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Abstract. The principal purpose of this note is to provide a reconstruction

procedure for distributional matrix-valued potential coefficients of Schrödinger-

type operators on a half-line from the underlying Weyl–Titchmarsh function.

1. Introduction

This note should be viewed as an addendum to the paper [13], treating distribu-
tional matrix-valued potentials for (generalized) Schrödinger operators based on an
intimate connection between such Schrödinger operators and a particular class of
supersymmetric Dirac-type operators, and the paper [40] which develops a recon-
struction procedure for the potential coefficient of a half-line Dirac operator from
the underlying matrix-valued Weyl–Titchmarsh function. As a result, we derive
a constructive approach to reconstruct distributional matrix-valued potential coef-
ficients of (generalized) Schrödinger operators on a half-line from the underlying
matrix-valued Weyl–Titchmarsh function. The importance of Weyl–Titchmarsh
functions in connection with inverse problems for Schrödinger operators, especially,
in connection with various uniqueness-type theorems has been well-documented in
the literature. For instance, we mention the classical two-spectra uniqueness results
due to Borg [4], [5], Levinson [28], Levitan [29], [30, Ch. 3], Levitan and Gasymov
[31], Marchenko [35], [36, Ch. 3], (see also [9], [15], [16], [17], [18], [33], [34] and the
extensive lists of references therein). The constructive approach to actually recon-
struct the potential coefficient goes well beyond uniqueness theorems and now also
becomes possible in connection with very singular (distributional) potentials.

For the physical relevance of matrix-valued potentials, we refer, for instance to
Chadan and Sabatier [7, Sect. XI.3, XI.4], Newton and Jost [38], and the litera-
ture cited therein. The classical reference on inverse scattering for matrix-valued
potentials on a half-line is Agranovich and Marchenko [1, Ch. V] (see also [44]).
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More precisely, the half-line Dirac-type operators in L2([0,∞))2m, m ∈ N, stud-
ied in this note are of the form

(D+(α)U)(x) = (DU)(x) for a.e. x > 0,

U ∈ dom(D+(α)) =
{
V ∈ L2([0,∞))2m

∣∣V ∈ AC([0, R])2m for all R > 0; (1.1)

αV (0) = 0; DV ∈ L2([0,∞))2m
}
,

where the 2m× 2m matrix-valued differential expression D is given by

D =

(
0 −Im(d/dx) + φ(x)

Im(d/dx) + φ(x) 0

)
, (1.2)

and the boundary condition parameters α ∈ Cm×2m satisfy the conditions

αα∗ = Im, αJα∗ = 0, where J =

(
0 −Im
Im 0

)
. (1.3)

Here the m × m matrix-valued potential coefficient φ is assumed to be locally
square integrable on [0,∞), that is, φ ∈ L2([0, R])m×m for all R > 0, and to satisfy
φ(·) = φ(·)∗ a.e. on [0,∞).

On the other hand, we define the following two kinds of quasi-derivatives,

u[1,j](x) = u′(x) + (−1)j+1φ(x)u(x) for a.e. x > 0, j = 1, 2. (1.4)

Thus, introducing the m×m matrix-valued differential expressions τj , j = 1, 2, by

(τju)(x) = −
(
u[1,j]

)′
(x) + (−1)j+1φ(x)u[1,j](x) for a.e. x > 0, j = 1, 2, (1.5)

one infers that formally, τj , j = 1, 2, are of the generalized Schrödinger form

τj = −Im
d2

dx2
+ Vj(x), Vj(x) = φ(x)2 + (−1)jφ′(x), j = 1, 2. (1.6)

We emphasize that while φ2 ∈ L1
loc([0,∞))m×m represents a standard matrix-valued

potential coefficient, in general, φ′ is now a genuine distribution (unless one assumes
in addition that φ ∈ ACloc([0,∞))m×m). In contrast to these half-line Schrödinger
operators, the Dirac-type operators D+(α) only contain the standard potential
coefficient φ ∈ L2

loc([0,∞))m×m.
The differential expressions τj then generate the generalized half-line Schrödinger

operators H+,0,j , j = 1, 2, in L2([0,∞))m,

(H+,0,ju)(x) = (τju)(x) = −
(
u[1,j]

)′
(x) + (−1)j+1φ(x)u[1,j](x) for a.e. x > 0,

u ∈ dom(H+,0,j) =
{
v ∈ L2([0,∞))m

∣∣ v, v[1,j] ∈ AC([0, R])m for all R > 0;

v(0) = 0;
[(
v[1,j]

)′
+ (−1)jφv[1,j]

]
∈ L2([0,∞))m

}
, j = 1, 2, (1.7)

the primary object studied in this note.

Denoting by MD
+ ( · , α) and M̂+,0,j , j = 1, 2, the m × m matrix-valued Weyl–

Titchmarsh functions associated to D+(α) and H+,0,j , j = 1, 2, respectively, the
supersymmetric approach employed in [13] naturally leads to the fundamental iden-
tity

M̂+,0,1(z) = ζMD
+ (ζ, α0) = −zM̂+,0,2(z)−1, z = ζ2, ζ ∈ C\R, (1.8)

where α0 = (Im 0).
The paper [40], on the other hand, focused on the inverse spectral problem for

half-line Dirac-type operators containing D+(α0) as a special case, and developed a
procedure to reconstruct the matrix-valued potential coefficient from the underlying
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m × m matrix-valued Weyl–Titchmarsh function (i.e., in our particular case at
hand, reconstructing φ from MD

+ ( · , α0)). The reconstruction of φ from MD
+ ( · , α)

with an arbitrary α satisfying (1.3) easily follows. The results of [40] generalize
earlier results obtained in [39] for the case of locally bounded potentials (see more
references, historical remarks and details of the procedure in [41, Ch. 2]).

We note that generalized Schrödinger operators (with measure and distributional
potential coefficients) have been studied extensively in the literature. Rather than
reviewing the extensive literature here, we refer to [10], [13] which contain detailed
historic accounts of this subject.

It remains to briefly describe the content of this paper: Section 2 recalls the ba-
sics of Weyl–Titchmarsh theory for half-line Dirac-type operators D+(α) and the
generalized half-line Schrödinger operators H+,0,j , j = 1, 2. Our principal Section
3 then develops a reconstruction procedure for the m×m matrix-valued potential
coefficient φ from the underlying m×m matrix-valued Weyl–Titchmarsh function
MD

+ ( · , α) and hence by (1.8) also for the distributional m×m matrix-valued poten-

tial coefficients Vj = φ2 +(−1)jφ′ in the generalized half-line Schrödinger operators

H+,0,j from either one of M̂+,0,1 or M̂+,0,2. For simplicity, we exclusively focus on
right half-lines [0,∞) throughout this note. The case of left half-lines is treated in
a completely analogous manner.

Concluding, we briefly summarize some of the notation used in this paper. All
m× p matrices M ∈ Cm×p will be considered over the field of complex numbers C.
Moreover, Im denotes the identity matrix in Cm×m, M∗ the adjoint (i.e., complex
conjugate transpose), and M> the transpose of the matrix M .

We denote with L2([0,∞))m the usual space of all square integrable (with respect
to the Lebesgue measure) functions on [0,∞) taking values in Cm, that is,

L2([0,∞))m =

{
U : [0,∞)→ Cm

∣∣∣∣ ∫ ∞
0

dx ‖U(x)‖2Cm <∞
}
, m ∈ N. (1.9)

The set of functions which are only locally square integrable on [0,∞), that is,
belong to L2([0, R])m for all R > 0, will be referred to as L2

loc([0,∞))m. The
abbreviation “a.e.” is employed in the contexts of “(Lebesgue) almost every” as
well as “(Lebesgue) almost everywhere” on certain sets.

With ACloc([0,∞))m we denote the set of all functions on [0,∞) which are locally
absolutely continuous, that is, belong to AC([0, R])m for all R > 0. The usual
Sobolev spaces will be denoted by H1([0, R])m and their local counterpart with
H1

loc([0,∞))m. We will also encounter the space H−1loc ([0,∞)) of distributions, which
is regarded as the dual of the subspace of H1

0 ([0,∞)) which consists of functions
with compact support in [0,∞). Note that this space is precisely the space of
distributional derivatives of functions in L2

loc([0,∞)).
The symbol B(H1,H2) denotes the Banach space of bounded operators between

the Hilbert spaces H1 and H2, and B(H) abbreviates B(H,H). Finally, the open
complex upper half-plane is denoted by C+ = {z ∈ C | Im(z) > 0}.

2. Weyl–Titchmarsh Matrices for Half-Line Dirac
and Schrödinger Operators

In this preparatory section, we review a special case of the Weyl–Titchmarsh
theory for half-line Dirac-type and Schrödinger operators discussed in detail in
[13].
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We start by making the following simplified assumption, when compared to [13],
dictated by the inverse spectral approach presented in our principal Section 3.

Hypothesis 2.1. Suppose φ ∈ L2
loc([0,∞))m×m, m ∈ N, and φ(·) = φ(·)∗ a.e. on

[0,∞).

Given Hypothesis 2.1, we introduce the 2m × 2m matrix-valued differential ex-
pression

D =

(
0 −Im(d/dx) + φ(x)

Im(d/dx) + φ(x) 0

)
. (2.1)

By [8, Lemma 2.15], D is in the limit point case at ∞. (For a subsequent and more
general result we refer to [27], see also [26] and [32] for such proofs under stronger
hypotheses on φ).

We emphasize that the special structure of D in (2.1) is derived from a study of
supersymmetric Dirac-type operators in L2(R)2m, and we refer to [13] for a detailed
treatment in this context. Furthermore, we also note that [13] was inspired by [24].

In order to discuss m × m Weyl–Titchmarsh matrices corresponding to self-
adjoint realizations of D in L2([0,∞))2m, we introduce boundary condition param-
eters α = (α1 α2) ∈ Cm×2m satisfying the conditions

αα∗ = Im, αJα∗ = 0, where J =

(
0 −Im
Im 0

)
. (2.2)

Explicitly, this reads

α1α
∗
1 + α2α

∗
2 = Im, α2α

∗
1 − α1α

∗
2 = 0. (2.3)

In fact, one also has

α∗1α1 + α∗2α2 = Im, α∗2α1 − α∗1α2 = 0, (2.4)

as is clear from(
α1 α2

−α2 α1

)(
α∗1 −α∗2
α∗2 α∗1

)
= I2m =

(
α∗1 −α∗2
α∗2 α∗1

)(
α1 α2

−α2 α1

)
, (2.5)

since any left inverse matrix is also a right inverse, and vice versa. Moreover, from
(2.4) one obtains

α∗αJ + Jα∗α = J. (2.6)

The particular choice where α equals

α0 = (Im 0), (2.7)

will play a fundamental role later on.
The self-adjoint half-line Dirac operators D+(α) in L2([0,∞))2m associated with

a self-adjoint boundary condition at x = 0 indexed by α ∈ Cm×2m satisfying (2.2),
are of the form

(D+(α)U)(x) = (DU)(x) for a.e. x > 0,

U ∈ dom(D+(α)) =
{
V ∈ L2([0,∞))2m

∣∣V ∈ AC([0, R])2m for all R > 0; (2.8)

αV (0) = 0; DV ∈ L2([0,∞))2m
}
.

Next, we denote by U+(ζ, · , α) the 2m × m matrix-valued Weyl–Titchmarsh
solutions of DU = ζU , ζ ∈ C\R, satisfying

U+(ζ, · , α) ∈ L2([0,∞))2m×m, ζ ∈ C\R, (2.9)



INVERSE SPECTRAL PROBLEMS FOR SCHRÖDINGER-TYPE OPERATORS 5

and normalized such that

U+(ζ, x, α) =

(
u+,1(ζ, x, α)
u+,2(ζ, x, α)

)
= Ψ(ζ, x, α)

(
Im

MD
+ (ζ, α)

)
=

(
ϑ1(ζ, x, α) ϕ1(ζ, x, α)
ϑ2(ζ, x, α) ϕ2(ζ, x, α)

)(
Im

MD
+ (ζ, α)

)
, x > 0. (2.10)

In the particular case α0 = (Im 0) one obtains

U+(ζ, 0, α0) =

(
u+,1(ζ, 0, α0)
u+,2(ζ, 0, α0)

)
=

(
Im

MD
+ (ζ, α0)

)
. (2.11)

HereMD
+ (ζ, α) represents anm×mmatrix, the superscript “D” indicates the under-

lying Dirac-type operator, and the functions Ψ(ζ, x, α), ϑj(ζ, x, α), and ϕj(ζ, x, α),
j = 1, 2, ζ ∈ C, are defined as follows: Ψ(ζ, · , α) satisfies DΨ = ζΨ a.e. on [0,∞),
normalized such that

Ψ(ζ, 0, α) = (α∗ Jα∗) =

(
α∗1 −α∗2
α∗2 α∗1

)
. (2.12)

Partitioning Ψ(ζ, x, α) as follows,

Ψ(ζ, x, α) =

(
ϑ1(ζ, x, α) ϕ1(ζ, x, α)
ϑ2(ζ, x, α) ϕ2(ζ, x, α)

)
, ζ ∈ C, x > 0, (2.13)

defines ϑj(ζ, x, α) and ϕj(ζ, x, α), j = 1, 2, as m×m matrices, entire with respect
to ζ ∈ C, and normalized according to (2.12).

The m ×m matrix-valued spectral function of the Dirac-type operator D+(α)
then generates the measure ΩD+( · , α) in (2.20) below. In particular, the matrices

MD
+ (ζ, α) represent the sought after half-line Weyl–Titchmarsh matrices associated

with D+(α), whose basic properties can be summarized as follows:

Theorem 2.2 ([2], [3], [6], [8], [19], [20], [21], [22], [23], [25]).
Suppose Hypothesis 2.1, let ζ ∈ C\R, and denote by α, δ ∈ Cm×2m matrices satis-
fying (2.2). Then the following hold:
(i) MD

+ ( · , α) is an m×m matrix-valued Nevanlinna–Herglotz function of maximal
rank m. In particular,

Im(MD
+ (ζ, α)) > 0, ζ ∈ C+, (2.14)

MD
+ (ζ, α) = MD

+ (ζ, α)∗, (2.15)

rank(MD
+ (ζ, α)) = m, (2.16)

lim
ε↓0

MD
+ (ν + iε, α) exists for a.e. ν ∈ R, (2.17)

MD
+ (ζ, α) = [−αJδ∗ + αδ∗MD

+ (ζ, δ)][αδ∗ + αJδ∗MD
+ (ζ, δ)]−1. (2.18)

Local singularities of MD
+ ( · , α) and MD

+ ( · , α)−1 are necessarily real and at most
of first order in the sense that

− lim
ε↓0

(
iεMD

+ (ν + iε, α)
)
> 0, lim

ε↓0

(
iεMD

+ (ν + iε, α)−1
)
> 0, ν ∈ R. (2.19)

(ii) MD
+ ( · , α) admits the representation

MD
+ (ζ, α) = F+(α) +

∫
R
dΩD+(ν, α)

[
(ν − ζ)−1 − ν(1 + ν2)−1

]
, (2.20)
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where

F+(α) = F+(α)∗,

∫
R

∥∥dΩD+(ν, α)
∥∥
Cm×m (1 + ν2)−1 <∞. (2.21)

Moreover,

ΩD+((µ, ν], α) = lim
δ↓0

lim
ε↓0

1

π

∫ ν+δ

µ+δ

dν′ Im
(
MD

+ (ν′ + iε, α)
)
. (2.22)

(iii) Im
(
MD

+ ( · , α)
)

satisfies

Im
(
MD

+ (ζ, α)
)

= Im(ζ)

∫ ∞
0

dxU+(ζ, x, α)∗U+(ζ, x, α)

= Im(ζ)

∫ ∞
0

dx
[
u+,1(ζ, x, α)∗u+,1(ζ, x, α) (2.23)

+ u+,2(ζ, x, α)∗u+,2(ζ, x, α)
]
.

While D contains the locally square integrable m×m matrix-valued coefficient
φ ∈ L2

loc([0,∞))m×m, the associated generalized half-line Schrödinger operators to
be discussed next will exhibit distributional potentials and hence are outside the
standard Weyl–Titchmarsh theory for Sturm–Liouville operators with locally inte-
grable m ×m matrix-valued potentials on [0,∞). The supersymmetric approach
employed in [13] made the transition from the usual L1

loc-potentials in Schrödinger

operators to (matrix-valued) distributional H−1loc -potentials (and more general situ-
ations) in an effortless manner. Here, due to our assumption that φ belongs to the
space L2

loc([0,∞))m×m, the corresponding potential belongs to H−1loc ([0,∞))m×m.
To briefly describe the corresponding generalized half-line Schrödinger operators,

we first introduce the following two kinds of quasi-derivatives,

u[1,1](x) = (Au)(x) = u′(x) + φ(x)u(x) for a.e. x > 0,

u ∈ dom(A) =
{
v ∈ L2([0,∞))m

∣∣ v ∈ AC([0, R]) for all R > 0; (2.24)

(v′ + φv) ∈ L2([0,∞))m
}
,

and

u[1,2](x) = −(A+u)(x) = u′(x)− φ(x)u(x) for a.e. x > 0,

u ∈ dom(A+) =
{
v ∈ L2([0,∞))m

∣∣ v ∈ AC([0, R]) for all R > 0; (2.25)

(v′ − φv) ∈ L2([0,∞))m
}
.

Thus, introducing the m×m matrix-valued differential expressions τj , j = 1, 2, by

(τ1u)(x) = (A+Au)(x) = −
(
u[1,1]

)′
(x) + φ(x)u[1,1](x) for a.e. x > 0, (2.26)

and

(τ2u)(x) = (AA+u)(x) = −
(
u[1,2]

)′
(x)− φ(x)u[1,2](x) for a.e. x > 0, (2.27)

one infers that formally, τj , j = 1, 2, are of the generalized Schrödinger form

τj = −Im
d2

dx2
+ Vj(x), Vj(x) = φ(x)2 + (−1)jφ′(x), j = 1, 2. (2.28)

We emphasize that while φ2 ∈ L1
loc([0,∞))m×m represents a standard matrix-valued

potential coefficient, in general, φ′ is now a genuine distribution (unless one assumes
in addition that φ ∈ ACloc([0,∞))m×m). In contrast to these half-line Schrödinger
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operators, the Dirac-type operators D+(α) only contain the standard potential
coefficient φ ∈ L2

loc([0,∞))m×m.
By inspection, the second-order initial value problems,

((τj − z)f)(x) = g(x) for a.e. x > 0,

f, f [1,j] ∈ ACloc([0,∞))m, g ∈ L1
loc([0,∞))m, (2.29)

f(x0) = c0, f
[1,j](x0) = d0, j = 1, 2,

for some x0 > 0, c0, d0 ∈ C, are equivalent to the first-order initial value problems(
f(x)

f [1,j](x)

)′
=

(
(−1)jφ(x) 1
−z (−1)j+1φ(x)

)(
f(x)

f [1,j](x)

)
−
(

0
g(x)

)
for a.e. x > x0,(

f(x0)
f [1,j](x0)

)
=

(
c0
d0

)
, j = 1, 2, (2.30)

respectively. Since by Hypothesis 2.1, φ ∈ L2
loc([0,∞))m×m (in fact, already φ ∈

L1
loc([0,∞))m×m would be sufficient), the initial value problems in (2.30) (and hence

those in (2.29)) are uniquely solvable by [37, Theorem 16.1] (see also [14, Theorem
10.1] and [37, Theorem 16.2]).

Next, suppose that for some 1 6 p 6 m, U = (u1 u2)> is a 2m×p matrix-valued
solution of DU = ζU , that is,

uj ∈ ACloc([0,∞))m×p, j = 1, 2, (2.31)

u
[1,1]
1 = Au1 ∈ L1

loc([0,∞))m×p, u
[1,2]
2 = −A+u2 ∈ L1

loc([0,∞))m×p.

Then, if ζ 6= 0, the supersymmetric structure of D in (2.1) actually implies that
also

u
[1,1]
1 = Au1 = ζu2 ∈ ACloc([0,∞))m×p, (2.32)

u
[1,2]
2 = −A+u2 = −ζu1 ∈ ACloc([0,∞))m×p, (2.33)

and hence that uj are actually distributional m × p matrix-valued solutions of
τju = ζ2u, j = 1, 2, that is,

uj , u
[1,j]
j ∈ ACloc([0,∞))m×p,

(
u
[1,j]
j

)′ ∈ L1
loc([0,∞))m×p,

τjuj = −
(
u
[1,j]
j

)′
+ (−1)j+1φu

[1,j]
j = ζ2uj , j = 1, 2.

(2.34)

Thus, applying the L2-property (2.23) and (2.31)–(2.34) to the Weyl–Titchmarsh
solutions U+(ζ, · , α) associated with the Dirac-type differential expression D, then
shows that u+,j(ζ, · , α) are Weyl–Titchmarsh solutions associated with τj , j = 1, 2,
replacing the complex energy parameter ζ with z = ζ2. Moreover, introducing the
following fundamental system sj(z, · ), cj(z, · ), j = 1, 2, of m × m matrix-valued
solutions of τju = zu, z ∈ C, j = 1, 2, normalized for arbitrary z ∈ C by

sj(z, 0) = 0, s
[1,j]
j (z, 0) = Im, (2.35)

cj(z, 0) = Im, c
[1,j]
j (z, 0) = 0, j = 1, 2, (2.36)

one observes as usual that for fixed x ∈ R, sj( · , x), cj( · , x), j = 1, 2 are entire.
The connection with the solutions ϕj and ϑj , j = 1, 2, of DU = ζU is given by

s1(z, x) = ζ−1ϕ1(ζ, x, α0), c1(z, x) = ϑ1(ζ, x, α0), (2.37)

s2(z, x) = ζ−1ϑ2(ζ, x, α0), c2(z, x) = ϕ2(ζ, x, α0), z = ζ2, x > 0. (2.38)
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In addition, introducing the Weyl–Titchmarsh solutions ψ+,j(z, · ) associated with
τj , j = 1, 2, via

ψ+,1(z, · ) = u+,1(ζ, · , α0), (2.39)

ψ+,2(z, · ) = u+,2(ζ, · , α0)MD
+ (ζ, α0)−1, z = ζ2, ζ ∈ C\R, j = 1, 2, (2.40)

(the right-hand sides being independent of the choice of branch for ζ) and the

generalized Dirichlet-type m×m matrix-valued Weyl–Titchmarsh functions M̂+,0,j

of τj ,

M̂+,0,1(z) = ζMD
+ (ζ, α0), (2.41)

M̂+,0,2(z) = −ζMD
+ (ζ, α0)−1, z = ζ2, ζ ∈ C\R, (2.42)

one infers from (2.11) that

ψ+,j(z, · ) = cj(z, · ) + sj(z, · )M̂+,0,j(z), z ∈ C\[0,∞), j = 1, 2. (2.43)

Indeed, (2.43) follows from combining (2.11), (2.32), and (2.33) (for p = m), which
in turn imply

ψ+,j(z, 0) = Im, ψ
[1,j]
+,j (z, 0) = M̂+,0,j(z), z ∈ C\[0,∞), j = 1, 2 (2.44)

and the unique solvability of the initial value problems in (2.29). We summarize
this discussion in the following result proved in [13]:

Theorem 2.3. Assume Hypothesis 2.1 and let α0 = (Im 0). Denote by

U+(ζ, · , α0) = (u+,1(ζ, · , α0) u+,2(ζ, · , α0))>, ζ ∈ C\R, (2.45)

the Weyl–Titchmarsh solution corresponding to D, and by MD
+ ( · , α0) the m ×m

matrix-valued half-line Weyl–Titchmarsh function corresponding to D. Then the
m × m matrix-valued Weyl–Titchmarsh solutions associated with τj, denoted by
ψ+,j(z, · ), j = 1, 2, are given by (2.39) and (2.40), and the m ×m matrix-valued

generalized Dirichlet-type Weyl–Titchmarsh functions M̂+,0,j of τj, j = 1, 2, are
given by (2.41) and (2.42). In particular,

M̂+,0,1(z) = ζMD
+ (ζ, α0) = −zM̂+,0,2(z)−1, z = ζ2, ζ ∈ C\R. (2.46)

The subscript “0” in M̂+,0,j , j = 1, 2, indicates that these generalized Weyl–
Titchmarsh matrices correspond to a Dirichlet boundary condition at the reference
point x = 0 in the corresponding generalized half-line Schrödinger operators H+,0,j ,
j = 1, 2, in L2([0,∞))m defined by

(H+,0,ju)(x) = (τju)(x) = −
(
u[1,j]

)′
(x) + (−1)j+1φ(x)u[1,j](x) for a.e. x > 0,

u ∈ dom(H+,0,j) =
{
v ∈ L2([0,∞))m

∣∣ v, v[1,j] ∈ AC([0, R])m for all R > 0;

v(0) = 0;
[(
v[1,j]

)′
+ (−1)jφv[1,j]

]
∈ L2([0,∞))m

}
, j = 1, 2. (2.47)

(For more general Sturm–Liouville operators in the scalar case m = 1 we refer to
[11] and the references therein.) The corresponding Green’s function of H+,0,j is
then of the familiar form

G+,0,j(z, x, x
′) = (H+,0,j − zI)−1(x, x′)

=

{
sj(z, x)ψ+,j(z, x

′)∗, x 6 x′,

ψ+,j(z, x)sj(z, x
′)∗, x′ 6 x,

(2.48)
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z ∈ C\[0,∞), x, x′ ∈ [0,∞), j = 1, 2.

Of course, (2.39)–(2.46), (2.48) extend as usual to all z in the resolvent set of H+,0,j ,
j = 1, 2.

We conclude this section by detailing some properties of M̂+,0,j : First, we recall
the fundamental identity

Im
(
M̂+,0,j(z)

)
= Im(z)

∫ ∞
0

dx′ ψ+,j(z, x
′)∗ψ+,j(z, x

′), z ∈ C\R, j = 1, 2,

(2.49)

implying that M̂+,0,j , j = 1, 2, are matrix-valued Nevanlinna–Herglotz functions.
Moreover, one has the following result.

Lemma 2.4. Assume Hypothesis 2.1 and denote by M̂+,0,j, j = 1, 2, the general-
ized Dirichlet-type m ×m matrix-valued Weyl–Titchmarsh functions associated to

H+,0,j, j = 1, 2, as defined by (2.41) and (2.42). Then M̂+,0,j, j = 1, 2, are m×m
matrix-valued Nevanlinna–Herglotz functions of maximal rank m. In particular (for
j = 1, 2),

Im
(
M̂+,0,j(z)

)
> 0, z ∈ C+, (2.50)

M̂+,0,j(z) = M̂+,0,j(z)
∗, (2.51)

rank
(
M̂+,0,j(z)

)
= m, (2.52)

lim
ε↓0

M̂+,0,j(λ+ iε) exists for a.e. λ ∈ R. (2.53)

3. Inverse Spectral Theory for Half-Line Dirac-Type
and Schrödinger Operators

Several equivalent forms of self-adjoint Dirac-type systems have been considered
in the literature. In particular, the case of self-adjoint Dirac-type systems of the
form

d

dx
Υ(ζ, x) = i(ζS3 + S3V(x))Υ(ζ, x) for a.e. x > 0, (3.1)

where

S3 =

(
Im 0
0 −Im

)
, V(x) =

(
0 Q(x)

Q(x)∗ 0

)
, x > 0, (3.2)

Q is an m×m matrix-valued function defined a.e. on [0,∞), and ζ ∈ C represents
the spectral parameter, was recently studied in [40]. The procedure described in [40]
to solve the inverse spectral problem of recovering Q from the underlying matrix-
valued half-line Weyl–Titchmarsh function is based on the method of operator
identities [41, 42, 43] (see also the references therein).

In the special case when

Q(x) = −Q(x)∗ for a.e. x > 0, (3.3)

the system (3.1) is equivalent to the half-line Dirac-type system

(DU)(ζ, x) = ζU(ζ, x), D = J
d

dx
+

(
0 φ(x)

φ(x) 0

)
, x > 0, (3.4)

where

J =

(
0 −Im
Im 0

)
, φ(x) = φ(x)∗ for a.e. x > 0, (3.5)
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studied in the first part of Section 2.
The explicit connection between systems (3.1) and (3.4) is given by the relations

U(ζ, x) = WΥ(ζ, x), φ(x) = −iQ(x), W :=
1√
2

(
−iIm iIm
Im Im

)
. (3.6)

Indeed, one easily verifies that

−W ∗J W = iS3, −W ∗
(

0 φ(x)
φ(x) 0

)
W = V(x), x > 0, (3.7)

where W is unitary (i.e., W ∗W = WW ∗ = I2m).
In order to apply the results from [40] to the Dirac-type system (3.4), we need

some preparations. First, we recall the normalized fundamental 2m× 2m solution
Ψ(ζ, x, α) of (3.4) as introduced in (2.12), (2.13), with α satisfying (2.2)–(2.6).

The m × m matrix-valued Weyl–Titchmarsh function MD
+ (·, α), of the system

(3.4) on [0,∞) is then introduced by the relation

Ψ(ζ, x, α)

(
Im

MD
+ (ζ, α)

)
∈ L2

(
[0,∞)

)2m×m
, ζ ∈ C+. (3.8)

On the other hand, the fundamental solution Ψ̂(ζ, x) of the Dirac-type system (3.1)
in [40] is normalized at x = 0 by

Ψ̂(ζ, 0) = I2m, ζ ∈ C, (3.9)

and the corresponding Weyl–Titchmarsh matrix M̂D is introduced in [40, eq. (1.5)]
by the relation

Ψ̂(ζ, x)

(
Im

M̂D(ζ)

)
∈ L2

(
[0,∞)

)2m×m
, ζ ∈ C+. (3.10)

In view of (3.6), (2.12) and (3.9) one concludes that

Ψ(ζ, x, α) = W Ψ̂(ζ, x)W ∗Ψ(ζ, 0, α), ζ ∈ C, x > 0, (3.11)

and one notes that according to (2.2), the initial value Ψ(ζ, 0, α) is unitary. It is
immediate that the unitary matrix W ∗Ψ(ζ, 0, α) is given by

W ∗Ψ(ζ, 0, α) =
1√
2

(
α∗2 + iα∗1 α∗1 − iα∗2
α∗2 − iα∗1 α∗1 + iα∗2

)
=

(
α∗1 − iα∗2 0

0 α∗1 + iα∗2

)
W ∗, (3.12)

where, according to (2.2), one has

(α1 + iα2)(α∗1 − iα∗2) = Im. (3.13)

Taking into account (3.8) and (3.10)–(3.13), one derives the equality

M̂D(ζ) = (α∗1 + iα∗2)
[
MD

+ (ζ, α)− iIm
][
MD

+ (ζ, α) + iIm
]−1

(α1 + iα2), ζ ∈ C+,
(3.14)

relating the matrix-valued Weyl–Titchmarsh functions for systems (3.1) and (3.4).
We note that the Weyl–Titchmarsh matrices for both systems are unique (due to

the limit point property of D at ∞) and that M̂D is contractive on C+.
Since φ = −iQ (see (3.6)), using (3.14) we can now reformulate [40, Theorems

1.4 and 4.4] for the case of the half-line Dirac systems at hand. For that purpose,

we partition Ψ̂(0, x) into the m×m blocks β1, β2, γ1, and γ2:

Ψ̂(0, x) =

(
β(x)
γ(x)

)
=

(
β1(x) β2(x)
γ1(x) γ2(x)

)
, x > 0, (3.15)
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and recover φ from those blocks. The properties of β and γ, which we give below,
are essential for their recovery and follow immediately from (3.1), (3.2), and (3.9):

β(0) =
(
Im 0

)
, γ(0) =

(
0 Im

)
; βS3β

∗ ≡ Im, γS3γ
∗ ≡ −Im, (3.16)

βS3γ
∗ ≡ 0, β′S3β

∗ = γ′S3γ
∗ ≡ 0, β′S3γ

∗ = φ. (3.17)

Next, we introduce the operator of integration, Ax ∈ B
(
L2
(
[0, x]

)m)
, x > 0, by(

Axf
)
(y) = −i

∫ y

0

f(t)dt; y ∈ [0, x], f ∈ L2
(
[0, x]

)m
, (3.18)

acting componentwise on f .
A direct application of [40, Theorems 1.4 and 4.4] then implies the following

inverse spectral result for the half-line Dirac operator D+(α):

Theorem 3.1. Assume Hypothesis 2.1 and consider the half-line Dirac-type op-
erator D+(α) in (2.8), with associated Weyl–Titchmarsh matrix MD

+ ( · , α). Then

MD
+ ( · , α) uniquely determines φ(·) a.e. on [0,∞).

In order to explicitly recover φ(·) from MD
+ ( · , α), one first recovers the m ×m

matrix-valued function Λ(·) via equality (3.14) and the formula

Λ(x) = (2πi)−1exη l.i.m.
a→∞

∫ a

−a
dξ

e−ixξ

ξ + iη
M̂D

(
ξ + iη

2

)
, x > 0, (3.19)

where η > 0 is arbitrary and l.i.m. denotes the entrywise limit in the norm of
L2
(
[0, ∞)

)
. Then

Λ ∈ H1
loc([0,∞))m×m. (3.20)

Introducing the bounded operator Πx ∈ B
(
C2m, L2

(
[0, x]

)m)
, x > 0, via(

Πxg
)
(·) = Λ(·)g1 + g2, x > 0, g =

(
g1
g2

)
, g1, g2 ∈ Cm, (3.21)

the following operator identity,

AxSx − SxA∗x = iΠxS3Π∗x, x > 0, (3.22)

leads to the boundedly invertible and strictly positive operator Sx ∈ B
(
L2
(
[0, x]

)m)
,

x > 0, given by(
Sxf

)
(y) = f(y)− 1

2

∫ x

0

ds

∫ y+s

|y−s|
dtΛ′

(
t+ y − s

2

)
Λ′
(
t+ s− y

2

)∗
f(s) (3.23)

for y ∈ [0, x] and every f ∈ L2([0, x])m. Moreover,

Π∗xS−1x Πx ∈ ACloc([0,∞))m×m, (3.24)

and hence one can define the Hamiltonian H of the corresponding canonical system,

H(x) = γ(x)∗γ(x) =
d

dx

(
Π∗xS−1x Πx

)
for a.e. x > 0. (3.25)

Using (3.16) and (3.17), one uniquely recovers γ and β from H as described in
Remark 3.2 below. Finally, one obtains φ via

φ(x) = β′(x)S3γ(x)∗ for a.e. x > 0. (3.26)
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Remark 3.2. We describe the recovery of β and γ satisfying (3.16) and (3.17) from
H given by (3.25) in greater detail. First, one recovers γ−12 γ1 via

γ−12 γ1 = [γ∗2γ2]−1γ∗2γ1 =

((
0 Im

)
H

(
0
Im

))−1 (
0 Im

)
H

(
Im
0

)
. (3.27)

Next, one recovers γ2 from the differential equation and initial condition below,

γ′2 = γ2
(
γ−12 γ1

)′(
γ−12 γ1

)∗
(Im − γ−12 γ1(γ−12 γ1)∗

)−1
, γ2(0) = Im. (3.28)

Given γ2 and γ−12 γ1, one recovers γ1 and γ. Finally, one recovers β via the relations,

β = β1β̆, β̆ :=
(
Im γ∗1

(
γ∗2
)−1)

, (3.29)

β′1 = −β1
[
β̆′S3

(
β̆
)∗][

β̆S3

(
β̆
)∗]−1

, β1(0) = Im. (3.30)

Next, combining (2.46) and (3.14) one also obtains (employing α0 = (Im 0))

M̂D(ζ) = (−1)j+1
[
M̂+,0,j(ζ

2)− iζIm
][
M̂+,0,j(ζ

2) + iζIm
]−1

, ζ ∈ C+, j = 1, 2.
(3.31)

Thus, given φ, one has actually reconstructed the distributional potential coeffi-
cients Vj = φ2 + (−1)jφ′ in the generalized half-line Schrödinger operators H+,0,j ,
j = 1, 2:

Corollary 3.3. Assume Hypothesis 2.1 and consider the generalized half-line Schrö-
dinger operators H+,0,j, j = 1, 2, with associated Dirichlet-type matrix-valued Weyl–

Titchmarsh functions M̂+,0,j, j = 1, 2. Then either one of M̂+,0,1 and M̂+,0,2

uniquely determines φ(·) a.e. on [0,∞), and hence also Vj = φ2 +(−1)jφ′, j = 1, 2.

In addition, φ(·) is recovered from M̂+,0,1 (resp., M̂+,0,2) along the lines of
(3.19)–(3.26) upon employing (3.31) on the right-hand side of (3.19).

For inverse spectral problems with distributional potentials in the scalar context
m = 1 we also refer to [12].
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