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Abstract. We prove the unitary equivalence of the inverse of the Krein–von

Neumann extension (on the orthogonal complement of its kernel) of a densely
defined, closed, strictly positive operator, S ≥ εIH for some ε > 0 in a Hilbert

space H to an abstract buckling problem operator.

In the concrete case where S = −∆|C∞0 (Ω) in L2(Ω; dnx) for Ω ⊂ Rn an

open, bounded (and sufficiently regular) domain, this recovers, as a particular

case of a general result due to G. Grubb, that the eigenvalue problem for the
Krein Laplacian SK (i.e., the Krein–von Neumann extension of S),

SKv = λv, λ 6= 0,

is in one-to-one correspondence with the problem of the buckling of a clamped
plate,

(−∆)2u = λ(−∆)u in Ω, λ 6= 0, u ∈ H2
0 (Ω),

where u and v are related via the pair of formulas

u = S−1
F (−∆)v, v = λ−1(−∆)u,

with SF the Friedrichs extension of S.

This establishes the Krein extension as a natural object in elasticity theory
(in analogy to the Friedrichs extension, which found natural applications in

quantum mechanics, elasticity, etc.).

1. Introduction

Suppose that S is a densely defined, symmetric, closed operator with nonzero
deficiency indices in a separable complex Hilbert space H that satisfies

S ≥ εIH for some ε > 0, (1.1)

and denote by SK and SF the Krein–von Neumann and Friedrichs extensions of S,
respectively (with IH the identity operator in H).

Then an abstract version of Proposition 1 in Grubb [22], describing an intimate
connection between the nonzero eigenvalues of the Krein–von Neumann extension
of an appropriate minimal elliptic differential operator of order 2m, m ∈ N, and
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nonzero eigenvalues of a suitable higher-order buckling problem (cf. Example 3.5),
to be proved in Lemma 3.1, can be summarized as follows:

There exists 0 6= v ∈ dom(SK) satisfying SKv = λv, λ 6= 0, (1.2)

if and only if

there exists a 0 6= u ∈ dom(S∗S) such that S∗Su = λSu, (1.3)

and the solutions v of (1.2) are in one-to-one correspondence with the solutions u
of (1.3) given by the pair of formulas

u = (SF )−1SKv, v = λ−1Su. (1.4)

Next, we will go a step further and describe a unitary equivalence result going
beyond the connection between the eigenvalue problems (1.2) and (1.3): Given S,
we introduce the following sesquilinear forms in H,

a(u, v) = (Su, Sv)H, u, v ∈ dom(a) = dom(S), (1.5)

b(u, v) = (u, Sv)H, u, v ∈ dom(b) = dom(S). (1.6)

Then S being densely defined and closed, implies that the sesquilinear form a is
also densely defined and closed, and thus one can introduce the Hilbert space

W = (dom(S), (·, ·)W) (1.7)

with associated scalar product

(u, v)W = a(u, v) = (Su, Sv)H, u, v ∈ dom(S). (1.8)

Suppressing for simplicity the continuous embedding operator ofW into H, we now
introduce the following operator T in W by

(w1, Tw2)W = a(w1, Tw2) = b(w1, w2) = (w1, Sw2)H, w1, w2 ∈ W. (1.9)

One can prove that T is self-adjoint, nonnegative, and bounded and we will call
T the abstract buckling problem operator associated with the Krein–von Neumann
extension SK of S.

Next, introducing the Hilbert space Ĥ by

Ĥ = [ker(S∗)]⊥ =
[
IH − Pker(S∗)

]
H =

[
IH − Pker(SK)

]
H = [ker(SK)]⊥, (1.10)

where PM denotes the orthogonal projection onto the subspace M⊂ H, we intro-
duce the operator

Ŝ :

{
W → Ĥ,
w 7→ Sw,

(1.11)

and note that Ŝ ∈ B(W, Ĥ) maps W unitarily onto Ĥ.

Finally, defining the reduced Krein–von Neumann operator ŜK in Ĥ by

ŜK := SK |[ker(SK)]⊥ in Ĥ, (1.12)

we can state the principal unitary equivalence result to be proved in Theorem 3.4:

The inverse of the reduced Krein–von Neumann operator ŜK in Ĥ and the ab-
stract buckling problem operator T in W are unitarily equivalent,(

ŜK
)−1

= ŜT (Ŝ)−1. (1.13)

In addition, (
ŜK
)−1

= US
[
|S|−1S|S|−1

]
(US)−1. (1.14)
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Here we used the polar decomposition of S,

S = US |S|, with |S| = (S∗S)1/2 ≥ εIH, ε > 0, and US ∈ B
(
H, Ĥ

)
unitary,

(1.15)
and one observes that the operator |S|−1S|S|−1 ∈ B(H) in (1.14) is self-adjoint in
H.

As discussed at the end of Section 3, one can readily rewrite the abstract linear
pencil buckling eigenvalue problem (1.3), S∗Su = λSu, λ 6= 0, in the form of the
standard eigenvalue problem |S|−1S|S|−1w = λ−1w, λ 6= 0, w = |S|u, and hence
establish the connection between (1.2), (1.3) and (1.13), (1.14).

As mentioned in the abstract, the concrete case where S is given by S =
−∆|C∞0 (Ω) in L2(Ω; dnx), then yields the spectral equivalence between the inverse

of the reduced Krein–von Neumann extension ŜK of S and the problem of the
buckling of a clamped plate. More generally, Grubb [22] actually treated the case
where S is generated by an appropriate elliptic differential expression of order 2m,
m ∈ N, and also introduced the higher-order analog of the buckling problem; we
briefly summarize this in Example 3.5.

2. The Abstract Krein–von Neumann Extension

To get started, we briefly elaborate on the notational conventions used through-
out this paper and especially throughout this section which collects abstract mate-
rial on the Krein–von Neumann extension. Let H be a separable complex Hilbert
space, (·, ·)H the scalar product in H (linear in the second factor), and IH the
identity operator in H. Next, let T be a linear operator mapping (a subspace of) a
Banach space into another, with dom(T ), ran(T ), and ker(T ) denoting the domain,
range, and kernel (i.e., null space) of T . The closure of a closable operator S is
denoted by S. The spectrum, essential spectrum, discrete spectrum, and resolvent
set of a closed linear operator in H will be denoted by σ(·), σess(·), σd(·), and ρ(·),
respectively. The Banach spaces of bounded and compact linear operators in H
are denoted by B(H) and B∞(H), respectively. Similarly, the Schatten–von Neu-
mann (trace) ideals will subsequently be denoted by Bp(H), p ∈ (0,∞). Analogous
notation B(H1,H2), B∞(H1,H2), etc., will be used for bounded, compact, etc.,
operators between two Hilbert spaces H1 and H2. Whenever applicable, we retain
the same type of notation in the context of Banach spaces. Moreover, X1 ↪→ X2

denotes the continuous embedding of the Banach space X1 into the Banach space
X2. X1 u X2 denotes the (not necessarily orthogonal) direct sum of the subspaces
X1 and X2 of X .

A linear operator S : dom(S) ⊆ H → H, is called symmetric, if

(u, Sv)H = (Su, v)H, u, v ∈ dom(S). (2.1)

In this manuscript we will be particularly interested in this question within the
class of densely defined (i.e., dom(S) = H), non-negative operators (in fact, in
most instances S will even turn out to be strictly positive) and we focus almost
exclusively on self-adjoint extensions that are non-negative operators. In the latter
scenario, there are two distinguished constructions which we review briefly next.

To set the stage, we recall that a linear operator S : dom(S) ⊆ H → H is called
non-negative provided

(u, Su)H ≥ 0, u ∈ dom(S). (2.2)
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(In particular, S is symmetric in this case.) S is called strictly positive, if for some
ε > 0, (u, Su)H ≥ ε‖u‖2H, u ∈ dom(S). Next, we recall that A ≤ B for two
self-adjoint operators in H if

dom
(
|A|1/2

)
⊇ dom

(
|B|1/2

)
and(

|A|1/2u, UA|A|1/2u
)
H ≤

(
|B|1/2u, UB |B|1/2u

)
H, u ∈ dom

(
|B|1/2

)
.

(2.3)

Here UC denotes the partial isometry in H in the polar decomposition C = UC |C|,
|C| = (C∗C)1/2, of a densely defined closed operator C in H. (If C is in addition
self-adjoint, then |C| and UC commute.) We also recall that for A ≥ 0 self-adjoint,

ker(A) = ker
(
A1/2

)
(2.4)

(with D1/2 denoting the unique nonnegative square root of a nonnegative self-
adjoint operator D in H).

For simplicity we will always adhere to the conventions that S is a linear, un-
bounded, densely defined, nonnegative (i.e., S ≥ 0) operator in H, and that S has
nonzero deficiency indices. Since S is bounded from below, the latter are necessarily
equal. In particular,

def(S) = dim(ker(S∗ − zIH)) ∈ N ∪ {∞}, z ∈ C\[0,∞), (2.5)

is well-known to be independent of z. Moreover, since S and its closure S have the
same self-adjoint extensions in H, we will without loss of generality assume that S
is closed in the remainder of this paper.

The following is a fundamental result to be found in M. Krein’s celebrated 1947
paper [30] (cf. also Theorems 2 and 5–7 in the English summary on page 492)1:

Theorem 2.1. Assume that S is a densely defined, closed, nonnegative operator
in H. Then, among all non-negative self-adjoint extensions of S, there exist two
distinguished ones, SK and SF , which are, respectively, the smallest and largest (in
the sense of order between self-adjoint operators, cf. (2.3)) such extension. Further-

more, a non-negative self-adjoint operator S̃ is a self-adjoint extension of S if and

only if S̃ satisfies

SK ≤ S̃ ≤ SF . (2.6)

In particular, (2.6) determines SK and SF uniquely.
In addition, if S ≥ εIH for some ε > 0, one has SF ≥ εIH, and

dom(SF ) = dom(S)u (SF )−1 ker(S∗), (2.7)

dom(SK) = dom(S)u ker(S∗), (2.8)

dom(S∗) = dom(S)u (SF )−1 ker(S∗)u ker(S∗)

= dom(SF )u ker(S∗), (2.9)

in particular,

ker(SK) = ker
(
(SK)1/2

)
= ker(S∗) = ran(S)⊥. (2.10)

We also note that

SFu = S∗u, u ∈ dom(SF ), (2.11)

SKv = S∗v, v ∈ dom(SK). (2.12)

1We are particularly indebted to Gerd Grubb for a clarification of the necessary and sufficient

nature of the inequalities (2.6) (resp., (2.13)) for S̃ to be a self-adjoint extension of S.
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Here the operator inequalities in (2.6) are understood in the sense of (2.3) and
they can equivalently be written as

(SF + aIH)−1 6
(
S̃ + aIH

)−1
6 (SK + aIH)−1 for some (and hence for all) a > 0.

(2.13)
For classical references on the subject of self-adjoint extensions of semibounded

operators (not necessarily restricted to the Krein–von Neumann extension) we refer
to Birman [10], [11], Friedrichs [16], Freudenthal [15], Grubb [19], [20], Krein [31],

S̆traus [34], and Vĭsik [35] (see also the monographs by Akhiezer and Glazman [1,
Sect. 109], Faris [14, Part III], Fukushima, Oshima, and Takeda [17, Sect. 3.3], and
the recent book by Grubb [23, Sect. 13.2]).

We will call the operator SK the Krein–von Neumann extension of S. See [30]
and also the discussion in [2] and [3]. It should be noted that the Krein–von
Neumann extension was first considered by von Neumann [36] in 1929 in the case
where S is strictly bounded from below, that is, if S ≥ εIH for some ε > 0. (His
construction appears in the proof of Theorem 42 on pages 102–103.) However, von
Neumann did not isolate the extremal property of this extension as described in
(2.6) and (2.13). M. Krein [30], [31] was the first to systematically treat the general
case S ≥ 0 and to study all nonnegative self-adjoint extensions of S, illustrating the
special role of the Friedrichs extension (i.e., the “hard” extension) SF of S and the
Krein–von Neumann (i.e., the “soft”) extension SK of S as extremal cases when
considering all nonnegative extensions of S. For a recent exhaustive treatment of
self-adjoint extensions of semibounded operators we refer to [4]–[7], [12], [13], [25].

For convenience of the reader we also mention the following intrinsic description
of the Friedrichs extension SF of S ≥ 0 (S densely defined and closed in H) due to
Freudenthal [15],

SFu := S∗u,

u ∈ dom(SF ) :=
{
v ∈ dom(S∗)

∣∣ there exists {vj}j∈N ⊂ dom(S), (2.14)

with lim
j→∞

‖vj − v‖H = 0 and ((vj − vk), S(vj − vk))H → 0 as j, k →∞
}
,

and an intrinsic description of the Krein–von Neumann extension SK of S ≥ 0 due
to Ando and Nishio [3],

SKu := S∗u,

u ∈ dom(SK) :=
{
v ∈ dom(S∗)

∣∣ there exists {vj}j∈N ⊂ dom(S), (2.15)

with lim
j→∞

‖Svj − S∗v‖H = 0 and ((vj − vk), S(vj − vk))H → 0 as j, k →∞
}
.

Throughout the rest of this paper we make the following assumptions:

Hypothesis 2.2. Suppose that S is a densely defined, symmetric, closed operator
with nonzero deficiency indices in H that satisfies

S ≥ εIH for some ε > 0. (2.16)

We recall that the reduced Krein–von Neumann operator ŜK in the Hilbert space

Ĥ (cf. (2.10)),

Ĥ = [ker(S∗)]⊥ =
[
IH − Pker(S∗)

]
H =

[
IH − Pker(SK)

]
H = [ker(SK)]⊥, (2.17)

is given by

ŜK : = SK |[ker(SK)]⊥ (2.18)
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= SK [IH − Pker(SK)] in Ĥ

= [IH − Pker(SK)]SK [IH − Pker(SK)] in Ĥ,
(2.19)

where PM denotes the orthogonal projection onto the subspace M ⊂ H, and we
are alluding to the orthogonal direct sum decomposition of H into

H = Pker(SK)H⊕ Ĥ = ker(SK)⊕ [ker(SK)]⊥. (2.20)

We continue with the following elementary observation:

Lemma 2.3. Assume Hypothesis 2.2 and let v ∈ dom(SK). Then the decomposi-
tion, dom(SK) = dom(S)uker(S∗) (cf. (2.8)), leads to the following decomposition
of v,

v = (SF )−1SKv + w, where (SF )−1SKv ∈ dom(S) and w ∈ ker(S∗). (2.21)

As a consequence,(
ŜK
)−1

= [IH − Pker(SK)](SF )−1[IH − Pker(SK)]. (2.22)

Proof. Let v = u+ w, with u ∈ dom(S) and w ∈ ker(S∗). Then

v = u+ w = (SF )−1SFu+ w = (SF )−1Su+ w

= (SF )−1SKu+ w = (SF )−1SK(u+ w) + w

= (SF )−1SKv + w (2.23)

proves (2.21). Given v ∈ dom(SK), one infers

SKv = SK(Pker(SK) + PĤ)v = SKPĤv, (2.24)

since SKPker(SK) = 0. In particular,

PĤv ∈ dom(SK) whenever v ∈ dom(SK). (2.25)

Applying PĤ to (2.21) then yields

PĤv = PĤ(SF )−1SK [PĤ + Pker(SK)]v = PĤ(SF )−1SKPĤv = PĤ(SF )−1ŜKPĤv

= PĤ(SF )−1PĤŜKPĤv, v ∈ dom(SK). (2.26)

Thus, (
ŜK
)−1(

ŜKPĤv
)

= PĤ(SF )−1PĤ
(
ŜKPĤv

)
, v ∈ dom(SK). (2.27)

Since ran
(
ŜK
)

= Ĥ, (2.27) proves (2.22). �

We note that equation (2.22) was proved by Krein in his seminal paper [30] (cf.
the proof of Theorem 26 in [30]). For a different proof of Krein’s formula (2.22)
and its generalization to the case of non-negative operators, see also [32, Corollary
5].

Next, we consider a self-adjoint operator

T : dom(T ) ⊆ H → H, T = T ∗, (2.28)

which is bounded from below, that is, there exists α ∈ R such that

T ≥ αIH. (2.29)



THE KREIN–VON NEUMANN EXTENSION 7

We denote by {ET (λ)}λ∈R the family of strongly right-continuous spectral pro-
jections of T , and introduce, as usual, ET ((a, b)) = ET (b−) − ET (a), ET (b−) =
s-limε↓0ET (b− ε), −∞ ≤ a < b. In addition, we set

µT,j := inf
{
λ ∈ R | dim(ran(ET ((−∞, λ)))) ≥ j

}
, j ∈ N. (2.30)

Then, for fixed k ∈ N, either:
(i) µT,k is the kth eigenvalue of T counting multiplicity below the bottom of the
essential spectrum, σess(T ), of T ,
or
(ii) µT,k is the bottom of the essential spectrum of T ,

µT,k = inf{λ ∈ R |λ ∈ σess(T )}, (2.31)

and in that case µT,k+` = µT,k, ` ∈ N, and there are at most k − 1 eigenvalues
(counting multiplicity) of T below µT,k.

We now record the following basic result:

Theorem 2.4. Assume Hypothesis 2.2. Then,

ε ≤ µSF ,j ≤ µŜK ,j
, j ∈ N. (2.32)

In particular, if the Friedrichs extension SF of S has purely discrete spectrum,
then, except possibly for λ = 0, the Krein–von Neumann extension SK of S also
has purely discrete spectrum in (0,∞), that is,

σess(SF ) = ∅ implies σess(SK)\{0} = ∅. (2.33)

In addition, let p ∈ (0,∞) ∪ {∞}, then

(SF − z0IH)−1 ∈ Bp(H) for some z0 ∈ C\[ε,∞)

implies (SK − zIH)−1[IH − Pker(SK)] ∈ Bp(H) for all z ∈ C\[ε,∞).
(2.34)

In fact, the `p(N)-based trace ideals Bp(H) of B(H) can be replaced by any two-sided
symmetrically normed ideals of B(H).

Proof. Denote by Mj subspaces of H of dimension j ∈ N, and similarly, M̂j

subspaces of Ĥ of dimension j ∈ N. Then the inequalities (2.32) follow from
SF ≥ εIH, (2.22), and the minimax (better, maximin) theorem as follows: First we
note that (cf., e.g., [24, Theorem 5.28], [26, Sect. 32])

1

µSF ,j
= sup
Mj⊂H

min
u∈Mj

‖u‖H=1

(
u, (SF )−1u

)
H, j ∈ N. (2.35)

As a consequence,

1

µSF ,j
≥ min
u∈Mj⊂H

(
u, (SF )−1u

)
H, j ∈ N, (2.36)

for any subspace Mj of H of dimension j ∈ N. In particular,

1

µSF ,j
≥ min
v∈M̂j⊂Ĥ
‖v‖Ĥ=1

(
v, (SF )−1v

)
Ĥ

= min
v∈M̂j⊂Ĥ
‖v‖Ĥ=1

(
v, PĤ(SF )−1PĤv

)
Ĥ, j ∈ N, (2.37)
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for any subspace M̂j of Ĥ of dimension j ∈ N. Thus, one concludes

1

µSF ,j
≥ sup
M̂j⊂Ĥ

min
v∈M̂j

‖v‖Ĥ=1

(
v, PĤ(SF )−1PĤv

)
Ĥ

= sup
M̂j⊂Ĥ

min
v∈M̂j

‖v‖Ĥ=1

(
v,
(
ŜK
)−1

v
)
Ĥ

=
1

µŜK ,j

, j ∈ N. (2.38)

Next, let J (H) be a two-sided symmetrically normed ideal of B(H). Temporarily,

we will identify operators of the type PĤTPĤ in Ĥ for T ∈ B(H), with 2× 2 block
operators of the type(

0 0
0 PĤTPĤ|Ĥ

)
in H = (ker(SK))⊥ ⊕ Ĥ. (2.39)

By (2.22), and since PĤ is bounded, one concludes that (SF )−1 ∈ J (H) implies(
ŜK)−1 = n-limz→0(SK − zIH)−1[IH − Pker(SK)] ∈ J (H). The (first) resolvent

equation applied to SF , and subsequently, applied to SK , then proves (2.34). �

We note that (2.33) is a classical result of Krein [30], the more general fact (2.32)
has not been mentioned explicitly in Krein’s paper [30], although it immediately
follows from the minimax principle and Krein’s formula (2.22). On the other hand,
in the special case def(S) < ∞, Krein states an extension of (2.32) in his Remark
8.1 in the sense that he also considers self-adjoint extensions different from the
Krein extension. Apparently, (2.32) has first been proven by Alonso and Simon [2]
by a somewhat different method.

Concluding this section, we point out that a great variety of additional results
for the Krein–von Neumann extension can be found in the very extensive list of
references in [7], [8], and [25].

3. The Krein–von Neumann Extension and its Unitary Equivalence to
an Abstract Buckling Problem

In this section we prove our principal result, the unitary equivalence of the inverse
of the Krein–von Neumann extension (on the orthogonal complement of its kernel)
of a densely defined, closed, operator S satisfying S ≥ εIH for some ε > 0, in a
complex separable Hilbert space H to an abstract buckling problem operator.

We start by introducing an abstract version of Proposition 1 in Grubb’s paper
[22] devoted to Krein–von Neumann extensions of even order elliptic differential
operators on bounded domains:

Lemma 3.1. Assume Hypothesis 2.2 and let λ 6= 0. Then there exists 0 6= v ∈
dom(SK) with

SKv = λv (3.1)

if and only if there exists 0 6= u ∈ dom(S∗S) such that

S∗Su = λSu. (3.2)
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In particular, the solutions v of (3.1) are in one-to-one correspondence with the
solutions u of (3.2) given by the formulas

u = (SF )−1SKv, (3.3)

v = λ−1Su. (3.4)

Of course, since SK ≥ 0, any λ 6= 0 in (3.1) and (3.2) necessarily satisfies λ > 0.

Proof. Let SKv = λv, v ∈ dom(SK), λ 6= 0, and v = u+ w, with u ∈ dom(S) and
w ∈ ker(S∗). Then,

SKv = λv ⇐⇒ v = λ−1SKv = λ−1SKu = λ−1Su. (3.5)

Moreover, u = 0 implies v = 0 and clearly v = 0 implies u = w = 0, hence v 6= 0 if
and only if u 6= 0. In addition, u = (SF )−1SKv by (2.21). Finally,

λw = Su− λu ∈ ker(S∗) implies

0 = λS∗w = S∗(Su− λu) = S∗Su− λS∗u = S∗Su− λSu.
(3.6)

Conversely, suppose u ∈ dom(S∗S) and S∗Su = λSu, λ 6= 0. Introducing v =
λ−1Su, then v ∈ dom(S∗) and

S∗v = λ−1S∗Su = Su = λv. (3.7)

Noticing that

S∗Su = λSu = λS∗u implies S∗(S − λIH)u = 0, (3.8)

and hence (S − λIH)u ∈ ker(S∗), rewriting v as

v = u+ λ−1(S − λIH)u (3.9)

then proves that also v ∈ dom(SK), using (2.8) again. �

Due to Example 3.5 and Remark 3.6 at the end of this section, we will call the
linear pencil eigenvalue problem S∗Su = λSu in (3.2) the abstract buckling problem
associated with the Krein–von Neumann extension SK of S.

Next, we turn to a variational formulation of the correspondence between the

inverse of the reduced Krein extension ŜK and the abstract buckling problem in
terms of appropriate sesquilinear forms by following the treatment of Kozlov [27]–
[29] in the context of elliptic partial differential operators. This will then lead to an
even stronger connection between the Krein–von Neumann extension SK of S and
the associated abstract buckling eigenvalue problem (3.2), culminating in a unitary
equivalence result in Theorem 3.4.

Given the operator S, we introduce the following sesquilinear forms in H,

a(u, v) = (Su, Sv)H, u, v ∈ dom(a) = dom(S), (3.10)

b(u, v) = (u, Sv)H, u, v ∈ dom(b) = dom(S). (3.11)

Then S being densely defined and closed implies that the sesquilinear form a shares
these properties and (2.16) implies its boundedness from below,

a(u, u) ≥ ε2‖u‖2H, u ∈ dom(S). (3.12)

Thus, one can introduce the Hilbert space W = (dom(S), (·, ·)W) with associated
scalar product

(u, v)W = a(u, v) = (Su, Sv)H, u, v ∈ dom(S). (3.13)



10 M. S. ASHBAUGH, F. GESZTESY, M. MITREA, R. SHTERENBERG, AND G. TESCHL

In addition, we denote by ιW the continuous embedding operator of W into H,

ιW :W ↪→ H. (3.14)

Hence we will use the notation

(w1, w2)W = a(ιWw1, ιWw2) = (SιWw1, SιWw2)H, w1, w2 ∈ W, (3.15)

in the following.
Given the sesquilinear forms a and b and the Hilbert space W, we next define

the operator T in W by

(w1, Tw2)W = a(ιWw1, ιWTw2) = (SιWw1, SιWTw2)H

= b(ιWw1, ιWw2) = (ιWw1, SιWw2)H, w1, w2 ∈ W.
(3.16)

(In contrast to the informality of our introduction, we now explicitly write the
embedding operator ιW .) One verifies that T is well-defined and that

|(w1, Tw2)W | ≤ ‖ιWw1‖H‖SιWw2‖H ≤ ε−1‖w1‖W‖w2‖W , w1, w2 ∈ W, (3.17)

and hence that

0 ≤ T = T ∗ ∈ B(W), ‖T‖B(W) ≤ ε−1. (3.18)

For reasons to become clear at the end of this section, we will call T the abstract
buckling problem operator associated with the Krein–von Neumann extension SK
of S.

Next, recalling the notation Ĥ = [ker(S∗)]⊥ =
[
IH − Pker(S∗)

]
H (cf. (2.17)), we

introduce the operator

Ŝ :

{
W → Ĥ,
w 7→ SιWw,

(3.19)

and note that

ran
(
Ŝ
)

= ran(S) = Ĥ, (3.20)

since S ≥ εIH for some ε > 0 and S is closed in H (see, e.g., [37, Theorem 5.32]).
In fact, one has the following result:

Lemma 3.2. Assume Hypothesis 2.2. Then Ŝ ∈ B(W, Ĥ) maps W unitarily onto

Ĥ.

Proof. Clearly Ŝ is an isometry since∥∥Ŝw∥∥Ĥ = ‖SιWw
∥∥
H = ‖w‖W , w ∈ W. (3.21)

Since ran
(
Ŝ
)

= Ĥ by (3.20), Ŝ is unitary. �

Next we recall the definition of the reduced Krein–von Neumann operator ŜK
in Ĥ defined in (2.19), the fact that ker(S∗) = ker(SK) by (2.10), and state the
following auxiliary result:

Lemma 3.3. Assume Hypothesis 2.2. Then the map[
IH − Pker(S∗)

]
: dom(S)→ dom

(
ŜK
)

(3.22)

is a bijection. In addition, we note that[
IH − Pker(S∗)

]
SKu = SK

[
IH − Pker(S∗)

]
u = ŜK

[
IH − Pker(S∗)

]
u

=
[
IH − Pker(S∗)

]
Su = Su ∈ Ĥ, u ∈ dom(S).

(3.23)
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Proof. Let u ∈ dom(S), then ker(S∗) = ker(SK) implies that
[
IH − Pker(S∗)

]
u ∈

dom(SK) and of course
[
IH − Pker(S∗)

]
u ∈ dom

(
ŜK
)
. To prove injectivity of the

map (3.22) it suffices to assume v ∈ dom(S) and
[
IH − Pker(S∗)

]
v = 0. Then

dom(S) 3 v = Pker(S∗)v ∈ ker(S∗) yields v = 0 as dom(S) ∩ ker(S∗) = {0}. To

prove surjectivity of the map (3.22) we suppose u ∈ dom
(
ŜK). The decomposition,

u = f + g with f ∈ dom(S) and g ∈ ker(S∗), then yields

u =
[
IH − Pker(S∗)

]
u =

[
IH − Pker(S∗)

]
f ∈

[
IH − Pker(S∗)

]
dom(S) (3.24)

and hence proves surjectivity of (3.22).
Equation (3.23) is clear from

SK
[
IH−Pker(S∗)

]
=
[
IH−Pker(S∗)

]
SK =

[
IH−Pker(S∗)

]
SK
[
IH−Pker(S∗)

]
. (3.25)

�

Continuing, we briefly recall the polar decomposition of S,

S = US |S|, (3.26)

with
|S| = (S∗S)1/2 ≥ εIH, ε > 0, US ∈ B

(
H, Ĥ

)
is unitary. (3.27)

At this point we are in position to state our principal unitary equivalence result:

Theorem 3.4. Assume Hypothesis 2.2. Then the inverse of the reduced Krein–von

Neumann extension ŜK in Ĥ =
[
IH−Pker(S∗)

]
H and the abstract buckling problem

operator T in W are unitarily equivalent, in particular,(
ŜK
)−1

= ŜT (Ŝ)−1. (3.28)

Moreover, one has (
ŜK
)−1

= US
[
|S|−1S|S|−1

]
(US)−1, (3.29)

where US ∈ B
(
H, Ĥ

)
is the unitary operator in the polar decomposition (3.26) of S

and the operator |S|−1S|S|−1 ∈ B(H) is self-adjoint in H.

Proof. Let w1, w2 ∈ W. Then,(
w1,

(
Ŝ
)−1(

ŜK
)−1

Ŝw2

)
W =

(
Ŝw1,

(
ŜK
)−1

Ŝw2

)
Ĥ

=
((
ŜK
)−1

Ŝw1, Ŝw2

)
Ĥ =

((
ŜK
)−1

SιWw1, Ŝw2

)
Ĥ

=
((
ŜK
)−1[

IH − Pker(S∗)

]
SιWw1, Ŝw2

)
Ĥ by (3.23)

=
((
ŜK
)−1

ŜK
[
IH − Pker(S∗)

]
ιWw1, Ŝw2

)
Ĥ again by (3.23)

=
([
IH − Pker(S∗)

]
ιWw1, Ŝw2

)
Ĥ

=
(
ιWw1, SιWw2

)
H

=
(
w1, Tw2

)
W by definition of T in (3.16), (3.30)

yields (3.28). In addition one verifies that(
Ŝw1,

(
ŜK
)−1

Ŝw2

)
Ĥ =

(
w1, Tw2

)
W

=
(
ιWw1, SιWw2

)
H

=
(
|S|−1|S|ιWw1, S|S|−1|S|ιWw2

)
H

=
(
|S|ιWw1,

[
|S|−1S|S|−1

]
|S|ιWw2

)
H
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=
(
(US)∗SιWw1,

[
|S|−1S|S|−1

]
(US)∗SιWw2

)
H

=
(
SιWw1, US

[
|S|−1S|S|−1

]
(US)∗SιWw2

)
H

=
(
Ŝw1, US

[
|S|−1S|S|−1

]
(US)∗Ŝw2

)
Ĥ , (3.31)

where we used |S| = (US)∗S. �

Equation (3.29) is of course motivated by rewriting the abstract linear pencil
buckling eigenvalue problem (3.2), S∗Su = λSu, λ 6= 0, in the form

λ−1S∗Su = λ−1(S∗S)1/2
[
(S∗S)1/2u

]
= S(S∗S)−1/2

[
(S∗S)1/2u

]
(3.32)

and hence in the form of a standard eigenvalue problem

|S|−1S|S|−1w = λ−1w, λ 6= 0, w = |S|u. (3.33)

We conclude this section with a concrete example discussed explicitly in Grubb
[22] (see also [19]–[21] for necessary background) and make the explicit connec-
tion with the buckling problem. It was this example which greatly motivated the
abstract results in this note:

Example 3.5. ([22].) Let H = L2(Ω; dnx), with Ω ⊂ Rn, n ≥ 2, open and bounded,
with a smooth boundary ∂Ω, and consider the minimal operator realization S of the
differential expression S in L2(Ω; dnx), defined by

Su = S u, (3.34)

u ∈ dom(S) = H2m
0 (Ω) =

{
v ∈ H2m(Ω)

∣∣ γkv = 0, 0 ≤ k ≤ 2m− 1
}
, m ∈ N,

where

S =
∑

0≤|α|≤2m

aα(·)Dα, (3.35)

Dα = (−i∂/∂x1)α1 · · · (−i∂/∂xn)αn , α = (α1, . . . , αn) ∈ Nn0 , (3.36)

aα(·) ∈ C∞(Ω), C∞(Ω) =
⋂
k∈N0

Ck(Ω), (3.37)

and the coefficients aα are chosen such that S is symmetric in L2(Rn; dnx), that
is, the differential expression S is formally self-adjoint,

(S u, v)L2(Rn;dnx) = (u,S v)L2(Rn;dnx), u, v ∈ C∞0 (Ω), (3.38)

and S is strongly elliptic, that is, for some c > 0,

Re

( ∑
|α|=2m

aα(x)ξα
)
≥ c|ξ|2m, x ∈ Ω, ξ ∈ Rn. (3.39)

In addition, we assume that S ≥ εIL2(Ω;dnx) for some ε > 0. The trace operators
γk are defined as follows: Consider

γ̊k :

{
C∞(Ω)→ C∞(∂Ω)

u 7→ (∂knu)|∂Ω,
(3.40)

with ∂n denoting the interior normal derivative. The map γ̊ then extends by conti-
nuity to a bounded operator

γk : Hs(Ω)→ Hs−k−(1/2)(∂Ω), s > k + (1/2), (3.41)
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in addition, the map

γ(r) = (γ0, . . . , γr) : Hs(Ω)→
r∏

k=0

Hs−k−(1/2)(∂Ω), s > r + (1/2), (3.42)

satisfies

ker
(
γ(r)

)
= Hs

0(Ω), ran
(
γ(r)

)
=

r∏
k=0

Hs−k−(1/2)(∂Ω). (3.43)

Then S∗, the maximal operator realization of S in L2(Ω; dnx), is given by

S∗u = S u, u ∈ dom(S∗) =
{
v ∈ L2(Ω; dnx)

∣∣S v ∈ L2(Ω; dnx)
}
, (3.44)

and SF is characterized by

SFu = S u, u ∈ dom(SF ) =
{
v ∈ H2m(Ω)

∣∣ γkv = 0, 0 ≤ k ≤ m− 1
}
. (3.45)

The Krein–von Neumann extension SK of S then has the domain

dom(SK) = H2m
0 (Ω)u ker(S∗), dim(ker(S∗)) =∞, (3.46)

and elements u ∈ dom(SK) satisfy the nonlocal boundary condition

γNu− PγD,γNγDu = 0, (3.47)

γDu = (γ0u, . . . , γm−1u), γNu = (γmu, . . . , γ2m−1u), u ∈ dom(SK), (3.48)

where

PγD,γN = γNγ
−1
Z :

m−1∏
k=0

Hs−k−(1/2)(∂Ω)→
2m−1∏
j=m

Hs−j−(1/2)(∂Ω)

continuously for all s ∈ R,

(3.49)

and γ−1
Z denotes the inverse of the isomorphism γZ given by

γD : ZsS →
m−1∏
k=0

Hs−k−(1/2)(∂Ω), (3.50)

ZsS =
{
u ∈ Hs(Ω)

∣∣S u = 0 in Ω in the sense of distributions in D′(Ω)
}
, s ∈ R.

(3.51)

Moreover one has (
Ŝ
)−1

= ιW [IH − PγD,γNγD]
(
ŜK
)−1

, (3.52)

since [IH − PγD,γNγD] dom(SK) ⊆ dom(S) and S[IH − PγD,γNγD]v = λv, v ∈
dom(SK).

As discussed in detail in Grubb [22],

σess(SK) = {0}, σ(SK) ∩ (0,∞) = σd(SK) (3.53)

and the nonzero (and hence discrete) eigenvalues of SK satisfy a Weyl-type asymp-
totics. The connection to a higher-order buckling eigenvalue problem established by
Grubb then reads

There exists 0 6= v ∈ SK satisfying S v = λv in Ω, λ 6= 0 (3.54)

if and only if

there exists 0 6= u ∈ C∞(Ω) such that

{
S 2u = λS u in Ω, λ 6= 0,

γku = 0, 0 ≤ k ≤ 2m− 1,
(3.55)
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where the solutions v of (3.54) are in one-to-one correspondence with the solutions
u of (3.55) via

u = S−1
F S v, v = λ−1S u. (3.56)

Since SF has purely discrete spectrum in Example 3.5, we note that Theorem
2.4 applies in this case.

Remark 3.6. In the particular case m = 1 and S = −∆, the linear pencil eigenvalue
problem (3.55) (i.e., the concrete analog of the abstract buckling eigenvalue problem
S∗Su = λSu, λ 6= 0, in (3.2)), then yields the buckling of a clamped plate problem,

(−∆)2u = λ(−∆)u in Ω, λ 6= 0, u ∈ H2
0 (Ω), (3.57)

as distributions in H−2(Ω). Here we used the fact that for any nonempty bounded
open set Ω ⊂ Rn, n ∈ N, n ≥ 2, (−∆)m ∈ B

(
Hk(Ω), Hk−2m(Ω)

)
, k ∈ Z, m ∈ N. In

addition, if Ω is a Lipschitz domain, then one has that −∆: H1
0 (Ω)→ H−1(Ω) is an

isomorphism and similarly, (−∆)2 : H2
0 (Ω)→ H−2(Ω) is an isomorphism. (For the

natural norms on Hk(Ω), k ∈ Z, see, e.g., [33, p. 73–75].) We refer, for instance, to
[9, Sect. 4.3B] for a derivation of (3.57) from the fourth-order system of quasilinear
von Kármán partial differential equations. To be precise, (3.57) should also be
considered in the special case n = 2.

Remark 3.7. We emphasize that the smoothness hypotheses on ∂Ω can be relaxed
in the special case of the second-order Schrödinger operator associated with the
differential expression −∆ + V , where V ∈ L∞(Ω; dnx) is real-valued: Following

the treatment of self-adjoint extensions of S = (−∆ + V )|C∞0 (Ω) on quasi-convex
domains Ω first introduced in [18], the case of the Krein–von Neumann extension
SK of S on such quasi-convex domains (which are close to minimally smooth)
is treated in great detail in [8]. In particular, a Weyl-type asymptotics of the
associated (nonzero) eigenvalues of SK has been proven in [8]. In the higher-order
smooth case described in Example 3.5, a Weyl-type asymptotics for the nonzero
eigenvalues of SK has been proven by Grubb [22] in 1983.

Acknowledgments. We are indebted to Gerd Grubb, Konstantin Makarov, Mark
Malamud, and Eduard Tsekanovskii for a critical reading of our manuscript, and
for providing us with numerous additional insights into this circle of ideas.
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[7] Yu. Arlinskĭı and E. Tsekanovskĭı, M.Krĕın’s research on semibounded operators, its con-
temporary developments, and applications, in Modern Analysis and Applications. The Mark

Krein Centenary Conference, Vol. 1, V. Adamyan, Y. M. Berezansky, I. Gohberg, M. L. Gor-
bachuk, V. Gorbachuk, A. N. Kochubei, H. Langer, and G. Popov (eds.), Operator Theory:

Advances and Applications, Vol. 190, Birkhäuser, Basel, 2009, pp. 65–112.
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[25] S. Hassi, M. Malamud, and H. de Snoo, On Krĕın’s extension theory of nonnegative operators,

Math. Nachr. 274–275, 40–73 (2004).
[26] H. Heuser, Funktionalanalysis, Teubner, Stuttgart, 1986.

[27] V. A. Kozlov, Estimation of the remainder in a formula for the asymptotic behavior of
the spectrum of nonsemibounded elliptic systems, Vestnik Leningrad. Univ. Mat. Mekh. As-

tronom. 1979, no 4., 112–113, 125 (Russian).

[28] V. A. Kozlov, Estimates of the remainder in formulas for the asymptotic behavior of the
spectrum for linear operator bundles, Funktsional. Anal. i Prilozhen 17, no. 2, 80–81 (1983).

Engl. transl. in Funct. Anal. Appl. 17, no. 2, 147–149 (1983).
[29] V. A. Kozlov, Remainder estimates in spectral asymptotic formulas for linear operator pen-

cils, Linear and Nonlinear Partial Differential Equations. Spectral Asymptotic Behavior, pp.

34–56, Probl. Mat. Anal. 9, Leningrad Univ., Leningrad, 1984; Engl. transl. in J. Sov. Math.

35, 2180–2193 (1986).
[30] M. G. Krein, The theory of self-adjoint extensions of semi-bounded Hermitian transforma-

tions and its applications. I, Mat. Sbornik 20, 431–495 (1947). (Russian).
[31] M. G. Krein, The theory of self-adjoint extensions of semi-bounded Hermitian transforma-

tions and its applications. II, Mat. Sbornik 21, 365–404 (1947). (Russian).

[32] M. M. Malamud, Certain classes of extensions of a lacunary Hermitian operator, Ukrainian

Math. J. 44, No. 2, 190–204 (1992).



16 M. S. ASHBAUGH, F. GESZTESY, M. MITREA, R. SHTERENBERG, AND G. TESCHL

[33] W. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge Univer-

sity Press, Cambridge, 2000.

[34] A. V. S̆traus, On extensions of a semibounded operator, Sov. Math. Dokl. 14, 1075–1079
(1973).
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