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Abstract. We revisit the asymptotic analysis of the KdV shock problem in the soliton
region. Our approach is based on the analysis of the associated Riemann–Hilbert problem
and we extend the domain of validity of the asymptotic formulas while at the same time
requiring less decay and smoothness for the initial data.

1. Introduction and main results

The aim of this note is to revisit the RHP approach (introduced by Deift and Zhou [1]
extending ideas of Manakov [13] and Its [10]) for the study of the long-time asymptotics for
solutions of the Korteweg–de Vries (KdV) equation

(1.1) qt(x, t)− 6q(x, t)qx(x, t) + qxxx(x, t) = 0

with step-like initial data q(x) = q(x, 0) satisfying the condition

(1.2) lim
x→∞

q(x) = 0, lim
x→−∞

q(x) = −c2, c > 0.

This is known as the KdV shock problem and the solution will split into a decaying dispersive
tail on the background −c2, a dispersive shock wave, and a number of solitons. Moreover, it
was shown by Khruslov [11] that at the wave front of the dispersive shock, x = 4c2t, solitons
will emerge which are not associated with points of the discrete spectrum.

However, while these principal regions are well understood ([2, 4, 8, 9]), the regions where
the corresponding asymptotics are established do not overlap. In particular, it is typically
a quite delicate task to improve the domain of validity of these formulas to achieve the
aforementioned overlap. In this vein, the aim of the present paper is to refine the Riemann–
Hilbert analysis in the soliton region x > 4c2t to both increase the domain of validity as
well as weaken the decay and smoothness requirements for the initial data. In particular, the
degree of decay will appear in the domain of validity.

More specifically, we assume that the initial data are such that q(x) ∈ Cn0(R) and

(1.3)

∫
R+

|x|m0
(
|q(x)|+ |q(−x) + c2|

)
dx+

∫
R
xm0−1|q(i)(x)|dx < ∞, i = 1, . . . , n0,
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where

(1.4) m0 ≥ 4, n0 ≥ m0 + 3.

In the following we refer to the Cauchy problem (1.1)–(1.4) as the KdV shock problem of low
regularity. For comparison, the previously available results for the shock problem (1.1)–(1.4)
from [2] in the soliton region

x ≥ (4c2 + ε)t

were established under the assumption of exponential decay:

(1.5)

∫
R+

eρx
(
|q(x)|+ |q(−x) + c2|

)
dx < ∞, ρ > c.

Decaying (nonsteplike) initial data of low regularity were considered for the KdV equation
in [7] (with c = 0, m0 = 6, n0 = 3) and for the mKdV equation in [12]. Both results are
obtained outside a small sector containing the transition region x

t ∼ 0, that is, for x > εt.
In this connection, two interesting questions arise: Is it possible to expand the boundary

of the soliton region for the KdV shock problem (and thus narrowing the boundaries of the
transition region) using the RHP approach? And is it even possible to achieve this under the
low regularity assumptions (1.3)?

Using the classical inverse scattering transform the multisoliton asymptotics were recently
derived in [4] in the expanded soliton region

(1.6) x > 4c2t+
m0 − 3/2− ε

2c
log t, m0 ≥ 3.

Namely, assume that the discrete spectrum of the scattering problem associated with (1.1)–
(1.4) is given by −κ2N < · · · < −κ21, and that the corresponding norming constants of the
right eigenfunctions are given by γj , j = 1, . . . , N . Then for t → ∞ uniformly in the domain
(1.6) the solution to (1.1)–(1.4) can be represented as

(1.7) q(x, t) = qsol(x, t) +O

(
1

tm0− 3
2
−ε

)
,

where

(1.8) qsol(x, t) = −
N∑
j=1

2κ2j

cosh2
(
κjx− 4κ3j t−

1
2 log

γ2
j

2κj
−
∑N

i=j+1 log
κi−κj

κi+κj

) .
In the present paper we use the RHP approach to show the following result:

Theorem 1.1. Assume that the initial datum q(x) satisfies (1.3)–(1.4), does not have a
resonance at the edge of the continuous spectrum −c2, and has a nonempty discrete spectrum
−κ2N < · · · < −κ21. Assume that x → ∞, t → ∞ such that

(1.9) (x, t) ∈ D :=

{
x ≥ 4c2t+

β

c
log t, t ≫ 1, β ≥ 0

}
.

Then in the domain D we have

(1.10) q(x, t) = qsol(x, t) +O

(
1

tν

)
, ν = min{m0 − 3, β + 1

2} ≥ 1
2 .
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The proof is based, among other things, on a new matrix solution of the underlying model
problem and will be given in Subsections 2.2, 2.3 and Section 3.

Our restrictions (1.4) on the regularity assumptions (1.3) on the initial datum were made
such that one can guarantee the existence of a unique classical solution q(x, t) of (1.1) re-
maining within the realm of classical scattering theory, i.e. such that (1.11) below holds for
all times, as established in [4]. However, (1.3), (1.4) is not necessary for such a solution to
exist and if existence of a classical solution satisfying (1.11) is known by other means (see e.g.
[6] for results in this direction), the minimal estimates used to prove Theorem 1.1 imply the
following:

Corollary 1.2 (Largest possible class). Assume that for the initial nonresonant data q(x)
satisfying (1.3) with m0 = 4 and n0 = 5, a unique classical solution of (1.1)–(1.3) exists and
satisfies

(1.11)

∫ +∞

0
|x|(|q(x, t)|+ |q(−x, t) + c2|)dx < ∞, ∀t ∈ R.

Then the following asymptotic is valid for t → ∞ uniformly in the domain x ≥ 4c2t:

q(x, t) = qsol(x, t) +O(t−1/2).

2. From the initial RHP to the pre-model RHP

2.1. Statement of the initial RH problem. Let q(x) be as in Theorem 1.1 and let q(x, t)
be the solution of (1.1)–(1.4). Condition (1.4) implies (cf. [4]) that this solution exists,
is unique and satisfies (1.11). Let ϕ(k, x, t) be the right Jost solution of the associated
Schrödinger equation

L(t)y = − d2

dx2
y + q(x, t)y = k2y,

satisfying

(2.1) lim
x→+∞

e−ikxϕ(k, x, t) = 1,

and let ϕ1(k, x, t) be the corresponding Jost solution associated with the left background,

(2.2) lim
x→−∞

eik1xϕ1(k, x, t) = 1, k1 :=
√
k2 + c2.

Here k1 > 0 for k ∈ [0, ic)r. The subscript ”r” in the last notation indicates the right side of
the cut along the interval [0, ic]. Note that the function ϕ(k, x, t) is a holomorphic function
of k in C+ := {k ∈ C : Im k > 0} and continuous up to the real axis. It is real-valued
for k ∈ [0, ic], and does not have a discontinuity on this interval. The function ϕ1(k, x, t) is
holomorphic in the domain C+ \ (0, ic] and continuous up to the boundary. On the different
sides of [0, ic] it takes complex conjugated values. Denote the Wronskian of the Jost solutions
by

W (k) = ϕ1(k, x, 0)ϕ
′(k, x, 0)− ϕ′

1(k, x, 0)ϕ(k, x, 0),

where f ′ = ∂
∂xf . The conditions of Theorem 1.1 exclude a possible resonance at the point ic,

that is, we assume the condition
W (ic) ̸= 0.

On [0, ic] introduce the function

(2.3) χ(k) :=
4k [k1]r
|W (k)|2

.
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One can verify that χ(k) = i|χ(k)| and χ(ic) = χ(0) = 0.
Let R(k) be the right reflection coefficient of the initial data q(x) and let

γj := ∥ϕ(iκj , ·, 0)∥−2
L2(R)

be the right norming constants for j = 1, . . . , N . The set

(2.4)
{
R(k), k ∈ R; |χ(k)|, k ∈ [0, ic]; iκj , γj , j = 1, . . . , N

}
,

constitutes the minimal set of scattering data to uniquely reconstruct the solution of the
initial value problem (1.1)–(1.4) (cf. [3, 4]).

The Jost solutions (2.2) and (2.1) are connected by the scattering relation

T (k, t)ϕ1(k, x, t) = ϕ(k, x, t) +R(k, t)ϕ(k, x, t), k ∈ R,

where T (k, t) and R(k, t) are the right transmission and reflection coefficients. We will use
the notation T (k) = T (k, 0) and R(k) = R(k, 0).

We define a vector-valued function m(k, x, t) = (m1(k, x, t),m2(k, x, t)), meromorphic with
respect to the spectral parameter k ∈ C \ (R ∪ [−ic, ic]) for fixed x, t, as follows:

(2.5) m(k, x, t) =

{ (
T (k, t)ϕ1(k, x, t)e

ikx, ϕ(k, x, t)e−ikx
)
, k ∈ C+ \ (0, ic],

m(−k, x, t)σ1, k ∈ C− \ [−ic, 0),

where σ1 = ( 0 1
1 0 ) is the first Pauli matrix. The vector function m(k, x, t) has at most simple

poles at the points ±iκj . For k → ∞, the following asymptotic formula holds

(2.6) q(x, t) = lim
k→∞

2k2
(
m1(k, x, t)m2(k, x, t)− 1

)
,

which we will use to extract our asymptotics.
Let ε > 0 and δ > 0 be two arbitrary small parameters. We divide the domain

D :=

{
(x, t) : x ≥ 4c2t+

β

c
log t, t ≫ T0 ≫ 1, β ≥ 0

}
into a union of the following regions

DN = {(x, t) ∈ D : x ≥ (4κ2N + ε)t},

Dsol
N = {(x, t) ∈ D : (4κ2N − ε)t ≤ x ≤ (4κ2N + ε)t},
Dj = {(x, t) ∈ D : (4κ2j − ε)t ≥ x ≥ (4κ2j−1 + ε)t},

Dsol
j = {(x, t) ∈ D : (4κ2j − ε)t ≤ x ≤ (4κ2j + ε)t}, j = 1, . . . , N − 1,

D0 = {(x, t) : 4c2t+ β
c log t ≤ x ≤ (4κ21 − ε)t}.

Denote the small nonintersecting circles around the points of the discrete spectrum by

Dj := {k : |k − iκj | < δ}, Tj := ∂Dj = {k : |k − iκj | = δ}, j = 1, . . . , N,

with counterclockwise oriented boundaries (see Fig. 1). Let T∗
j = {k : −k ∈ Tj} be small

circumferences around the points −iκj , again with counterclockwise orientation. Introduce
the functions

(2.7) Pj(k) :=

N∏
l=j

k + iκj
k − iκj

, k ∈ C+, j = 1, . . . , N ; PN+1(k) = 1,
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and the matrices

(2.8) Aj(k) =

(
1 0

− iγ2
j e

2tΦ(iκj)

k−iκj
1

)
, Bj(k) =

(
1 − k−iκj

iγ2
j e

2tΦ(iκj)

0 1

)
, j = 1, . . . , N,

where Aj(k) = Aj(k, x, t), Bj(k) = Bj(k, x, t). The phase function Φ(k) = Φ(k, x, t) is defined
by

Φ(k) = 4ik3 + ik
x

t
, k ∈ C.

In the domain (k, x, t) ∈ C+ ×Dj , j = 1, . . . , N − 1, we redefine m(k) given by (2.5) as

(2.9) m(k, j) = m(k, x, t, j) =


m(k)Al(k)[Pj+1(k)]

−σ3 , k ∈ Dl, 1 ≤ l ≤ j,

m(k)Bl(k)[Pj+1(k)]
−σ3 , k ∈ Dl, N ≥ l > j,

m(k)[Pj+1(k)]
−σ3 , k ∈ (C+ \ (0, ic]) \ ∪N

l=1Dl,

where σ3 = ( 1 0
0 −1 ) is the third Pauli matrix. For (k, x, t) ∈ C+ ×DN we set

(2.10) m(k, x, t,N) =

{
m(k)Al(k), k ∈ Dl, l ≤ N,

m(k), k ∈ (C+ \ (0, ic]) \ ∪N
l=1Dl.

In the domain (k, x, t) ∈ C+ ×Dsol
j , j = 1, . . . , N , we set

(2.11) msol(k, j) = msol(k, x, t, j) =


m(k)Al(k)[Pj+1(k)]

−σ3 , k ∈ Dl, 1 ≤ l < j,

m(k)Bl(k)[Pj+1(k)]
−σ3 , k ∈ Dl, N ≥ l > j,

m(k)[Pj+1(k)]
−σ3 , k ∈ (C+ \ (0, ic]) \ ∪N

l=1Dl.

We also redefine m(k, j) = m(−k, j)σ1 and msol(k, j) = msol(−k, j)σ1 for k ∈ C−.
Next we introduce the jump contour

(2.12) Σ = R+ ∪ R− ∪ [ic, 0] ∪ [−ic, 0] ∪N
l=1 (Tl ∪ T∗

l )

as depicted in Fig. 1 with the following orientation: left-to-right on R+, right-to-left on
R− = R∗

+, top-down on [ic, 0], bottom-top on [−ic, 0] = [ic, 0]∗, and counterclockwise on Tj

and T∗
j . By I∗ we refer to the contour consisting of the points −k : k ∈ I with the following

orientation: if k moves in the positive direction of I, then −k moves in the positive direction
of I∗.

We observe that m(k, j) is a piecewise holomorphic vector function with jumps on Σ and
msol(k, j) is a piecewise meromorphic function with simple poles at iκj and −iκj and with
the same jumps as m(k, j) except at Tj and T∗

j , where it does not have jumps. Note that

(2.13) m1(k, x, t, j)m2(k, x, t, j) = m1(k, x, t)m2(k, x, t), k → ∞, (x, t) ∈ Dj ,

and

(2.14) msol
1 (k, x, t, j)msol

2 (k, x, t, j) = m1(k, x, t)m2(k, x, t), k → ∞, (x, t) ∈ Dsol
j .

Theorem 2.1. Let (2.4) be the right scattering data of the initial datum q(x). Assume that
x and t are arbitrary large fixed values such that (x, t) ∈ Dj (resp. (x, t) ∈ Dsol

j ). Then

the vector function m(k, j) = m(k, x, t, j) (respectively msol(k, j) = msol(k, x, t, j)) defined
in (2.9), (2.10) (resp. (2.11)) is the unique solution of the following vector Riemann–Hilbert
problem:
Find a vector-valued function m(k, j), holomorphic (resp. msol(k, j), meromorphic) away from
Σ (resp. away from Σ \ (Tj ∪ T∗

j )), satisfying:
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R+R−

C

C∗

0

ic

−ic

iτ

−iτ

iκ1

T∗
1

iκj

−iκj

iκN

T∗
N

ReΦ(iκj) = 0TN

Figure 1. Part of the jump contour Σ.

(1) The jump condition:
m+(k, j) = m−(k, j)v(k, j) (resp. m

sol
+ (k, j) = msol

− (k, j)vsol(k, j)), where

v(k, j) =



(
1− |R(k)|2 −R(k)P 2

j+1(k)e
−2tΦ(k)

P−2
j+1(k)R(k)e2tΦ(k) 1

)
, k ∈ R+,(

1 0

χ(k)P−2
j+1(k)e

2tΦ(k) 1

)
, k ∈ [ic, 0],

Al(k)[Pj+1(k)]
−σ3 , k ∈ Tl, l ≤ j;

Bl(k)[Pj+1(k)]
−σ3 , k ∈ Tl, l > j;

σ1v(−k)σ1, k ∈ R− ∪ [−ic, 0] ∪N
l=1 T∗

l ;

(resp. vsol(k, j) = v(k, j), k ∈ Σ \ (Tj ∪ T∗
j ); vsol(k, j) = I, k ∈ Tj ∪ T∗

j )

(2) the pole conditions:

Resiκj m
sol(k, j) = lim

k→iκj

msol(k, j)

(
0 0

iγ2jP
−2
j+1(iκj)e

2tΦ(iκj) 0

)
,

Res−iκj m
sol(k, j) = lim

k→−iκj

msol(k, j)

(
0 −iγ2jP

2
j+1(iκj)e

2tΦ(iκj)

0 0

)
,

(3) the symmetry conditions:

m(−k, j) = m(k, j)σ1, k ∈ C \ Σ,

(resp. msol(−k, j) = msol(k, j)σ1, k ∈ C \ (Σ \ (Tj ∪ T∗
j )))
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(4) the normalization condition

lim
κ→∞

m(iκ, j) = lim
κ→∞

msol(iκ, j) = (1 1).

(5) The function m(k, j) resp. msol(k, j) has continuous limits as k approaches Σ.

Remark 2.2. The results listed in this theorem are slight modifications of the results obtained
in [2, 5], and we omit the proof.

2.2. Properties of the scattering data and their analytic continuations. First assume
that the initial datum q(x) is smooth and satisfies (1.5). Then the reflection coefficient
R(k) has an analytic continuation to O−

ρ ∪ O+
ρ , where O±

ρ = {k : ±Re k > 0, 0 < Im k <
ρ}. In contrast to the case of fast decaying initial datum, in the step-like case the analytic
continuation of R(k) has a jump along [ic, 0] ∩ {0 < Im k < ρ}, given by (cf. [2, Lemma 3.2])

(2.15) R−(k)−R+(k) + χ(k) = 0, k ∈ [ic, 0] ∩ {0 < Im k < ρ}.
On the other hand, if the initial datum satisfies (1.3), which is the case we consider, R(k)
and χ(k) are m0 − 1 times continuously differentiable except for the node point k = 0, and
the following formula is valid ([4, Section 3])

(i)l+1R(l)(+0) + (−i)l+1R(l)(+0) = lim
h→+0

dl

dhl
χ(ih),

where

R(l)(+0) = lim
k→+0

dl

dkl
R(k), l = 0, 1, . . . ,m0 − 1.

Respectively,

(2.16)

m0−1∑
l=0

R(l)(+0)

l!
kl −

m0−1∑
l=0

R(l)(+0)

l!
(−k)l =

m0−1∑
l=0

χ(l)(0)

l!
kl, for k = ih.

Thus, this formula agrees with (2.15) for the case (1.3). In fact, the decomposition of χ at 0
has only odd degrees of k and

(2.17) R(l)(+0) = (−1)lR(l)(+0).

Set τ = c+κ1
2 . In the domain O+, where

(2.18) O± := {k : ±Re k > 0, 0 < Im k <
c

2
},

introduce a rational function

q(k) =

n0+m0∑
s=n0+1

as
(k − iτ)s

,

where the coefficients as ∈ C can be uniquely defined to satisfy

(2.19)

m0−1∑
l=0

R(l)(+0)

l!
kl =

m0−1∑
l=0

q(l)(+0)

l!
kl.

An elementary analysis of the algebraic system of equations for as together with (2.17) implies

an0+2s ∈ R, an0+2s+1 ∈ iR, for n0 odd,

an0+2s ∈ iR, an0+2s+1 ∈ R, for n0 even,
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and therefore

q(−k) = q(k), k ∈ R.

The same property is valid for the reflection coefficient, R(−k) = R(k), k ∈ R.
We showed that the function

p(k) = (−1)n0+1

(
an0+1

(k + iτ)n0+1
− an0+2

(k + iτ)n0+2
+

an0+3

(k + iτ)n0+3

+ · · ·+ (−1)m0−1 an0+m0

(k + iτ)n0+m0

)
satisfies

(2.20) p(k) = q(k) = q(−k), k ∈ R,

and is the Tailor decomposition for R(k) as k → −0. On the other hand, it is analytic in O−

(cf. (2.18)). Therefore we have

R(k)− q(k) = O(km0−1), as k → +0; R(k)− p(k) = O(km0−1), as k → −0;

and from (2.16) and (2.19) it follows that

p(ih− 0)− q(ih+ 0) + χ(ih) = O(hm0−1), as h → +0.

By [3, Theorem 4.1],

dl

dkl
R(k) = O

(
1

kn0+1

)
, k → ±∞, l = 0, 1, . . . ,m0 − 1.

Therefore,

dl

dkl
(R(k)− q(k)) = O

(
1

kn0+1

)
, k → +∞, l = 0, 1, . . . ,m0 − 1.

dl

dkl
(R(k)− p(k)) = O

(
1

kn0+1

)
, k → −∞, l = 0, 1, . . . ,m0 − 1.

Introduce the function

R(k) =

{
R(k)− q(k), k ≥ 0,

R(k)− p(k), k < 0,

then we proved the following

Lemma 2.3. (1) The function R(k) has the following properties

• R ∈ Cm0−1(R);
• dl

dkl
R(k) = O( 1

kn0+1 ) k → ±∞, l = 0, 1, . . . ,m0 − 1;

• dl

dkl
R(0) = 0, l = 0, 1, . . . ,m0 − 1;

(2) For the function

(2.21) f(k) := χ(k) + p(k − 0)− q(k + 0), k ∈ [ ic2 , 0],

the estimate is valid:

(2.22) f(k) = O(km0−1), k → 0.



SOLITON ASYMPTOTICS FOR THE KDV SHOCK PROBLEM 9

Set

G(k) = (k − iτ)6

k2
R(k).

By Lemma 2.3 we have

G ∈ Cm0−3(R);
dl

dkl
G(0) = 0;

dl

dkl
G(k) = O

(
1

kn0−3

)
,(2.23)

k → ∞, l = 0, . . . ,m0 − 3.

Evidently, G ∈ L1(R) ∩ L∞(R). Let

Ĝ(x) = 1

2π

∫
R
G(k)eikxdk

be the Fourier transform for G(k). From Lemma 2.3 and (2.23) we get

Corollary 2.4. The following properties are valid:

• G(−k) = G(k);
• Ĝ(x) ∈ C n0−4(R); Ĝ(x) ∈ R;
• xm0−3Ĝ(x) ∈ L1(R).

In terms of Ĝ the function R can be represented as a sum,

R(k) =
k2

(k − iτ)6

∫ c2t

−c2t
Ĝ(x)eikxdx+

k2

(k − iτ)6

(∫ −c2t

−∞
+

∫ ∞

c2t

)
Ĝ(x)eikxdx

=: Ra(k, t) +Rr(k, t).

The function Ra(k, t) can be continued analytically in the strip 0 < Im k < c
2 . Moreover,

from Corollary 2.4 it follows that

(2.24) Ra(−k, t) = Ra(k, t), Rr(−k, t) = Rr(k, t), k ∈ R.

Lemma 2.5. The following estimates hold:

(1) Rr(·, t) ∈ L1(R) ∩ L∞(R);
(2) |Rr(k, t)| ≤ C

tm0−3
k2

k6+1
, k ∈ R;

(3) |Ra(k, t)| ≤ C |k|2
|k|6+1

ec
2| Im k|t.

2.3. Estimates for the jump matrices. Recall that the jump matrix v(k, j) = vsol(k, j)
satisfies for k ∈ R the symmetry property

(2.25) v(k, j) = σ1v(−k, j)σ1.

On R+ we factorize this matrix in the following way:

(2.26) v(k, j) = σ1[V (−k, j)]−1[W (−k, j)]−1σ1Y (k, j)W (k, j)V (k, j), k ∈ R+,

where

(2.27) Y (k, j) =

(
1− |Rr(k, t)|2 −Rr(−k, t)P 2

j+1(k)e
−2tΦ(k)

P−2
j+1(k)Rr(k, t)e

2tΦ(k) 1

)
,

(2.28) V (k, j) =

(
1 0

q(k)P−2
j+1(k)e

2tΦ(k) 1

)
, W (k, j) =

(
1 0

Ra(k, t)P
−2
j+1(k)e

2tΦ(k) 1

)
.
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Respectively, due to (2.24) and (2.20) one has

σ1V (−k, j)σ1 =

(
1 −q(k)P 2

j+1(k)e
−2tΦ(k)

0 1

)
,

σ1W (−k, j)σ1 =

(
1 −Ra(k)P

2
j+1(k)e

−2tΦ(k)

0 1

)
.

Extend now the factorization (2.26) to R− = R∗
+ by (2.25). The matrices V (k, j) and W (k, j)

admit analytic continuations to the domains O± defined by (2.18). In O+ they read as in
(2.28) while in O− we have

V (k, j) =

(
1 0

p(k)P−2
j+1(k)e

2tΦ(k) 1

)
, W (k, j) =

(
1 0

Ra(k, t)P
−2
j+1(k)e

2tΦ(k) 1

)
.

Introduce symmetric domains in the lower half plane,

[O±]∗ = {k : −k ∈ O±}.

Redefine m(k, j) (resp., msol(k, j)) in O+ and in [O−]∗ by

m̂(k, j) := m(k, j)[V (k, j)]−1[W (k, j)]−1, k ∈ O+,

m̂(k, j) := m(k, j)σ1[V (−k, j)]−1[W (−k, j)]−1σ1, k ∈ [O−]∗,

and extend this redefinition to O− ∪ [O+]∗ by the symmetry m̂(−k, j) = m̂(k, j)σ1. In the

remaining region C \
(
O− ∪ [O+]∗ ∪ O+ ∪ [O−]∗

)
we keep m̂(k, j) = m(k, j).

Introduce additional contours as in Fig. 1,

C =
{
k ∈ C : Im k =

c

2

}
, and C∗ =

{
k ∈ C : Im k = − c

2

}
,

oriented left-to-right and right-to-left. Let us split the new jump contour Σ̂ into symmetric
parts with respect to k 7→ −k and denote

Σ̂ = ΣC ∪ Σ∗
C = Σ ∪ C ∪ C∗,

where Σ is defined in (2.12). Then the vector function m̂(k, j) (resp. m̂sol(k, j)) is the unique
piecewise holomorphic (resp. meromorphic with two simple poles at ±iκj) solution of the jump
problem

m̂+(k, j) = m̂−(k, j)v̂(k, j) (resp. m̂sol
+ (k, j) = m̂sol

− (k, j)v̂sol(k, j)),

where

(2.29) v̂(k, j) =



Y (k, j), k ∈ R+,

(W (k, j)V (k, j))−1 , k ∈ C,

[W−(k, j)V−(k, j)]
−1v(k, j)V+(k, j)W+(k, j), k ∈ [ ic2 , 0],

v(k, j), k ∈ [ic, ic2 ] ∪
N
l=1 Tl,

σ1v̂(−k, j)σ1, k ∈ Σ∗
C .

(resp. v̂sol(k, j) = v̂(k, j), k ∈ ΣC ∪ Σ∗
C \ (Tj ∪ T∗

j ); v̂sol(k, j) = I, k ∈ Tj ∪ T∗
j .)

The pole conditions for m̂sol(k, j), the symmetry and normalization conditions are the same
as for m(k, j) (resp. msol(k, j)).
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Lemma 2.6. For x ≥ 4c2t+ β
c log t, we have

(2.30) ∥ks (v̂(k, j)− I) ∥L1(Σ̂)∩L∞(Σ̂) = O(t−ν), ν = min{m0 − 3, β + 1
2}, s = 0, 1, 2.

Proof. Estimate (2.30) is trivial for the matrices (2.8) on the circles Tl and T∗
l . It is also

evident for Y (k, j) due to Lemma 2.5, item 2. Thus, we already have

(2.31) ∥ks (v̂(k, j)− I) ∥L1(Σ̃)∩L∞(Σ̃) = O(t−m0+3), Σ̃ = R ∪N
l=1 (Tl ∪ T∗

l ).

Now let k = ic
2 + y ∈ C ∩ {k : Re k ≥ 0}. The only nonzero (off diagonal) element of the jump

matrix W−1V −1 − I can be estimated as

|W21(k, j) + V21(k, j)| ≤ |Pj+1(k)| · |g(k) +Ra(k, t)|e2tReΦ(k)

≤ C
|k|2

|k − iτ |6
e

c3

2
t+2tReΦ(k)

≤ C(m0, j)
1

y4 + 1
et(−

5
2
c3−12cy2), y > 0, x ≥ 4c2t.

On the remaining parts of C and C∗ the estimates are literally the same. As a result we get

∥ks (v̂(k, j)− I) ∥L1(C∪C∗)∩L∞(C∪C∗) ≤ e−Ct, C > 0, x ≥ 4c2t.

It remains to estimate v̂(k, j) − I = v̂solj (k, j) − I on the contour [ic, 0]. The only nonzero
element of this matrix is

(2.32) v̂21(k, j) = P−2
j+1(k)e

2tΦ(k)

{
χ(k), k ∈ [ic, ic2 ],

f(k), k ∈ [ ic2 , 0],

where the function f(k) continuous on [ ic2 , 0] is defined in (2.21) and satisfies (2.22). Note

that the analytic continuation of Ra(k, t) does not have a jump on [ ic2 , 0]. This was taken into
account to get (2.32).

Consider first the contour [ic, ic2 ]. Recall that we study the nonresonant case and therefore

χ(k) = C(k − ic)1/2(1 + o(1)), k → ic, C ̸= 0,

see (2.2), (2.3). For x ≥ 4c2t+ ζ, ζ ≥ 0, an elementary estimate holds for k = iκ, c
2 ≤ κ ≤ c,

tΦ(iκ, x, t) = 4(κ2 − c2)κt− κζ < (κ− c)
3c2

4
t− c

2
ζ ≤ 0.

Therefore,

(2.33) |v̂21(iκ, j)| ≤ C(c− κ)1/2e−C(c−κ)−cζ .

For all regions under consideration except of D0 we have ζ ≥ (4κ21 − 4c2 − ε)t, and therefore

|v̂21(k, j)|+ |v̂sol21 (k, j)| ≤ Ce−δt, k ∈ [ic, ic2 ], (x, t) ∈ Dj ∪Dsol
j ,

where C = C(j) > 0, δ = δ(j) > 0, j = 1, . . . , N. In the domain D0, which depends on β,
consider first the case β = 0, that is, ζ = 0. We observe that the function on the r.h.s. in
(2.33) can be estimated from above via maxy∈R+ u(y, t), where u(y, t) = y1/2e−Cyt. Since
∂u
∂y = 0 for y = 1

2Ct and maxy∈R+ u(y, t) = 1√
2Cet

, we conclude that |v̂21(k, 0)| = O(t1/2)

uniformly with respect to k and x in the domain under consideration. If β > 0, that is,
D0 = {(x, t) : x ≥ 4c2t+ β

c log t}, then

|v̂21(k, 0)| = O(t−β−1/2), k ∈ [ic, ic2 ], (x, t) ∈ D0.
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It remains to estimate v̂21(k, j) = v̂sol21 (k, j) on the interval [ ic2 , 0]. Taking into account (2.32)
and (2.22) we conclude that

|v̂21(ih, j)| ≤ C(j)hm0−1e8h
3t−8c2ht−2β

c
h log t

≤ C max
h∈[0, c2 ]

hm0−1e−4c2th, j = 0, . . . , N.

Since

max
y∈R+

ym0−1e−Cyt ≤ C(m0)

tm0−1
,

then

(2.34) |v̂21(k, j)|+ |v̂sol21 (k, j)| ≤
C(m0, j)

tm0−1
, k ∈ [ ic2 , 0].

Collecting estimates (2.31)–(2.34) together and taking into account the symmetry property

v̂(k, j) = σ1v̂(−k, j)σ1, k ∈ Σ̂,

we get (2.30). □

Hence we can reformulate our pre-model RHP as follows

Theorem 2.7. Assume that (x, t) ∈ Dj (resp. (x, t) ∈ Dsol
j ). Then

• the vector function m̂(k, j, x, t) (resp. m̂sol(k, j, x, t)) is the unique piecewise holomor-
phic (resp. meromorphic) solution of the jump problem

m̂+(k, j) = m̂−(k, j)(I+W(k, j)), k ∈ Σ̂,

(resp. m̂sol
+ (k, j) = m̂sol

− (k, j)(I+W(k, j)), k ∈ Σ̂)

where the jump matrix W(k, j) satisfies the symmetry condition

(2.35) W(k, j) = σ1W(−k, j)σ1, k ∈ Σ̂,

and the following estimate:

(2.36) ∥ksW(k, j)∥L1(Σ̂)∩L∞(Σ̂) = O(t−ν), ν = min{m0 − 3, β + 1
2}, s = 0, 1, 2.

In a vicinity of the point k = 0,

(2.37) W(k, j) = O(k2), k ∈ Σ̂, k → 0.

• Both functions m̂(k, j) and m̂sol(k, j) satisfy the same symmetry conditions

(2.38) m̂(−k, j) = m̂(k, j)σ1, k ∈ C \ Σ̂,

and normalization conditions

(2.39) lim
κ→∞

m̂(iκ, j) = lim
κ→∞

m̂sol(iκ, j) = (1 1).

• The function m̂sol(k, j) has simple poles at ±iκj and satisfies the pole conditions

(2.40)

Resiκj m̂
sol(k, j) = lim

k→iκj

m̂sol(k, j)

(
0 0

iγ2j (x, t) 0

)
,

Res−iκj m̂
sol(k, j) = lim

k→−iκj

m̂sol(k, j)

(
0 −iγ2j (x, t)

0 0

)
,
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where

(2.41) γ2j (x, t) = γ2j e
8κ3

j t−2κjx
N∏

l=j+1

(
κl − κj
κl + κj

)2

, (x, t) ∈ Dsol
j .

• In a vicinity of k = 0,

(2.42) m̂sol
1 (k, j) = m̂sol

2 (k, j) +O(k2), k → 0.

Proof. All propositions of Theorem 2.7 are proven except of (2.37) and (2.42). Estimate
(2.37) is straightforward from (2.29), (2.27), (2.32), (2.22), (1.4) (for at least m0 ≥ 4) and
Lemma 2.5.

For (2.42), we have the following: (1) the jump matrix v̂sol(k, j) in a vicinity of point k = 0
satisfies v̂sol(k, j) = I + O(k2); (2) the vector function msol(k, j) is bounded there and has
continuous limits when approaching the contour; (3) it satisfies (2.38). Then

m̂sol
1,+(k, j) = m̂sol

2,+(k, j) +O(k2) = m̂sol
1,−(k, j) +O(k2)

= m̂sol
2,−(k, j) +O(k2), k → 0,

which in turn implies (2.42). □

3. Solution of the model problem and final asymptotic analysis

The model problem for m̂(k, j) is trivial: To find a vector function holomorphic in C and
satisfying the symmetry and normalization condition. Its unique solution is the constant
vector mmod(k, j) = (1, 1), which is the same for all domains Dj , j = 0, 1, . . . , N .

The second model problem, namely to find a vector function mmod,sol(k, j) = S(k, j) mero-
morphic in C and satisfying (2.38)–(2.40), was solved in [7]. The (unique) vector solution
S(k, j) is given by (cf. [7, Lemma 2.6 and Theorem 4.4])

S(k, j) = (S1(k, j), S2(k, j)) , S2(k, j) = S1(−k, j),

S1(k, j) =
1

1 + (2κj)−1γ2j (x, t)

(
1 +

k + iκj
k − iκj

(2κj)
−1γ2j (x, t)

)
,

where γ2j (x, t) is defined by (2.41). Verification of the pole, symmetry and normalization
conditions is straightforward.

To apply the standard final asymptotic analysis for the vector RH problems, we need
to construct a matrix solution M(k, j) to the model problem in Dsol

j , which satisfies the

additional symmetry M(−k, j) = σ1M(k, j)σ1. In Dj it will evidently be the identity matrix.

ForDsol
j we cannot expect that a bounded invertible symmetric matrix solution exists. Indeed,

we observe that

S1(0, j) = S2(0, j),

and

S1(0, j) = S2(0, j) = 0, for 1− (2κj)
−1γ2j (x, t) = 0.

The set of pairs (x, t) satisfying this condition is a line in Dsol
j containing arbitrary large x

and t. According to [5], for such (x, t) a bounded symmetric invertible matrix model solution
does not exist. When admitting poles for M(k, j), one has to ensure that the error vector
m̂(k, j)M−1(k, j) has only removable singularities.
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Let us first construct an antisymmetric vector solution for the model problem in Dsol
j with

a simple pole at k = 0. We look for a solution of the form

V(k, x, t, j) = V(k, j) =
(
−1 +

ρj
k

+
µj

k − iκj
, 1 +

ρj
k

+
µj

k + iκj

)
, Im k > 0,

V(−k, j) = −V(k, j),
where the constants ρj = ρj(x, t) and µj = µj(x, t) are chosen to satisfy the pole conditions
and the condition V2(iκj , j) = S2(iκj , j). Then

V2(iκj , j) = 1 +
ρj
iκj

+
µj

2iκj
=

1

1 + (2κj)−1γ2j (x, t)
= S2(iκj , j)

and
µj = Resiκj V1(iκj , j) = iγ2j (x, t)V2(iκj , j)

= Resiκj S1(iκj , j) =
iγ2j (x, t)

1 + (2κj)−1γ2j (x, t)
.

We get

(3.1) ρj(x, t) = −
iγ2j (x, t)

1 + (2κj)−1γ2j (x, t)
, µj(x, t) =

iγ2j (x, t)

1 + (2κj)−1γ2j (x, t)
, ρj = −µj ;

V(k, j) =
(
−1 +

iκj µj(x, t)

k(k − iκj)
, 1− iκj µj(x, t)

k(k + iκj)

)
.

In terms of µj the solution S(k, j) = mmod,sol(k, j) has the representation

(3.2) S(k, j) =
(
1 +

µj(x, t)

k − iκj
, 1− µj(x, t)

k + iκj

)
.

For (x, t) ∈ Dsol
j introduce the matrix

(3.3) M(k, j) = M(k, j, x, t) =
1

2

(
S1(k, j)− V1(k, j) S2(k, j)− V2(k, j)
S1(k, j) + V1(k, j) S2(k, j) + V2(k, j)

)
.

From (2.41)–(3.3) it follows that

(3.4) M(k, j) =

(
1 +

µj(x,t)
2k −µj(x,t)

2k
k−iκj

k+iκj
µj(x,t)

2k
k+iκj

k−iκj
1− µj(x,t)

2k

)
, µj(x, t) =

iγ2j (x, t)

1 + (2κj)−1γ2j (x, t)
.

Its evident properties are listed in the following

Lemma 3.1. The matrix M(k, j) = M(k, j, x, t) given by (2.41), (3.4) for (x, t) ∈ Dsol
j

satisfies

• symmetry: M(−k, j) = σ1M(k, j)σ1;
• normalization: M(k, j) → I as k → ∞;
• the matrix M(k, j) is meromorphic in C with simple poles at ±iκj and k = 0;
• detM(k, j) = 1;
• mmod,sol(k, j) = (1, 1)M(k, j);

Theorem 3.2. Let m̂sol(k, j) be the solution of RHP (2.35)–(2.41) and let

merr(k, j) := m̂sol(k, j)M−1(k, j), (x, t) ∈ Dsol
j .

Then
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(1) the vector function merr(k, j) does not have singularities at ±iκj;
(2) merr(k, j) does not have a singularity at k = 0;
(3) the following estimate is valid uniformly for (x, t) ∈ Dsol

j :

∥ksM(k, j)W(k, j)[M(k, j)]−1∥L1(Σ̂)∩L∞(Σ̂) = O(t−ν),

where

ν = min{m0 − 3, β + 1}, s = 0, 1, 2.

Proof. Consider first the point iκj . By definition,

merr(k, j) =
(
m̂sol

1 (k, j), m̂sol
2 (k, j)

)( 1− µj(x,t)
2k

µj(x,t)
2k

k−iκj

k+iκj

−µj(x,t)
2k

k+iκj

k−iκj
1 +

µj(x,t)
2k

)
,(3.5)

lim
k→iκj

(k − iκj)m̂
sol
1 (k, j) = iγ2j (x, t)m̂

sol
2 (iκj , j).

Since [M(·, j)]−1
12 = O(k − iκj), then merr

2 (iκj , j) is well defined. For the first element of this
vector we have using (3.1)

lim
k→iκj

(k − iκj)m
err
1 (iκj , j) =

iγ2j (x, t)m̂
sol
2 (iκj , j)

(
1− µj(x, t)

2iκj

)
− µj(x, t)m̂

sol
2 (iκj , j) = 0.

The arguments for the point −iκj are the same due to symmetry, merr(k, j) = merr(−k, j)σ1.
To prove item 2, note that by (2.42) and (3.5),

merr(k, j) = (K, K)M−1(k, j) +O(k)

= K

(
1− µj

2k

(
1 +

k + iκj
k − iκj

)
, 1 +

µj

2k

(
1 +

k − iκj
k + iκj

))
+O(k)

= K

(
1− µj(x, t)

k − iκj
, 1 +

µj(x, t)

k + iκj

)
+O(k), K = merr

1 (+0 + i0, j).

To prove item 3, we observe that µj(x, t) defined by (3.1), (3.4), (2.41) is uniformly bounded

in Dsol
j . Therefore, M(k, j) and M−1(k, j) admit an estimate from above of the form 1+ C

|k| ,

where C does not depend on (x, t) and k ∈ Σ̂. So outside a small vicinity of k = 0 the
estimate in item 3 is fulfilled because of (2.36). Near k = 0 we apply (2.37). □

The rest of the final asymptotic analysis is a trivial modification of the standard ”small
norm” arguments for symmetric vector RH problems. Indeed, let m̂(k, j) and m̂sol(k, j) be
as in Theorem 2.7 and let M(k, j) be defined by (3.3) in Dsol

j and by the identity matrix in
Dj . Set

mer(k) =

{
m̂(k, j), (x, t) ∈ Dj ,

m̂sol(k, j)[M(k, j)]−1, (x, t) ∈ Dsol
j ,

j = 0, . . . , N,

and define

Wer(k) = M(k, j)W(k, j)[M(k, j)]−1, j = 0, . . . , N.

Then mer(k) = mer(−k)σ1 is the unique piecewise holomorphic solution of the jump problem

mer
+ (k) = mer

− (k)(I+Wer(k)), k ∈ Σ̂,
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where

Wer(k) = σ1Wer(−k)σ1, k ∈ Σ̂,

and

(3.6) ∥ksWer(k)∥L1(Σ̂)∩L∞(Σ̂) = O(t−ν), ν = min{m0 − 3, β + 1
2} ≥ 1

2 , s = 0, 1, 2.

This vector function is continuous up to the boundaries and satisfies the normalization con-
dition

lim
κ→∞

mer(iκ) = (1, 1).

Let C denote the Cauchy operator associated with Σ̂,

(Ch)(k) =
1

2πi

∫
Σ̂
h(s)

ds

s− k
, k ∈ C \ Σ̂,

where h = (h1, h2) ∈ L2(Σ̂). Let C+f and C−f be its non-tangential limit values from the

left and right sides of Σ̂, respectively.
As usual, we introduce the operator CW : L2(Σ̂) ∪ L∞(Σ̂) → L2(Σ̂) by CW f = C−(fWer),

where Wer is our error matrix. Then

∥CW ∥L2(Σ̂)→L2(Σ̂) ≤ C∥Wer∥L∞(Σ̂) ≤ O(t−ν)

as well as

(3.7) ∥(I− CW er)−1∥L2(Σ̂)→L2(Σ̂) ≤
1

1−O(t−ν)

for sufficiently large t. Consequently, for t ≫ 1, we may define a vector function

w(k) = (1, 1) + (I− CW )−1CW

(
(1, 1)

)
(k).

By (3.7),

∥w(k)− (1, 1)∥L2(Σ̂) ≤ ∥(I− CW )−1∥L2(Σ̂)→L2(Σ̂)∥C−∥L2(Σ̂)→L2(Σ̂)∥W
err∥L∞(Σ̂)

= O(t−ν).(3.8)

With the help of w, the function mer(k) can be represented as

mer(k) = (1, 1) +
1

2πi

∫
Σ̂

w(z)Wer(z)dz

z − k
,

and in virtue of (3.8) and (3.6) we obtain as k → +i∞,

mer(k) = (1, 1) +
1

2πi

∫
Σ̂

(1, 1)Wer(z)

z − k
dz + E(k),

where

|E(k)| ≤ C

|k|
∥Wer∥L2(Σ̂)∥w(z)− (1, 1)∥L2(Σ̂) ≤

O(t−ν−1)

|k|
, k → ∞.

The term O(t−ν−1) is uniformly bounded with respect to (x, t) ∈ D. In the regime Re k = 0,
Im k → +∞, we have

1

2πi

∫
Σ̂

(1, 1)Wer(z)

k − z
dz =

f0(x, t)

2iktν
(1, −1) +

f1(x, t)

2k2tν
(1, 1)

+O(t−ν)O(k−3) +O(t−ν−1)O(k−1),
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where f0,1(x, t) are scalar functions uniformly bounded in D. Furthermore, O(k−s) are vector
functions depending only on k and O(t−ν), O(t−ν−1) are as above. Hence,

m̂sol(k, j) = mer(k, j)M(k, j) = S(k, j) + f0(x, t)

2iktν
(1, −1)M(k, j)

+
f1(x, t)

2k2tν
S(k, j) +O(t−ν)O(k−3) +O(t−ν−1)O(k−1),

(x, t) ∈ Dsol
j ; j = 1, . . . , N ;

and

(3.9)
m̂(k, j) = mer(k, j) = (1, 1) +

f0(x, t)

2iktν
(1, −1) +

f1(x, t)

2k2tν
(1, 1)

+O(t−ν)O(k−3) +O(t−ν−1)O(k−1), (x, t) ∈ Dj ; j = 0, . . . , N.

From (3.4) it follows that (1, −1)M(k, j) = (1, −1) + O(k2). Therefore, (2.14) implies that
for (x, t) ∈ Dsol

j ,

(3.10) m1(k)m2(k) = m̂sol
1 (k, j)m̂sol

2 (k, j) = S1(k, j)S2(k, j) +O(t−ν)O(k−2), k → ∞.

By (3.2),

S1(k, j)S2(k, j)− 1 =
2iκjµj(x, t)− µ2

j (x, t)

(k − iκj)(k + iκj)

=
−2κjγ

2
j (x, t)

k2
(
1 + (2κj)−1γ2j (x, t)

)2 (1 + o(1)).

Comparing this with (3.10) and (2.6) we conclude that in the region Dsol
j ,

(3.11) q(x, t) = qsolj (x, t) +O(t−ν); qsolj (x, t) :=
−4κjγ

2
j (x, t)(

1 + (2κj)−1γ2j (x, t)
)2 .

On the other hand,

qsolj (x, t) = −
8κ2j(√

2κj

γj(x,t)
+

γj(x,t)√
2κj

)2 = −
8κ2j(

eκjx−4κ3
j t+∆j + e−κjx+4κ3

j t−∆j

)2 ,
where

∆j = −1

2
log

γ2j
2κj

−
N∑

i=j+1

log
κj − κi
κi + κj

.

Thus,

qsolj (x, t) = −
2κ2j

cosh2
(
κjx− 4κ3j t−

1
2 log

γ2
j

2κj
−
∑N

i=j+1 log
κj−κi

κi+κj

) .
Note that in D \Dsol

j , this function admits the estimate O(e−C(ε)t), and taking into account

the weaker estimate (3.11), we conclude that

q(x, t) =

N∑
j=1

qsolj (x, t) +O(t−ν), (x, t) ∈
N⋃
j=1

Dsol
j .
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On the other hand, (3.9) implies

q(x, t) = O(t−ν), (x, t) ∈
N⋃
j=0

Dj .

This proves Theorem 1.1.
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