0 > 0
a. e. Let A0 be the corresponding self-adjoint operator in the weighted L2-Hilbert
space L2(R; r0) and recall that the spectrum of A0 is semibounded from below,
purely absolutely continuous and consists of (finitely or infinitely many) spectral
bands; cf. [1], [9] or [15, Section 12].

Now let 1/p1, q1, r1 ∈ L1
loc(R) be real-valued with r1 > 0, p1 > 0 a. e., assume

that the condition∫
R

(
|r1(t)− r0(t)|+

∣∣∣∣ 1

p1(t)
− 1

p0(t)

∣∣∣∣+ |q1(t)− q0(t)|
)
|t|k dt < ∞ (1.1)

holds for some k ≥ 0, and consider the corresponding perturbed Sturm–Liouville
differential expression

τ1 =
1

r1

(
− d

dx
p1

d

dx
+ q1

)
on R. It turns out that τ1 is in the limit point case at both singular endpoints
±∞ and hence there is a unique self-adjoint realization A1 of τ1 in the weighted
L2-Hilbert space L2(R; r1). The first observation in Theorem 1.1 below is that
the essential spectra of A0 and A1 coincide and the interior is purely absolutely
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continuous spectrum of A1. In the special case r0 = r1 = p0 = p1 = 1 this result is
known from [13] and for p0 ̸= p1 a related result is contained in [1]; cf. Remark 2.2.

Theorem 1.1. Assume that condition (1.1) holds for k = 0 and let A0 and A1

be the self-adjoint realizations of τ0 and τ1 in L2(R; r0) and L2(R; r1), respectively.
Then we have

σess(A0) = σess(A1),

the spectrum of A1 is purely absolutely continuous in the interior of the spectral
bands, and A1 is semibounded from below.

In particular, the band structure of the spectrum of the periodic operator A0

is preserved for the essential spectrum of A1 and in the gaps of σess(A1) discrete
eigenvalues may appear that may accumulate to the edges of the spectral bands;
for a detailed discussion in the case r0 = r1 we refer to [1, Section 5.3]. Our second
main objective in this note is to verify that under a finite first moment condition on
the difference of the coefficients there are at most finitely many discrete eigenvalues
in the gaps of the essential spectrum of A1. The question whether eigenvalues
accumulate at the band edges has a long tradition going back to the seminal results
of Rofe-Beketov [10], which were later extended by Schmidt [11] (see also [1, §5.4]
for the special case r0 = r1 = 1 and p0 = p1). They play also an important role for
the scattering theory in this setting [2, 3, 4, 7]. The currently best results in this
direction can be found in [8], which apply in the special case r0 = r1.

Theorem 1.2. Assume that condition (1.1) holds for k = 1 and let A0 and A1

be the self-adjoint realizations of τ0 and τ1 in L2(R; r0) and L2(R; r1), respectively.
Then every gap of the spectral bands σess(A0) = σess(A1) contains at most finitely
many eigenvalues of A1.

In the third result we pay special attention to the edges of the spectral bands.
If (1.1) holds for k = 1 (and hence also for k = 0), then the interior of the spectral
bands consists of purely absolutely continuous spectrum of A1 and the eigenvalues
of A1 in the gaps do not accumulate to the band edges. If we further strengthen the
assumptions and impose a finite second moment condition k = 2 in (1.1) (and hence
also k = 1 and k = 0), then it turns out that the band edges are no eigenvalues of
A1.

Theorem 1.3. Assume that condition (1.1) holds for k = 2 and let A0 and A1

be the self-adjoint realizations of τ0 and τ1 in L2(R; r0) and L2(R; r1), respectively.
Then the edges of the spectral bands σess(A0) = σess(A1) are no eigenvalues of A1

and the spectral bands consist of purely absolutely continuous spectrum of A1.

In Section 2 we also show that the claim in Theorem 1.3 remains valid if (1.1)
holds for k = 1 and some other additional assumptions for r1 and q1 are satisfied;
cf. Proposition 2.5. Our proofs of Theorems 1.1–1.3 are based on a careful analysis
of the solutions of (τ0 − λ)u = 0 and (τ1 − λ)u = 0 for λ ∈ R; cf. Lemma 2.6
and Lemma 2.7. While the properties of the solutions of the periodic problem in
Lemma 2.6 are mainly consequences of well-known properties of the Hill discrimi-
nant, the properties of the solutions of the perturbed problem in Lemma 2.7 require
some slightly more technical arguments. It is convenient to first verify variants of
Theorems 1.1–1.3 for self-adjoint realizations of τ0 and τ1 on half-lines (−∞, a) and
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(a,∞) with finite endpoint a, and use a coupling argument to conclude the corre-
sponding results on R. One of the key ingredients is the connection of the zeros of
a modified Wronskian with the finiteness of the spectrum from [5].

Acknowledgments. We are indebted to Fritz Gesztesy for very helpful discussions
and literature hints.

2. Perturbations of periodic Sturm–Liouville operators on a
half-line

We prove variants of Theorems 1.1–1.3 for self-adjoint realizations H0 and H1 of
τ0 and τ1, respectively, in the L2-spaces L2((a,∞); r0) and L2((a,∞); r1) with some
finite endpoint a. For the real-valued coefficients we have 1/pj , qj , rj ∈ L1

loc([a,∞))
and rj > 0, pj > 0 a. e., and 1/p0, q0, r0 are ω-periodic.

The differential expression τ0 is in the limit point case at ∞ and regular at a. In
the following let H0 be any self-adjoint realization of τ0 in L2((a,∞); r0). Similar
as in the full line case also on the half-line the essential spectrum of H0 is purely
absolutely continuous and consists of infinitely many closed intervals

σess(H0) =

∞⋃
k=1

[λ2k−1, λ2k], (2.1)

where the endpoints λ2k−1 and λ2k, λ2k−1 < λ2k, denote the k-th eigenvalues of the
regular Sturm–Liouville operator in L2((a, a+ω); r0) (in nondecreasing order) with
periodic and semiperiodic boundary conditions, respectively; cf. [1] or [15, Section
12] for more details. Recall that the closed intervals may adjoin and that also
σess(H0) = [λ1,∞) may happen in (2.1). Each interval (−∞, λ1) and (λ2k, λ2k+1),
k ∈ N, may contain at most one (simple) eigenvalue of H0. In particular, H0 is
semibounded from below and (2.1) implies that the interior of σess(H0) is non-
empty.

Theorem 2.1. Assume that∫ ∞

a

(
|r1(t)− r0(t)|+

∣∣∣∣ 1

p1(t)
− 1

p0(t)

∣∣∣∣+ |q1(t)− q0(t)|
)

dt < ∞ (2.2)

and let H0 and H1 be arbitrary self-adjoint realizations of τ0 and τ1 in L2((a,∞); r0)
and L2((a,∞); r1), respectively. Then we have

σess(H0) = σess(H1),

the spectrum of H1 is purely absolutely continuous in the interior of the spectral
bands, and H1 is semibounded from below.

It follows that H1 has non-empty essential spectrum, hence, the differential ex-
pression τ1 is in the limit point case at ∞.

Remark 2.2. For the special case r0 = r1 = p0 = p1 = 1 the result in Theorem 2.1
goes back to the paper [13] of G. Stolz, where instead of the assumption q1 − q0 ∈
L1(a,∞) in (2.2) the weaker conditions∫ ∞

c

|(q1 − q0)(t+ ω)− (q1 − q0)(t)|dt < ∞ (2.3)

for some c > a and

lim
x→∞

∫ x+1

x

|q1(t)− q0(t)|dt = 0 (2.4)



4 J. BEHRNDT, P. SCHMITZ, G. TESCHL, AND C. TRUNK

are imposed. The considerations from [13] are extended in [1, Chapter 5.2] to the
case r0 = r1 and p0 ̸= p1 with 1/p1 − 1/p0 satisfying similar conditions (2.3)–
(2.4). More precisely, in [1, Corollary 5.2.3] it was shown that the interior of the
essential spectrum of H0 is purely absolutely continuous spectrum of H1 and hence
σess(H0) ⊂ σess(H1). For the other inclusion in [1, Theorem 5.3.1] it is assumed
that r0 = r1, p0 = p1 together with additional limit conditions for q1 − q0. For
details we refer to [1, Chapter 5].

In the next theorem we strengthen the assumptions by imposing a finite first
moment condition (see (2.5) below) on the differences of the coefficients; note that
(2.5) implies (2.2) since the coefficients (and their differences) are integrable at a. In
this situation it turns out that there appear at most finitely many simple eigenvalues
of H1 in each spectral gap and hence there is no accumulation of eigenvalues to
the edges of the band gaps. Concerning the history of this result we refer to the
discussion before the corresponding result on R, Theorem 1.2.

Theorem 2.3. Assume that∫ ∞

a

(
|r1(t)− r0(t)|+

∣∣∣∣ 1

p1(t)
− 1

p0(t)

∣∣∣∣+ |q1(t)− q0(t)|
)
|t|dt < ∞ (2.5)

holds, and let H1 be an arbitrary self-adjoint realization of τ1 in L2((a,∞); r1).
Then every gap of σess(H1) contains at most finitely many eigenvalues.

In the next result we assume a stronger integrability condition and conclude
that the edges of the spectral bands are no embedded eigenvalues of A1; note that
(2.6) implies (2.5) and (2.2). As pointed out before, this question is important for
scattering theory and was first established by Firsova [2, 3] in the case r0 = r1 =
p0 = p1 = 1.

Theorem 2.4. Assume that∫ ∞

a

(
|r1(t)− r0(t)|+

∣∣∣∣ 1

p1(t)
− 1

p0(t)

∣∣∣∣+ |q1(t)− q0(t)|
)
|t|2 dt < ∞ (2.6)

holds, and let H1 be an arbitrary self-adjoint realization of τ1 in L2((a,∞); r1).
Then the edges of the spectral bands are no eigenvalues of H1 and the spectral
bands consist of purely absolutely continuous spectrum of H1.

We find it worthwhile to provide another set of assumptions that also imply
absence of eigenvalues at the edges of the spectral bands. Here we only assume the
integrability condition (2.5), but for r1 and q1 additional assumptions are required.
It is left to the reader to formulate a variant of Proposition 2.5 for the self-adjoint
realization A1 of τ1 in L2(R; r1).

Proposition 2.5. Assume that (2.5) holds and that there exist positive constants

C0, C1 such that r1 and q1 satisfy C0 ≤ r1(t) ≤ C1 and
∫ t+1

t−1
|q1(s)|2ds ≤ C1 for

t in some neighbourhood of ∞. Let H1 be an arbitrary self-adjoint realization of
τ1 in L2((a,∞); r1). Then the edges of the spectral bands are no eigenvalues of H1

and the spectral bands consist of purely absolutely continuous spectrum of H1.

The proofs of Theorem 2.1, Theorem 2.3, Theorem 2.4, and Proposition 2.5 are
at the end of this section. In what follows, we investigate solutions of the periodic
and the perturbed periodic problem. The first lemma is more or less a variant
of standard working knowledge in periodic differential operators and is essentially
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contained in [1, Chapter 1] or [15]. For the convenience of the reader we provide a
short proof.

Lemma 2.6. For λ ∈ R there exist linearly independent solutions u0 = u0(·, λ) and
v0 = v0(·, λ) of (τ0−λ)u = 0 and c = c(λ) ∈ C such that the functions U0 = U0(·, λ)
and V0 = V0(·, λ) given by

U0(x) = exp

(
c
x− a

ω

)
·
(

u0(x)
(p0u

′
0)(x)

)
,

V0(x) = exp

(
−c

x− a

ω

)
·
(

v0(x)
(p0v

′
0)(x)

) (2.7)

on (a,∞) have the following property:

(i) If λ ∈ R \ σess(H0), then U0 and V0 are both ω-periodic and bounded on
(a,∞), where Re c > 0.

(ii) If λ is an interior point of σess(H0), then U0 and V0 are both ω-periodic
and bounded on (a,∞), where Re c = 0. In particular, |u0| and |v0| are
ω-periodic and bounded on (a,∞).

(iii) If λ is a boundary point of σess(H0), then U0 is ω-periodic and bounded on
(a,∞), where Re c = 0 and, in particular, |u0| is ω-periodic and bounded
on (a,∞). Furthermore, V0 satisfies

∥V0(x)∥C2 ≤ C

(
1 +

x− a

ω

)
(2.8)

on (a,∞) for some positive constant C.

In the cases (i) and (iii) the solutions u0 and v0 can be chosen to be real-valued.
Moreover, if λ ∈ σess(H0), then for every non-trivial solution of (τ0−λ)u = 0 there
exists a positive constant E such that∫ a+(n+1)ω

a+nω

|u(t)|2r0(t) dt ≥ E for all n ∈ N. (2.9)

Proof. Let L be the two-dimensional complex space of solutions of (τ0 − λ)u = 0.
As the coefficients of τ0 are ω-periodic, for every f ∈ L the function f(· + ω) is
again in L. Now we identify the linear map M : L → L, f 7→ f(· + ω) with the
matrix

M =

(
û(a+ ω) v̂(a+ ω)

(p0û
′)(a+ ω) (p0v̂

′)(a+ ω)

)
,

where û, v̂ ∈ L are chosen such that û(a) = 1, (p0û
′)(a) = 0 and v̂(a) = 0,

(p0v̂
′)(a) = 1. Since detM coincides with the Wronskian the spectrum is

σ(M) = σ(M) = {ec, e−c}, where c ∈ C.

From now on fix the Floquet exponent c such that Re c ≥ 0. The eigenvalues
e±c solve the quadratic equation det(M − z) = z2 − Dz + 1 = 0, where the Hill
discriminant D := D(λ) = û(a+ ω) + (p0v̂

′)(a+ ω) is real. Therefore,

e±c =
D

2
±
√

D2

4
− 1 or e±c =

D

2
∓

√
D2

4
− 1. (2.10)

Recall that by [15, Chapter 12 and Appendix] and [16, Chapter 16]

σess(H0) = {λ ∈ R : |D(λ)| ≤ 2} and ∂σess(H0) = {λ ∈ R : |D(λ)| = 2}. (2.11)
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(i) For λ ∈ R\σess(H0) we have |D| > 2 and hence ec ̸= e−c are both real by (2.10),
which leads to Re c > 0. As M has two distinct eigenvalues, we find corresponding
eigenvectors u0, v0 ∈ L satisfying

u0(x+ ω) = (Mu0)(x) = e−cu0(x), (p0u
′
0)(x+ ω) = e−c(p0u

′
0)(x), (2.12)

v0(x+ ω) = (Mv0)(x) = ecv0(x), (p0v
′
0)(x+ ω) = ec(p0v

′
0)(x), (2.13)

on (a,∞), where the equalities in (2.12) and (2.13) for the derivatives follow from
the periodicity of p0. From (2.12) and (2.13) one also sees that the functions U0 and
V0 defined in (2.7) are both ω-periodic, and hence also bounded. This completes
the proof of (i).
(ii) For an interior point λ of σess(H0) we have |D| < 2 by (2.11), and hence ec and
e−c are non-real and complex conjugates of each other, which yields Re c = 0. As
in the proof of (i) M has a pair of distinct eigenvalues and we find corresponding
eigenvectors u0, v0 ∈ L satisfying (2.12), (2.13), which shows the periodicity of the
U0 and V0 given in (2.7) and finishes the proof of (ii).
(iii) For λ ∈ ∂σess(H0) we have |D| = 2 and hence ec = e−c = D/2 ∈ {−1, 1}
by (2.10), and therefore Re c = 0. Again, we find u0 ∈ L such that (2.12) holds
and this shows the periodicity of the function U0 defined in (2.7). If the geometric
multiplicity of ec = e−c is two, then there is a second linearly independent solution
v0 ∈ L which satisfies (2.13). In this case the function V0 in (2.7) is ω-periodic and
the estimate (2.8) holds for C = supx∈[a,a+ω]∥V0(x)∥C2 . Otherwise, if the geometric

multiplicity of ec = e−c is one, then there is a Jordan chain of length two, that is,
there exists v0 ∈ L with Mv0 = ecv0 + u0. One has

v0(x+ ω) = ecv0(x) + u0(x), (p0v
′
0)(x+ ω) = ec(p0v

′
0)(x) + (p0u

′
0)(x) (2.14)

for all x ∈ (a,∞). Now consider

V0(x) := exp

(
−c

x− a

ω

)
·
(

v0(x)
(p0v

′
0)(x)

)
,

as in (2.7) and recall that Re c = 0. With (2.14) we have

∥V0(x+ω)∥C2 =

∥∥∥∥( ecv0(x) + u0(x)
ec(p0v

′
0)(x) + (p0u

′
0)(x)

)∥∥∥∥
C2

≤ ∥V0(x)∥C2 +∥U0(x)∥C2 . (2.15)

Let x ∈ (a,∞) and k ∈ N with k ≤ (x − a)/ω < k + 1. Then (2.15) and the
periodicity of U0 give successively

∥V0(x)∥C2 ≤ ∥V0(x− kω)∥C2 + k∥U0(x− kω)∥C2

≤ ∥V0(x− kω)∥C2 +
x− a

ω
∥U0(x− kω)∥C2

≤ sup
t∈[a,a+ω]

(
∥V0(t)∥C2 + ∥U0(t)∥C2

)
·
(
1 +

x− a

ω

)
.

This shows (iii).
Since in the cases (i) and (iii) the spectrum of M is real, M can be regarded as

a mapping in the real space of real-valued solutions of (τ0 − λ)u = 0 instead of the
complex space L. Hence, u0 and v0 can be chosen as real-valued solutions. Finally,
to show (2.9), consider λ ∈ σess(H0) and let u0, v0 be as in (ii) or (iii). Choose
d1 ∈ C such that w0 := d1u0 + v0 is orthogonal to u0 in L2((a, a+ω); r0). We have
Mu0 = e−cu0 and Mv0 = ecv0 + d0u0, where d0 ∈ {0, 1}. Thus,

Mw0 =
(
e−cd1 + d0

)
u0 + ecv0 =

(
e−cd1 + d0 − ecd1

)
u0 + ecw0
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and successively for all n ∈ N
Mnw0 = γnu0 + ecnw0, where γn ∈ C.

We consider a non-trivial linear combination αu0+βw0, where α, β ∈ C. Note that
by (2.12) u0(t + nω) = (Mnu0)(t) = e−ncu0(t) for t ∈ [a,∞) and n ∈ N. Recall
also that Re c = 0. If β = 0, then∫ a+(n+1)ω

a+nω

|αu0(t)|2r0(t) dt =
∫ a+ω

a

|αu0(t)|2r0(t) dt > 0

for all n ∈ N. Otherwise, if β ̸= 0, then∫ a+(n+1)ω

a+nω

|αu0(t) + βw0(t)|2r0(t) dt

=

∫ a+ω

a

|α(Mnu0)(t) + β(Mnw0)(t)|2r0(t) dt

=

∫ a+ω

a

|(αe−cn + βγn)u0(t) + βecnw0(t)|2r0(t) dt

≥
∫ a+ω

a

|βw0(t)|2r0(t) dt > 0

for all n ∈ N. In both cases we conclude (2.9) and Lemma 2.6 is shown. □

The solution’s asymptotics are basically preserved under L1-perturbations of τ0
with respect to its coefficients. This is the content of the next lemma.

Lemma 2.7. Let λ ∈ R, assume that (2.2) holds and let u0, v0 and c be as
in Lemma 2.6. Then there exist linearly independent solutions u1 = u1(·, λ) and
v1 = v1(·, λ) of (τ1 − λ)u = 0 such that the following holds:

(i) If λ ∈ R \ σess(H0), that is, Re c > 0, then

exp

(
Re c

x− a

ω

)
·
∥∥∥∥( u1(x)

(p1u
′
1)(x)

)
−

(
u0(x)

(p0u
′
0)(x)

)∥∥∥∥
C2

→ 0 as x → ∞ (2.16)

and ∥∥∥∥( u1(x)
(p1u

′
1)(x)

)∥∥∥∥
C2

≤ C exp

(
−Re c

x− a

ω

)
,∥∥∥∥( v1(x)

(p1v
′
1)(x)

)∥∥∥∥
C2

≤ C exp

(
Re c

x− a

ω

) (2.17)

on (a,∞), where C = C(λ) is a positive constant. In particular, u1 is
bounded on (a,∞).

(ii) If λ is an interior point of σess(H0), that is, Re c = 0, then (2.16) and
(2.17) hold on (a,∞), and∥∥∥∥( v1(x)

(p1v
′
1)(x)

)
−

(
v0(x)

(p0v
′
0)(x)

)∥∥∥∥
C2

→ 0 as x → ∞. (2.18)

In particular, u1 and v1 are bounded on (a,∞).
(iii) If λ is a boundary point of σess(H0), that is, Re c = 0, and (2.5) (and

hence also (2.2)) holds, then u1 satisfies (2.16) and the first inequality in
(2.17) on (a,∞). In particular, u1 is bounded on (a,∞). If (2.6) (and
hence also (2.2) and (2.5)) holds, then v1 satisfies (2.18).
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The solutions in (i) and (iii) can be chosen to be real-valued.

Proof. Let λ ∈ R. We consider the systems ϕ′ = Aϕ and ξ′ = (A+B)ξ correspond-
ing to (τ0 − λ)u = 0 and (τ1 − λ)u = 0, respectively, where

A =

(
0 1

p0

q0 − λr0 0

)
and B =

(
0 1

p1
− 1

p0

(q1 − q0)− λ(r1 − r0) 0

)
.

From (2.2) we obtain ∥B(·)∥C2×2 ∈ L1(a,∞). With u0 and v0 from Lemma 2.6 we
consider the fundamental solution Φ of the system ϕ′ = Aϕ given by

Φ(x) =

(
u0(x) v0(x)

(p0u
′
0)(x) (p0v

′
0)(x)

)
, x ∈ (a,∞), (2.19)

so that (
Φ(t)

)−1
=

1

W (u0, v0)

(
(p0v

′
0)(t) −v0(t)

−(p0u
′
0)(t) u0(t)

)
, t ∈ (a,∞),

whereW is the Wronskian. With (2.7) in Lemma 2.6 we estimate for all x, t ∈ [a,∞)

∥Φ(x)(Φ(t))−1∥C2×2 ≤ ẼeRe c t−x
ω ∥U0(x)∥C2∥V0(t)∥C2+ẼeRe c x−t

ω ∥U0(t)∥C2∥V0(x)∥C2

(2.20)

where Ẽ is a suitable positive constant.
We show (i) and (ii). In this case, Re c ≥ 0 and U0, V0 are bounded. We consider

the Banach space B of all continuous C2-valued functions with exponential decay
of order −Re c/ω, that is,

B :=
{
ξ : [a,∞) → C2 continuous : ∥ξ(x)∥C2 ≤ γe−Re c x

ω for some γ ≥ 0 on [a,∞)
}

and the corresponding norm

∥ξ∥B := sup
x∈[a,∞)

eRe c x−a
ω ∥ξ(x)∥C2 < ∞.

For ξ ∈ B we define

(Tξ)(x) := −Φ(x)

∫ ∞

x

(Φ(t))−1B(t)ξ(t) dt, x ∈ [a,∞). (2.21)

The integral in (2.21) converges. Indeed, the estimate in (2.20) yields

∥Φ(x)(Φ(t))−1∥C2×2 ≤ EeRe c t−x
ω (2.22)

for a ≤ x ≤ t < ∞, where E is a suitable positive constant. Then (2.21) with (2.22)
give

eRe c x−a
ω ∥(Tξ)(x)∥C2 ≤ eRe c x−a

ω

∫ ∞

x

EeRe c t−x
ω ∥B(t)∥C2×2∥ξ(t)∥C2dt

≤ ∥ξ∥B E

∫ ∞

x

∥B(t)∥C2×2dt < ∞
(2.23)

and hence the integral in (2.21) exists. Moreover, we also conclude that Tξ ∈ B
and T is a bounded everywhere defined operator in B.

We claim that for n ∈ N the estimate

∥(Tnξ)(x)∥C2 ≤ e−Re c x−a
ω ∥ξ∥B

1

n!

(
E

∫ ∞

x

∥B(t)∥C2×2 dt

)n

, x ∈ [a,∞), (2.24)
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holds. In fact, for n = 1 this is true by (2.23). Now assume that (2.24) holds for

some n ∈ N. We set G(t) := 1
n+1

(
E
∫∞
t

∥B(s)∥C2×2 ds
)n+1

and compute

∥(Tn+1ξ)(x)∥C2 ≤
∫ ∞

x

∥Φ(x)(Φ(t))−1∥C2×2∥B(t)∥C2×2∥(Tnξ)(t)∥C2dt

≤ e−Re c x−a
ω

∫ ∞

x

E∥B(t)∥C2×2∥ξ∥B
1

n!

(
E

∫ ∞

t

∥B(s)∥C2×2 ds

)n

dt

= e−Re c x−a
ω ∥ξ∥B

1

n!

∫ ∞

x

−G′(t)dt

= e−Re c x−a
ω ∥ξ∥B

1

(n+ 1)!

(
E

∫ ∞

x

∥B(t)∥C2×2 dt

)n+1

which shows (2.24) for any n ∈ N. Hence,

∥Tnξ∥B ≤ ∥ξ∥B
1

n!

(
E

∫ ∞

a

∥B(t)∥C2×2 dt

)n

and the Neumann series (I − T )−1 =
∑

n∈N Tn converges in the operator norm
induced by ∥·∥B. Observe that for a solution ϕ ∈ B of ϕ′ = Aϕ the function
ξ := (I − T )−1ϕ ∈ B satisfies ξ′ = (A+B)ξ since

ξ = Tξ + ϕ (2.25)

yields

ξ′ = Φ′Φ−1Tξ +Bξ + ϕ′ = A(Tξ + ϕ) +Bξ = (A+B)ξ. (2.26)

Furthermore, from (2.25) and (2.23) we also conclude

eRe c x−a
ω ∥ϕ(x)− ξ(x)∥C2 → 0 as x → ∞. (2.27)

Now let us consider the continuous function (u0, p0u
′
0)

⊤ : [a,∞) → C2. Accord-
ing to Lemma 2.6 (i)–(ii) we have (u0, p0u

′
0)

⊤ ∈ B. From the above considerations
we see that (I − T )−1(u0, p0u

′
0)

⊤ is a solution of ξ′ = (A+B)ξ and hence(
u1

p1u
′
1

)
:= (I − T )−1

(
u0

p0u
′
0

)
∈ B

gives a solution u1 of (τ1 − λ)u = 0 such that the assertions in (i) and (ii) hold for
u1; note that (2.27) implies (2.16) and (u1, p1u

′
1)

⊤ ∈ B shows the first inequality in
(2.17). Observe, that if λ is an interior point of σess(H0) then also (v0, p0v

′
0)

⊤ ∈ B
by Lemma 2.6 (ii) as Re c = 0. Again it follows that(

v1
p1v

′
1

)
:= (I − T )−1

(
v0
p0v

′
0

)
∈ B

gives a solution v1 of (τ1 − λ)u = 0 and (2.18) follows from (2.27). Thus we have
shown (ii) and it remains to check in (i) the second inequality in (2.17). In fact, for
any solution v1 of (τ1 − λ)u = 0 and ξ = (v1, p1v

′
1)

⊤ one has

ξ(x) = Φ(x)

((
Φ(a)

)−1
ξ(a) +

∫ x

a

(
Φ(t)

)−1
B(t)ξ(t) dt

)
.
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From (2.20) we obtain ∥Φ(x)(Φ(t))−1∥C2×2 ≤ EeRe c x−t
ω for a ≤ t ≤ x < ∞ (cf.

(2.22)) with some E > 0. Hence,

e−Re c x−a
ω ∥ξ(x)∥C2 ≤ E∥ξ(a)∥C2 + E

∫ x

a

∥B(t)∥C2×2

(
e−Re c t−a

ω ∥ξ(t)∥C2

)
dt

for all x ∈ [a,∞). Now Gronwall’s inequality yields

∥ξ(x)∥C2 ≤ eRe c x−a
ω E∥ξ(a)∥C2eE

∫ x
a
∥B(t)∥C2×2 dt,

and hence the second inequality in (2.17) holds for any solution v1 of (τ1−λ)u = 0.
This completes the proof of (i) and (ii).

We prove (iii). In the case λ ∈ ∂σess(H0) Lemma 2.6 (iii) implies Re c = 0 and
the Banach space B from above is the usual space of bounded continuous functions.
Let ϕ ∈ B and let T be as in (2.21). From Lemma 2.6 (iii) and (2.20) we obtain

∥Φ(x)(Φ(t))−1∥C2×2 ≤ E

(
1 +

t− a

ω

)
(2.28)

for a ≤ x ≤ t < ∞ and hence

∥(Tϕ)(x)∥C2 ≤ ∥ϕ∥B E

∫ ∞

x

(
1 +

t− a

ω

)
∥B(t)∥C2×2 dt, (2.29)

where the integral converges since (1 + | · |)∥B(·)∥C2×2 ∈ L1(a,∞) by (2.5). In
the same way as in the proof of (i) and (ii) one verifies with G(t) replaced by

H(t) = 1
n+1

(
E
∫∞
t

(1 + s−a
ω )∥B(s)∥C2×2 ds

)n+1
that

∥(Tnϕ)(x)∥C2 ≤ ∥ϕ∥B
1

n!

(
E

∫ ∞

x

(
1 +

t− a

ω

)
∥B(t)∥C2×2 dt

)n

and

∥(Tnϕ)∥B ≤ ∥ϕ∥B
1

n!

(
E

∫ ∞

a

(
1 +

t− a

ω

)
∥B(t)∥C2×2 dt

)n

hold for all n ∈ N and x ∈ [a,∞). As above it follows that (I − T )−1 is an
everywhere defined bounded operator in B and for a solution ϕ ∈ B of ϕ′ = Aϕ
the function ξ = (I − T )−1ϕ ∈ B satisfies (2.25) and (2.26). Hence it follows from
(2.29) that (2.27) holds with Re c = 0. Now consider (u0, p0u

′
0)

⊤, which is in B by
Lemma 2.6 (iii), and set(

u1

p1u
′
1

)
:= (I − T )−1

(
u0

p0u
′
0

)
∈ B. (2.30)

Then u1 is a solution of (τ1 − λ)u = 0 and the assertions for u1 in (iii) follow.
Now assume that the integrability condition (2.6) (and hence also (2.2) and

(2.5)) holds. Then (1 + | · |2)∥B(·)∥C2×2 ∈ L1(a,∞) and for continuous functions
ξ : [a,∞) → C2 such that

Cξ := sup
x∈[a,∞)

(
1 + x−a

ω

)−1 ∥ξ(x)∥C2 < ∞ (2.31)

we can consider the integral (2.21), where we shall use the notation T̃ to distinguish
from the operator T acting in the Banach space B. In fact, by (2.28) we have

∥(T̃ ξ)(x)∥C2 ≤ E Cξ

∫ ∞

x

(
1 +

t− a

ω

)2

∥B(t)∥C2×2 dt (2.32)
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for x ∈ (a,∞) and hence T̃ ξ ∈ B. Now let ϕ = (v0, p0v
′
0)

⊤ and observe that
by Lemma 2.6 (iii) ϕ satisfies an estimate of the form (2.31). The function ξ :=

(I − T )−1T̃ ϕ+ ϕ also satisfies (2.31) and ξ − ϕ = (I − T )−1T̃ ϕ ∈ B . Hence,

T̃ ϕ = (I − T )(ξ − ϕ) = (ξ − ϕ)− T̃ (ξ − ϕ) = ξ − ϕ− T̃ ξ + T̃ ϕ,

which implies

ξ = ϕ+ T̃ ξ. (2.33)

As in (2.26) we see that ξ solves ξ′ = (A+B)ξ and hence ξ = (v1, p1v
′
1)

⊤ with some
solution v1 of (τ1−λ)u = 0. From (2.32) and (2.33) we obtain ∥ϕ(x)− ξ(x)∥C2 → 0
as x → ∞, which shows (2.18). To see that v1 and u1 in the present situation are
linearly independent assume the contrary. Then also (v1, p1v

′
1)

⊤ and (u1, p1u
′
1)

⊤

are multiples of each other and hence (v1, p1v
′
1)

⊤ ∈ B. But then also

(I − T̃ )(v1, p1v
′
1)

⊤ = (I − T )(v1, p1v
′
1)

⊤ = (v0, p0v
′
0)

⊤

and (I − T )(u1, p1u
′
1)

⊤ = (u0, p0u
′
0)

⊤ (see (2.30)) are multiples of each other; a
contradiction.

Note that in the cases (i) and (iii) the solutions u0 and v0 from Lemma 2.6 can
be chosen to be real-valued. Then Φ in (2.19) has values in R2×2 and the solution
u1 and v1 in (i) and (iii) constructed via T in (2.21) are also real-valued. □

Proof of Theorem 2.1. For λ ∈ R let c = c(λ) and uj = uj(·, λ), vj(·, λ), j = 0, 1,
be as in Lemma 2.6 and Lemma 2.7. The proof is divided into four steps.

Step 1. Let λ be an arbitrary element of the non-empty interior of σess(H0), that
is, Re c = 0 by Lemma 2.6 (ii). We show that for every nonzero solution w1 of
(τ1 − λ)u = 0 there exist positive constants E1 and E2 such that

E1 ≤
∫ a+(n+1)ω

a+nω

|w1(t)|2r1(t) dt ≤ E2 (2.34)

holds for all sufficiently large n ∈ N. Fix an arbitrary nontrivial linear combination
w1 = αu1 + βv1, α, β ∈ C. For the same constants α and β let w0 = αu0 + βv0.
From Lemma 2.6 (ii) and the periodicity of U0 and V0 we obtain for n ∈ N and
t ∈ [a,∞)

u0(t+ nω) = e−ncu0(t) and v0(t+ nω) = encv0(t).

This, |e−nc| = |enc| = 1, and the periodicity of r0 imply∫ a+(n+1)ω

a+nω

|w0(t)|2r0(t) dt ≤ 2

∫ a+(n+1)ω

a+nω

(
|αu0(t)|2 + |βv0(t)|2

)
r0(t) dt

= 2

∫ a+ω

a

(
|αe−ncu0(t)|2 + |βencv0(t)|2

)
r0(t) dt,

and hence together with (2.9) we conclude

E ≤
∫ a+(n+1)ω

a+nω

|w0(t)|2r0(t) dt ≤ E′

for some E,E′ > 0 and all n ∈ N. Furthermore,∣∣|w1|2r1 − |w0|2r0
∣∣ = ∣∣|w1|2(r1 − r0) +

(
|w1|2 − |w0|2

)
r0
∣∣

≤ |w1|2|r1 − r0|+ |w1 − w0|
(
|w1|+ |w0|

)
r0

(2.35)
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holds pointwise a. e. on (a,∞). By Lemma 2.6 (ii) and Lemma 2.7 (ii) the solutions
w0, w1 are bounded and

|w1(x)− w0(x)| ≤ |α| · |u1(x)− u0(x)|+ |β| · |v1(x)− v0(x)| → 0, as x → ∞

by (2.16) and (2.18). Thus, (2.35) together with r1 − r0 ∈ L1(a,∞) and the
periodicity of r0 imply the existence of n0 ∈ N such that∣∣∣∣∣

∫ a+(n+1)ω

a+nω

|w1(t)|2r1(t) dt−
∫ a+(n+1)ω

a+nω

|w0(t)|2r0(t) dt

∣∣∣∣∣ ≤ E

2

for all n ≥ n0. Choosing E1 = E
2 and E2 = E′ + E

2 shows (2.34) for all n ≥ n0.
As an immediate consequence, τ1 is in the limit-point case at ∞ and no non-

trivial solution of (τ1 − λ)u = 0 is in L2((a,∞); r1), and thus λ ∈ σess(H1); cf. [15,
Theorem 11.5]. Since the essential spectra are closed sets we obtain

σess(H0) ⊂ σess(H1).

Step 2. Let λ be an arbitrary element of the non-empty interior of σess(H0). We
prove now the statement on the absolute continuous spectrum of H1. A non-trivial
solution u of (τ1 − λ)u = 0 for real λ is called sequentially subordinant at ∞ with
respect to another non-trivial solution v of (τ1 − λ)u = 0 if

lim inf
x→∞

∫ x

a
|u(t)|2r1(t) dt∫ x

a
|v(t)|2r1(t) dt

= 0,

see [14, Section 9.5] and also [12]. By (2.34) in the first step of proof above we
see that for all interior points λ of σess(H1) no sequentially subordinate solution
of (τ1 − λ)u = 0 exists. Standard subordinancy theory (cf. Theorem 9.27 together
with the remark below in [14]) implies that the absolutely continuous spectrum of
H1 equals σess(H1) and the interior of σess(H1) is purely absolutely continuous.

Step 3. We proceed to prove the converse inclusion σess(H1) ⊂ σess(H0). Suppose
λ ̸∈ σess(H0), that is, Re c > 0 by Lemma 2.6 (i). By Lemma 2.7 (i) there exist
real-valued solutions u1 and v1. For g ∈ L2((a,∞); r1) set

(Sg)(x) :=
1

W (u1, v1)

∫ ∞

a

G(x, t)g(t)r1(t) dt, G(x, t) :=

{
u1(x)v1(t) if a ≤ t ≤ x,

u1(t)v1(x) if a ≤ x ≤ t,

that is

(Sg)(x) =
1

W (u1, v1)

(
u1(x)

∫ x

a

v1(t)g(t)r1(t) dt+ v1(x)

∫ ∞

x

u1(t)g(t)r1(t) dt

)
,

(2.36)
where W stands again for the Wronskian. Define

E := sup
n∈N

∫ a+(n+1)ω

a+nω

r1(t) dt,

which is finite since r0 − r1 ∈ L1(a,∞) and r0 is periodic and locally integrable.
Consider an arbitrary x ∈ [a,∞). By (2.17) in Lemma 2.7 (i)∫ ∞

a

|G(x, t)|r1(t) dt ≤ C2

(∫ x

a

eRe c t−x
ω r1(t) dt+

∫ ∞

x

eRe c x−t
ω r1(t) dt

)
.
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Let k ∈ N with kω + a ≤ x < (k + 1)ω + a. We continue estimating∫ ∞

a

|G(x, t)|r1(t) dt ≤ C2
k∑

n=0

eRe c·(1−n)

∫ a+(k+1−n)ω

a+(k−n)ω

r1(t) dt

+ C2
∞∑

n=0

eRe c·(1−n)

∫ a+(n+1+k)ω

a+(n+k)ω

r1(t) dt

≤ 2C2E

∞∑
n=0

eRe c·(−n+1) < ∞.

Due to the symmetryG(x, t) = G(t, x) the same bound holds for
∫∞
a

|G(x, t)|r1(x) dx
evaluated at t ∈ [a,∞). As a consequence of the Schur criterion (see, e. g., [14,
Lemma 0.32]) one obtains that S is a bounded operator in L2((a,∞); r1). For
g ∈ L2((a,∞); r1) a straightforward calculation using (2.36) and (τ1 − λ)u1 =
(τ1 − λ)v1 = 0 shows that Sg, p1(Sg)

′ are absolutely continuous on (a,∞), and
that Sg solves the inhomogeneous differential equation (τ1 − λ)u = g. Thus,
τ1(Sg) = λSg + g ∈ L2((a,∞); r1) and hence Sg is in the domain of the maxi-
mal operator associated to τ1 in L2((a,∞); r1) and S is injective. Moreover, since
u1 and v1 are real-valued it follows that S is self-adjoint, so that S−1 is a self-
adjoint restriction of the maximal operator associated with τ1 − λ. In other words,
S is the resolvent at λ of some self-adjoint realization of τ1 and as all self-adjoint
realizations of τ1 have the same essential spectrum, we obtain

λ /∈ σess(H1).

Thus σess(H1) ⊂ σess(H0) and together with the first step

σess(H1) = σess(H0).

Step 4. Recall that the periodic Sturm–Liouville operator H0 is semibounded from
below. Let λ < inf σess(H0), that is, Re c > 0 by Lemma 2.6 (i). It is no restriction
to assume that the solutions u0 and u1 provided by Lemma 2.6 (i) and Lemma 2.7 (i)
are real-valued. Since H0 is semibounded from below the differential expression
τ0 − λ is non-oscillatory (see [15, Theorem 14.9]), that is, u0 has at most finitely
many zeros in (a,∞). Furthermore, Lemma 2.6 (i) implies that the function ũ0

given by

ũ0(x) = ec
x−a
ω u0(x)

is ω-periodic. Therefore, the solution u0 has no zeros and

γ := inf
t∈(a,∞)

|ũ0(t)| = min
t∈[a,a+ω]

|ũ0(t)| > 0.

Assume that H1 is not semibounded from below. Then [15, Theorem 14.9] implies
that the differential expression τ1 − λ is oscillatory, and hence the solution u1 of
(τ1 − λ)u = 0 has infinitely many zeros x0 < x1 < x2 < . . . accumulating at ∞.
Together with (2.16) we obtain

0 < γ ≤ |ũ0(xn)| = |ec
xn−a

ω u0(xn)| = eRe c xn−a
ω |u0(xn)− u1(xn)| → 0 as n → ∞;

a contradiction. This shows the semiboundedness of H1. □
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Proof of Theorem 2.3. Suppose that (2.5) (and hence also (2.2)) holds. We show
that every gap of the essential spectrum of H1 contains at most finitely many
eigenvalues of H1. The proof is similar as in Step 4 in the proof of Theorem 2.1,
but instead of the zeros of solutions we consider the zeros of modified Wronskians.
Let µ, λ ∈ R such that µ < λ with σess(H0) ∩ (µ, λ) = σess(H1) ∩ (µ, λ) = ∅. We
have

λ, µ ∈ ∂σess(H0) ∪
(
R \ σess(H0)

)
.

Let c(λ), c(µ) be the Floquet exponents associated with (τ0 − λ)u = 0 and (τ0 −
µ)u = 0, respectively. For the real-valued solutions uj(·, λ) and uj(·, µ), where
j = 0, 1, provided by Lemma 2.6 (i), (iii) and Lemma 2.7 (i), (iii) we consider the
modified Wronskians

Wj(x) := W (uj(·, µ), uj(·, λ))(x) =
(

uj(x, λ)
pj(x)u

′
j(x, λ)

)⊤ (
0 −1
1 0

)(
uj(x, µ)

pj(x)u
′
j(x, µ)

)
Observe that

W̃0(x) := exp

((
c(λ) + c(µ)

)x− a

ω

)
W0(x) =

(
U0(x, λ)

)⊤ (
0 −1
1 0

)
U0(x, µ),

(2.37)
where U0(·, λ) and U0(·, µ) are ω-periodic functions given by (2.7) in Lemma 2.6.

Therefore, the function W̃0 is ω-periodic. Since there is at most one simple eigen-
value of H0 in (µ, λ) we conclude from [5, Theorem 7.5 (i)] that W0 has at most

finitely many zeros in (a,∞). According to the periodicity of W̃0 together with
(2.37), the modified Wronskian W0 has no zeros and

γ := inf
t∈(a,∞)

|W̃0(t)| = min
t∈[a,a+ω]

|W̃0(t)| > 0.

The difference of W0 and W1 can be written as

W0(x)−W1(x) =

((
u0(x, λ)

(p0(x)u
′
0(x, λ)

)
−
(

u1(x, λ)
p1(x)u

′
1(x, λ)

))⊤ (
0 −1
1 0

)(
u0(x, µ)

p0(x)u
′
0(x, µ)

)

+

(
u1(x, λ)

p1(x)u
′
1(x, λ)

)⊤ (
0 −1
1 0

)((
u0(x, µ)

p0(x)u
′
0(x, µ)

)
−

(
u1(x, µ)

p1(x)u
′
1(x, µ)

))
.

Combining this with Lemma 2.6 (i), (iii) and Lemma 2.7 (i), (iii) we conclude

exp

((
c(λ) + c(µ)

)x− a

ω

)
· (W0(x)−W1(x)) → 0 as x → ∞. (2.38)

Now assume thatH1 has infinitely many eigenvalues in (µ, λ). Then the modified
Wronskian W1 has infinitely many zeros x0 < x1 < x2 < . . . which necessarily
accumulate at ∞; cf. [5, Theorem 7.5 (i)]. Then (2.38) implies

0 < γ ≤ |W̃0(xn)| = |exp
((

c(λ) + c(µ)
)xn − a

ω

)
W0(xn)|

= |exp
((

c(λ) + c(µ)
)xn − a

ω

)(
W0(xn)−W1(xn)

)
| → 0 as n → ∞;

a contradiction. Hence, dim ran(P(µ,λ)(H1)) < ∞. □
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Proof of Theorem 2.4. Suppose that (2.6) (and hence also (2.2) and (2.5)) holds.
We show that the boundary points of the essential spectrum ofH1 are no eigenvalues
of H1 and, therefore, σess(H1) is purely absolutely continuous. Let λ ∈ ∂σess(H1)
and consider an arbitrary non-trivial linear combination w1 := αu1 + βv1, where
α, β ∈ C. For the same coefficients α, β let w0 := αu0 + βv0 and observe that by
Lemma 2.7 (iii)

w1(x)− w0(x) → 0 and hence |w1(x)|2 − |w0(x)|2 → 0 as x → ∞. (2.39)

We estimate with (2.8) and the boundedness of |u0| from Lemma 2.6 (iii) for some
M > 0 and all t ∈ [a,∞)

|w0(t)|2 ≤
(
|α||u0(t)|+ |β|C

(
1 +

t− a

ω

))2

≤ M(1 + t2),

and hence
|w0(t)|2|r1(t)− r0(t)| ≤ M(1 + t2)|r1(t)− r0(t)|. (2.40)

Moreover,∣∣|w1|2r1 − |w0|2r0
∣∣ ≤ ∣∣|w1|2 − |w0|2

∣∣ |r1 − r0|+ |w0|2|r1 − r0|+
∣∣|w1|2 − |w0|2

∣∣ r0
(2.41)

holds pointwise a. e. on (a,∞) and by (2.6) the functions t 7→ t2|r1(t)− r0(t)| and
t 7→ |r1(t) − r0(t)| are in L1(a,∞). Thus, (2.41) together with (2.39), (2.40), and
the periodicity of r0 imply the existence of n0 ∈ N such that for all n ≥ n0∣∣∣∣∣

∫ a+(n+1)ω

a+nω

|w1(t)|2r1(t) dt−
∫ a+(n+1)ω

a+nω

|w0(t)|2r0(t) dt

∣∣∣∣∣ ≤ E

2
,

where the constant E is from (2.9). This gives for all n ≥ n0∫ a+(n+1)ω

a+nω

|w1(t)|2r1(t) dt ≥
E

2
.

Therefore, w1 does not belong to L2((a,∞); r1), which shows that λ ∈ ∂σess(H1) is
not an eigenvalue of H1. □

Proof of Proposition 2.5. Suppose that (2.5) (and hence also (2.2)) holds and that
r1 satisfies C0 ≤ r1(t) ≤ C1 for t in some neighbourhood of ∞ for some positive
constants C0, C1. Let λ be a boundary point of σess(H1), let u1 = u1(·, λ) be the
solution found in Lemma 2.7 (iii), and suppose v1 = v1(·, λ) were an eigenfunction.
Then, by (2.16) and (2.9), u1 and v1 must be linearly independent and we can
rescale v1 such that the Wronskian with u1 satisfies

1 = W (u1, v1) = u1(p1v
′
1)− (p1u

′
1)v1.

In particular, we obtain

1

2
≤ r1u

2
1

(p1v
′
1)

2

r1
+ r1v

2
1

(p1u
′
1)

2

r1

Now since v1 is an eigenfunction, we have r1v
2
1 → 0 (at least for some subse-

quence). Moreover, by (2.16) and our assumption on r1 both r1u
2
1 and (p1u

′
1)

2/r1
are bounded. Finally, the assumption

∫ t+1

t−1
|q1(s)|2ds ≤ C1 together with the other

assumptions on r1 and p1 ensure that the first integral on the right hand side of [12,
Eq. (2.21) in Lemma 2.7] is bounded and hence this lemma implies (p1v

′
1)

2/r1 → 0,
which gives a contradiction. Thus, there is no square summable solution for λ. □
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3. Proof of the main results

Proofs of Theorem 1.1–1.3. Our main results follow from a coupling argument and
applications of Theorems 2.1, 2.3 and 2.4 and their counterparts on the half-line
(−∞, a). More precisely, choose any self-adjoint realization A0,− and A0,+ of τ0
in L2((−∞, a); r0) and L2((a,∞); r0), respectively, and observe that the resolvent
difference of A0 and A0,− ⊕ A0,+ is an operator of rank one or rank two. In
particular, A0 and A0,−⊕A0,+ have the same essential spectrum, and the periodicity
also implies σess(A0,−) = σess(A0,+).

Let A1,− and A1,+ be self-adjoint realizations of τ1 in L2((−∞, a); r1) and
L2((a,∞); r1), respectively. It follows from Theorem 2.1 that A1,± are semi-
bounded, σess(A0,±) = σess(A1,±), and hence A1,− ⊕A1,+ is semibounded and

σess(A0) = σess(A0,− ⊕A0,+) = σess(A1,− ⊕A1,+).

As also the resolvent difference of A1 and A1,− ⊕ A1,+ is an operator of rank one
or rank two we conclude that A1 is semibounded and

σess(A0) = σess(A1).

In order to prove Theorem 1.1 it remains to show the statement on the absolutely
continuous spectrum of A1. Let λ be an interior point of σess(A1) and let u be a
non-trivial solution of (τ1 − λ)u = 0. Step 2 of the proof of Theorem 2.1 shows
that the restrictions of u onto (−∞, a) and (a,∞) are not sequentially subordinant
at ±∞ and from [6, Theorem 2] we conclude that the spectrum of A1 is purely
absolutely continuous in the interior of the spectral bands. This completes the
proof of Theorem 1.1. Arguing with the restrictions of u onto (−∞, a) and (a,∞)
in the same way as in the proof of Theorem 2.4 we also conclude that the band
edges are no eigenvalues of A1 under the assumptions of Theorem 1.3. To conclude
Theorem 1.2 note that by Theorem 2.3 each gap contains at most finitely many
eigenvalues of A1,− ⊕A1,+. As the resolvent difference of A1 and A1,− ⊕A1,+ is at
most of rank two the number of eigenvalues of A1 in each gap can increase by at
most two, which shows Theorem 1.2. □
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