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Abstract. We apply the method of nonlinear steepest descent to compute the

long-time asymptotics of solutions of the Korteweg–de Vries equation which
are decaying perturbations of a quasi-periodic finite-gap background solution.

We compute a nonlinear dispersion relation and show that the x/t plane splits

into g + 1 soliton regions which are interlaced by g + 1 oscillatory regions,
where g + 1 is the number of spectral gaps.

In the soliton regions the solution is asymptotically given by a number of

solitons traveling on top of finite-gap solutions which are in the same isospectral
class as the background solution. In the oscillatory region the solution can be

described by a modulated finite-gap solution plus a decaying dispersive tail.

The modulation is given by a phase transition on the isospectral torus and is,
together with the dispersive tail, explicitly characterized in terms of Abelian

integrals on the underlying hyperelliptic curve.

1. Introduction

Consider the Korteweg–de Vries (KdV) equation

(1.1) Vt(x, t) = 6V (x, t)Vx(x, t)− Vxxx(x, t), (x, t) ∈ R× R,
where the subscripts denote differentiation with respect to the corresponding vari-
ables.

Following the seminal work of Gardner, Green, Kruskal, and Miura [17], one
can use the inverse scattering transform to establish existence and uniqueness of
(real-valued) classical solutions for the corresponding initial value problem with
rapidly decaying initial conditions. We refer to, for instance, the monograph by
Marchenko [28]. Our concern here are the long-time asymptotics of such solutions.
The classical result is that an arbitrary short-range solution of the above type will
eventually split into a number of solitons traveling to the right plus a decaying ra-
diation part traveling to the left. The first numerical evidence for such a behaviour
was found by Zabusky and Kruskal [37]. The first mathematical results were given
by Ablowitz and Newell [1], Manakov [27], and Šabat [31]. First rigorous results for
the KdV equation were proved by Šabat [31] and Tanaka [33]. Precise asymptotics
for the radiation part were first formally derived by Zakharov and Manakov [36],
by Ablowitz and Segur [2], [32], by Buslaev [6] (see also [5]), and later on rigorously
justified and extended to all orders by Buslaev and Sukhanov [7]. A detailed rig-
orous proof (not requiring any a priori information on the asymptotic form of the
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solution) was given by Deift and Zhou [8] based on earlier work of Manakov [27] and
Its [18] and is now known as the nonlinear steepest descent method for oscillatory
Riemann–Hilbert problems. For an expository introduction to this method applied
to the KdV equation we refer to [20]. For further information on the history of this
problem we refer to the survey by Deift, Its, and Zhou [9].

In this paper we want to look at the case of solutions which are asymptotically
close to a quasi-periodic algebro-geometric finite-gap solution of the KdV equation.
In this case the underlying inverse scattering transform was developed only recently
by Grunert, Egorova, and Teschl [12], [13], [14]. So while the initial value problem
for this class of solutions is well understood, nothing was known about their long-
time asymptotics even though the first attempts by Kuznetsov and Mikhăılov [23]
date back over 35 years ago. It is the aim of the present paper to fill this gap. In
case of the discrete analog, the Toda lattice (see e.g. [34]), Kamvissis and Teschl
[21], [22] (with further extensions by Krüger and Teschl [26]) have recently extended
the nonlinear steepest descent method for Riemann–Hilbert problem deformations
to Riemann surfaces and used this extension to prove the following result for the
Toda lattice:

Let g be the genus of the hyperelliptic curve associated with the unperturbed
solution. Then, apart from the phenomenon of the solitons traveling on the quasi-
periodic background, the (n, t)-plane contains g + 2 areas where the perturbed
solution is close to a finite-gap solution from the same isospectral torus. In between
there are g + 1 regions where the perturbed solution is asymptotically close to a
modulated lattice which undergoes a continuous phase transition (in the Jacobian
variety) and which interpolates between these isospectral solutions. In the special
case of the free lattice (g = 0) the isospectral torus consists of just one point and
the known results are recovered. Both the solutions in the isospectral torus and
the phase transition were explicitly characterized in terms of Abelian integrals on
the underlying hyperelliptic curve.

In the present paper we will use this extension for Riemann–Hilbert problems on
Riemann surfaces to prove an analog result for the KdV equation to be formulated
in the next section.

2. Main results

To set the stage we will choose a quasi-periodic algebro-geometric finite-gap
background solution Vq(x, t) of the KdV equation (cf. the next section) plus another
solution V (x, t) of the KdV equation such that

(2.1)

∫ +∞

−∞
(1 + |x|)7(|V (x, t)− Vq(x, t)|)dx <∞

for all t ∈ R. We remark that such solutions exist which can be shown by solving
the associated Cauchy problem via the inverse scattering transform [12].

To fix our background solution Vq, let us consider a hyperelliptic Riemann surface
Kg of genus g ∈ N0 with real moduli E0, E1, . . . , E2g. Then we choose a Dirichlet
divisor Dµ̂(x,t) and introduce

(2.2)
z(p, x, t) = Ξ̂E0

− ÂE0
(p) + α̂E0

(Dµ̂(x,t)) ∈ Cg,

α̂E0
(Dµ̂(x,t)) = α̂E0

(Dµ̂) +
x

2π
U0 + 12

t

2π
U2,
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where AE0
(αE0

) is Abel’s map (for divisors), and ΞE0
, U0, and U2 are some

constants defined in detail in Section 3 below. Then our background solution is
given in terms of Riemann theta functions (cf. (3.13)) by

(2.3)

Vq(x, t) = E0 +

g∑
j=1

(E2j−1 + E2j − 2µj(x, t))

= E0 +

g∑
j=1

(E2j−1 + E2j − 2λj)− 2∂2
x ln θ

(
z(p∞, x, t)

)
,

where λj ∈ (E2j−1, E2j), j = 1, . . . , g.
In order to state our main result, we begin by recalling that the perturbed KdV

solution V (x, t), x ∈ R, for fixed t ∈ R, is uniquely determined by its scattering
data, that is, by the right reflection coefficient R+(λ, t), λ ∈ σ(Hq), and the eigen-
values ρk ∈ R\σ(Hq), k = 1, . . . , N , together with the corresponding right norming
constants γ+,k(t) > 0, k = 1, . . . , N . Here

(2.4) σ(Hq) =

g−1⋃
j=0

[E2j , E2j+1] ∪ [E2g,∞)

denotes the finite-band spectrum of the underlying background Lax operator

(2.5) Hq(t) = −∂2
x + Vq(x, t).

The relation between the energy λ of the underlying Lax operator Hq and the
propagation speed at which the corresponding parts of the solutions of the KdV
equation travel is given by

(2.6) v(λ) =
x

t
,

where

(2.7) v(λ) = lim
ε→0

−12 Re
(
i
∫ (λ+iε,+)

E0
ωp∞,2

)
Re
(
i
∫ (λ+iε,+)

E0
ωp∞,0

) ,

and can be regarded as a nonlinear analog of the classical dispersion relation. Here
ωp∞,0 and ωp∞,2 are Abelian differentials of the second kind on the underlying
Riemann surface defined in (3.15) and (3.16). We will show in Section 5 that v is
a decreasing homeomorphism of R and we will denote its inverse by ζ(v).

Furthermore, we define the limiting KdV solution Vl,v(x, t) via the relation∫ ∞
x

(Vl,v − Vq)(y, t)dy =−
∑

ρj<ζ(v)

4i

∫ ρj

E(ρj)

ωp∞,0 +
1

π

∫
C(v)

log(1− |R|2)ωp∞,0

+ 2∂x ln

(
θ
(
z(p∞, x, t) + δ(v)

)
θ
(
z(p∞, x, t)

) )
,(2.8)

with

δ`(v) = −2
∑

ρj<ζ(v)

AE(ρj),`(ρj) +
1

2πi

∫
C(v)

log(1− |R|2)ζ`,

where R = R+(λ, t) is the associated reflection coefficient and ζ` is a canonical basis
of holomorphic differentials. Moreover, C(v) is a contour on the Riemann surface
obtained by taking the part of the spectrum σ(Hq) which is to the left of ζ(v) and
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lifting it to the Riemann surface (oriented such that the upper sheet lies to its left).
Here we have also identified ρj with its lift to the upper sheet and E(ρj) denotes
the branch point closest to ρj . If v = x/t we set Vl(x, t) = Vl,x/t(x, t).

Then our main result concerning the long-time asymptotics in the soliton region
is given by the following theorem:

Theorem 2.1. Assume V (x, t) is a classical solution of the KdV equation (1.1)
satisfying

(2.9)

∫ +∞

−∞
(1 + |x|1+n)(|V (x, t)− Vq(x, t)|)dx <∞,

for some integer n ≥ 1 and abbreviate by ck = v(ρk) the velocity of the k’th soliton.
Then the asymptotics in the soliton region, {(x, t)| ζ(x/t) ∈ R\σ(Hq)}, are the
following:

Let ε > 0 be sufficiently small such that the intervals [ck − ε, ck + ε], 1 ≤ k ≤ N ,
are disjoint and lie inside v(R\σ(Hq)).

If |xt − ck| < ε for some k, the solution is asymptotically given by a one-soliton
solution on top of the limiting solution:

(2.10)

∫ ∞
x

(V − Vl,ck)(y, t)dy = −2
∂

∂x
log
(
cl,k(x, t)

)
+O(t−n),

as well as

(2.11) (V − Vl,ck)(x, t) = 2
∂2

∂x2
log
(
cl,k(x, t)

)
+O(t−n),

where

(2.12) cl,k(x, t) = 1 + γ̃k

∫ ∞
x

ψl,ck(ρk, y, t)
2dy

and

(2.13)

γ̃k = γk

(
θ(z(ρk, 0, 0) + δ(ck))

θ(z(ρk, 0, 0))

)2
 ∏
ρj<ζ(ck)

exp

(
2

∫ ρk

E0

ωρj ρ∗j

) ·
· exp

(
−1

πi

∫
C(ck)

log(1− |R|2)ωρk p∞

)
.

Here ψl,v(p, x, t) denotes the Baker–Akhiezer function corresponding to the limiting
KdV solution Vl,v(x, t) and ωp q denotes the Abelian differential of the third kind
with poles at p and q.

If |xt − ck| ≥ ε, for all k, the solution is asymptotically close to this limiting
solution:

(2.14)

∫ ∞
x

(V − Vl)(y, t)dy = O(t−n),

as well as

(2.15) V (x, t) = Vl(x, t) +O(t−n).

In particular, we see that the solution splits into a sum of independent solitons
where the presence of the other solitons and the radiation part corresponding to
the continuous spectrum manifests itself in phase shifts given by (2.13). Moreover,
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observe that in the periodic case considered here one can have a stationary soliton
(see the discussion in Section 5).

The proof will be given at the end of Section 5.

Theorem 2.2. Assume V (x, t) is a classical solution of the KdV equation (1.1)
satisfying (2.1) and let Dj be the sector Dj = {(x, t) : ζ(x/t) ∈ [E2j +ε, E2j+1−ε]}
for some ε > 0. Then the asymptotic is given by

(2.16)

∫ +∞

x

(V − Vl)(y, t)dy = 4

√
i

φ′′(zj)t
Re
(
β(x, t)

)
Λ
ν̂
1(zj) +O(t−α),

respectively
(2.17)

(V −Vl)(x, t) = 4

√
i

φ′′(zj)t

[
Im
(
β(x, t)

)
−iRe

(
β(x, t)

) g∑
k=1

g∑
`=1

ck`(ν̂)ζk(zj)
]
+O(t−α)

for any 1/2 < α < 1 uniformly in Dj as t→∞. Here

(2.18) φ(p) = −24i

∫ p

p0

ωp∞,2 − 2i
x

t

∫ p

p0

ωp∞,0

is the phase function,

(2.19)
φ′′(zj)

i
= −

12
∏g
k=0,k 6=j(zj − zk)

iR
1/2
2g+1(zj)

> 0,

(where R
1/2
2g+1(z) the square root of the underlying Riemann surface Kg and we

identify zj with its lift to the upper sheet),

(2.20) Λ
ν̂
1(zj) = ωp∞,0(zj)−

g∑
k=1

g∑
`=1

ck`(ν̂)αg−1(ν̂`)ζk(zj),

with ωp∞,0 an Abelian differential of the second kind with a second order pole at
p∞ (cf. eq. (3.15)), and ω(p) denoting the value of a differential evaluated at p in
the chart given by the canonical projection, and ck`(ν̂), αg−1(ν̂`) some constants
defined in (6.24), (6.34), respectively. Moreover,

β(x, t) =
√
νei
(
π/4−arg(R(zj))+arg(Γ(iν))+2να(zj)

)(φ′′(zj)
i

)−iν

e−tφ(zj)t−iν ·

·
θ
(
z(zj , 0, 0)

)
θ
(
z(zj , x, t) + δ(x/t)

) θ(z(z∗j , x, t) + δ(x/t)
)

θ
(
z(z∗j , 0, 0)

) ·

· exp

(
−

∑
ρk<ζ(x/t)

∫ ρk

E(ρk)

ωzj z∗j +
1

2πi

∫
C(x/t)

log
( 1− |R|2

1− |R(zj)|2
)
ωzj z∗j

)
,(2.21)

where Γ(z) is the gamma function, ωzj z∗j an Abelian differential of the third kind

defined in (3.21),

(2.22) ν = − 1

2π
log
(
1− |R(zj)|2

)
> 0,

and α(zj) is a constant defined in (6.9).

The proof of this theorem will be given in Section 6 of this paper.
Finally, note that if q(x, t) solves the KdV equation, then so does q(−x,−t).

Therefore it suffices to investigate the case t→∞.
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3. Algebro-geometric quasi-periodic finite-gap solutions

This section presents some well-known facts on the class of algebro-geometric
quasi-periodic finite-gap solutions, that is the class of stationary solutions of the
KdV hierarchy, since we want to choose our background solution Vq from that class.
We will use the same notation as in [16], where we also refer to for proofs. As a
reference for Riemann surfaces in this context we recommend [15].

To set the stage let Kg be the Riemann surface associated with the following
function

(3.1) R
1/2
2g+1(z) = i

2g∏
j=0

√
z − Ej , E0 < E1 < · · · < E2g,

where g ∈ N0 and {Ej}2gj=0 is a set of real numbers. Here
√
. denotes the standard

root with branch cut along (0,∞). We extend R
1/2
2g+1(z) to the branch cuts by

setting R
1/2
2g+1(z) = limε↓0R

1/2
2g+1(z + iε) for z ∈ C\Π. Hence we have

(3.2)

R
1/2
2g+1(z) = |R1/2

2g+1(z)| ·


(−1)g+1 for z ∈ (−∞, E0),
(−1)g+j i for z ∈ (E2j , E2j+1), j = 0, . . . , g − 1,
(−1)g+j for z ∈ (E2j+1, E2j+2), j = 0, . . . , g − 1,
i for z ∈ (E2g,∞).

Kg is a compact, hyperelliptic Riemann surface of genus g.

A point on Kg is denoted by p = (z,±R1/2
2g+1(z)) = (z,±), z ∈ C, or p∞ =

(∞,∞), and the projection onto C ∪ {∞} by π(p) = z. The points {(Ej , 0), 0 ≤
j ≤ 2g} ∪ {(∞,∞)} ⊆ Kg are called branch points and the sets

(3.3) Π± = {(z,±R1/2
2g+1(z)) | z ∈ C \

g−1⋃
j=0

[E2j , E2j+1] ∪ [E2g,∞)} ⊂ Kg

are called upper, lower sheet, respectively.
Next we will introduce the representatives {aj , bj}gj=1 of a canonical homology

basis for Kg. For aj we start near E2j−1 on Π+, surround E2j thereby changing to
Π− and return to our starting point encircling E2j−1 again changing sheets. For
bj we choose a cycle surrounding E0, E2j−1 counterclockwise (once) on Π+. The
cycles are chosen such that their intersection matrix reads

(3.4) ai ◦ aj = bi ◦ bj = 0, ai ◦ bj = δi,j , 1 ≤ i, j ≤ g.
The corresponding canonical basis {ζj}gj=1 for the space of holomorphic differ-

entials can be constructed by

(3.5) ζj =

g∑
k=1

cj(k)
πk−1dπ

R
1/2
2g+1

,

where the constants cj(k), j, k = 1, . . . , g are given by

(3.6) cj(k) = C−1
jk , Cjk =

∫
ak

πj−1dπ

R
1/2
2g+1

= 2

∫ E2k

E2k−1

zj−1dz

R
1/2
2g+1(z)

∈ R.

The differentials fulfill

(3.7)

∫
ak

ζj = δk,j ,

∫
bk

ζj = τk,j , τk,j = τj,k, j, k = 1, . . . , g.
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Let us now pick g numbers (the Dirichlet eigenvalues)

(3.8) (µ̂j)
g
j=1 = (µj , σj)

g
j=1

whose projections lie in the spectral gaps, that is, µj ∈ [E2j−1, E2j ], j = 1, . . . , g.
Associated with these numbers is the divisor

(3.9) Dµ̂(p) =

{
1 p = µ̂j , j = 1, . . . , g,
0 else

and we can define g numbers (µ̂j(x, t))
g
j=1 = (µj(x, t), σj(x, t))

g
j=1 via Jacobi’s

inversion theorem by setting

(3.10) α̂E0
(Dµ̂(x,t)) = α̂E0

(Dµ̂) +
x

2π
U0 + 12

t

2π
U2

such that µ̂j(0, 0) = µ̂j . Here U0 and U2 denote the b-periods of the Abelian
differentials ωp∞,0 and ωp∞,2, respectively, defined below, and AE0

(αE0
) is Abel’s

map (for divisors). The hat indicates that we regard it as a (single-valued) map

from K̂g (the fundamental polygon associated with Kg by cutting along the a and
b cycles) to Cg.

Next we introduce

(3.11) z(p, x, t) = Ξ̂E0
− ÂE0

(p) + α̂E0
(Dµ̂(x,t)) ∈ Cg,

where Ξ̂E0
is the vector of Riemann constants

(3.12) Ξ̂E0,j =
j +

∑g
k=1 τj,k
2

, j = 1, . . . , g.

By θ(z) we denote the Riemann theta function associated with Kg defined by

(3.13) θ(z) =
∑
m∈Zg

exp 2πi

(
〈m, z〉+

〈m, τ m〉
2

)
, z ∈ Cg.

Note that the function θ(z(p, x, t)) has precisely g zeros µ̂j(x, t). This follows from
Riemann’s vanishing theorem (cf. [34, Theorem A.13]).

Introduce the time-dependent Baker–Akhiezer function
(3.14)

ψq(p, x, t) =
θ
(
z(p, x, t)

)
θ
(
z(p∞, x, t)

) θ(z(p∞, 0, 0)
)

θ
(
z(p, 0, 0)

) exp
(
− ix

∫ p

E0

ωp∞,0 − 12it

∫ p

E0

ωp∞,2

)
.

Here ωp∞,0 and ωp∞,2 are normalized Abelian differentials of the second kind with
a single pole at p∞ and principal part w−2dw and w−4dw in the chart w(p) =
±iz−1/2 for p = (z,±), respectively. The Abelian differentials are normalized to
have vanishing aj periods and have the following expressions

(3.15) ωp∞,0 =
1

2i

∏g
j=1(π − λj)

R
1/2
2g+1

dπ,

with λj ∈ (E2j−1, E2j), j = 1, . . . , g, and

(3.16) ωp∞,2 =
1

2i

∏g
j=0(π − λ̃j)

R
1/2
2g+1

dπ,
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where λ̃j , j = 0, . . . , g, have to be chosen such that they fulfill
∑g
j=0 λ̃j = 1

2

∑2g
j=0Ej .

We also remark

(3.17) ψq(p, x, t)ψq(p
∗, x, t) =

g∏
j=1

z − µj(x, t)
z − µj

, p = (z,±).

Then our background KdV solution is given by

(3.18) Vq(x, t) = E0 +

g∑
j=1

(E2j−1 + E2j − 2λj)− 2∂2
x ln θ

(
z(p∞, x, t)

)
.

The Abelian differentials of the third kind ωq1 q2 , with simple poles at q1 and
q2, corresponding residues +1 and −1, vanishing a-periods, and holomorphic on
Kg \ {q1, q2}, are explicitly given by ([16, Appendix B])

ωp1 p2 =
(R1/2

2g+1 +R
1/2
2g+1(p1)

2
(
π − π(p1)

) −
R

1/2
2g+1 +R

1/2
2g+1(p2)

2
(
π − π(p2)

) + Pp1 p2(z)
) dπ

R
1/2
2g+1

,(3.19)

ωp1 p∞ =
(R1/2

2g+1 +R
1/2
2g+1(p1)

2
(
π − π(p1)

) + Pp1 p∞(z)
) dπ

R
1/2
2g+1

,(3.20)

where p1, p2 ∈ Kg \ {p∞} and Pp1 p2(z) and Pp1 p∞(z) are polynomials of degree
g − 1 which have to be determined from the normalization

∫
a`
ωp1 p2 = 0 and∫

a`
ωp1 p∞ = 0, respectively. In particular,

(3.21) ωpp∗ =
(R1/2

2g+1(p)

π − π(p)
+ Ppp∗(π)

) dπ

R
1/2
2g+1

.

We will also need the Blaschke factor

(3.22) B(p, ρ) = exp
(∫ p

E0

ωρ ρ∗
)

= exp
(∫ ρ

E(ρ)

ωp p∗
)
, π(ρ) ∈ R,

where E(ρ) is E0 if ρ < E0, either E2j−1 or E2j if ρ ∈ (E2j−1, E2j), 1 ≤ j ≤ g. It
is a multivalued function with a simple zero at ρ and simple pole at ρ∗ satisfying
|B(p, ρ)| = 1, p ∈ ∂Π+. It is real-valued for π(p) ∈ (−∞, E0) and satisfies

(3.23) B(E0, ρ) = 1 and B(p∗, ρ) = B(p, ρ∗) = B(p, ρ)−1

(see e.g., [35]).
The Baker–Akhiezer function is a meromorphic function on Kg \ {p∞} with an

essential singularity at p∞. The two branches are denoted by

(3.24) ψq,±(z, x, t) = ψq(p, x, t), p = (z,±),

and it satisfies

Hq(t)ψq(p, x, t) = π(p)ψq(p, x, t),

d

dt
ψq(p, x, t) = Pq,2(t)ψq(p, x, t).(3.25)

Here

Hq(t) = ∂2
x + Vq(., t),

Pq,2(t) = −4∂3
x + 6Vq(., t)∂x + 3Vq,x(., t),(3.26)
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are the operators from the Lax pair for the KdV equation, that is,

(3.27)
d

dt
Hq(t) = Hq(t)Pq,2(t)− Pq,2(t)Hq(t).

It is well known that the spectrum of Hq(t) is time independent and consists of
g + 1 bands

(3.28) σ(Hq(t)) =

g−1⋃
j=0

[E2j , E2j+1] ∪ [E2g,∞).

For further information and proofs we refer to [16].

4. The Inverse scattering transform and the Riemann–Hilbert
problem

In this section we recall some basic facts from the inverse scattering transform
for our setting. For further background and proofs we refer to [4], [14], and [12]
(see also [29]).

Let ψq,±(z, x, t) be the branches of the Baker–Akhiezer function defined in the
previous section. Let ψ±(z, x, t) be the Jost functions for the perturbed problem

(4.1)
(
− ∂2

x + V (x, t)
)
ψ±(z, x, t) = zψ±(z, x, t),

defined by the asymptotic normalization

(4.2) lim
x→±∞

e∓ixk(z)
(
ψ±(z, x, t)− ψq,±(z, x, t)

)
= 0,

where k(z) denotes the quasimomentum map

(4.3) k(z) = −
∫ p

E0

ωp∞,0, p = (z,+).

The asymptotics of the two projections of the Jost function are (cf. [29, Theo-
rem 2.3])

(4.4) ψ±(z, x, t) = ψq,±(z, x, t)
(

1∓
∫ ±∞
x

(V − Vq)(y, t)dy
1

2i
√
z

+ o(1/
√
z)
)
,

as z → ∞. We will assume that the poles of the Baker–Akhiezer function µk are
all different from the eigenvalues ρj without loss of generality (otherwise just shift
the base point (x0, t0) = (0, 0)).

One has the scattering relations

(4.5) T (z)ψ∓(z, x, t) = ψ±(z, x, t) +R±(z)ψ±(z, x, t), z ∈ σ(Hq),

where T (z), R±(z) are the transmission respectively reflection coefficients. Here
ψ±(z, x, t) is defined such that ψ±(z, x, t) = limε↓0 ψ±(z + iε, x, t), z ∈ σ(Hq). If

we take the limit from the other side we have ψ±(z, x, t) = limε↓0 ψ±(z − iε, x, t).
The transmission and reflection coefficients have the following well-known prop-

erties:

Lemma 4.1. The transmission coefficient T (z) has a meromorphic extension to
C\σ(Hq) with simple poles at the eigenvalues ρj. The residues of T (z) are given by

(4.6) Resρj T (z) =
2R

1/2
2g+1(ρj)∏g

k=1(ρj − µk)

γ±,j

c±1
j

,
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where

(4.7) γ−1
±,j =

∫ ∞
−∞
|ψ±(ρj , y, t)|2dy

are referred to as norming constants and ψ−(ρj , x, t) = cjψ+(ρj , x, t).
Moreover,

(4.8) T (z)R+(z) + T (z)R−(z) = 0, |T (z)|2 + |R±(z)|2 = 1.

In particular, one reflection coefficient, say R(z) = R+(z), and one set of norming
constants, say γj = γ+,j , will be sufficient for us.

We will define a sectionally meromorphic vector on the Riemann surface Kg as
follows:

(4.9) m(p, x, t) =


(
T (z) ψ−(z,x,t)

ψq,−(z,x,t)
ψ+(z,x,t)
ψq,+(z,x,t)

)
, p = (z,+)(

ψ+(z,x,t)
ψq,+(z,x,t) T (z) ψ−(z,x,t)

ψq,−(z,x,t)

)
, p = (z,−)

.

We are interested in the jump condition of m(p, x, t) on Σ, the boundary of Π±
(oriented counterclockwise when viewed from top sheet Π+). It consists of two
copies Σ± of σ(Hq) which correspond to non-tangential limits from p = (z,+) with
±Im(z) > 0, respectively to non-tangential limits from p = (z,−) with ∓Im(z) > 0.

To formulate our jump condition we use the following convention: When repre-
senting functions on Σ, the lower subscript denotes the non-tangential limit from
Π+ or Π−, respectively,

(4.10) m±(p0) = lim
Π±3p→p0

m(p), p0 ∈ Σ.

Using the notation above implicitly assumes that these limits exist in the sense that
m(p) extends to a continuous function on the boundary away from the band edges.

Moreover, we will also use symmetries with respect to the sheet exchange map

(4.11) p∗ =

{
(z,∓) for p = (z,±),

p∞ for p = p∞,

and complex conjugation

(4.12) p =


(z,±) for p = (z,±) 6∈ Σ,

(z,∓) for p = (z,±) ∈ Σ,

p∞ for p = p∞.

In particular, we have p = p∗ for p ∈ Σ.
Note that we have m̃±(p) = m∓(p∗) for m̃(p) = m(p∗) (since ∗ reverses the

orientation of Σ) and m̃±(p) = m±(p∗) for m̃(p) = m(p).
Note that we have the following asymptotic behavior for m(p, x, t) near p∞:

(4.13) m(p) =
(
1 1

)
− 1

2i
√
z

∫ ∞
x

(V −Vq)(y, t)dy
(
−1 1

)
+ o
( 1√

z

)
, p = (z,±)

for p near p∞. Here we made use of (4.4) and

(4.14) T (z) = 1 +
1

2i
√
z

∫ ∞
−∞

(V − Vq)(y, t)dy + o
( 1√

z

)
(cf. [29, Corollary 3.7]).

We are now ready to derive the main vector Riemann–Hilbert problem:
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Theorem 4.2 (Vector Riemann–Hilbert problem). Let S+(H(0)) = {R(λ), λ ∈
σ(Hq); (ρj , γj), 1 ≤ j ≤ N} the right scattering data of the operator H(0). Then
m(p) = m(p, x, t) defined in (4.9) is meromorphic away from Σ and satisfies:

(i) The jump condition
(4.15)

m+(p) = m−(p)J(p), J(p) =

(
1− |R(p)|2 −R(p)Θ(p, x, t)e−tφ(p)

R(p)Θ(p, x, t)etφ(p) 1

)
,

for p ∈ Σ,
(ii) the divisor

(4.16) (m1) ≥ −Dµ̂(x,t)∗ −Dρ, (m2) ≥ −Dµ̂(x,t) −Dρ∗

and pole conditions
(4.17)(

m1(p) +
−2R

1/2
2g+1(ρj)∏g

k=1(ρj − µk)

γj
π(p)− ρj

ψq(p, x, t)

ψq(p∗, x, t)
m2(p)

)
≥ −Dµ̂(x,t)∗ , near ρj ,

( −2R
1/2
2g+1(ρj)∏g

k=1(ρj − µk)

γj
π(p)− ρj

ψq(p
∗, x, t)

ψq(p, x, t)
m1(p) +m2(p)

)
≥ −Dµ̂(x,t), near ρ∗j ,

(iii) the symmetry condition

(4.18) m(p∗) = m(p)

(
0 1
1 0

)
(iv) and the normalization

(4.19) m(p∞) =
(
1 1

)
.

Here (f) denotes the divisor of f and

(4.20) Dρ =
∑
j

Dρj , Dρ∗ =
∑
j

Dρ∗j .

denotes the divisor corresponding to the points ρj ≡ (ρj ,+) ∈ Kg. The phase φ is
given by

(4.21) φ(p,
x

t
) = −24i

∫ p

p0

ωp∞,2 − 2i
x

t

∫ p

p0

ωp∞,0 ∈ iR for p ∈ Σ.

Moreover, we have set

(4.22) Θ(p, x, t) =
θ(z(p, x, t))

θ(z(p, 0, 0))

θ(z(p∗, 0, 0))

θ(z(p∗, x, t))

such that
ψq(p, x, t)

ψq(p∗, x, t)
= Θ(p, x, t)etφ(p).

Here we have extended our definition of R to Σ such that it is equal to R(z)

on Σ+ and equal to R(z) on Σ−. In particular, the condition on Σ+ is just the

complex conjugate of the one on Σ− since we have R(p∗) = R(p) and m±(p∗, x, t) =

m±(p, x, t) for p ∈ Σ.
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Proof. The jump condition follows by using (4.5) and (4.8). By Riemann’s vanish-
ing theorem (cf. [34, Theorem A.13]) the Baker–Akhiezer function ψq has simple
zeros at µ̂j(x, t) and simple poles at µ̂j , j = 1, . . . , g. Moreover, the transmission
coefficient T (z) has simple poles at the eigenvalues ρj , j = 1, . . . , N . Thus the
divisor conditions (4.16) are indeed fulfilled. The pole conditions follow from the
fact that the transmission coefficient T (z) is meromorphic in C\σ(Hq) with simple
poles at ρj and its residues are given by (4.6). The symmetry condition (4.18)
obviously holds by the definition of the function m(p). The normalization (4.19) is
immediately clear from (4.13). �

We note that the symmetry condition is in fact crucial to guarantee that the
solution of this vector Riemann–Hilbert problem is unique.

Theorem 4.3. The vector m(p) defined in (4.9) is the only solution of the vector
Riemann–Hilbert problem (4.15)–(4.19).

Proof. The argument is similar to [22, Thm. B.1]. It suffices to show that the corre-
sponding vanishing Riemann–Hilbert problem, where the normalization condition
(4.19) is replaced by m(p∞) =

(
0 0

)
, has only the trivial solution.

Let m̃ be some solution of the vanishing Riemann–Hilbert problem. We want
to apply Cauchy’s integral theorem to m̃(p)m̃†(p∗). To handle the poles of m̃
we will multiply it by a meromorphic differential dΩ which has zeros at µ and

µ∗ and a simple pole at p∞ such that finally the differential m̃(p)m̃†(p∗)dΩ(p) is

holomorphic away from the contour. Here m̃† denotes the adjoint (transpose and
complex conjugate) vector of m̃.

More precisely, let

(4.23) dΩ =

∏g
j=1(π − µj)

−R1/2
2g+1

dπ

and note that −
(∏

j(z−µj)
)
R
−1/2
2g+1(z) is a Herglotz function. That is, it has positive

imaginary part in the upper half-plane (and it is purely imaginary on σ(Hq)). Hence

m̃(p)m̃T (p)dΩ(p) will be positive on Σ.
Next, consider the integral

(4.24) 0 =

∫
D

m̃(p)m̃†(p∗)dΩ(p),

where D is a ∗-invariant contour consisting of two loops on the upper and on the
lower sheet encircling none of the poles ρj , ρ

∗
j . We first deform D to a ∗-invariant

contour consisting of several parts: Two pieces D± wrapping around the ± side of
Σ plus a number of small circles D+,j , D−,j around the poles ρj , ρ

∗
j , respectively.

Then the contribution from Σ is given by∫
D+∪D−

m̃(p)m̃†(p∗)dΩ(p) =

∫
Σ

(
m̃+(p)m̃†−(p∗) + m̃−(p)m̃†+(p∗)

)
dΩ(p)

=

∫
Σ

m̃−(p)(J(p) + J†(p∗))m̃†−(p∗)dΩ(p) ≥ 0(4.25)
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and the contribution from the poles is given by∫
∪Nj=1(D+,j∪D−,j)

m̃(p)m̃†(p∗)dΩ(p)

=

N∑
j=1

(
Resρj m̃(p)m̃†(p∗)dΩ(p) + Resρ∗j m̃(p)m̃†(p∗)dΩ(p)

)

= 2

N∑
j=1

Resρj m̃(p)m̃†(p∗)dΩ(p).(4.26)

To compute the residues we use the pole conditions (4.17) which imply (using
(3.17))

Resρj m̃(p)m̃†(p∗)dΩ(p) =
2γj∏g

k=1(ρj − µ0
k)2

ψq(ρj)
2m2(ρj)

2 ≥ 0.

In particular, both contributions to the integral (4.24) are non-negative and thus
both must vanish. It follows from the that m̃ = 0 vanishes along Σ and consequently
m̃(p) = 0 as desired. �

We will also need another asymptotic relation

(4.27) m1 ·m2 = 1 + (V − Vq)(x, t)
1

2z
+ o(z−1).

which is immediate from the following well-known result.

Lemma 4.4. We have

(4.28) T (z)
ψ−(z, x, t)

ψq,−(z, x, t)

ψ+(z, x, t)

ψq,+(z, x, t)
= 1 +

1

2
(V − Vq)(x, t)

1

z
+ o(z−1).

Proof. We will use the following representation of the Jost solutions

(4.29) ψ±(z, x, t) = ψq,±(z, x, t) exp
(
∓
∫ ±∞
x

(
m±(z, y, t)−mq,±(z, y, t)

)
dy
)
,

where

m±(z, x, t) = ±
ψ′±(z, x, t)

ψ±(z, x, t)
, mq,±(z, x, t) = ±

ψ′q,±(z, x, t)

ψq,±(z, x, t)

are the Weyl–Titchmarsh functions. Here the prime denotes differentiation with
respect to x. Using the expansion of the Weyl m-functions (cf. [29, Lemma 6.1])
and the one for log T (z) (cf. [29, Theorem 6.2]) for z →∞ proves the claim. �

For our further analysis it will be convenient to rewrite the pole conditions as
jump conditions following the idea of Deift, Kamvissis, Kriecherbauer, and Zhou
[11]. For that purpose we choose ε so small that the discs |π(p)− ρj | < ε are inside
the upper sheet Π+ and do not intersect with the spectral bands. Then redefine
m(p) in a neighborhood of ρj respectively ρ∗j in the following way:

(4.30) m(p) =



m(p)

(
1 0

γj(p,x,t)
π(p)−ρj 1

)
, |π(p)−ρj |<ε

p∈Π+
,

m(p)

(
1

γj(p
∗,x,t)

π(p)−ρj
0 1

)
, |π(p)−ρj |<ε

p∈Π−
,

m(p), else,
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where γj(p, x, t) is a function which is analytic in 0 < |π(p)− ρj | < ε, p ∈ Π+ and
satisfies

lim
p→ρj

γj(p, x, t)
ψq(p

∗, x, t)

ψq(p, x, t)
=

2R
1/2
2g+1(ρj)∏g

k=1(ρj − µk)
γj .

For example, we can choose

γj(p, x, t) =
−2R

1/2
2g+1(ρj)∏g

k=1(ρj − µk)

ψq(p, x, t)

ψq(p∗, x, t)
γj

or

γj(p, x, t) =
−2R

1/2
2g+1(ρj)∏g

k=1(π(p)− µk)

ψq(p, x, t)

ψq(p∗, x, t)
γj .

Lemma 4.5. Suppose m(p) is redefined as in (4.30). Then m(p) is meromor-
phic away from Σ and satisfies (4.15), (4.18), (4.19), the divisor conditions change
according to

(4.31) (m1) ≥ −Dµ̂(x,t)∗ , (m2) ≥ −Dµ̂(x,t)

and the pole conditions are replaced by the jump conditions

(4.32)

m+(p) = m−(p)

(
1 0

γj(p,x,t)
π(p)−ρj 1

)
, p ∈ Σε(ρj),

m+(p) = m−(p)

(
1 −γj(p

∗,x,t)
π(p)−ρj

0 1

)
, p ∈ Σε(ρ

∗
j ),

where

(4.33) Σε(p) = {q ∈ Π± : |π(q)− z| = ε}, p = (z,±),

is a small circle around p on the same sheet as p. It is oriented counterclockwise
on the upper sheet and clockwise on the lower sheet.

Proof. Everything except for the pole conditions follows as in the proof of Theo-
rem 4.2. That the pole conditions (4.17) are indeed replaced by the jump conditions
(4.32) as m(p) is redefined as in (4.30) can be shown by a straightforward calcula-
tion. �

The next thing we will do will be to deduce the one-soliton solution of our
Riemann–Hilbert problem, i.e., the solution in the case where only one eigenvalue
ρ corresponding to one bound state is present and the reflection coefficient R(p)
vanishes identically on Kg.

Lemma 4.6 (One-soliton solution). Suppose there is only one eigenvalue and a
vanishing reflection coefficient, that is, S+(H(t)) = {R(p) ≡ 0, p ∈ Σ; (ρ, γ)}. Let

(4.34) cq,γ(ρ, x, t) = 1 + γW(x,t)(ψ̇q(ρ, x, t), ψq(ρ, x, t)) = 1 + γ

∫ ∞
x

ψq(ρ, y, t)
2dy

and

(4.35) ψq,γ(p, x, t) = ψq(p, x, t) +
γ

z − ρ
ψq(ρ, x, t)W(x,t)(ψq(ρ, x, t), ψq(p, x, t))

cq,γ(ρ, x, t)
.

Here the dot denotes a derivate with respect to ρ and W(x,t)(f, g) = (f(x)g′(x) −
f ′(x)g(x)) is the usual Wronski determinant, where the prime denotes the derivative
with respect to x.
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Then the unique solution of the Riemann–Hilbert problem (4.15)–(4.19) is given
by

m0(p) =
(
f(p∗, x, t) f(p, x, t)

)
, f(p, x, t) =

ψq,γ(p, x, t)

ψq(p, x, t)
.

In particular

(4.36)

∫ ∞
x

(V − Vq)(y, t)dy = −2
∂

∂x
log
(
cq,γ(ρ, x, t)

)
,

or

(4.37) (V − Vq)(x, t) = 2
∂2

∂x2
log
(
cq,γ(ρ, x, t)

)
.

Proof. Since we assume the reflection coefficient vanishes, the jump along Σ disap-
pears. Moreover, since the symmetry condition (4.18) has to be satisfied it follows
that the solution of the Riemann–Hilbert problem (4.15)–(4.19) has to be of the
form m0(p) =

(
f(p∗, x, t) f(p, x, t)

)
. The divisor conditions (4.16) follow from the

fact that the Baker–Akhiezer function ψq has simple zeros at µ̂j(x, t) and simple
poles at µ̂j , j = 1, . . . , g and by construction of ψq,γ . It is obvious that the nor-
malization condition (4.19) holds. Thus it is only left to check the pole conditions
(4.17). For this purpose we compute

lim
p→ρ

(z − ρ)f(p∗) =
γ(ρ, x, t)

cq,γ(ρ, , x, t)
W(x,t)(ψq(ρ, x, t), ψq(ρ

∗, x, t))

= − γ(ρ, x, t)

cq,γ(ρ, , x, t)

2R
1/2
2g+1(ρ)∏g

k=1(ρ− µk)
,

where we defined

γ(p, x, t) = γ
ψq(p, x, t)

ψq(p∗, x, t)
= γΘ(p, x, t)etφ(p),

and we used (cf. [16, Equ. (1.87)])

W (ψq,∓(z), ψq,±(z)) = ±
2R

1/2
2g+1(z)∏g

k=1(z − µk)
.

Moreover,

lim
p→ρ

f(p) = 1 +
γ

cq,γ(ρ, x, t)
lim
p→ρ

W(x,t)(ψq(ρ, x, t), ψq(p, x, t))

z − ρ

= 1 +
γ

cq,γ(ρ, x, t)

[
ψq(ρ, x, t) lim

p→ρ

ψ′q(p, x, t)− ψ′q(ρ, x, t)
z − ρ

−

− ψ′q(ρ, x, t) lim
p→ρ

ψq(p, x, t)− ψq(ρ, x, t)
z − ρ

]
= 1 +

γ

cq,γ(ρ, x, t)
W(x,t)(ψq(ρ, x, t), ψ̇q(ρ, x, t)) =

1

cq,γ(ρ, x, t)
.

Hence we see that the pole conditions (4.17) are satisfied.
The formula (4.36) follows after expanding around p = p∞, that is,

f(p, x, t) = 1 +
γ

(z − ρ)cq,γ(ρ, x, t)
ψq(ρ, x, t)

(
ψq(ρ, x, t)mq(p, x, t)− ψ′q(ρ, x, t)

)
= 1∓ γ

cq,γ(ρ, x, t)
ψq(ρ, x, t)

2 1

i
√
z

+O(z−1), p = (z,±),
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where we have used that the Weyl–Titchmarsh m-function has the following as-
ymptotic expansion for p near p∞ (cf. [29, Lemma 6.1])

(4.38) mq,±(z, x, t) =
ψ′q,±(z, x, t)

ψq,±(z, x, t)
= ±i

√
z +

Vq(x, t)

2i
√
z

+O(z−1), p = (z,±).

Thus comparing with (4.13) proves the equation (4.36).
To see uniqueness, let m̃0(p) be a second solution which must be of the form

m̃0(p) =
(
f̃(p∗) f̃(p)

)
by the symmetry condition. Since the divisor Dµ̂(x,t) is

nonspecial, the Riemann–Roch theorem implies f̃(p) = αf(p)+β for some α, β ∈ C.
But the pole condition implies β = 0 and the normalization condition implies
α = 1. �

Since up to quasi-periodic factors ψq(ρ, x, t) is a function of x− v(ρ)t, where

(4.39) v(ρ) =
−12Re

∫ (ρ,+)

E0
ωp∞,2

Re
∫ (ρ,+)

E0
ωp∞,0

,

we will call v(ρ) the velocity of the corresponding soliton.

5. The stationary phase points and the nonlinear dispersion relation

In this section we want to look at the relation between the energy λ of the
underlying Lax operator Hq and the propagation speed at which the corresponding
parts of KdV solutions travel, that is, the analog of the classical dispersion relation.
If we set

(5.1) v(λ) = lim
ε→0

−12 Re
(
i
∫ (λ+iε,+)

E0
ωp∞,2

)
Re
(
i
∫ (λ+iε,+)

E0
ωp∞,0

) = lim
ε→0

−12 Im
∫ (λ+iε,+)

E0
ωp∞,2

Im
∫ (λ+iε,+)

E0
ωp∞,0

,

our first aim is to show that the nonlinear dispersion relation is given by

(5.2) v(λ) =
x

t
.

Recall that the Abelian differentials are given by (3.15) and (3.16).
For ρ ∈ R\σ(Hq) the denominator is nonzero and the formula agrees with the

soliton velocity defined in (4.39). In particular, recalling the definition of our phase
φ from (4.21), this implies

(5.3) v(ρ) =
x

t
⇔ Reφ(ρ,

x

t
) = 0

in this case. In particular, this definition reduces precisely to the definition of the
velocity of a soliton corresponding to the eigenvalue ρ (cf. the discussion after
Lemma 4.6).

For λ ∈ σ(Hq) both numerator and denominator vanish on σ(Hq) by (3.2).
Hence by virtue of the de l’Hospital rule we get

(5.4) v(λ) = −
12
∏g
j=0(λ− λ̃j)∏g

j=1(λ− λj)
,

that is,

(5.5) v(λ) =
x

t
⇔ φ′(λ,

x

t
) = 0.

In other words, v(λ) coincides with a stationary phase point in this case.
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So let us discuss the stationary phase points, that is the solutions of φ′(λ, xt ) = 0,
next. The solutions are given by the zeros of the polynomial

(5.6) 12

g∏
j=0

(z − λ̃j) +
x

t

g∏
j=1

(z − λj).

Since our Abelian differentials are all normalized to have vanishing aj-periods, the
numbers λj , 0 ≤ j ≤ g, are real and different with precisely one lying in each

spectral gap, say λj in the j’th gap. Similarly, λ̃j , 0 ≤ j ≤ g, are real and different

and λ̃j , 1 ≤ j ≤ g, sits in the j’th gap. However λ̃0 can be anywhere (see [34,
Sect. 13.5]).

The following lemma clarifies the dependence of the stationary phase points on
x/t.

Lemma 5.1. Denote by zj(v), 0 ≤ j ≤ g, the stationary phase points, where
v = x/t. Set λ0 = −∞ and λg+1 =∞, then

(5.7) λj < zj(v) < λj+1

and there is always at least one stationary phase point in each spectral gap. More-
over, zj(v) is strictly decreasing with

(5.8) lim
v→−∞

zj(v) = λj+1 and lim
v→∞

zj(v) = λj .

Proof. Since the Abelian differential ωp∞,2 + vωp∞,0 has vanishing a periods, the
polynomial (5.6) must change sign in each gap except the lowest. Consequently
there is at least one stationary phase point in each gap except the lowest, and they
are all different. Furthermore, by the implicit function theorem,

z′j = − q(zj)

q̃′(zj) + vq′(zj)
= −

∏g
k=1(zj − λk)

12
∏g
k=0,k 6=j(zj − zk)

,

where

q̃(z) = 12

g∏
k=0

(z − λ̃k), q(z) =

g∏
k=1

(z − λk).

Since the points λk are fixed points of this ordinary first order differential equation
(note that the denominator cannot vanish since the zj ’s are always different), the
numbers zj cannot cross these points. Combining the behavior as v → ±∞ with
the fact that there must always be at least one of them in each gap, we conclude
that zj must stay between λj and λj+1. This also shows z′j < 0 and thus zj(v) is
strictly decreasing. �

In other words Lemma 5.1 tells us the following: As v = x/t runs from −∞
to ∞ we start with zg(v) coming from ∞ towards E2g, while the other stationary
phase points zj , j = 0, . . . , g − 1, stay in their spectral gaps until zg(v) has passed
E2g and therefore left the first spectral band [E2g,∞). After this has happened,
the next stationary phase point zg−1(v) can leave its gap (E2g−1, E2g) while zg(v)
remains there, traverses the next spectral band [E2g−2, E2g−1] and so on. Finally
z0(v) traverses the last spectral band [E0, E1] and moves to −∞. So, depending
on x/t there is at most one single stationary phase point belonging to the union of
the bands σ(Hq) which is then the one solving (5.5).

Lemma 5.2. The function v(λ) defined in (5.1) is continuous and strictly decreas-
ing. Moreover, it is a bijection from R to R.
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Proof. That v(λ) defined in (5.1) is continuous is obvious except at the band edges
λ = Ej . However, in this case (5.1) becomes (5.4) by using the de l’Hospital rule.
The function v(λ) defined in (5.4) is obviously continuous at the band edges Ej
since λj lies in the j’th gap and thus does not hit the band edges.

Furthermore, for large λ we have

(5.9) lim
λ→−∞

v(λ)

−4λ
= 1, lim

λ→+∞

v(λ)

−12λ
= 1,

which shows limλ→±∞ v(λ) = ∓∞.
In the regions where there is one stationary phase point zj(v) ∈ σ(Hq) we know

that zj(v) is the inverse of v(λ) and monotonicity follows from Lemma 5.1. In the
other regions we compute

(5.10) v′(z) =

∏g
j=0(z − zj(v(z)))

−2iR
1/2
2g+1(z)

∫ (z,+)

E0
ωp∞,0

.

Let the stationary phase points be ordered such that we have zj(v(z)) = z for
z ∈ (E2j−1 − ε, E2j−1] and zj−1(v(z)) = z for z ∈ [E2j , E2j + ε). Then we claim
zj(v(z)) < z < zj−1(v(z)) for z ∈ (E2j−1, E2j) (set z−1 = ∞). In fact, the above
differential equation implies that v(z) can cross the curve zj(v(z)) only from below
and hence must stay above this curve since it starts on this curve at z = E2j−1.
Similarly, it can cross the curve zj−1(v(z)) only from below and would hence remain
above this curve afterwards. Thus this can only happen at z = E2j . �

In summary, we can define a function ζ(x/t) via

(5.11) v(ζ) =
x

t
.

In particular, different solitons travel at different speeds and don’t collide with each
other or the parts corresponding to the continuous spectrum.

Moreover, there is some ζ0 for which v(ζ0) = 0 and hence there can be stationary
solitons provided ζ0 6∈ σ(Hq).

Lemma 5.3 (Stationary solitons). There exists a unique ζ0 such that v(ζ0) = 0.

Moreover, if ζ0 ∈ σ(Hq) or λ̃0 ∈ σ(Hq), then ζ0 = λ̃0. In particular, ζ0 ∈ σ(Hq) if

and only if λ̃0 ∈ σ(Hq).

Proof. Existence and uniqueness of ζ0 follows since v is a bijection. It is left to
show that ζ0 = λ̃0 if ζ ∈ σ(Hq) or λ̃0 ∈ σ(Hq). Assume ζ0 ∈ σ(Hq). Then using
v(ζ0) = 0 and (5.4) we get

g∏
j=0

(ζ0 − λ̃j) = (ζ0 − λ̃0)

g∏
j=1

(ζ0 − λ̃j) = 0.

Since λ̃j ∈ (E2j−1, E2j), j = 1, . . . , g it follows ζ0 = λ̃0. Now suppose λ̃0 ∈ σ(Hq)
and again use (5.4) to get

v(λ̃0)

g∏
j=1

(λ̃0 − λj) = 0.

Since λj ∈ (E2j−1, E2j), j = 1, . . . , g we obtain v(λ̃0) = 0 and thus ζ0 = λ̃0. �

In summary we conclude that depending on v = x
t there can occur three cases:
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Figure 1. The lens contour near a band containing a stationary
phase point zj and its flipping image containing z∗j . Views from
the top and bottom sheet. Dotted curves lie in the bottom sheet.

(i) ζ(v) ∈ (E2j , E2j+1) for some j = 0, . . . , g (setting E2g+1 = ∞). In this
case ζ(v) is a stationary phase point and all other stationary phase points
lie in open gaps.

(ii) ζ(v) ∈ R \ σ(Hq) and all stationary phase points lie in open gaps.
(iii) ζ(v) = Ej for some j and all other stationary phase points lie in open

gaps.

These three cases define corresponding regions in the (x, t)-plane: the oscillatory
region (case (i)), the soliton region (case (ii)), and the transitional region (case (iii)).

Case (i): The oscillatory region. Note that in this case we have

(5.12) φ′′(zj)/i = −
12
∏g
k=0,k 6=j(zj − zk)

iR
1/2
2g+1(zj)

> 0.

Suppose ζ(v) = zj(v), belongs to the interior of the band [E2j , E2j+1] (with E2g+1 =
∞). Then we introduce the “lens” contour near that band as shown in Figure 1.

The oriented paths Cj = Cj1 ∪Cj2, C∗j = C∗j1 ∪C∗j2 are meant to be close to the
band [E2j , E2j+1].

Concerning the other bands [E2k, E2k+1], k 6= j, k = 0, . . . , g (setting E2g+1 =
∞), one simply constructs “lens” contours near each of the other bands [E2k, E2k+1]
and [E∗2k, E

∗
2k+1] as shown in Figure 2.

The oriented paths Ck, C
∗
k are meant to be close to the band [E2k, E2k+1]. In

particular, these loops must not contain any of the eigenvalues ρj .
Then an investigation of the sign of Re(φ) shows the following:{

Re(φ(p)) > 0, p ∈ Dj1 ∪Dk, π(p) < ζ(x/t),

Re(φ(p)) < 0, p ∈ Dj2 ∪Dk, π(p) > ζ(x/t),

with k = 1, . . . , g, k 6= j.
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Figure 2. The lens contour near a band not including any sta-
tionary phase point. Views from the top and bottom sheet.

Observe that our original jump matrix (4.15) has the following important fac-
torization

(5.13) J(p) = b−(p)−1b+(p),

where

(5.14) b−(p) =

(
1 R(p∗)Θ(p∗)e−tφ(p)

0 1

)
, b+(p) =

(
1 0

R(p)Θ(p)etφ(p) 1

)
,

which is the right factorization for p ∈ Σ\C(x/t) = Σ ∩ π−1((ζ(x/t),∞)), i.e.,
π(p) > ζ(x/t). Similarly, we have

(5.15) J(p) = B−(p)−1

(
1− |R(p)|2 0

0 1
1−|R(p)|2

)
B+(p),

where

(5.16) B−(p) =

(
1 0

−R(p)Θ(p)etφ(p)

1−|R(p)|2 1

)
, B+(p) =

(
1 −R(p∗)Θ(p∗)e−tφ(p)

1−|R(p)|2

0 1

)
.

This constitutes the right factorization for p ∈ C(x/t) = Σ∩π−1((−∞, ζ(x/t)), i.e.,

π(p) < ζ(x/t). Here we have used R(p) = R(p∗), for p ∈ Σ. To get rid of the diag-
onal part in the factorization corresponding to π(p) < ζ(x/t) and to conjugate the
jumps near the eigenvalues we need to find the solution of the corresponding scalar
Riemann–Hilbert problem, the so-called partial transmission coefficient. Again we
seek a meromorphic solution. This means that the poles of the scalar Riemann–
Hilbert problem will be added to the resulting Riemann–Hilbert problem. On the
other hand, a pole structure similar to the one of m is crucial for uniqueness. We
will address this problem by choosing the poles of the scalar problem in such a way
that its zeros cancel the poles of m. The right choice will turn out to be Dν̂ (that
is, the Dirichlet divisor corresponding to the limiting lattice defined in (2.8)).

Define a divisor Dν̂(x,t) of degree g via

(5.17) αE0
(Dν̂(x,t)) = αE0

(Dµ̂(x,t)) + δ(x/t),
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where

(5.18) δ`(x/t) = −2
∑

ρk<ζ(x/t)

AE(ρk),`(ρk) +
1

2πi

∫
C(x/t)

log(1− |R|2)ζ`,

with C(x/t) = Σ ∩ π−1((−∞, ζ(x/t)) and ζ(x/t) as defined in (5.11).
Then Dν̂(x,t) is nonspecial and π(ν̂j(x, t)) = νj(x, t) ∈ R with precisely one in

each spectral gap (see [22]).
We define the partial transmission coefficient as

(5.19)

T (p, x, t) =
θ
(
z(p∞, x, t) + δ(x/t)

)
θ
(
z(p∞, x, t)

) θ
(
z(p, x, t)

)
θ
(
z(p, x, t) + δ(x/t)

) ·
·
( ∏
ρk<ζ(x/t)

exp
(
−
∫ p

E0

ωρk ρ∗k

))
exp

( 1

2πi

∫
C(x/t)

log(1− |R|2)ωp p∞

)
,

where δ(x, t) is defined in (5.18) and ωp1 p2 is the Abelian differential of the third
kind with poles at p1 and p2.

The function T (p, x, t) is meromorphic in Kg \ C(x/t) with first order poles at
ρk < ζ(x/t), ν̂j(x, t) and first order zeros at µ̂j(x, t).

Lemma 5.4. T (p, x, t) satisfies the following scalar meromorphic Riemann–Hilbert
problem:

(5.20)

T+(p, x, t) = T−(p, x, t)(1− |R(p)|2), p ∈ C(x/t),

(T (p, x, t)) =
∑

ρk<ζ(x/t)

Dρ∗k −
∑

ρk<ζ(x/t)

Dρk +Dµ̂(x,t) −Dν̂(x,t),

T (p∞, x, t) = 1.

Moreover,

(i)

T (p∗, x, t)T (p, x, t) =

g∏
j=1

z − µj(x, t)
z − νj(x, t)

, z = π(p).

(ii) T (p, x, t) = T (p, x, t) and in particular T (p, x, t) is real-valued for π(p) ∈
R\σ(Hq).

Proof. The argument is similar to [22, Thm. 4.3]. The solution of a Riemann–
Hilbert problem on the Riemann sphere is given by the Plemelj-Sokhotsky formula.
Since our problem is now set on the Riemann surface Kg the Cauchy kernel is given
by the Abelian differential of the third kind ωp p∞ (cf. [35]). In particular, T (p, x, t)
satisfies the jump condition from (5.20) along C(x/t). Next we have to check that
the function T (p, x, t) extends to a single-valued function on Kg. For that purpose
note that the only possible contribution which causes multi-valuedness may come
from the b-cycles since all Abelian differentials are normalized to have vanishing
a-periods. So for the b`-periods ` = 1, . . . , g we compute for p ∈ C(x/t)

lim
ε↓0

T (p+ iε, x, t)

T (p− iε, x, t)
= exp

(
2πiδ`−

∫
C(x/t)

log(1−|R|2)ζ`+
∑

ρk<ζ(x/t)

4πiAE(ρk),`(ρk))
)
,

which is indeed equals 1 by the choice of δ` in (5.18).
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Concerning the poles and zeros of the function T (p, x, t) we see that by Riemann’s
vanishing theorem (cf. [34, Theorem A.13]) and the choice of the divisor Dν̂(x,t)

defined by (5.17) that the ratio of theta functions is meromorphic with simple zeros
at µ̂j and simple poles at ν̂j . Moreover, from the product of the Blaschke factors
we get that T has simple poles at ρk and simple zeros at ρ∗k for which ρk < ζ(x/t)
is valid.

To prove uniqueness let T̃ be a second solution and consider T̃ /T . Then T̃ /T
has no jump and the Schwarz reflection principle implies that it extends to a mero-
morphic function on Kg. Since the poles of T cancel the poles of T̃ , its divisor

satisfies (T̃ /T ) ≥ −Dµ̂(x,t). Since Dµ̂(x,t) is nonspecial, T̃ /T has to be a constant

by the Riemann–Roch theorem (cf. [34, Theorem A.2]). Setting p = p∞, we see

that this constant is one, that is, T̃ = T as claimed.
Finally, T (p, x, t) = T (p, x, t) follows from uniqueness since both functions solve

(5.20). �

We will also need the expansion around p∞ given by

Lemma 5.5. The asymptotic expansion of the partial transmission coefficient for
p near p∞ is given by

(5.21) T (p, x, t) = 1± T1(x, t)√
z

+O(
1

z
), p = (z,±),

where

(5.22)

T1(x, t) =−
∑

ρk<ζ(x/t)

2

∫ ρk

E(ρk)

ωp∞,0 +
1

2πi

∫
C(x/t)

log(1− |R|2)ωp∞,0

− i∂y ln

(
θ
(
z(p∞, y, t) + δ(x/t)

)
θ
(
z(p∞, y, t)

) ) ∣∣∣∣∣
y=x

,

and ωp∞,0 is the Abelian differential of the second kind defined in (3.15).

Proof. This can be verified similarly as in the case of the full transmission coefficient
(cf. [29, Theorems 6.2 and 6.3] and by expanding the ratio of theta functions near
p∞. �

Now that we have solved the scalar Riemann–Hilbert problem for T (p, x, t) we
can conjugate our original Riemann–Hilbert problem.

Since to each discrete eigenvalue there corresponds a soliton, it follows that
solitons are represented in our Riemann–Hilbert problem by the pole conditions
(4.32). For this reason we will study how poles can be dealt with in this section.
We will follow closely the presentation of [24, Section 4].

In order to remove the poles there are two cases to distinguish. If ρj > ζ(x/t),
the jump at ρj is exponentially close to the identity and there is nothing to do.

Otherwise, if ρj < ζ(x/t), we need to use conjugation to turn the jumps at these
poles into exponentially decaying ones, following [11]. It turns out that we will have
to handle the poles at ρj and ρ∗j in one step in order to preserve symmetry and in
order to not add additional poles elsewhere.

Moreover, the conjugation of the Riemann–Hilbert problem also serves another
purpose, namely that the jump matrix can be separated into two matrices, one
containing an off-diagonal term with exp(−tφ) and the other with exp(tφ). Without
conjugation this is not possible for the jump on C(x/t) = Σ ∩ π−1

(
(−∞, ζ(x/t))

)
,
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since in this case there also appears a diagonal matrix if one wants to separate the
jump matrix.

For easy reference we note the following result, which can be verified by a
straightforward calculation.

Lemma 5.6 (Conjugation). Assume that Σ̃ ⊆ Σ. Let D be a matrix of the form

(5.23) D(p) =

(
d(p∗) 0

0 d(p)

)
,

where d : Kg\Σ̃→ C is a sectionally analytic function. Set

(5.24) m̃(p) = m(p)D(p),

then the jump matrix transforms according to

(5.25) J̃(p) = D−(p)−1J(p)D+(p).

m̃(p) satisfies the symmetry condition (4.18) if and only if m(p) does. Further-
more, m̃(p) satisfies the normalization condition (4.19) if m(p) satisfies (4.19) and
d(p∞) = 1.

Lemma 5.7 ([26], Lem. 7.2). Introduce

(5.26) B̃(p, ρ) = Cρ(x, t)
θ(z(p, x, t))

θ(z(p, x, t) + 2AE0
(ρ))

B(p, ρ).

Then B̃(., ρ) is a well defined meromorphic function, with divisor

(5.27) (B̃(., ρ)) = −Dν̂ +Dµ̂ −Dρ∗ +Dρ,

where ν is defined via

(5.28) αE0
(Dν̂) = αE0

(Dµ̂) + 2AE0
(ρ).

Furthermore,

(5.29) B̃(p∞, ρ) = 1,

if

(5.30) Cρ(x, t) =
θ(z(p∞, x, t) + 2AE0

(ρ))

θ(z(p∞, x, t))
.

Now, we can show how to conjugate the jump corresponding to one eigenvalue
following [26].

Lemma 5.8. Assume that the Riemann–Hilbert problem for m has jump conditions
near ρ and ρ∗ given by

(5.31)

m+(p) = m−(p)

(
1 0
γ(p)

π(p)−ρ 1

)
, p ∈ Σε(ρ),

m+(p) = m−(p)

(
1 − γ(p∗)

π(p)−ρ
0 1

)
, p ∈ Σε(ρ

∗),

and satisfies a divisor condition

(5.32) (m1) ≥ −Dµ̂∗ , (m2) ≥ −Dµ̂.
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Then this Riemann–Hilbert problem is equivalent to a Riemann–Hilbert problem for
m̃ which has jump conditions near ρ and ρ∗ given by

(5.33)

m̃+(p) = m̃−(p)

(
1 B̃(p,ρ∗)(π(p)−ρ)

γ(p)B̃(p∗,ρ∗)

0 1

)
, p ∈ Σε(ρ),

m̃+(p) = m̃−(p)

(
1 0

− B̃(p∗,ρ∗)(π(p)−ρ)
γ(p∗)B̃(p,ρ∗)

1

)
, p ∈ Σε(ρ

∗),

divisor condition

(5.34) (m̃1) ≥ −Dν̂∗ , (m̃2) ≥ −Dν̂ ,
where Dν̂ is defined via

(5.35) αE0
(Dν̂) = αE0

(Dµ̂) + 2AE0
(ρ),

and all remaining data conjugated (as in Lemma 5.6) by

(5.36) D(p) =

(
B̃(p∗, ρ∗) 0

0 B̃(p, ρ∗)

)
.

Proof. Denote by U the interior of Σε(ρ). To turn γ into γ−1, introduce D by

D(p) =



(
1 π(p)−ρ

γ(p)

− γ(p)
π(p)−ρ 0

)(
B̃(p∗, ρ∗) 0

0 B̃(p, ρ∗)

)
, p ∈ U,(

0 − γ(p∗)
π(p)−ρ

π(p)−ρ
γ(p∗) 1

)(
B̃(p∗, ρ∗) 0

0 B̃(p, ρ∗)

)
, p∗ ∈ U,(

B̃(p∗, ρ∗) 0

0 B̃(p, ρ∗)

)
, else,

and note that D(p) is meromorphic away from the two circles. Now set m̃(p) =
m(p)D(p). The claim about the divisors follows from noting, where the poles of

B̃(p, ρ) are. �

Note that Lemma 5.8 can be applied iteratively to conjugate the eigenvalues
ρj < ζ(x/t): start with the poles µ = µ0 and apply the lemma setting ρ = ρ1. This
results in new poles µ1 = ν. Then repeat this with µ = µ1, ρ = ρ2, and so on.

All in all we will now make the following conjugation step: abbreviate

γk(p, x, t) =
−2R

1/2
2g+1(ρk)∏g

l=1(ρk − µl)
ψq(p, x, t)

ψq(p∗, x, t)
γk

and introduce

(5.37) D(p) =



(
1 π(p)−ρk

γk(p,x,t)

−γk(p,x,t)
π(p)−ρk 0

)
D0(p), |π(p)−ρk|<ε

p∈Π+
, ρk < ζ(x/t),(

0 −γk(p∗,x,t)
π(p)−ρk

π(p)−ρk
γk(p∗,x,t) 1

)
D0(p), |π(p)−ρk|<ε

p∈Π−
, ρk < ζ(x/t),

D0(p), else,

where

D0(p) =

(
T (p∗, x, t) 0

0 T (p, x, t)

)
.
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Note that D(p) is meromorphic in Kg\C(x/t) and that we have

(5.38) D(p∗) =

(
0 1
1 0

)
D(p)

(
0 1
1 0

)
.

Now we conjugate our problem using D(p):

Theorem 5.9 (Conjugation). The function m2(p) = m(p)D(p), where D(p) is
defined in (5.37), is meromorphic away from C(x/t) and satisfies:

(i) The jump condition

(5.39) m2
+(p) = m2

−(p)J2(p), p ∈ Σ,

where the jump matrix is given by

(5.40) J2(p) = D0−(p)−1J(p)D0+(p),

(ii) the divisor conditions

(5.41) (m2
1) ≥ −Dν̂(x,t)∗ , (m2

2) ≥ −Dν̂(x,t),

All jumps corresponding to poles, except for possibly one if ρk = ζ(x/t),
are exponentially decreasing. In that case we will keep the pole condition
which is now of the form:

(5.42)

(
m2

1(p) +
γk(p, x, t)

π(p)− ρk
T (p∗, x, t)

T (p, x, t)
m2

2(p)
)
≥ −Dν̂(x,t)∗ , near ρk,(γk(p∗, x, t)

π(p)− ρk
T (p, x, t)

T (p∗, x, t)
m2

1(p) +m2
2(p)

)
≥ −Dν̂(x,t), near ρ∗k.

(iii) the symmetry condition

m2(p∗) = m2(p)

(
0 1
1 0

)
,

(iv) and the normalization

m2(p∞) =
(
1 1

)
.

Proof. Invoking Lemma 5.6 and (4.15) we see that the jump matrix J2(p) is indeed
given by (5.40). The divisor conditions follow from the one for T (p, x, t) and m(p).
Moreover, using Lemma 5.8 one easily sees that the jump corresponding to ρk <
ζ(x/t) (if any) is given by

(5.43)

J2(p) =

(
1 T (p,x,t)(π(p)−ρk)

γk(p,x,t)T (p∗,x,t)

0 1

)
, p ∈ Σε(ρk),

J2(p) =

(
1 0

−T (p∗,x,t)(π(p)−ρk)
γk(p∗,x,t)T (p,x,t) 1

)
, p ∈ Σε(ρ

∗
k),

and by Lemma 5.6 the jump corresponding to ρk > ζ(x/t) (if any) reads

(5.44)

J2(p) =

(
1 0

γk(p,x,t)T (p∗,x,t)
T (p,x,t)(π(p)−ρk) 1

)
, p ∈ Σε(ρk),

J2(p) =

(
1 − γk(p∗,x,t)T (p,x,t)

T (p∗,x,t)(π(p)−ρk)

0 1

)
, p ∈ Σε(ρ

∗
k).
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That is, all jumps corresponding to the poles ρk 6= ζ(x/t) are exponentially decreas-
ing. That the pole conditions are of the form (5.42) in the case ρk = ζ(x/t) can
be checked directly: just use the pole conditions of the original Riemann–Hilbert
problem (4.17) and the divisor condition (5.20) for T (p, x, t). Furthermore, by
(4.18) and (5.38) one checks that the symmetry condition for m2 is fulfilled. From
T (p∞, x, t) = 1 we finally deduce

(5.45) m2(p∞) = m(p∞) =
(
1 1

)
,

which finishes the proof. �

For p ∈ Σ\C(x/t) = Σ∩π−1
(
(ζ(x/t),∞)

)
the jump matrix J2 can be factorized

as
J2 = (b̃−)−1b̃+,

where b̃± = D−1
0 b±D0, that is,

(5.46)

b̃− =

(
1 T (p,x,t)

T (p∗,x,t)R(p∗)Θ(p∗)e−tφ(p)

0 1

)
, b̃+ =

(
1 0

T (p∗,x,t)
T (p,x,t) R(p)Θ(p)etφ(p) 1

)
.

For p ∈ C(x/t) = Σ ∩ π−1
(
(−∞, ζ(x/t))

)
we can factorize J2 in the following way

J2 = (B̃−)−1B̃+,

where B̃± = D−1
± B±D±, that is,

(5.47)

B̃− =

(
1 0

−T−(p∗,x,t)
T−(p,x,t)

R(p)Θ(p)
1−|R(p)|2 et φ(p) 1

)
, B̃+ =

(
1 − T+(p,x,t)

T+(p∗,x,t)
R(p∗)Θ(p∗)
1−|R(p)|2 e−t φ(p)

0 1

)
.

Note that by T (p, x, t) = T (p, x, t) we have

(5.48)
T−(p∗, x, t)

T+(p, x, t)
=
T−(p∗, x, t)

T−(p, x, t)

1

1− |R(p)|2
=
T+(p, x, t)

T+(p, x, t)
, p ∈ C(x/t),

respectively

(5.49)
T+(p, x, t)

T−(p∗, x, t)
=

T+(p, x, t)

T+(p∗, x, t)

1

1− |R(p)|2
=
T−(p∗, x, t)

T−(p∗, x, t)
, p ∈ C(x/t).

We are now able to redefine the Riemann–Hilbert problem for m2(p) in such a
way that the jumps of the new Riemann–Hilbert problem will lie in the regions
where they are exponentially close to the identity for large times. The following
theorem can be checked by straightforward calculations:

Theorem 5.10 (Deformation). Define m3(p) by

(5.50) m3(p) =



m2(p)B̃+(p)−1, p ∈ Dk ∪Dj1, k < j,

m2(p)B̃−(p)−1, p ∈ D∗k ∪D∗j1, k < j,

m2(p)b̃+(p)−1, p ∈ Dk ∪Dj2, k > j,

m2(p)b̃−(p)−1, p ∈ D∗k ∪D∗j2, k > j,

m2(p), else,

where the matrices b̃± and B̃± are defined in (5.46) and (5.47), respectively. Here
we assume that the deformed contour is sufficiently close to the original one. Then
the function m3(p) satisfies:
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(i) The jump condition

(5.51) m3
+(p) = m3

−(p)J3(p), for p ∈ Σ,

where the jump matrix J3 is given by

(5.52) J3(p) =



B̃+(p), p ∈ Ck ∪ Cj1, k < j,

B̃−(p)−1, p ∈ C∗k ∪ C∗j1, k < j,

b̃+(p), p ∈ Ck ∪ Cj2, k > j,

b̃−(p)−1, p ∈ C∗k ∪ C∗j2, k > j,

J2(p), else,

(ii) the divisor conditions

(5.53) (m3
1) ≥ −Dν̂(x,t)∗ , (m3

2) ≥ −Dν̂(x,t),

The jumps on the small circles around the eigenvalues remain unchanged.
(iii) The symmetry condition

(5.54) m3(p∗) = m3(p)

(
0 1
1 0

)
,

(iv) and the normalization

(5.55) m3(p∞) =
(
1 1

)
.

Here we have assumed that the reflection coefficient R(p) appearing in the jump
matrices admits an analytic extension to the corresponding regions. Of course this
is not true in general, but we can always evade this obstacle by approximating R(p)
by analytic functions. We relegate the details to Section 7.

The crucial observation now is that the jumps J3 on the oriented paths Ck, C∗k
are of the form I + exponentially small asymptotically as t → ∞, at least away
from the stationary phase points zj , z

∗
j . We thus hope we can simply replace these

jumps by the identity matrix (asymptotically as t→∞) implying that the solution
should asymptotically be given by the constant vector

(
1 1

)
. That this can in fact

be done will be shown in the next section by explicitly computing the contribution
of the stationary phase points thereby showing that they are of the order O(t−1/2),
that is,

m3(p) =
(
1 1

)
+O(t−1/2)

uniformly for p away from the jump contour. Hence all which remains to obtain
the leading term Vl in Theorem 2.2 is to trace back the definitions of m3 and m2

and comparing with (4.13). First of all, since m3 and m2 coincide near p∞ we have

m2(p) =
(
1 1

)
+O(t−1/2)

uniformly for p in a neighborhood of p∞. Consequently, by the definition of m2

(see Theorem 5.9), we have

m(p) =
(
T (p∗, x, t)−1 T (p, x, t)−1

)
+O(t−1/2)

again uniformly for p in a neighborhood of p∞. Finally, using the expansion of
T (p, x, t) near p∞ (see Lemma 5.5) and then comparing the last identity with (4.13)
shows

(5.56)

∫ ∞
x

(V − Vq)(y, t)dy = 2iT1(x, t) +O(t−1/2),
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where T1 is defined via (5.22), that is,

T1(x, t) =−
∑

ρk<ζ(x/t)

2

∫ ρk

E(ρk)

ωp∞,0 +
1

2πi

∫
C(x/t)

log(1− |R|2)ωp∞,0

− i∂x ln

(
θ
(
z(p∞, x, t) + δ(x/t)

)
θ
(
z(p∞, x, t)

) )
.

Similarly one obtains

(5.57) (V − Vq)(x, t) = O(t−1/2),

by using (4.27) instead of (4.13).
Hence we have proven the leading term in Theorem 2.2, the next term will be

computed in Section 6.

Case (ii): The soliton region. In the case where no stationary phase points lie
in the spectrum the situation is similar to the case (i). In fact, it is much simpler
since there is no contribution from the stationary phase points: There is a gap (the
j-th gap, say) in which two stationary phase points exist. Similarly as in case (i)
an investigation of the sign of Re(φ) shows the following:{

Re(φ(p)) > 0, p ∈ Dk, k < j,

Re(φ(p)) < 0, p ∈ Dk, k > j.

Now we construct “lens-type” contours Ck (as shown in Figure 2) around every
single band lying to the left of the j-th gap and make use of the factorization
J2 = (b̃−)−1b̃+, where the matrices b̃− and b̃+ are defined in (5.46). We also
construct such “lens-type” contours Ck around every single band lying to the right
of the j-th gap and make use of the factorization J2 = (B̃−)−1B̃+ with the matrices

B̃− and B̃+ given by (5.47). Indeed, in place of (5.50) we set

(5.58) m3(p) =



m2(p)B̃−1
+ (p), p ∈ Dk, k < j,

m2(p)B̃−1
− (p), p ∈ D∗k, k < j,

m2(p)b̃−1
+ (p), p ∈ Dk, k > j,

m2(p)b̃−1
− (p), p ∈ D∗k, k > j,

m2(p), else.

Now we are ready to prove Theorem 2.1 by applying Theorem A.8 in the following
way:

If |ζ(x/t) − ρk| > ε for all k we can choose γt0 = 0 and wt0 by removing all
jumps corresponding to poles from wt. The error between the solutions of wt and
wt0 is exponentially small in the sense of Theorem A.8, that is, ‖wt − wt0‖∞ ≤
O(t−l) for any l ≥ 1. We have the one soliton solution (cf. Lemma 4.6) m̂0(p) =(
f̂(p∗, x, t) f̂(p, x, t)

)
, where f̂(p) = 1 for p large enough. Using Lemma 5.5 we

compute

m(p) =m̂0(p)

(
T (p∗, x, t)−1 0

0 T (p, x, t)−1

)
=
(

1 + T1(x,t)√
z

+O(z−1) 1− T1(x,t)√
z

+O(z−1)
)
.
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Comparing this expression with (4.13) yields∫ ∞
x

(V − Vq)(y, t)dy = 2iT1(x, t) +O(t−n),

and thus by our definition of the limiting solution we finally have∫ ∞
x

(V − Vl)(y, t)dy =

∫ ∞
x

(
(V − Vq)(y, t)− (Vl − Vq)(y, t)

)
dy = O(t−n),

for any n ≥ 1 if R(p) has an analytic extension. This proves the second part of the
theorem.

If |ζ(x/t) − ρk| < ε for some k, we choose γt0 = γ̃k and wt0 ≡ 0. Again we
conclude that the error between the solutions of wt and wt0 is exponentially small,
that is, ‖wt−wt0‖∞ ≤ O(t−l), for any l ≥ 1. By Lemma 4.6 we have the one soliton

solution m̂0(p) =
(
f̂(p∗, x, t) f̂(p, x, t)

)
, with

f̂(p, x, t) = 1 +
γ̃k

z − ρk
ψl,ck(ρk, x, t)W(x,t)(ψl,ck(ρk, x, t), ψl,ck(p, x, t))

ψl,ck(p, x, t)cl,k(x, t)
,

for p large enough, where γ̃k is defined as in (2.13). We will again use

m(p) = m̂0(p)

(
T (p∗, x, t)−1 0

0 T (p, x, t)−1

)
=
(
f̂(p∗,x,t)
T (p∗,x,t)

f̂(p,x,t)
T (p,x,t)

)
,

and now expand f̂(p) as in the proof of Lemma 4.6. Finally a comparison with
(4.13) yields∫ ∞

x

(V − Vq)(y, t)dy = 2iT1(x, t) + 2
γ̃kψl,ck(ρk, x, t)

2

cl,k(x, t)
+O(t−n),

and hence by our definition of the limiting solution (2.8) we obtain (2.10) for any
n ≥ 1 if R(p) has an analytic extension. Similarly we obtain (2.11) by using (4.27)
instead of (4.13).

Case (iii): The transitional region. In the special case where the two stationary
phase points coincide (so zj = z∗j = Ek for some k) the Riemann–Hilbert problem
arising above is of a different nature. We expect a similar behavior as in the constant
background case [10] (cf. also the discussion in [22]). However, we will not treat
this case here.

6. The “local” Riemann–Hilbert problems on the small crosses

In the previous section we have reduced everything to the solution of the Riemann–
Hilbert problem

m3
+(p) = m3

−(p)J3(p),

(m3
1) ≥ −Dν̂(x,t)∗ , (m3

2) ≥ −Dν̂(x,t),

m3(p∗) = m3(p)

(
0 1
1 0

)
m3(p∞) =

(
1 1

)
,

where the jump matrix J3 is given by (5.52). We have performed a deformation in
such a way that the jumps J3 on the oriented paths Ck, C∗k for k 6= j are of the
form “I + exponentially small” asymptotically as t→∞. The same is true for the
oriented paths Cj1, Cj2, C∗j1, C∗j2 at least away from the stationary phase points
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Figure 3. The small cross containing the stationary phase point
zj and its flipping image containing z∗j . Views from the top and
bottom sheet. Dotted curves lie in the bottom sheet.

zj , z
∗
j . The purpose of this section will be to derive the actual asymptotic rate at

which m3(p)→
(
1 1

)
following again [22]. The jump contour near the stationary

phase points (cf. Figure 3) will be denoted by ΣC(zj) and ΣC(z∗j ). On these crosses
the jumps read

(6.1)

J3 = B̃+ =

(
1 − T

T∗
R∗Θ∗

1−R∗Re−t φ

0 1

)
, p ∈ Cj1,

J3 = B̃−1
− =

(
1 0

T∗

T
RΘ

1−R∗Ret φ 1

)
, p ∈ C∗j1,

J3 = b̃+ =

(
1 0

T∗

T RΘet φ 1

)
, p ∈ Cj2,

J3 = b̃−1
− =

(
1 − T

T∗R
∗Θ∗e−t φ

0 1

)
, p ∈ C∗j2.

To reduce our Riemann–Hilbert problem to the one corresponding to the two
crosses we proceed as follows: We take a small disc D around zj(x/t) and project it
to the complex plane using the canonical projection π. Now consider the (holomor-
phic) Riemann–Hilbert problem in the complex plane with the very jump obtained
by projection and normalize it to be I near ∞.

The corresponding Riemann–Hilbert problem is solved in [25, Appendix A]. To
apply [25, Theorem A.1] we need the behavior of the jump matrix J3, that is, the
behavior of T (p, x, t) near the stationary phase points zj and z∗j .

The following lemma gives more information on the singularities of T (p, x, t) near
the stationary phase points zj , j = 0, . . . , g and the band edges Ej , j = 0, . . . , 2g+1
(setting E2g+1 =∞).

Lemma 6.1. For p near a stationary phase point zj or z∗j (not equal to a band
edge) we have

(6.2) T (p, x, t) = (z − zj)±iνe±(z), p = (z,±),
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where e±(z) has continuous limits near zj and

(6.3) ν = − 1

2π
log(1− |R(zj)|2) > 0.

Here (z − zj)±iν = exp(±iν log(z − zj)), where the branch cut of the logarithm is
along the negative real axis.

For p near a band edge Ek ∈ C(x/t) we have

(6.4) T (p, x, t) = T±1(z)ẽ±(z), p = (z,±),

where ẽ±(z) is holomorphic near Ek if none of the νj is equal to Ek and ẽ±(z) has
a first order pole at Ek = νj else.

Proof. By factorizing the jump according to 1− |R(p)|2 = (1− |R(zj)|2) 1−|R(p)|2
1−|R(zj)|2

one can rewrite (5.19). Then one considers the Abelian differential ωp p∗ for p ∈
Kg\{p∞} which is explicitly given by the formula (3.21). One has

(6.5)
1

2

∫
C(x/t)

ωp p∗ = ± log(z − zj)± α(zj) +O(z − zj), p = (z,±)

and thus

(6.6)

∫
C(x/t)

ωp p∞ = ± log(z − zj)± α(zj) +O(z − zj), p = (z,±),

since
∫
C(x/t)

fωp p∞ = 1
2

∫
C(x/t)

fωp p∗ for any symmetric function f(q) = f(q∗).

From this the first claim follows. For the second claim note that the function

t(p) =

{
T (z), p = (z,+) ∈ Π+,
T (z)−1, p = (z,−) ∈ Π−,

satisfies the following (holomorphic) Riemann–Hilbert problem

t+(p) = t−(p)(1− |R(p)|2), p ∈ Σ,

t(p∞) = 1.

Thus T (p, x, t)/t(p) has no jump along C(x/t) and is therefore holomorphic near
C(x/t) away from band edges Ek = νj (where there is a simple pole) by the Schwarz
reflection principle. �

Moreover,

Lemma 6.2. We have

(6.7) e±(z) = e∓(z), p = (z,±) ∈ Σ \ C(x/t)

and
(6.8)

e+(zj) = exp
(
iνα(zj)

)θ(z(p∞, x, t) + δ(x/t)
)

θ
(
z(p∞, x, t)

) θ
(
z(zj , x, t)

)
θ
(
z(zj , x, t) + δ(x/t)

) ·
· exp

(
−

∑
ρk<ζ(x/t)

∫ ρk

E(ρk)

ωzj z∗j +
1

4πi

∫
C(x/t)

log
( 1− |R|2

1− |R(zj)|2
)
ωzj z∗j

)
,

where

(6.9) α(zj) = lim
p→zj

(1

2

∫
C(x/t)

ωp p∗ − log
(
π(p)− zj

))
.

Here α(zj) ∈ R and ωp p∗ is real on C(x/t).
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Proof. The first claim follows from the fact that

T (p∗, x, t) = T (p, x, t) = T (p, x, t) for p ∈ Σ \ C(x/t).

For the second claim just follow the argument used in the proof of the previous
lemma. �

By Lemma 6.1 one deduces that near the stationary phase points the jumps are
given by

(6.10)

B̂+ =

1 −
(√

φ′′(zj)
i (z − zj)

)2iν
r

1−|r|2 e−t φ

0 1

 , p ∈ Lj1,

B̂−1
− =

 1 0(√
φ′′(zj)

i (z − zj)
)−2iν

r
1−|r|2 et φ 1

 , p ∈ L∗j1,

b̂+ =

 1 0(√
φ′′(zj)

i (z − zj)
)−2iν

ret φ 1

 , p ∈ Lj2,

b̂−1
− =

1 −
(√

φ′′(zj)
i (z − zj)

)2iν

re−t φ

0 1

 , p ∈ L∗j2,

where (cf. eq. (6.2))

(6.11) r = R(zj)Θ(zj , x, t)
e+(zj)

e+(zj)

(φ′′(zj)
i

)iν

.

The error terms will satisfy appropriate Hölder estimates, that is

(6.12) ‖B̂+(p)− B̂+(p)‖ ≤ C|z − zj |α, p = (z,+) ∈ Cj1,
for any α < 1 and similarly for the other matrices. Thus the assumptions of [25,
Theorem A.1] are satisfied and we can conclude that the solution on π

(
ΣC(zj)

)
is

of the form

(6.13) M(z) = I +
M0

z − zj
1

t1/2
+O(t−α),

where

M0 = i
√

i/φ′′(zj)

(
0 −β(t)

β(t) 0

)
,(6.14)

β(t) =
√
νei(π/4−arg(r)+arg(Γ(iν)))e−tφ(zj)t−iν ,(6.15)

and 1/2 < α < 1. Now we lift this solution in the complex plane back to the small
disc D on the Riemann surface Kg by setting

(6.16) M(p) =

 M(z), p ∈ D,(
0 1
1 0

)
M(z)

(
0 1
1 0

)
, p ∈ D∗.

Thus we conclude that the solution on ΣC(zj) is given by

(6.17) MC(p) = I +
1

t1/2
M0

z − zj
+O(t−α), p = (z,+),
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and the one on ΣC(z∗j ) reads

(6.18) M̃C(p) = I +
1

t1/2
M0

z − zj
+O(t−α), p = (z,−).

Then

(6.19) m4(p) =


m3(p)MC(p)−1, p ∈ D,
m3(p)M̃C(p)−1, p ∈ D∗,
m3(p), else,

has no jump inside D ∪ D∗ but jumps on the boundary ∂D ∪ ∂D∗. All jumps
outside D∪D∗ are of the form I+ exponentially small and the jump on ∂D∪∂D∗
is of the form I + O(t−1/2). In order to identify the leading behavior it remains
to rewrite the Riemann–Hilbert problem for m4 as a singular integral equation
following Section A. Let the operator Cw4 : L2(Σ4)→ L2(Σ4) be defined by

(6.20) Cw4f = C−(fw4)

for a vector valued f , where w4 = J4 − I and

(6.21) (C±f)(q) = lim
p→q∈Σ4

1

2πi

∫
Σ4

f Ων̂p , Ων̂p =

(
Ω
ν̂∗,p∞
p 0

0 Ω
ν̂,p∞
p

)
,

are the Cauchy operators for our Riemann surface. In particular, Ω
ν̂,q
p is the Cauchy

kernel given by

(6.22) Ων̂,qp = ωp q +

g∑
j=1

I
ν̂,q
j (p)ζj ,

where

(6.23) I
ν̂,q
j (p) =

g∑
`=1

cj`(ν̂)

∫ p

q

ων̂`,0.

Here ωq,0 is the (normalized) Abelian differential of the second kind with a second
order pole at q (cf. Remark 6.4 below) and ωp q denotes the Abelian differential of

the third kind with simple poles at p and q. Note that I
ν̂,q
j (p) has first order poles

at the points ν̂.

The constants cj`(ν̂) are chosen such that Ω
ν̂,q
p is single valued, that is,

(6.24) (c`k(ν̂))1≤`,k≤g =

 g∑
j=1

ck(j)
µj−1
` dπ

R
1/2
2g+2(µ̂`)

−1

1≤`,k≤g

where ck(j) are defined in (3.6) (cf. Lemma A.3).
Consider the solution µ4 of the singular integral equation

(6.25) µ =
(
1 1

)
+ Cw4µ in L2(Σ4).

Then the solution of our Riemann–Hilbert problem is given by

(6.26) m4(p) =
(
1 1

)
+

1

2πi

∫
Σ4

µ4 w4 Ων̂p .

By ‖w4‖∞ = O(t−1/2) Neumann’s formula implies

(6.27) µ4(q) = (I− Cw4)−1
(
1 1

)
=
(
1 1

)
+O(t−1/2).
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Moreover,

(6.28) w4(p) =

{
− M0

z−zj
1
t1/2

+O(t−α), p ∈ ∂D,
− M0

z−zj
1
t1/2

+O(t−α), p ∈ ∂D∗.

Hence we obtain

m4(p) =
(
1 1

)
−
(
1 1

)
M0

t1/2
1

2πi

∫
∂D

1

π − zj
Ων̂p

−
(
1 1

)
M0

t1/2
1

2πi

∫
∂D∗

1

π − zj
Ων̂p +O(t−α)

=
(
1 1

)
−
(
1 1

)
M0

t1/2
Ων̂p(zj)−

(
1 1

)
M0

t1/2
Ων̂p(z∗j ) +O(t−α)

=
(
1 1

)
−

√
i

φ′′(zj)t
×

×
(

iβΩ
ν̂∗,p∞
p (zj)− iβΩ

ν̂∗,p∞
p (z∗j ) −iβΩ

ν̂,p∞
p (zj) + iβΩ

ν̂,p∞
p (z∗j )

)
+O(t−α).(6.29)

Since we need the asymptotic expansions around p∞ we note

Lemma 6.3. We have

(6.30) Ων̂,p∞p (zj) = Λ
ν̂
1(zj)ζ + Λ

ν̂
2(zj)ζ

2 +O
(
ζ3
)

for ζ = z−1/2 being the local chart near p∞ and

Λ
ν̂
1(zj) = ωp∞,0(zj)−

g∑
k=1

g∑
`=1

ck`(ν̂)αg−1(ν̂`)ζk(zj),(6.31)

Λ
ν̂
2(zj) = ωp∞,1(zj)−

1

2

g∑
k=1

g∑
`=1

ck`(ν̂)ζk(zj),(6.32)

where ωq,k, k = 0, 1, . . . , is an Abelian differential of the second kind with a single
pole of order k + 2 at q and αg−1(ν̂`) denotes a constant defined in Remark 6.4
below.

Proof. Use the local coordinate ζ = z−1/2 near p∞ = (∞,∞) and expand the
differential ωpp∞ like it is done in [35, Theorem 4.1] and

∫ p
p∞

ων̂`,0 by using the

expression (6.33). For g ≥ 1 one gets

ων̂,0(ζ) = −αg−1(ν̂)− ζ +O(ζ2)

and thus the claimed formulas for Λ
ν̂
1(zj) and Λ

ν̂
2(zj) follow. �

Remark 6.4. The Abelian differential appearing in the previous lemma is explicitly
given by

(6.33) ων̂,0 =

R
1/2
2g+1 +R

1/2
2g+1(ν̂) +

R′2g+1(ν̂)

2R
1/2
2g+1(ν̂)

(π − ν) + Pν̂,0 · (π − ν)2

2(π − ν)2R
1/2
2g+1

dπ,
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with Pν̂,0 a polynomial of degree g− 1 which has to be determined from the normal-
ization. We will use the notation

(6.34) Pν̂,0(z) =

g−1∑
j=0

αj(ν̂)zj .

Concerning the Abelian differential ωp∞,0 we refer to (3.15). The differential ωp∞,1
is given by

(6.35) ωp∞,1 =
(
−
R

1/2
2g+1

2
+ Pp∞,1

) dπ

R
1/2
2g+1

,

where Pp∞,1 is a polynomial of degree g − 1 which has to be determined by the
vanishing aj-periods as usual.

Note that the following relations are valid

(6.36)
ωp∞,0(z∗j ) = −ωp∞,0(zj),

ωp∞,1(z∗j ) + ωp∞,1(zj) = −1,

and

(6.37) ck`(ν̂
∗) = −ck`(ν̂), ζk(z∗j ) = −ζk(zj).

Moreover, the coefficients αj(ν̂), j = 0, . . . , g − 1 of the polynomial Pν̂,0 fulfill the
relation

(6.38) αj(ν̂
∗) = −αj(ν̂), j = 0, . . . , g − 1.

Now we come to prove Theorem 2.2. As in the previous section, the asymptotics
can be read off by using

(6.39) m(p) = m4(p)

(
1

T (p∗,x,t) 0

0 1
T (p,x,t)

)
for p near p∞ and comparing with (4.13). From that one deduces

m2(p) =m4
2(p)T (p)−1 =

=1 +
(√ i

φ′′(zj)t

(
iβΛ

ν̂
1(zj)− iβΛ

ν̂
1(z∗j )

)
− T1(x, t) +O(t−α)

) 1√
z

+O(z−1),

where we have used (6.29), (6.30) and (5.21). Comparing this asymptotic expansion
with (4.13) yields∫ +∞

x

(V − Vq)(y)dy = 2

√
i

φ′′(zj)t

(
βΛ

ν̂
1(zj)− βΛ

ν̂
1(z∗j )

)
+ 2iT1(x, t) +O(t−α).

Invoking (6.36), (6.37) and (6.38) one gets

(6.40)
Λ
ν̂
1(z∗j ) = −Λ

ν̂
1(zj),

Λ
ν̂∗

1 (zj) = Λ
ν̂
1(zj),

and therefore

(6.41)

∫ ∞
x

(V −Vq)(y, t)dy = 4

√
i

φ′′(zj)t
Re
(
β(x, t)

)
Λ
ν̂
1(x, t)+2iT1(x, t)+O(t−α).
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Finally, using the definition of the limiting solution (2.8) proves the claim. Note
that one obtains the same result if one compares the expressions for the component
m1.

Similarly one obtains (2.17) by using (4.27) instead of (4.13).

7. Analytic Approximation

In this section we want to show how to get rid of the analyticity assumption
on the reflection coefficient R(p). To this end we will split R(p) into an analytic
part Ra,t plus a small rest Rr,t following the ideas of [8] (see also [25, Sect. 6]).
The analytic part will be moved to regions of the Riemann surface while the rest
remains on Σ = π−1

(
σ(Hq)

)
. This needs to be done in such a way that the rest is

of O(t−1) and the growth of the analytic part can be controlled by the decay of the
phase.

In order to avoid problems when one of the poles νj hits Σ, we have to make the
approximation in such a way that the nonanalytic rest vanishes at the band edges.
That is, split R according to

R(p) =R(E2j)
(z − E2j)(E2j+1 − i)

(E2j+1 − E2j)(z − i)
+R(E2j+1)

(z − E2j+1)(E2j − i)

(E2j − E2j+1)(z − i)

+Qj(p)R̃(p), p = (z,±),(7.1)

where Qj(p) is a rational function with first order zeros at E2j , E2j+1 and with all

other zeros and poles away from Σ, and approximate R̃. Note that if R ∈ Cl(Σ),

then R̃ ∈ Cl−1(Σ).
We will use different splittings for different bands depending on whether the

band contains our stationary phase point zj(x/t) or not. We will begin with some
preparatory lemmas.

For the bands containing no stationary phase points we will use a splitting based
on the following Fourier transform associated with the background operator Hq.
Given R ∈ Cl(Σ) we can write

(7.2) R(p) =

∫
R
R̂(x)ψq(p, x, 0)dx,

where ψq(p, x, t) denotes the time-dependent Baker–Akhiezer function and (cf. [14],
[12])

(7.3) R̂(x) =
1

2πi

∮
Σ

R(p)ψq(p, x, 0)
i
∏g
j=1(π(p)− µj)

2R
1/2
2g+1(p)

dπ(p).

If we make use of (3.14), the above expression for R(p) is of the form

(7.4) R(p) =

∫
R
R̂(x)θq(p, x, 0) exp

(
ixk(p)

)
dx.

where k(p) = −i
∫ p
E0
ωp∞,0 and θq(p, n, t) collects the remaining parts in (3.14).

Using k(p) as a new coordinate and performing l integration by parts one obtains
(cf. [12])

(7.5) |R̂(x)| ≤ const

1 + |x|l

provided R ∈ Cl(Σ).
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Lemma 7.1. Suppose R̂ ∈ L1(R), xlR̂(x) ∈ L1(R) and let β > 0 be given. Then
we can split R(p) according to

R(p) = Ra,t(p) +Rr,t(p),

such that Ra,t(p) is analytic for in the region 0 < Im(k(p)) < ε and

|Ra,t(p)e−βt| = O(t−l), 0 < Im(k(p)) < ε,(7.6)

|Rr,t(p)| = O(t−l), p ∈ Σ.(7.7)

Proof. We choose

Ra,t(p) =

∫ ∞
x=−K(t)

R̂(x)θq(p, x, 0) exp
(
ixk(p)

)
dx

with K(t) = β0

ε t for some positive β0 < β. Then, for 0 < Im(k(p)) < ε,∣∣Ra,t(k)e−βt
∣∣ ≤ Ce−βt

∫ ∞
x=−K(t)

|R̂(x)|e−Im(k(p))xdx

≤ Ce−βteK(t)ε‖F‖1 = ‖R̂‖1e−(β−β0)t,

which proves the first claim. Similarly, for p ∈ Σ,

|Rr,t(k)| ≤ C
∫ ∞
x=K(t)

xl|R̂(−x)|
xl

dx ≤ C ‖x
lR̂(−x)‖1
K(t)l

≤ C̃

tl

�

For the band which contains zj(x/t) we need to take the small vicinities of the
stationary phase points into account. Since the phase is cubic near these points, we
cannot use it to dominate the exponential growth of the analytic part away from Σ.
Hence we will take the phase as a new variable and use the Fourier transform with
respect to this new variable. Since this change of coordinates is singular near the
stationary phase points, there is a price we have to pay, namely, requiring additional
smoothness for R(p).

Without loss of generality we will choose the path of integration in our phase
φ(p), defined in (4.21), such that φ(p) is continuous (and thus analytic) in Dj,1

with continuous limits on the boundary (cf. Figure 1). We begin with

Lemma 7.2. Suppose R(p) ∈ C5(Σ). Then we can split R(p) according to

(7.8) R(p) = R0(p) +
z − zj
z − i

H(p), p = (z,±) ∈ Σ ∩Dj,1,

where R0(p) is a real rational function on M such that H(p) vanishes at zj, z
∗
j of

order three and has a Fourier transform

(7.9) H(p) =

∫
R
Ĥ(x)exφ(p)dx,

with xĤ(x) integrable. Here φ denotes the phase defined in (4.21).

Proof. We begin by choosing a rational function R0(p) = a(z) + b(z)R
1/2
2g+1(p) with

p = (z,±) such that a(z), b(z) are real-valued rational functions which are chosen
such that a(z) matches the values of Re(R(p)) and its first four derivatives at zj

and i−1b(z)R
1/2
2g+1(p) matches the values of Im(R(p)) and its first four derivatives
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at zj . Moreover, all poles are chosen away from Σ. Since R(p) is C5 we infer that
H(p) ∈ C4(Σ) and it vanishes together with its first three derivatives at zj , z

∗
j .

Note that φ(p)/i, where φ is defined in (4.21) has a maximum at z∗j and a mini-
mum at zj . Thus the phase φ(p)/i restricted to Σ∩Dj,1 gives a one to one coordinate
transform Σ∩Dj,1 → [φ(z∗j )/i, φ(zj)/i] and we can hence express H(p) in this new
coordinate (setting it equal to zero outside this interval). The coordinate transform
locally looks like a cube root near zj and z∗j , however, due to our assumption that

H vanishes there, H is still C2 in this new coordinate and the Fourier transform
with respect to this new coordinates exists and has the required properties. �

Moreover, as in Lemma 7.1 we obtain:

Lemma 7.3. Let H(p) be as in the previous lemma. Then we can split H(p)
according to H(p) = Ha,t(p) + Hr,t(p) such that Ha,t(p) is analytic in the region
Re(φ(p)) < 0 and

(7.10) |Ha,t(p)e
φ(p)t/2| = O(1), p ∈ Dj,1, |Hr,t(p)| = O(t−1), p ∈ Σ.

Proof. We choose Ha,t(p) =
∫∞
x=−K(t)

Ĥ(x)exφ(p)dx with K(t) = t/2. Then we can

proceed as in Lemma 7.1:

|Ha,t(p)e
φ(p)t/2| ≤ ‖Ĥ‖1|e−K(t)φ(p)+φ(p)t/2| ≤ ‖Ĥ‖1

and

|Hr,t(p)| ≤
1

K(t)

∫ ∞
x=K(t)

x|Ĥ(−x)|dx ≤ C

t
.

�

Clearly an analogous splitting exists for p ∈ Σ ∩Dj2.
Now we are ready for our analytic approximation step. First of all recall that our

jump is given in terms b̃± and B̃± defined in (5.14) and (5.16), respectively. While

b̃± are already in the correct form for our purpose, this is not true for B̃± since
they contain the non-analytic expression |T (p)|2. To remedy this we will rewrite

B̃± in terms of the left rather than the right scattering data. For this purpose
let us use the notation Rr(p) ≡ R+(p) for the right and Rl(p) ≡ R−(p) for the
left reflection coefficient. Moreover, let Tr(p, x, t) ≡ T (p, x, t) be the right and
Tl(p, x, t) ≡ T (p)/Tr(p, x, t) be the left partial transmission coefficient.

With this notation we have

(7.11) J2(p) =

{
b̃−(p)−1b̃+(p), π(p) > ζ(x/t),

B̃−(p)−1B̃+(p), π(p) < ζ(x/t),

where

b̃− =

(
1 Tr(p,x,t)

Tr(p∗,x,t)Rr(p
∗)Θ(p∗)e−tφ(p)

0 1

)
,

b̃+ =

(
1 0

Tr(p∗,x,t)
Tr(p,x,t) Rr(p)Θ(p)e−tφ(p) 1

)
,
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and

B̃− =

(
1 0

−Tr,−(p∗,x,t)
Tr,−(p,x,t)

Rr(p)Θ(p)
|T (p)|2 et φ(p) 1

)
,

B̃+ =

(
1 − Tr,+(p,x,t)

Tr,+(p∗,x,t)
Rr(p∗)Θ(p∗)
|T (p)|2 e−t φ(p)

0 1

)
.

Using (4.8) we can write

B̃− =

(
1 0

Tl(p
∗,x,t)

Tl(p,x,t)
Rl(p)Θ(p)e−tφ(p) 1

)
,

B̃+ =

(
1 Tl(p,x,t)

Tl(p∗,x,t)
Rl(p

∗)Θ(p∗)e−tφ(p)

0 1

)
.

Now we split Rr(p) = Ra,t(p)+Rr,t(p) by splitting R̃r(p) defined via (7.1) according
to Lemma 7.1 for π(p) ∈ [E2k, E2k+1] with k < j (i.e., not containing ζ(x/t))
and according to Lemma 7.3 for π(p) ∈ [E2j , ζ(x/t)]. In the same way we split
Rl(p) = Ra,t(p) + Rr,t(p) for π(p) ∈ [ζ(x/t), E2j+1] and π(p) ∈ [E2k, E2k+1] with
k > j. For β in Lemma 7.1 we can choose

(7.12) β =

{
minp∈Ck −Re(φ(p)) > 0, π(p) > ζ(x/t),
minp∈Ck Re(φ(p)) > 0, π(p) < ζ(x/t).

In this way we obtain

b̃±(p) = b̃a,t,±(p)b̃r,t,±(p) = b̃r,t,±(p)b̃a,t,±(p),

B̃±(p) = B̃a,t,±(p)B̃r,t,±(p) = B̃r,t,±(p)B̃a,t,±(p).

Here b̃a,t,±(p), b̃r,t,±(p) denote the matrices obtained from b̃±(p) by replacing Rr(p)

with Ra,t(p), Rr,t(p), respectively. Similarly for B̃a,t,±(p), B̃r,t,±(p). Now we can
move the analytic parts into regions of the Riemann surface as in Section 5 while
leaving the rest on Σ. Hence, rather than (5.52), the jump now reads

(7.13) J3(p) =



b̃a,t,+(p), p ∈ Ck, π(p) > ζ(x/t),

b̃a,t,−(p)−1, p ∈ C∗k , π(p) > ζ(x/t),

b̃r,t,−(p)−1b̃r,t,+(p), p ∈ π−1((ζ(x/t),+∞)),

B̃a,t,+(p), p ∈ Ck, π(p) < ζ(x/t),

B̃a,t,−(p)−1, p ∈ C∗k , π(p) < ζ(x/t),

B̃r,t,−(p)−1B̃r,t,+(p), p ∈ π−1(−∞, ζ(x/t))).

By construction Ra,t(p) = R0(p) + (π(p) − π(zj))Ha,t(p) will satisfy the required
Lipschitz estimate in a vicinity of the stationary phase points (uniformly in t) and
the jump will be J3(p) = I + O(t−1). The remaining parts of Σ can be handled
analogously and hence we can proceed as in Section 6.

Appendix A. Singular integral equations

In the complex plane, the solution of a Riemann–Hilbert problem can be reduced
to the solution of a singular integral equation (see [3]). In our case the underlying
space is a Riemann surface M. The purpose of this appendix is to generalize this
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approach to meromorphic vector Riemann–Hilbert problem with simple poles at ρ,
ρ∗ of the type

m+(p) = m−(p)J(p), p ∈ Σ,

(m1) ≥ −Dµ̂∗ −Dρ, (m2) ≥ −Dµ̂ −Dρ∗ ,(
m1(p)−

R
1/2
2g+2(ρ)∏g

k=1(ρ− µk)

γj
π(p)− ρ

ψq(p)

ψq(p∗)
m2(p)

)
≥ −D∗µ̂, near ρ,(A.1)

(
−

R
1/2
2g+2(ρ)∏g

k=1(ρ− µk)

γ

π(p)− ρ
ψq(p)

ψq(p∗)
m1(p) +m2(p)

)
≥ −Dµ̂, near ρ∗,

m(p∗) = m(p)

(
0 1
1 0

)
,

m(p∞) =
(
1 1

)
,

Since we require the symmetry condition (4.18) for our Riemann–Hilbert problems,
we need to adapt the usual Cauchy kernel to preserve this symmetry. Moreover,
we keep the single soliton as an inhomogeneous term which will play the role of the
leading asymptotics in our applications.

Concerning the jump contour Σ and the jump matrix J we will make the following
assumptions:

Hypothesis H. A.1. Let Σ consist of a finite number of smooth oriented finite
curves in M which intersect at most finitely many times with all intersections being
transversal. Assume that the contour Σ does not contain any of the points µ̂ and
is invariant under p 7→ p∗. It is oriented such that under the mapping p 7→ p∗ se-
quences converging from the positive sided to Σ are mapped to sequences converging
to the negative side. The divisor Dµ̂ is nonspecial.

The jump matrix J is nonsingular and can be factorized according to J =
b−1
− b+ = (I − w−)−1(I + w+), where w± = ±(b± − I) are Hölder continuous and

satisfy

(A.2) w±(p∗) = −
(

0 1
1 0

)
w∓(p)

(
0 1
1 0

)
, p ∈ Σ.

Moreover,

(A.3) ‖w‖∞ = ‖w+‖L∞(Σ) + ‖w−‖L∞(Σ) <∞.

Remark A.2. The assumption that that none of the poles µ̂ lie on our contour Σ
can be made without loss of generality if the jump is analytic since we can move the
contour a little without changing the value at p∞ (which is the only value we are
eventually interested in). Alternatively, the case where one (or more) of the poles
µ̂j lies on Σ can be included if one assumes that w± has a first order zero at µ̂j.
In fact, in this case one can replace µ(s) by µ̃(s) = (π(s) − µj)µ(s) and w±(s) by
w̃±(s) = (π(s)− µj)−1w±(s).

Otherwise one could also assume that the matrices w± are Hölder continuous and

vanish at such points. Then one can work with the weighted measure −iR
1/2
2g+1(p)dπ

on Σ. In fact, one can show that the Cauchy operators are still bounded in this
weighted Hilbert space (cf. [19, Thm. 4.1]).
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Our first step is to replace the classical Cauchy kernel by a ”generalized” Cauchy
kernel appropriate to our Riemann surface. In order to get a single valued kernel
we need again to admit g poles. We follow the construction from [30, Sec. 4]/

Lemma A.3 ([22, 25]). Let Dµ̂ be nonspecial and introduce the differential

(A.4) Ω
µ̂,ρ
p = ωp ρ +

g∑
j=1

I
µ̂,ρ

j (p)ζj ,

where

(A.5) I
µ̂,ρ

j (p) =

g∑
`=1

cj`(µ̂)

∫ p

ρ

ωµ̂`,0.

Here ωq,0 is the (normalized) Abelian differential of the second kind with a second
order pole at q (cf. Remark 6.4) and the matrix cj` is defined as the inverse matrix
of η`(µ̂j), where ζ` = η`(z)dz is the chart expression in a local chart near µ̂j (the
same chart used to define ωµ̂j ,0).

Then Ω
µ̂,ρ
p is single valued as a function of p with first order poles at the points

µ̂.

Next we show that the Cauchy kernel introduced in (A.4) has indeed the correct
properties. We will abbreviate Lp(Σ) = Lp(Σ,C2).

Theorem A.4 ([22, 25]). Set

(A.6) Ω
µ̂,ρ
p =

(
Ω
µ̂∗,ρ∗

p 0

0 Ω
µ̂,ρ
p

)
,

and define the matrix operators as follows. Given a 2 × 2 matrix f defined on Σ
with Hölder continuous entries, let

(A.7) (Cf)(p) =
1

2πi

∫
Σ

f(s)Ω
µ̂,ρ
p , for p 6∈ Σ,

and

(A.8) (C±f)(q) = lim
p→q∈Σ

(Cf)(p)

from the left and right of Σ respectively (with respect to its orientation). Then

(i) The operators C± are given by the Plemelj formulas

(C+f)(q)− (C−f)(q) = f(q),

(C+f)(q) + (C−f)(q) =
1

πi
−
∫

Σ

f Ω
µ̂,ρ
q ,

and extend to bounded operators on L2(Σ). Here −
∫

denotes the principal
value integral, as usual, and the bound can be chosen independent of the
divisor as long as it stays some finite distance away from Σ.

(ii) Cf is a meromorphic function off Σ, with divisor given by ((Cf)j1) ≥
−Dµ̂∗ and ((Cf)j2) ≥ −Dµ̂.

(iii) (Cf)(ρ∗) = (0 ∗), (Cf)(ρ) = (∗ 0).
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Furthermore, C restricts to L2
s(Σ), that is

(A.9) (Cf)(p∗) = (Cf)(p)

(
0 1
1 0

)
, p ∈M\Σ

for f ∈ L2
s(Σ) and if w± satisfy (A.2) we also have

(A.10) C±(fw∓)(p∗) = C∓(fw±)(p)

(
0 1
1 0

)
, p ∈ Σ.

Now, let the operator Cw : L2
s(Σ)→ L2

s(Σ) be defined by

(A.11) Cwf = C+(fw−) + C−(fw+), f ∈ L2
s(Σ),

for a 2× 2 matrix valued f , where

w+ = b+ − I and w− = I− b−.
Recall from Lemma 4.6 that the unique solution corresponding to J ≡ I is given by

m0(p) =
(
f(p∗) f(p)

)
,

for some given f(p) with (f) ≥ −Dµ̂−Dρ∗ . Since we assumed Dµ̂ to be away from

Σ, we clearly have m0 ∈ L2
s(Σ).

Theorem A.5 ([22, 25]). Assume Hypothesis A.1 and let m0 ∈ C2 be given.
Suppose m solves the Riemann–Hilbert problem (A.1). Then

(A.12) m(p) = (1− c0)m0(p) +
1

2πi

∫
Σ

µ(s)(w+(s) + w−(s))Ω
µ̂,ρ
p ,

where

µ = m+b
−1
+ = m−b

−1
− and c0 =

(
1

2πi

∫
Σ

µ(s)(w+(s) + w−(s))Ω
µ̂,ρ
p∞

)
1

.

Here (m)j denotes the j’th component of a vector. Furthermore, µ solves

(A.13) (I− Cw)µ = (1− c0)m0(p).

Conversely, suppose µ̃ solves

(A.14) (I− Cw)µ̃ = m0,

and

c̃0 =

(
1

2πi

∫
Σ

µ̃(s)(w+(s) + w−(s))Ω
µ̂,ρ
p∞

)
1

6= 0,

then m defined via (A.12), with (1− c0) = (1− c̃0)−1 and µ = (1− c̃0)−1µ̃, solves
the Riemann–Hilbert problem (A.1) and µ = m±b

−1
± .

Hence we have a formula for the solution of our Riemann–Hilbert problem m(z)
in terms of (I−Cw)−1m0 and this clearly raises the question of bounded invertibility
of I− Cw. This follows from Fredholm theory (cf. e.g. [38]):

Lemma A.6 ([22, 25]). Assume Hypothesis A.1. Then the operator I − Cw is
Fredholm of index zero,

(A.15) ind(I− Cw) = 0.

By the Fredholm alternative, it follows that to show the bounded invertibility of
I− Cw we only need to show that ker(I− Cw) = 0. The latter being equivalent to
unique solvability of the corresponding vanishing Riemann–Hilbert problem.
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Corollary A.7. Assume Hypothesis A.1.
A unique solution of the Riemann–Hilbert problem (A.1) exists if and only if the

corresponding vanishing Riemann–Hilbert problem, where the normalization condi-
tion is given by m(p∞) =

(
0 0

)
, has at most one solution.

We are interested in comparing two Riemann–Hilbert problems associated with
respective jumps w0 and w with ‖w − w0‖∞ small, where

(A.16) ‖w‖∞ = ‖w+‖L∞(Σ) + ‖w−‖L∞(Σ).

For such a situation we have the following result:

Theorem A.8 ([24]). Assume that for some data wt0 the operator

(A.17) I− Cwt0 : L2(Σ)→ L2(Σ)

has a bounded inverse, where the bound is independent of t.
Furthermore, assume wt satisfies

(A.18) ‖wt − wt0‖∞ ≤ α(t)

for some function α(t) → 0 as t → ∞. Then (I − Cwt)−1 : L2(Σ) → L2(Σ) also
exists for sufficiently large t and the associated solutions of the Riemann–Hilbert
problems (A.1) only differ by O(α(t)).
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