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Abstract. We provide a complete spectral characterization of a new method of constructing

isospectral (in fact, unitary) deformations of general Schrödinger operators H = − d2

dx2 + V in

L2(R). Our technique is connected to Dirichlet data, that is, the spectrum of the operator HD

on L2((−∞, x0))⊕L2((x0,∞)) with a Dirichlet boundary condition at x0. The transformation

moves a single eigenvalue of HD and perhaps flips which side of x0 the eigenvalue lives. On
the remainder of the spectrum, the transformation is realized by a unitary operator. For cases

such as V (x)→∞ as |x| → ∞, where V is uniquely determined by the spectrum of H and the

Dirichlet data, our result implies that the specific Dirichlet data allowed are determined only
by the asymptotics as E →∞.

§1. Introduction

Spectral deformations of Schrödinger operators in L2(R), isospectral and certain classes
of non-isospectral ones, have attracted a lot of interest over the past three decades due
to their prominent role in connection with a variety of topics, including the Korteweg-
de Vries (KdV) hierarchy, inverse spectral problems, supersymmetric quantum mechanical
models, level comparison theorems, etc. In fact, the construction of N -soliton solutions of
the KdV hierarchy (and more generally, the construction of solitons relative to reflection-

less backgrounds) is a typical example of a non-isospectral deformation of H = − d2

dx2 in

L2(R) since the resulting deformation H̃ = − d2

dx2 + Ṽ acquires an additional point spectrum
{λ1, . . . , λN} ⊂ (−∞, 0) such that

σ(H̃) = σ(H) ∪ {λ1, . . . , λN}

(σ( · ) abbreviating the spectrum). On the other hand, the solution of the inverse peri-
odic problem and the corresponding solution of the algebro-geometric quasi-periodic finite-
gap inverse problem for the KdV hierarchy (and certain almost-periodic limiting situations
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thereof) are intimately connected with isospectral (in fact, unitary) deformations of a given

base (background) operator H = − d2

dx2 +V. Although not a complete bibliography on appli-
cations of spectral deformations in mathematical physics, the interested reader may consult
[1], [2], [3], [19], [31], [47], and the references cited therein.

Our main motivation in writing this paper descends from our interest in inverse spectral
problems. As pointed out later (see Remarks 4.5, 4.7, and 4.8), spectral deformation methods
can provide crucial insights into the isospectral class of a given base potential V, and in

some cases can even determine the whole class Iso(V ) = {Ṽ ∈ L1
loc(R) | σ(− d2

dx2 + Ṽ ) =

σ(− d2

dx2 +V )} of such potentials. A particularly “annoying” open problem in inverse spectral
theory concerns the characterization of the isospectral class of potentials V with purely
discrete spectra (e.g., the harmonic oscillator V (x) = x2).

In [24], we proposed a way to label the isospectral operators for such a situation with
Dirichlet data. Fix x0 and let HD be the operator in L2((−∞, x0)) ⊕ L2((x0,∞)) with
Dirichlet boundary condition at x0. HD = HD

− ⊕ HD
+ . The Dirichlet data are the pairs

(µ, σ) with µ ∈ R, σ ∈ {+,−} of eigenvalues of HD and a label of whether they are
eigenvalues of HD

− or HD
+ . We showed in [23], Theorem 3.6, that for any Dirichlet data,

there is at most one V in the isospectral class of a given − d2

dx2 + V0 with discrete spectrum

so that V has the given Dirichlet data (in the degenerate case, where any eigenvalues of HD

and H coalesce, one must include an additional parameter in the Dirichlet data for each
coincidence of eigenvalues, see Remarks 4.9 and 4.10). That is, the map from V to Dirichlet
data is one-one when defined on the isospectral set of potentials. The issue is determining
the range of this map.

While this paper does not solve the inverse discrete spectral problem, it will make one
important contribution. As a result of our principal Theorem 4.4, we obtain the fact that
for any potential V, any finite number of deformations of Dirichlet data (i.e., Dirichlet
eigenvalues together with their left/right half-line distribution, see (2.7)) in spectral gaps

of V produce isospectral deformations Ṽ ∈ Iso(V ) of V. In particular, there are no further
constraints on these Dirichlet data (except, of course, these deformations are required to be
finite in number and to stay within the spectral gaps in question). Applied to the inverse
discrete spectral problem, this means that any constraints enforced on Dirichlet data can
only be asymptotic in nature, that is, can only come from their “tail end” at infinity. That
such asymptotic constraints necessarily exist is a consequence of a recently proved general
trace formula for V (x) [24] (see Remark 4.8). The precise nature of these constraints,
however, is unknown to date.

Mathematically, the techniques involved to produce isospectral Ṽ or classes of non-
isospectral ones where eigenvalues are added or removed, but the remaining spectral charac-
teristics stay identically to those of the base potential V, can be traced back to commutation
methods. These commutation methods in turn are intimately connected with factorizations

of the Schrödinger differential expression − d2

dx2 +V (x) into products of first-order differential
expressions. More precisely, one seeks a factorization of the type

− d2

dx2
+ V (x) = α(λ)α(λ)+ + λ,

α(λ) =
d

dx
+ φ(λ, x), α(λ)+ = − d

dx
+ φ(λ, x)

for some appropriate λ ∈ R. A subsequent commutation of the factors α(λ) and α(λ)+,
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introducing the differential expression

− d2

dx2
+ Ṽ (λ, x) = α(λ)+α(λ) + λ,

then yields associated isospectral or special classes of non-isospectral deformations Ṽ (λ, x)
of V (x) depending on the choice of φ(λ, x) in α(λ), α(λ)+. In the following, we briefly outline
three different instances of commutation techniques that occur in the literature.

We start with the single commutation or Crum-Darboux method (going back at least to

Jacobi). In this method, H = − d2

dx2 + V is assumed to be bounded from below, inf σ(H) >
−∞, and λ ∈ R is chosen according to λ < inf σ(H). One sets φ(λ, x) = ψ′ν(λ, x)/ψν(λ, x),
where ψν satisfies ψ′′ = (V − λ)ψ (cf. (A.7)). Depending on the choice of ψν(λ, x), the

aforementioned commutation procedure yields a spectral deformation H̃ν(λ) of H,

H̃ν(λ) = − d2

dx2
+ Ṽν(λ, x), Ṽν(λ, x) = V (x)− 2{ln[ψν(λ, x)]}′′, x ∈ R, λ < inf σ(H),

which is either isospectral to H or acquires the additional eigenvalue λ below the spectrum
of H, that is,

either σ(H̃ν(λ)) = σ(H) or σ(H̃ν(λ)) = σ(H) ∪ {λ}.

Moreover, it can be proved that the remaining spectral characteristics of H remain preserved
in the sense that H̃ν(λ) and H, restricted to the orthogonal complement of the eigenspace
associated with λ, are unitarily equivalent.

A summary of this technique, as well as pertinent references to its extraordinary history
and to more recent applications of it, will be given in Appendix A.

The fact that λ is required to lie below the spectrum of H is clearly a severe limitation.
One possibility to avoid this restriction is provided by the following second technique, the
double commutation method.

Formally, this method can be obtained from two successive single commutations at a
point λ ∈ R\σess(H) (σess( · ) the essential spectrum), or equivalently, as the result of two
single commutations at λ′ and λ′′, λ′ 6= λ′′, λ′, λ′′ ∈ R\σess(H) with a subsequent limiting
procedure λ′ → λ and λ′′ → λ. The final outcome can be sketched as follows. Pick γ > 0, λ ∈
R\σess(H) and real-valued ψ±(λ, · ) ∈ L2((R,±∞)), R ∈ R satisfying ψ′′(λ) = (V −λ)ψ(λ).

The spectral deformation H̃±,γ(λ) of H is then given by

H̃±,γ(λ) = − d2

dx2
+ Ṽ±,γ(λ, x),

Ṽ±,γ(λ, x) = V (x)− 2

{
ln

[
1∓ γ

x∫
±∞

dx′ ψ±(λ, x′)2

]}′′
, γ > 0, λ ∈ R\σess(H).

In this case, one can show that

σ(H̃±,γ(λ)) = σ(H) ∪ {λ}

and again H̃±,γ(λ) and H are unitarily equivalent upon restriction onto the orthogonal
complements of their eigenspaces corresponding to λ.

A summary of this method together with appropriate references to its history, as well as
to recent applications of it, will be provided in Appendix B.
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Finally, and most importantly in connection with the contents of this paper, we shall
describe a third commutation method first introduced by Finkel, Isaacson, and Trubowitz
[12] in 1987 in connection with an explicit realization of the isospectral torus of periodic
potentials. This method was again used by Buys and Finkel [4] (see also Iwasaki [32]) in the
context of periodic finite-gap potentials and by Pöschel and Trubowitz [48] and Ralston and
Trubowitz [49] for various boundary value problems on compact intervals. As in the previous
case, this method formally consists of two single commutations, but this time at different
values of the spectral parameter. The principal contribution of this paper is a generalization
of the work of Finkel, Isaacson, and Trubowitz to arbitrary (i.e., not necessarily periodic)
base potentials V (x) and a complete spectral characterization of this commutation technique.
As a result we obtain a powerful new tool in constructing sets of isospectral potentials for
arbitrary base potentials.

We briefly sketch this approach. Suppose ψ±(z, · ) ∈ L2((R,±∞)), z ∈ C\σess(H), R ∈ R
satisfy ψ′′(z) = (V − z)ψ(z), and pick a spectral gap (E0, E1) of H with µ, µ̃ ∈ (E0, E1).
Define

W(µ̃,σ̃)(x) = (µ̃− µ)−1W (ψσ(µ), ψ−σ̃(µ̃))(x), σ, σ̃ ∈ {−,+}, x ∈ R,

where W (f, g)(x) = f(x)g′(x)− f ′(x)g(x) denotes the Wronskian of f and g (taking limits

if µ̃ = µ). The spectral deformation H̃(µ̃,σ̃) of H is then given by

H̃(µ̃,σ̃) = − d2

dx2
+ Ṽ(µ̃,σ̃), Ṽ(µ̃,σ̃)(x) = V (x)− 2{ln[W(µ̃,σ̃)(x)]}′′.

In order to define Ṽ(µ̃,σ̃), one needs, of course, to show that W(µ̃,σ̃)(x) is non-vanishing on R.
Indeed, the key to our extension of this method to the whole line is precisely our proof in
[25] that this Wronskian is non-zero. This proof avoids the indirect argument of [12], [48],
[49] that relies on compactness of the underlying interval. (Even if one is only interested
in the compact interval case, our direct proof is simpler than their indirect argument.) In
addition to allowing the extension to whole line problems in principle, this paper provides
explicit calculations in the change of Weyl-Titchmarsh and spectral functions.

In our main result, Theorem 4.4, we shall prove that

σ(H̃(µ̃,σ̃)) = σ(H),

in fact, H̃(µ̃,σ̃) and H will turn out to be unitarily equivalent. Moreover, if (µ, σ) is a
Dirichlet datum for H with respect to the reference point x0, then all Dirichlet data for
H̃(µ̃,σ̃) with respect to x0 are identical to those of H, except that (µ, σ) is removed and
(µ̃, σ̃) is added instead. These results and a variety of extensions thereof constitute the
principal new material in this paper. Because the spectral types of all operators in [12],
[48], and [49] are explicitly known, the unitarity theorem is a trivial consequence of the
determination of spectra. However, for general base potentials, the spectral types can be
exotic so that the unitarity result is much stronger than a mere equality result of spectra.
Our proof of the unitarity relies on the explicit formula of the changes in the spectral matrix.

Section 2 provides the background needed in the remainder of this paper. Section 3 treats
Weyl-Titchmarsh m-functions and spectral functions associated with half-line Dirichlet op-
erators. Section 4 contains our principal results on isospectral deformations and provides
a complete spectral characterization of this deformation method. In particular, the Weyl-
Titchmarsh M -matrix and spectral matrix of the deformation H̃(µ̃,σ̃) are computed in terms
of the corresponding matrices of the base operator H. A variety of additional results and
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possible extensions, including limit point/limit circle considerations, iterations of isospec-
tral deformations, general Sturm-Liouville operators on arbitrary intervals, and scattering
theory, are treated in Section 5. Finally, the single and double commutation methods are
reviewed in Appendices A and B, respectively.

§2. Preliminaries on the Dirichlet Deformation Method

This section sets the stage for a complete spectral characterization of the Dirichlet defor-
mation method in the remainder of this paper.

Suppose
V ∈ L1

loc(R) is real valued, (2.1)

introduce the differential expression τ = − d2

dx2 +V (x), x ∈ R, and pick λ0 ∈ R and η±(λ0, x)
satisfying

τψ(λ0) = λ0ψ(λ0),

η±(λ0, · ) ∈ L2((R,±∞)), R ∈ R, η±(λ0, x) real-valued.
(2.2)

Given η±(λ0, x) we define the self-adjoint base (background) operator H in L2(R) via

Hf = τf,

f ∈ D(H) = {g ∈ L2(R) | g, g′ ∈ ACloc(R); τg ∈ L2(R);

lim
x→±∞

W (η±(λ0), g)(x) = 0 if τ is l.c. at ±∞}.
(2.3)

Here W (f, g)(x) = f(x)g′(x)− f ′(x)g(x) denotes the Wronskian of f, g ∈ ACloc(R) (the set
of locally absolutely continuous functions on R) and l.c. and l.p. abbreviate the limit point
and limit circle cases, respectively. The corresponding boundary condition at ω∞ in (2.3)
is superfluous and hence to be deleted whenever τ is l.p. at ω∞, ω ∈ {−,+}. The reader
unwilling to get caught up in limit circle situations may safely add the assumption that τ is
l.p. at ±∞ which renders H independent of the choice of η±(λ0, x). However, as discussed
in Lemma 5.3, assuming τ to be l.p. at ±∞ does not necessarily dispose of all limit circle
considerations in connection with the deformation method at hand.

GivenH and a fixed reference point x0 ∈ R, we introduce the associated Dirichlet operator
HD in L2(R) by

HDf = τf,

f ∈ D(HD) = {g ∈ L2(R) | g ∈ ACloc(R), g′ ∈ ACloc(R\{x0}); lim
ε↓0

g(x0 ± ε) = 0;

τg ∈ L2(R); lim
x→±∞

W (η±(λ0), g)(x) = 0 if τ is l.c. at ±∞}.

(2.4)

Clearly, HD decomposes into
HD = HD

− ⊕HD
+ (2.5)

with respect to the orthogonal decomposition

L2(R) = L2((−∞, x0))⊕ L2((x0,∞)). (2.6)

(For notational convenience, we shall later identify (x0, σ∞) with (−∞, x0) or (x0,∞) de-
pending on whether σ = − or σ = +.) Moreover, for any µ ∈ σd(H

D)\σ(H) (σd( · ) =
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σ( · )\σess( · ), the discrete spectrum, σ( · ) and σess( · ), the spectrum and essential spectrum,
respectively), we introduce the Dirichlet datum

(µ, σ) ∈ {σd(HD)\σd(H)} × {−,+}, (2.7)

which identifies µ as a discrete Dirichlet eigenvalue on the interval (x0, σ∞), that is, µ ∈
σd(H

D
σ ), σ ∈ {−,+} (but excludes it from being simultaneously a Dirichlet eigenvalue on

(x0,−σ∞)).
In some cases, for instance, if V (x) → ∞ as |x| → ∞, the spectrum and Dirichlet data

uniquely determine V (x) [23], Theorem 3.6 (cf. also Remarks 4.9 and 4.10).
Next, we pick a fixed spectral gap (E0, E1) of H, the endpoints of which (without loss of

generality) belong to the spectrum of H,

(E0, E1) ⊂ R\σ(H), E0, E1 ∈ σ(H) (2.8)

and choose a discrete eigenvalue µ of HD in the closure of that spectral gap,

µ ∈ σd(HD) ∩ [E0, E1] (2.9)

(we note there is at most one such µ since (HD−z)−1 is a rank-one perturbation of (H−z)−1).
According to (2.7), this either gives rise to a Dirichlet datum

(µ, σ) ∈ (E0, E1)× {−,+}, (2.10)

or else to a discrete eigenvalue of HD
− and HD

+ , that is,

µ ∈ {E0, E1} ∩ σd(H) ∩ σd(HD
− ) ∩ σd(HD

+ ) (2.11)

since the eigenfunction of H associated with µ has a zero at x0. In particular, since (HD −
z)−1 is a rank-one perturbation of (H − z)−1, one infers

σess(H
D) = σess(H), (2.12)

and thus, µ ∈ {E0, E1}∩σess(H) is excluded by hypothesis (2.9). Hence, the case distinctions
(2.10) and (2.11) are exhaustive.

In addition to µ as in (2.9)–(2.11), we also need to introduce µ̃ ∈ [E0, E1] and σ̃ ∈ {−,+}
as follows: Either

(µ̃, σ) ∈ (E0, E1)× {−,+}, (2.13)

or else
µ̃ ∈ {E0, E1} ∩ σd(H). (2.14)

Given H, we define solutions ψ±(z, x) of (τ − z)ψ(z) = 0 which satisfy

ψ±(z, · ) ∈ L2((R,±∞)), R ∈ R,
lim

x→±∞
W (ψ±(z), g)(x) = 0 for all g ∈ D(H).

(2.15)

If ψ±(z, x) exist, they are unique up to constant multiples. In particular, ψ±(z, x) exist
for z ∈ C\σess(H) and we can (and will) assume them to be holomorphic with respect to
z ∈ C\σ(H) and real-valued for z ∈ R. One can choose,

ψ±(z, x) = ((H − z)−1χ(a,b))(x) for x > b
< a , −∞ < a < b <∞ (2.16)

and uniquely continue for x<b>a . (Here χΩ( · ) denotes the characteristic function of a set

Ω ⊆ R.) A finite number of isolated eigenvalues can be included in the domain of holomorphy
of ψ±(z) by multiplying (2.16) with an appropriate function of z.

Next, we state a simple technical result which will be needed in the context of (2.19) and
(2.20).
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Lemma 2.1. Let ψσ(µ, · ), ψσ(µ̃, · ) ∈ L2((R, σ∞)), R ∈ R be defined as in (2.15). Then

lim
µ̃→µ

(µ̃− µ)−1W (ψσ(µ), ψσ(µ̃))(x) = −
x∫

σ∞

dx′ψσ(µ, x′)2. (2.17)

Proof. Since

(µ̃− µ)−1W (ψσ(µ), ψσ(µ̃))(x) = −
x∫

σ∞

dx′ψσ(µ, x′)ψσ(µ̃, x′), (2.18)

((2.18) is easily verified by differentiating W (ψσ(µ), ψσ(µ̃))(x) w.r.t. x and using (2.15)), we
only need to justify interchanging the limit µ̃→ µ and the integral in (2.18). By (2.16),

((H − µ̃)−1χ(a,b))(x
′) = c±(µ̃)ψ±(µ̃, x′) for

x′ > x > b > a

x′ < x < a < b

for some constants c±(µ̃) 6= 0, and hence

−
x∫

σ∞

dx′ψσ(µ, x′)ψσ(µ̃, x′) = c−1
σ (ψσ(µ)χ(x,σ∞), (H − µ̃)−1χ(a,b))

yields the desired continuity with respect to µ̃. (This fails at first sight if µ ∈ σd(H)∩σd(HD).
A proper factor removes the pole at z = µ in this case.) �

Given ψσ(µ, x), ψ−σ̃(µ̃, x), and Lemma 2.1, we define

W(µ̃,σ̃)(x) =

{
(µ̃− µ)−1W (ψσ(µ), ψ−σ̃(µ̃))(x), µ, µ̃ ∈ [E0, E1], µ̃ 6= µ

−σ
∫ x
σ∞ dx′ψσ(µ, x′)2, (µ̃, σ̃) = (µ,−σ), µ ∈ (E0, E1)

(2.19)
and the associated Dirichlet deformation

τ̃(µ̃,σ̃) = − d2

dx2
+ Ṽ(µ̃,σ̃)(x),

Ṽ(µ̃,σ̃)(x) = V (x)− 2{ln[W(µ̃,σ̃)(x)]}′′, x ∈ R,
µ, µ̃ ∈ [E0, E1], µ 6= µ̃ or (µ̃, σ̃) = (µ,−σ), µ ∈ (E0, E1).

(2.20)

(We will show in Lemma 2.2 that W(µ̃,σ̃)(x) 6= 0, x ∈ R and hence (2.20) is well-defined.) In
the remaining cases (µ̃, σ̃) = (µ, σ), µ ∈ [E0, E1], and µ = µ̃ ∈ {E0, E1} ∩ σd(H), we define

Ṽ(µ̃,σ̃)(x) = V (x). (2.21)

Equation (2.21) represents the trivial deformation of V (x) (i.e., none at all), and for no-
tational simplicity these trivial cases are excluded in the remainder of this paper, unless
explicitly stated otherwise. For obvious reasons we will allude to (2.20) as the Dirichlet
deformation method in the following.

If µ̃ ∈ σd(H), then ψ−(µ̃) = cψ+(µ̃) for some c ∈ R\{0}, showing that W(µ̃,σ̃)(x) and
hence, V(µ̃,σ̃)(x) in (2.19) and (2.20) become independent of σ or σ̃. In this case we shall

occasionally use a more appropriate notation and write Ṽµ̃(x) and τ̃µ̃ (instead of Ṽ(µ̃,σ̃)(x)
and τ̃(µ̃,σ̃)).

The next result, taken from [25], shows that (2.20) is well-defined on R. For the reader’s
convenience, we reproduce the proof of the special case we need of Theorem 1.6 in [25].
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Lemma 2.2 [25]. Suppose µ, µ̃ ∈ [E0, E1] and ψσ(µ, x), ψ−σ(µ̃, x), σ, σ̃ ∈ {−,+} are
defined as in (2.15). Then

W (ψσ(µ), ψ−σ(µ))(x) 6= 0,W (ψσ(µ), ψ−σ(µ̃))(x) 6= 0, µ 6= µ̃, x ∈ R, (2.22)

and hence,
Ṽ(µ̃,σ̃) ∈ L1

loc(R) (2.23)

in (2.20).

Proof. Since W (ψσ(µ), ψ−σ(µ)) = const. 6= 0 and (2.23) is clear from (2.19), (2.20), and
(2.22), we only focus on the case W (ψσ(µ), ψ−σ̃(µ̃))(x) 6= 0, µ 6= µ̃, x ∈ R.

First, consider the case σ̃ = σ = −, assume without loss of generality that µ̃ > µ, and
abbreviate

W (x) = W (ψ−(µ), ψ−(µ̃))(x), x ∈ R.

Suppose that
W (x1) = 0 for some x1 ∈ R. (2.24)

Define

η1(x) =

{
ψ−(µ, x), x ≤ x1

γ1ψ+(µ̃, x), x ≥ x1

,

where γ1 ∈ R is defined such that η1 ∈ D(H) and

η̃1(x) =

{
ψ−(µ, x), x ≤ x1

−γ1ψ+(µ̃, x), x > x1

.

If µ̃ ∈ σd(H), we define in addition

η0(x) = ψ+(µ̃, x) = −η̃0(x), x0 = −∞

and if µ ∈ σd(H),
η2(x) = ψ−(µ, x) = η̃2(x), x2 = +∞.

Then
(ηj , ηk) = (η̃j , η̃k) for all j, k. (2.25)

Indeed, let j < k, then (2.25) just means that

xk∫
xj

dxψ−(µ, x)ψ+(µ̃, x) = 0. (2.26)

But
xk∫
xj

dxψ−(µ, x)ψ+(µ̃, x) = (µ− µ̃)−1[W (xk)−W (xj)] = 0

due to W (x1) = 0 and limx→±∞W (x) = 0 if µ̃ or µ lie in σd(H) since limx→±∞
W (g1, g2)(x) = 0 for all g1, g2 ∈ D(H). (For x0 = −∞ take g2 = ψ+(µ̃) ∈ D(H) and
choose g1 = ψ−(µ) near x0 = −∞ and continue g1 ∈ D(H) appropriately. Similarly, for
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x2 = +∞, take g1 = ψ−(µ) ∈ D(H) and choose g2 = ψ+(µ̃) in a neighborhood of x2 = +∞
and continue g2 ∈ D(H) appropriately.) Next, one verifies that[

H − 1

2
(µ̃+ µ)

]
ηj =

1

2
(µ− µ̃)η̃j

and hence for η ∈ span{ηj},∥∥∥∥[H − 1

2
(µ̃+ µ)

]
η

∥∥∥∥ =
1

2
|µ̃− µ|‖η‖

implying
dim Ran(P[µ,µ̃](H)) ≥ dim span{ηj},

where PΩ(H) denotes the spectral projection of H corresponding to Ω ⊆ R. But ψ−(µ) and
ψ+(µ̃) are linearly independent on each interval (since their Wronskian is non-constant) and
hence all ηj are linearly independent. In particular,

dim Ran(P(µ,µ̃)(H)) ≥ 1,

which contradicts our basic hypothesis that (E0, E1) ⊂ R\σ(H). This contradiction shows
that (2.24) is impossible, and hence W (x) 6= 0 for all x ∈ R.

Next, consider the case σ̃ = −σ = − (and still µ̃ > µ). Define

Ŵ (x) = W (ψ−(µ), ψ−(µ̃))(x), x ∈ R

and suppose

Ŵ (x1) = 0 for some x1 ∈ R. (2.27)

We introduce

η1(x) =

{
ψ−(µ, x)− γ1ψ−(µ̃, x), x ≤ x1

0, x ≥ x1

(fixing γ1 by demanding η1 ∈ D(H)) and

η̃1(x) =

{
ψ−(µ, x) + γ1ψ−(µ̃, x), x ≤ x1

0, x > x1

.

If µ̃ ∈ σd(H), we introduce in addition

η0(x) = ψ−(µ̃, x) = −η̃0(x), x0 = +∞

and if µ̃ ∈ σd(H),
η2(x) = ψ−(µ, x) = η̃2(x), x0 = +∞.

The rest of the proof is analogous to the case considered first: The ηj ’s are linearly inde-
pendent by considering their supports and

x1∫
−∞

dxψ−(µ, x)ψ−(µ̃, x) = (µ− µ̃)−1 lim
c↓−∞

[Ŵ (x1)− Ŵ (c)] = 0
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since Ŵ (x1) = 0 by hypothesis, and both ψ−(µ, x) and ψ−(µ̃, x) satisfy the boundary
conditions of H at −∞.

Finally, the cases ψ+(µ, x), ψ±(µ̃, x) can be obtained by reflection. �

Actually, Lemma 2.2 is only the tip of the iceberg. The principal results of [25] relate the
number of zeros of appropriate Wronskians on an arbitrary interval (a, b) of the type studied
in this section to dimensions of spectral projections of general Sturm-Liouville operators on
(a, b). For a previous generalization of Sturm’s separation theorem invoking the sign of
Wronskians, see [36].

For later reference, we now summarize our basic assumptions on V , µ, and µ̃ in the
following hypothesis.

(H.2.3). (i) Suppose V ∈ L1
loc(R) to be real-valued.

(ii)
(E0, E1) ⊂ R\σ(H), E0, E1 ∈ σ(H),

µ ∈ σd(HD), (µ, σ) ∈ (E0, E1)× {−,+} or µ ∈ {E0, E1} ∩ σd(H),

(µ̃, σ̃) ∈ (E0, E1)× {−,+} or µ̃ ∈ {E0, E1} ∩ σd(H),

µ, µ̃ ∈ [E0, E1], µ 6= µ̃ or (µ̃, σ̃) = (µ,−σ), µ ∈ (E0, E1).

Next, we introduce various solutions of (τ̃(µ̃,σ̃) − z)ψ̃(z) = 0 needed in (2.32)–(2.35) to

define the self-adjoint operator H̃(µ̃,σ̃) in L2(R) associated with ψ̃(µ̃,σ̃). Define

ψ̃−σ(µ, x) = ψ−σ̃(µ̃, x)
/
W(µ̃,σ̃)(x), (2.28)

ψ̃σ̃(µ̃, x) = ψσ(µ, x)
/
W(µ̃,σ̃)(x), ψ̃σ̃(µ̃, x0) = 0. (2.29)

Then
(τ̃(µ̃,σ̃)ψ̃−σ(µ))(x) = µψ̃−σ(µ, x), (τ̃(µ̃,σ̃)ψ̃σ̃(µ̃))(x) = µ̃ψ̃σ̃(µ̃, x) (2.30)

and
ψ̃−σ(µ, x)ψ̃σ̃(µ̃, x) = [W(µ̃,σ̃)(x)−1]′. (2.31)

The Dirichlet deformation operator H̃(µ̃,σ̃) associated with τ̃(µ̃,σ̃) in (2.20) is then defined
as follows:

H̃(µ̃,σ̃)f = τ̃(µ̃,σ̃)f,

f ∈ D(H̃(µ̃,σ̃)) = {g ∈ L2(R) | g, g′ ∈ ACloc(R); τ̃(µ̃,σ̃)g ∈ L2(R);

g satisfies one of the b.c.’s in Cases I–III if

τ̃(µ̃,σ̃) is l.c. at −∞ and/or +∞}.

(2.32)

The boundary conditions (b.c.’s) alluded to in (2.32) are chosen as follows:

Case I: Either τ is l.p. at ±∞ or σ̃ = σ.

lim
x→σ̃∞

W (ψ̃σ̃(µ̃), g)(x) = 0 if τ̃(µ̃,σ̃) is l.c. at σ̃∞,

lim
x→−σ̃∞

W (ψ̃−σ(µ), g)(x) = 0 if τ̃(µ̃,σ̃) is l.c. at −σ̃∞.
(2.33)

Case II: σ̃ = −σ, τ is l.c. at −∞ or +∞, and µ ∈ σd(H).

lim
x→ω∞

W (ψ̃σ̃(µ̃), g)(x) = 0 if τ̃(µ̃,σ̃) is l.c. at ω∞, ω ∈ {−,+}. (2.34)
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Case III: σ̃ = −σ, τ is l.c. at −∞ or +∞, and µ̃ ∈ σd(H).

lim
x→ω∞

W (ψ̃−σ(µ), g)(x) = 0 if τ̃(µ̃,σ̃) is l.c. at ω∞, ω ∈ {−,+}. (2.35)

(Note that Case II = Case III if (µ̃, σ̃) = (µ,−σ).)
As always, there is no boundary condition at ω∞ in (2.32) if τ̃(µ̃,σ̃) is l.p. at ω∞, ω ∈

{−,+}. Cases I–III, of course, are not exhaustive. We singled them out since they are the

only situations where the spectra of H and H̃(µ̃,σ̃) are closely related (see (3.17) and the
discussion at the end of Section 3).

If µ̃ ∈ σd(H), we will occasionally use the more appropriate notation Ṽµ̃(x), τ̃µ̃, and H̃µ̃

(instead of Ṽ(µ̃,σ̃)(x), τ̃(µ̃,σ̃), and H̃(µ̃,σ̃), cf. the comments following (2.21)).

We conclude this section by introducing the Dirichlet operator H̃D
(µ̃,σ̃) associated with

H̃(µ̃,σ̃) and the fixed reference point x0 ∈ R,

H̃D
(µ̃,σ̃)f = τ̃(µ̃,σ̃)f,

f ∈ D(H̃D
(µ̃,σ̃)) =

{
g ∈ L2(R) | g ∈ ACloc(R), g′ ∈ ACloc(R\{x0}); lim

ε↓0
g(x0 ± ε) = 0;

τ̃(µ̃,σ̃)g ∈ L2(R); g satisfies one of the b.c.’s in Cases I–III if

τ̃(µ̃,σ̃) is l.c. at −∞ and/or +∞
}
.

(2.36)

In analogy to (2.5), H̃D
(µ̃,σ̃) decomposes into

H̃D
(µ̃,σ̃) = H̃D

(µ̃,σ̃),− ⊕ H̃
D
(µ̃,σ̃),+ (2.37)

with respect to (2.6).

§3. Half-Line Weyl-Titchmarsh and Spectral Functions

In this section we derive the Weyl-Titchmarsh m-functions for the Dirichlet deformation
operator H̃(µ̃,σ̃) and relate them to those of H. Moreover, we provide a complete spectral

characterization of H̃D
(µ̃,σ̃),± in terms of HD

± .

We start by introducing the transformation

U(µ̃,σ̃)(z) :

{
ACloc(R)→ L1

loc(R)

f(x)→ f̃(µ̃,σ̃)(z, x) = f(x)− (z − µ)−1ψ̃−σ(µ, x)W (ψσ(µ), f)(x), z ∈ C\{µ}
(3.1)

and note that by inspection,

((τ̃(µ̃,σ̃) − z)U(µ̃,σ̃)(z)ψ(z))(x) = 0 if and only if ((τ − z)ψ(z))(x) = 0, z ∈ C\{µ}. (3.2)

Moreover, one verifies

f̃(µ̃,σ̃)(z, x) = (U(µ̃,σ̃)(z)f)(x)

= (z − µ)−1(z − µ̃)f(x)− (z − µ)−1ψσ̃(µ̃, x)W (ψ−σ̃(µ), f)(x),

f ∈ ACloc(R), z ∈ C\{µ},
(3.3)
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(U(µ̃,σ̃)(µ̃)ψ−σ̃(µ̃))(x) = 0, (U(µ̃,σ̃)(µ̃)ψσ̃(µ̃))(x) = (µ̃− µ)−1W (ψσ̃(µ̃), ψ−σ̃(µ̃))ψ̃σ̃(µ̃, x),

lim
z→µ

(z − µ)(U(µ̃,σ̃)(z)ψσ(µ))(x) = 0,

lim
z→µ

(z − µ)(U(µ̃,σ̃)(z)ψ−σ̃(µ))(x) = −W (ψσ(µ), ψ−σ(µ))ψ̃−σ(µ, x).

(3.4)
In addition, if

(τ − z)ψ(z) = 0, (τ − ẑ)ψ̂(ẑ) = 0, z, ẑ ∈ C\{µ},
then

W (ψ̃−σ(µ), U(µ̃,σ̃)(z)ψ(z))(x) =
W (ψ−σ̃(µ̃), ψ(z))(x)

W(µ̃,σ̃)(x)
, (3.5)

W (ψ̃σ̃(µ̃), U(µ̃,σ̃)(z)ψ(z))(x) =
z − µ̃
z − µ

W (ψσ(µ), ψ(z))(x)

W(µ̃,σ̃)(x)
, (3.6)

W (U(µ̃,σ̃)(z)ψ(z), U(µ̃,σ̃)(ẑ)ψ̂(ẑ))(x) =
z − µ̃
z − µ

W (ψ(z), ψ̂(ẑ))(x)

+
z − ẑ

(z − µ)(ẑ − µ)

W (ψσ(µ), ψ̂(ẑ))(x)W (ψ−σ̃(µ̃), ψ(z))(x)

W(µ̃,σ̃)(x)
. (3.7)

Next, let φ(z, x), θ(z, x) be the standard fundamental system of solutions of (τ−z)ψ(z) = 0,
z ∈ C defined by

φ(z, x0) = θ′(z, x0) = 0, φ′(z, x0) = θ(z, x0) = 1, z ∈ C (3.8)

with x0 ∈ R the reference point used in (2.4), and denote by θ̃(µ̃,σ̃)(z, x), φ̃(µ̃,σ̃)(z, x) the

analogous fundamental system of solutions of (τ̃(µ̃,σ̃) − z)ψ̃(z) = 0, z ∈ C satisfying (3.8).

Since by definition (2.15), ψσ(z, · ) ∈ L2((R, σ∞)), R ∈ R, z ∈ C\R satisfy the boundary
conditions ofH near σ∞ (if any) and, in particular, limx→σ∞W (ψσ(z), g)(x) = 0, g ∈ D(H),
one obtains

ψ′σ(z, x0)/ψσ(z, x0) = mσ(z), σ ∈ {−,+}, z ∈ C\R, (3.9)

where mσ(z) denotes the Weyl-Titchmarsh m-function of H with respect to the half-line
(x0, σ∞), σ ∈ {−,+}. Thus,

(U(µ̃,σ̃)(z)f)(x0) =
z − µ̃
z − µ

f(x0),

(U(µ̃,σ̃)(z)f)′(x0) = f ′(x0)− µ̃− µ
z − µ

m−σ̃(µ̃)f(x0), z, µ̃ ∈ C\{µ}, f ∈ ACloc(R),

(3.10)

imply

φ̃(µ̃,σ̃)(z, x) = (U(µ̃,σ̃)(z)φ(z))(x),

θ̃(µ̃,σ̃)(z, x) =
z − µ
z − µ̃

(U(µ̃,σ̃)(z)θ(z))(x) +
µ̃− µ
z − µ̃

m−σ̃(µ̃)(U(µ̃,σ̃)(z)φ(z))(x), z, µ̃ ∈ C\{µ}.

(3.11)
The case (µ̃, σ̃) = (µ,−σ) in (3.10) and (3.11) can be obtained by a limiting procedure
(±m±(z) being Herglotz, has at most one simple pole for λ ∈ [E0, E1] with a negative
residue),

lim
µ̃→µ

(µ̃− µ)mσ(µ̃) =

( x0∫
σ∞

dxφ(µ, x)2

)−1

, σ ∈ {−,+} (3.12)
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(see, e.g., [23], Appendix A for a brief summary on Weyl m-functions).
The following general fact on Weyl m-functions, which provides an effective tool for

computing them in the context of H̃(µ̃,σ̃), may well be of independent interest.

Lemma 3.1. Let V̂ ∈ L1
loc(R) be real-valued, τ̂ = − d2

dx2 + V̂ (x), x ∈ R, and η̂σ(λ, x),

λ ∈ R, σ ∈ {−,+} non-zero real-valued solutions of (τ̂ −λ)ψ̂(λ) = 0. Define the self-adjoint

operator Ĥ in L2(R) by

Ĥf = τ̂ f,

f ∈ D(Ĥ) =
{
g ∈ L2(R) | g, g′ ∈ ACloc(R); τ̂ g ∈ L2(R);

lim
x→±∞

W (η̂±(λ), g)(x) = 0 if τ̂ is l.c. at ±∞
}
.

(3.13)

(If τ̂ is l.p. at +∞ and/or −∞, the corresponding boundary condition in (3.13) is to be

deleted.) Denote by φ̂(z, x), θ̂(z, x) the fundamental system of solutions of (τ̂ − z)ψ̂(z) = 0,
z ∈ C, with initial values as in (3.8). Then the limits

m̂σ(z) = − lim
x→σ∞

W (η̂σ(λ), θ̂(z))(x)

W (η̂σ(λ), φ̂(z))(x)
, z ∈ C\R, σ ∈ {−,+} (3.14)

exist and represent the Weyl-Titchmarsh m-functions of Ĥ on the half-line (x0, σ∞).

Proof. First suppose that τ̂ is l.p. at σ∞ and z ∈ C\R. Then

−W (η̂σ(λ), θ̂(z))(x)

W (η̂σ(λ), φ̂(z))(x)
= − θ̂(z, x) + tan(β(x))θ̂′(z, x)

φ̂(z, x) + tan(β(x))φ̂′(z, x)
, cot(β(x)) = −η′σ(λ, x)/ησ(λ, x)

(3.15)
converges to m̂σ(z). This does not quite represent the typical Weyl limit point consideration
in which one usually involves an x-independent boundary condition parameter β ∈ [0, π).
However, due to the l.p. hypothesis made, the Weyl disks shrink to a limit point and the
x-dependence of β(x) in (3.15) becomes immaterial in the limit x→ σ∞.

Next, assume τ̂ is l.c. at σ∞. Then φ̂(z, · ), θ̂(z, · ) ∈ L2((R, σ∞)), R ∈ R, and hence the
limits

lim
x→σ∞

W (η̂σ(λ), χ̂(z))(x) = W (η̂σ(λ), χ̂(z))(x0)

+ (z − λ)

x0∫
σ∞

dx′ η̂σ(λ, x′)χ̂(z, x′) for χ̂(z, x) =

{
φ̂(z, x)

θ̂(z, x)
(3.16)

exist. Actually, the limits in (3.16) not only exist but they are also non-zero since other-
wise one could construct self-adjoint operators with boundary conditions at σ∞ induced by

φ̂(z, x) or θ̂(z, x) with associated eigenvalue z ∈ C\R.
Next, consider the function

ψ̂σ(z, x) = θ̂(z, x) + m̂σ(z)φ̂(z, x), z ∈ C\R,

where m̂σ(z) denotes the m-function associated with Ĥ on (x0, σ∞). Since by construction,

ψ̂σ(z, x) satisfies the boundary conditions of Ĥ at σ∞, one infers

0 = lim
x→σ∞

W (η̂σ(λ), ψ̂σ(z))(x)

=
[

lim
x→σ∞

W (η̂σ(λ), θ̂(z))(x)
]

+ m̂σ(z)
[

lim
x→σ∞

W (η̂σ(λ), φ̂(z))(x)
]
,
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and hence (3.14) again. �

Applying Lemma 3.1 to H̃(µ̃,σ̃), we obtain as our first major result the following expression

for the half-line Weyl-Titchmarsh m-functions of H̃(µ̃,σ̃) in terms of those of H.

Theorem 3.2. Assume (H.2.3). Given H and H̃(µ̃,σ̃) by (2.3) and (2.32), respectively,
denote by m±(z) and m̃(µ̃,σ̃),±(z) the corresponding m-functions associated with the half-
lines (x0,±∞). Then

m̃(µ̃,σ̃),±(z) =
z − µ
z − µ̃

m±(z)− µ̃− µ
z − µ̃

m−σ̃(µ̃), µ̃ 6= µ,

m̃(µ̃,σ̃),±(z) = m±(z)−
( x0∫
σ∞

dxφ(µ, x)2

)−1
1

z − µ
, (µ̃, σ̃) = (µ,−σ), z ∈ C\R.

(3.17)

Proof. Combining (3.11), (3.5), and (3.6), one computes m̃(µ̃,σ̃),ω(z), ω ∈ {−,+} either from

− lim
x→ω∞

W (ψ̃σ̃(µ̃), θ̃(µ̃,σ̃)(z))(x)

W (ψ̃σ̃(µ̃), φ̃(µ̃,σ̃)(z))(x)
=
z − µ
z − µ̃

[
− lim
x→ω∞

W (ψσ(µ), θ(z))(x)

W (ψσ(µ), φ(z))(x)

]
− µ̃− µ
z − µ̃

m−σ̃(µ̃)

(3.18)
or from

− lim
x→ω∞

W (ψ̃−σ(µ), θ̃(µ̃,σ̃)(z))(x)

W (ψ̃−σ(µ), φ̃(µ̃,σ̃)(z))(x)

=
z − µ
z − µ̃

[
− lim
x→ω∞

W (ψ−σ̃(µ̃), θ(z))(x)

W (ψ−σ̃(µ̃), φ(z))(x)

]
− µ̃− µ
z − µ̃

m−σ̃(µ̃) (3.19)

(or from both), depending on Cases I–III in (2.32)–(2.35) by applying Lemma 3.1 to H̃(µ̃,σ̃)

and H. �

An examination of m̃(µ̃,σ̃),±(z) in (3.17) then reveals the following behavior near µ and
µ̃.

Corollary 3.3. (i) Suppose µ, µ̃ ∈ (E0, E1), µ̃ 6= µ or µ ∈ {E0, E1} ∩ σd(H), µ̃ ∈ (E0, E1).
Then, m̃(µ̃,σ̃),−σ̃(z) is holomorphic in a neighborhood of µ̃ whereas m̃(µ̃,σ̃),σ̃(z) has a simple
pole at µ̃ with residue

lim
z→µ̃

(z − µ̃)m̃(µ̃,σ̃),σ̃(z) = (µ̃− µ)[mσ̃(µ̃)−m−σ̃(µ̃)] 6= 0. (3.20)

Both m̃(µ̃,σ̃),±(z) are holomorphic in a neighborhood of µ.
(ii) Assume µ = µ̃ ∈ (E0, E1), σ̃ = −σ. Then m̃(µ̃,σ̃),−σ̃(z) is holomorphic in a neighbor-

hood of µ̃ whereas m̃(µ̃,σ̃),σ̃(z) has a simple pole at µ̃ with residue

lim
z→µ̃

(z − µ̃)m̃(µ̃,σ̃),σ̃(z) = − lim
µ̃→µ

(µ̃− µ)mσ(µ̃) = −
( x0∫
σ∞

dxφ(µ, x)2

)−1

. (3.21)

(iii) Assume µ ∈ (E0, E1), µ̃ ∈ {E0, E1} ∩ σd(H) or µ, µ̃ ∈ {E0, E1} ∩ σd(H), µ 6= µ̃.
Then m̃(µ̃,σ̃),±(z) are both holomorphic in a neighborhood of µ and µ̃.
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Proof. Observing that

mσ(z) =
z→µ

cσ(z − µ)−1 +O(1), cσ ∈ R\{0}, m−σ(z) =
z→µ

O(1), µ ∈ (λ0, λ1), (3.22)

m±(z) =
z→µ

c±(z − µ)−1 +O(1), c± ∈ R\{0}, c± ≶ 0, µ ∈ σd(HD) ∩ σ(H), (3.23)

cases (i) and (ii) are a straightforward consequence of (3.12),(3.17), and the fact that
m−(µ̃) 6= m+(µ̃) since µ̃ /∈ σd(H). For (iii) one observes, in addition, that first,

m−(µ̃) = m+(µ̃) since µ̃ ∈ σd(H)\σd(HD)

by hypothesis, and second,

lim
z→λ

(z − λ)m±(z) exists for all λ ∈ [E0, E1] (3.24)

since ±m±(z) are Herglotz functions (and σess(H) ∩ [E0, E1] = ∅). �

As we will explore in more detail in the next section, Corollary 3.3(i) for µ, µ̃ ∈ (E0, E1),
µ 6= µ̃ just means the Dirichlet datum (µ, σ) gets changed into (µ̃, σ̃) and (ii) illustrates
the “flip” of the Dirichlet eigenvalue µ from one half-line (x0, σ∞) to the other, (x0,−σ∞),
changing (µ, σ) into (µ,−σ). The remaining cases represent non-isospectral deformations
of H where the eigenvalue µ ∈ σd(H), respectively, µ̃ ∈ σd(H), or both, µ, µ̃ ∈ σd(H) are

actually “knocked out” of the spectrum of H (i.e., do not belong to σ(H̃(µ̃,σ̃)), respectively,

σ(H̃µ̃)).

Corollary 3.4. Let z ∈ C\{σ(H) ∪ {µ}}, µ̃ ∈ (E0, E1). Then ψ̃σ̃(µ̃, x), ψ̃−σ(µ, x), µ 6= µ̃,

and (U(µ̃,σ̃)(z))ψ±(z))(x) satisfy the boundary conditions of H̃(µ̃,σ̃) (if any) at σ̃∞, −σ∞,
and ±∞, respectively. In particular,

lim
x→σ̃∞

W (ψ̃σ(µ̃), g̃)(x) = 0,

lim
x→−σ∞

W (ψ̃−σ(µ), g̃)(x) = 0, µ 6= µ̃,

lim
x→±∞

W (U(µ̃,σ̃)(z)ψ±(z), g̃)(x) = 0

(3.25)

for all g̃ ∈ D(H̃(µ̃,σ̃)). Moreover,

ψσ̃(µ̃, · ) ∈ L2((R, σ̃∞)),

ψ̃−σ(µ, · ) ∈ L2((R,−σ∞)), µ 6= µ̃,

U(µ̃,σ̃)(z)ψ±(z) ∈ L2((R,±∞)), R ∈ R

(3.26)

(justifying the notation we chose for ψ̃σ̃(µ̃, x) and ψ̃−σ(µ, x)).

Proof. Let H̃D
(µ̃,σ̃),ω denote the Dirichlet operators (2.37) corresponding to τ̃(µ̃,σ̃) on the half-

line (x0, ω∞), ω ∈ {−,+}. Since m̃(µ̃,σ̃),σ̃(z) has a pole at z = µ̃ by Corollary 3.3, one infers

µ̃ ∈ σd(H̃
D
(µ̃,σ̃),σ̃). Moreover, since (τ̃(µ̃,σ̃) − µ̃)ψ̃σ̃(µ̃) = 0 and ψ̃σ̃(µ̃, x0) = 0 (cf. (2.29)),

ψ̃σ̃(µ̃, x) is the corresponding eigenfunction of H̃D
(µ̃,σ̃),σ̃ and hence ψ̃σ̃(µ̃) ∈ D(H̃D

(µ̃,σ̃),σ̃) sat-

isfies (3.25) and (3.26). In the case of ψ̃−σ(µ, x), µ 6= µ̃, one verifies that

m̃(µ̃,σ̃),−σ(µ) = m−σ̃(µ̃) = ψ′−σ̃(µ̃, x0)/ψ−σ̃(µ̃, x0) = ψ̃′−σ(µ, x0)
/
ψ̃−σ(µ, x0)
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and hence (3.25) and (3.26) are valid for ψ̃−σ(µ). Finally, as a consequence of (2.15), one
infers that

ψ±(z, x) = c±(z)[θ(z, x) +m±(z)φ(z, x)], z ∈ C\σ(H) (3.27)

for some constants c±(z). Combining (3.11), (3.17), and applying U(µ̃,σ̃)(z) to (3.27) results
in

((U(µ̃,σ̃)(z)ψ±(z))(x) =

c±(z)
z − µ̃
z − µ

[θ̃(µ̃,σ̃)(z, x) + m̃(µ̃,σ̃)(z)φ̃(µ̃,σ̃)(z, x)], z ∈ C\{σ(H) ∪ {µ}}. (3.28)

Clearly, (3.28) proves that U(µ̃,σ̃)(z)ψ±(z) satisfy (3.25) and (3.26). �

Given the fundamental relation between m̃(µ̃,σ̃),±(z) and m±(z) in Theorem 3.2, we can
readily derive the ensuing relation between the corresponding spectral functions ρ̃(µ̃,σ̃),±(λ)

and ρ±(λ) associated with the half-line Dirichlet operators H̃D
(µ̃,σ̃),± and HD

± . The right-

continuous non-decreasing functions ρ±(λ) and ρ̃(µ̃,σ̃),±(λ) are defined for λ ∈ R by

ρ±(λ)− ρ±(λ′) = ± lim
δ↓0

lim
ε↓0

π−1

λ+δ∫
λ′+δ

dν Im[m±(ν + iε)] (3.29)

and

ρ̃(µ̃,σ̃),±(λ)− ρ̃(µ̃,σ̃),±(λ′) = ± lim
δ↓0

lim
ε↓0

π−1

λ+δ∫
λ′+δ

dν Im[m(µ̃,σ̃),±(ν + iε)]. (3.30)

This sets up the second major result of this section.

Theorem 3.5. Assume (H.2.3). Let HD
± and H̃D

(µ̃,σ̃),± denote the Dirichlet operators (2.4)

and (2.37), and dρ±(λ) and dρ̃(µ̃,σ̃),±(λ) the corresponding spectral measures generated by
ρ±(λ) and ρ̃(µ̃,σ̃),±(λ), respectively. Then

dρ̃(µ̃,σ̃),±(λ) =
λ− µ
λ− µ̃

dρ±(λ) + (µ̃− µ)

{
0, σ̃ = ∓
[m−(µ̃)−m+(µ̃)], σ̃ = ±

}
dθ(λ− µ̃), µ 6= µ̃,

dρ̃(µ̃,σ̃),±(λ) = dρ±(λ) +

{
0, σ = ±
(±
∫ x0

∓∞ dxφ(µ, x)2)−1, σ = ∓

}
dθ(λ− µ), (3.31)

(µ̃, σ̃) = (µ,−σ), λ ∈ R.

Here θ(x) =

{
1, x ≥ 0

0, x < 0
.

Proof. Inserting (3.17), for µ 6= µ̃ (for simplicity) into (3.30) yields

ρ̃(µ̃,σ̃),±(λ)− ρ̃(µ̃,σ̃)±(λ′) = ± lim
δ↓0

lim
ε↓0

π−1

λ+δ∫
λ′+δ

dν

{
ε2 + (ν − µ̃)(ν − µ)

(ν − µ̃)2 + ε2
Im[m±(ν + iε)]

+
(µ̃− µ)ε

(ν − µ̃)2 + ε2
{m−σ̃(µ̃)− Re[m±(ν + iε)]}

}
. (3.32)
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Since

m±(ν) are real-valued for ν ∈ [E0, E1]\{µ},
Im[m±(ν + i0)] dν has no support in a sufficiently small

neighborhood of µ̃ (since µ̃ ∈ [E0, E1]\{µ}), (3.33)

π−1 ε dν

(ν − µ̃)2 + ε2
−→
ε↓0

dθ(ν − µ̃) weakly, (3.34)

π−1Im[m±(ν + iε)] dν −→
ε↓0

dρ±(ν) weakly [49], (3.35)

lim
ε↓0

(∓iεπ−1m±(λ+ iε)) = ρ±(λ)− ρ±(λ− 0),

lim
ε↓0

(∓iεπ−1m±(λ+ iε)) ≤ ρ±(E1)− ρ±(E0 − 0), λ ∈ [E0, E1],

|επ−1m±(λ+ iε)| ≤ C, ε ∈ [0, ε0], λ ∈ [E0, E1] for some ε0 > 0, C > 0,

(3.36)

(3.32) implies (3.31) for µ 6= µ̃ by splitting the integral in (3.32) into a sufficiently small
interval around µ̃ (if µ̃ ∈ [λ′, λ]) and the remaining intervals (applying the dominated con-
vergence theorem). The case (µ̃, σ̃) = (µ,−σ) is treated analogously. �

Remark 3.6. If µ̃ 6= µ, the factor (λ − µ)/(λ − µ̃) 6= 1 in (3.31) shows that the half-

line Dirichlet deformation method HD
± → H̃D

(µ̃,σ̃),± affects all remaining norming constants

corresponding to eigenvalues of HD
± . More precisely, denote by

c2±,n =

(
∓

x0∫
±∞

dxφ(λ±,n, x)2

)−1

= ρ±(λ±,n)− ρ±(λ±,n − 0)

the norming constant associated with λ±,n ∈ σp(HD
± ), λ±,n 6= µ and denote by c̃2(µ̃,σ̃),±,n

the one associated with λ±,n ∈ σp(H̃D
(µ̃,σ̃),±). Then

c̃2(µ̃,σ̃),±,n =
λ±,n − µ
λ±,n − µ̃

c2±,n. (3.37)

Only in the case (µ̃, σ̃) = (µ,−σ), the remaining norming constants stay invariant,

c̃2(µ,−σ),±,n = c2±,n. (3.38)

In fact, the deformation (µ, σ) → (µ,−σ) coincides with the isospectral case of the double
commutation method considered in Appendix B (cf. Remark B.3(i)). The corresponding
invariance in (3.38) was originally proven in [19].

Theorem 3.5 implies the following half-line deformation result.

Theorem 3.7. Assume (H.2.3) and denote by HD
± and H̃D

(µ̃,σ̃),± the half-line Dirichlet

operators (2.4) and (2.37).

(i) Suppose µ, µ̃ ∈ (E0, E1). Then

σ(p)(H̃
D
(µ̃,σ̃),σ̃) =

{ {σ(p)(H
D
σ )\{µ}} ∪ {µ̃}, σ = σ̃

σ(p)(H
D
−σ) ∪ {µ̃}, σ = −σ̃

,

σ(p)(H̃
D
(µ̃,σ̃),−σ̃) =

{
σ(p)(H

D
σ )\{µ}, σ = −σ̃

σ(p)(H
D
−σ), σ = σ̃

, µ̃ 6= σ(HD
(µ̃,σ̃),−σ̃).

(3.39)
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(ii) Assume µ ∈ {E0, E1} ∩ σd(H), µ̃ ∈ (E0, E1). Then

σ(p)(H̃
D
(µ̃,σ̃),σ̃) = {σ(p)(H

D
σ̃ )\{µ}} ∪ {µ̃},

σ(p)(H
D
(µ̃,σ̃),−σ̃) = σ(p)(H

D
−σ̃)\{µ}, µ̃ /∈ σ(HD

(µ̃,σ̃),−σ̃).
(3.40)

(iii) Suppose µ ∈ (E0, E1), µ̃ ∈ {E0, E1} ∩ σd(H). Then

σ(p)(H̃
D
µ̃,σ) = σ(p)(H

D
σ )\{µ},

σ(p)(H
D
µ̃,−σ) = σ(p)(H

D
−σ), µ̃ /∈ σ(HD

µ̃,±).
(3.41)

(iv) Assume µ, µ̃ ∈ {E0, E1} ∩ σd(H), µ 6= µ̃. Then

σ(p)(H̃
D
µ̃,±) = σ(p)(H

D
± )\{µ}, µ̃ /∈ σ(H̃D

µ̃,±). (3.42)

(Here σ(p)( · ) denotes σ( · ) or σp( · ) (the point spectrum, i.e., the set of eigenvalues)

and we recall our occasional use of the notation of H̃D
µ̃,± instead of H̃D

(µ̃,σ̃),± if µ̃ ∈
σd(H), cf. the paragraph preceding Lemma 2.2.)

(v)

σess, ac, sc(H̃D
(µ̃,σ̃),±) = σess, ac, sc(HD

± ). (3.43)

Moreover, H̃D
(µ̃,σ̃),± and HD

± , restricted to the orthogonal complements of the (at most

one-dimensional, possibly equaling {0}) eigenspaces corresponding to µ̃ and µ, are
unitarily equivalent.

Proof. This is a direct consequence of Corollary 3.3, Theorem 3.5, and the fact that half-
line spectra corresponding to separated boundary conditions are simple. In particular, we
note that by Corollary 3.4(i) and (iii), m̃(µ̃,σ̃),±(z) are holomorphic in a sufficiently small
neighborhood of µ and/or µ̃ whenever they belong to σd(H). �

As long as µ, µ̃ ∈ (E0, E1) and hence µ, µ̃ /∈ σd(H), (3.39) just says that the Dirichlet
datum (µ, σ) associated with HD = HD

− ⊕HD
+ got changed into the Dirichlet datum (µ̃, σ̃)

associated with H̃D
(µ̃,σ̃) = H̃D

(µ̃,σ̃),− ⊕ H̃D
(µ̃,σ̃),+. The cases (ii)–(iv) examine all remaining

possibilities where µ and/or µ̃ belong to σd(H) and possibly σd(H
D
± ) in which case, however,

they no longer belong to σd(H̃
D
(µ̃,σ̃)).

We have yet to show that our choices I–III of boundary conditions of H̃(µ̃,σ̃) in (2.32)–
(2.35) are indeed the only ones that lead to our fundamental formula (3.17) as claimed after
(2.35). We only need to focus on l.c. cases and hence assume that τ̃ is l.c. at ±∞. By

Lemma 3.1, the m-functions m̃(µ̃,σ̃),±(z) of H̃(µ̃,σ̃) can be computed as follows,

m̃(µ̃,σ̃),±(z) = − lim
x→±∞

W (f̃(λ), θ̃(µ̃,σ̃)(z))(x)

W (f̃(λ), φ̃(µ̃,σ̃)(z))(x)
, (3.44)

where (τ̃(µ̃,σ̃) − λ)f̃(λ) = 0 for some λ ∈ R. Consider a corresponding f(λ, x) satisfying

(τ − λ)f(λ) = 0 and f̃(λ) = U(µ̃,σ̃)(λ)f(λ). Then (3.44) becomes

m̃(µ̃,σ̃),±(z) =
z − µ
z − µ̃

[
− lim
x→±∞

W (U(µ̃,σ̃)(λ)f(λ), U(µ̃,σ̃)(z)θ(z))(x)

W (U(µ̃,σ̃)(λ)f(λ), U(µ̃,σ̃)(z)φ(z))(x)

]
− µ̃− µ
z − µ̃

m−σ̃(µ̃).

(3.45)
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Applying (3.7) to (3.45) then yields

z − µ̃
z − µ

{
m̃(µ̃,σ̃),±(z) +

µ̃− µ
z − µ̃

m−σ̃(µ̃)

}
= − lim

x→±∞

{
(λ− µ̃)W (f(λ), φ(z))(x)

− (λ− z)(µ̃− µ)

z − µ
W (ψσ(µ), φ(z))(x)W (f(λ), ψ−σ(µ̃))(x)

W (ψσ(µ), ψ−σ̃(µ̃))(x)

}{
(λ− µ̃)W (f(λ), θ(z))(x)

− (λ− z)(µ̃− µ)

z − µ
W (ψσ(µ), θ(z))(x)W (f(λ), ψ−σ(µ̃))(x)

W (ψσ(µ), ψ−σ̃(µ̃))(x)

}
. (3.46)

In order to reproduce (3.17), the right-hand side of (3.46) would have to equal

− lim
x→±∞

W (η(λ), θ(z))(x)

W (η(λ), φ(z))(x)
= m±(z) (3.47)

for some real-valued solution η(z, x) of (τ − λ)ψ(λ) = 0 which satisfies the boundary condi-
tions of H at ±∞. Clearly, f(λ, x) = ψσ(µ, x) and f(λ, x) = ψ−σ̃(µ̃, x) are distinguished in
(3.46) and these were precisely the cases we singled out in (2.32)–(2.35). No other choice of
f(λ, x) in (3.46) is compatible with (3.47).

§4. Spectral and Weyl-Titchmarsh Matrices, Isospectral Deformations

In this section we prove our principal results including explicit computations of the Weyl-
Titchmarsh and spectral matrices of H̃(µ̃,σ̃) in terms of those of H. Moreover, we provide a

complete spectral characterization of H̃(µ̃,σ̃) and H̃D
(µ̃,σ̃) in terms of H and HD.

We start with the Weyl-Titchmarsh matrices for H and H̃(µ̃,σ̃). To fix notation, we

introduce the Weyl-Titchmarsh M -matrix in C2 associated with H by

M(z) = (Mp,q(z))1≤p,q≤2

= [m−(z)−m+(z)]−1

(
m−(z)m+(z) [m−(z) +m+(z)]/2

[m−(z) +m+(z)]/2 1

)
, z ∈ C\R

(4.1)

and similarly, in connection with H̃(µ̃,σ̃), by

M̃(µ̃,σ̃)(z) = (M̃(µ̃,σ̃),p,q(z))1≤p,q≤2

= [m̃(µ̃,σ̃),−(z)− m̃(µ̃,σ̃),+(z)]−1

×
(

m̃(µ̃,σ̃),−(z)m̃(µ̃,σ̃),+(z) [m̃(µ̃,σ̃),−(z) + m̃(µ̃,σ̃),+(z)]/2
[m̃(µ̃,σ̃),−(z) + m̃(µ̃,σ̃),+(z)]/2 1

)
, z ∈ C\R.

(4.2)

An application of Theorem 3.2 then yields

Theorem 4.1. Assume (H.2.3) and z ∈ C\R. Given H and H̃(µ̃,σ̃) by (2.3) and (2.32),
respectively, their Weyl-Titchmarsh M -matrices are related by

M̃(µ̃,σ̃),1,1(z) =
z − µ
z − µ̃

M1,1(z)− 2
µ̃− µ
z − µ̃

m−σ̃(µ̃)M1,2(z)

+
(µ̃− µ)2

(z − µ)(z − µ̃)
m−σ̃(µ̃)2M2,2(z), (4.3)

M̃(µ̃,σ̃),1,2(z) = M1,2(z)− µ̃− µ
z − µ

m−σ̃(µ̃)M2,2(z), (4.4)

M̃(µ̃,σ̃),2,2(z) =
z − µ̃
z − µ

M2,2(z), µ̃ 6= µ. (4.5)
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Equivalently,

M̃(µ̃,σ̃)(z) = (z − µ)−1(z − µ̃)−1

(
z − µ −(µ̃− µ)m−σ̃(µ̃)

0 z − µ̃

)
×M(z)

(
z − µ 0

−(µ̃− µ)m−σ̃(µ̃) z − µ̃

)
, z ∈ C\R. (4.6)

The case (µ̃, σ̃) = (µ,−σ) follows by a straightforward limiting argument (see (3.12),
(3.17), and (3.31)).

Proof. This is just a combination of (3.17), (4.1), and (4.2). �

We note that (4.3) can be written as

M̃(µ̃,σ̃),1,1(z) =
z − µ
z − µ̃

M2,2(z)

[
m+(z)− µ̃− µ

z − µ
m−σ̃(µ̃)

][
m−(z)− µ̃− µ

z − µ
m−σ̃(µ̃)

]
. (4.7)

A close examination of M̃(µ̃,σ̃)(z) then reveals the following behavior near µ and µ̃.

Corollary 4.2. M̃(µ̃,σ̃)(z) is holomorphic in a neighborhood of µ and µ̃ (for all values of µ
and µ̃ admitted by (H.2.3)).

Proof. It suffices to examine the pole structure (or better, the lack thereof) of M̃(µ̃,σ̃),p,p(z),

p = 1, 2 since det[M̃(z)] = − 1
4 then controls that one of M̃(µ̃,σ̃),1,2(z) as well. The proof then

proceeds along a case-by-case study depending on whether µ, respectively µ̃, lie in (E0, E1)
or in {E0, E1} ∩ σd(H). More specifically, one uses (3.26)–(3.28),

m−(µ̃) = m+(µ̃), M2,2(z) =
z→µ̃

c(z − µ̃)−1 +O(1), c ∈ R\{0}

if and only if µ̃ ∈ σd(H)\σd(HD)
(4.8)

and

M2,2(z) =
z→µ

c(z − µ) +O((z − µ)2), c ∈ R\{0} for µ ∈ [E0, E1] ∩ σd(HD). (4.9)

The holomorphy assertion then follows directly from (4.5) and (4.7). �

Given the basic connection between M̃(µ̃,σ̃)(z) and M(z) in Theorem 4.1, we can now
proceed to derive the analogous relations between the spectral matrices ρ̃(µ̃,σ̃)(λ) and ρ(λ)

associated with H̃(µ̃,σ̃) and H, respectively. The right-continuous non-decreasing matrices

ρ(λ) and ρ̃(µ̃,σ̃)(λ) in C2 are defined for λ ∈ R by

ρ(λ) = (ρp,q(λ))1≤p,q≤2, ρ̃(µ̃,σ̃)(λ) = (ρ̃(µ̃,σ̃),p,q(λ))1≤p,q≤2,

ρ(λ)− ρ(λ′) = lim
δ↓0

lim
ε↓0

π−1

λ+δ∫
λ′+δ

dν Im[M(ν + iε)], (4.10)

ρ̃(µ̃,σ̃)(λ)− ρ̃(µ̃,σ̃)(λ
′) = lim

δ↓0
lim
ε↓0

π−1

λ+δ∫
λ′+δ

dν Im[M̃(ν̃,σ̃)(ν + iε)]. (4.11)

The result for ρ̃(µ̃,σ̃)(λ) in terms of that of ρ(λ) then reads as follows.
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Theorem 4.3. Assume (H.2.3). Given H and H̃(µ̃,σ̃) by (2.3) and (2.32), let dρ(λ) and

dρ̃(µ̃,σ̃)(λ) be the corresponding C2-valued spectral measures generated by ρ(λ) and ρ̃(µ̃,σ̃)(λ),
respectively. Then

dρ̃(µ̃,σ̃),1,1(λ) =
λ− µ
λ− µ̃

dρ1,1(λ)− 2
µ̃− µ
λ− µ̃

m−σ̃(µ̃) dρ1,2(λ)

+
(µ̃− µ)2

(λ− µ)(λ− µ̃)
m−σ̃(µ̃)2 dρ2,2(λ), (4.12)

dρ̃(µ̃,σ̃),1,2(λ) = dρ1,2(λ)− µ̃− µ
λ− µ

m−σ̃(µ̃) dρ2,2(λ), (4.13)

dρ̃(µ̃,σ̃),2,2(λ) =
λ− µ̃
λ− µ

dρ2,2(λ), µ̃ 6= µ. (4.14)

Equivalently,

dρ̃(µ̃,σ̃)(λ) = (λ− µ)−1(λ− µ̃)−1

(
λ− µ −(µ̃− µ)m−σ̃(µ̃)

0 λ− µ̃

)
× dρ(λ)

(
λ− µ 0

−(µ̃− µ)m−σ̃(µ̃) λ− µ̃

)
, µ̃ 6= µ. (4.15)

The case (µ̃, σ̃) = (µ,−σ) follows by a straightforward limiting argument (cf. (3.12),
(3.17), and (3.31)).

Proof. It suffices to consider ρ̃(µ̃,σ̃),2,2(λ), the remaining cases being analogous. Equation
(4.5) and

Im[M̃(µ̃,σ̃),2,2(ν+ iε)] =
ε2 + (ν − µ)(ν − µ̃)

(ν − µ)2 + ε2
Im[M2,2(ν+ iε)]+

(µ̃− µ)ε

(ν − µ)2 + ε2
Re[M2,2(ν+ iε)]

show that one can follow the proof of Theorem 3.5 step by step involving (3.34)–(3.36)
(replacing m±(z), ρ±(λ) by M2,2(z), ρ2,2(λ), etc.). �

This finally leads to the principal spectral deformation result of this paper.

Theorem 4.4. Assume (H.2.3) and let H, H̃(µ̃,σ̃), H
D, and H̃D

(µ̃,σ̃) be defined by (2.3),

(2.32), (2.4), and (2.36), respectively.

(i) Suppose µ, µ̃ ∈ (E0, E1). Then H̃(µ̃,σ̃) and H are unitarily equivalent. Moreover,

H̃D
(µ̃,σ̃) and HD, restricted to the orthogonal complements of the one-dimensional eigenspaces

corresponding to µ̃ and µ, are unitarily equivalent.
(ii) Assume µ ∈ {E0, E1} ∩ σd(H), µ̃ ∈ (E0, E1). Then

σ(p)(H̃(µ̃,σ̃)) = σ(p)(H)\{µ}, (4.16)

σ(p)(H̃
D
(µ̃,σ̃)) = {σ(p)(H

D)\{µ}} ∪ {µ̃}. (4.17)

(iii) Suppose µ ∈ (E0, E1), µ̃ ∈ {E0, E1} ∩ σd(H). Then

σ(p)(H̃µ̃) = σ(p)(H)\{µ̃}, (4.18)

σ(p)(H̃
D
µ̃ ) = σ(p)(H

D)\{µ}, µ̃ /∈ σ(H̃D
µ̃ ). (4.19)
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(iv) Assume µ, µ̃ ∈ {E0, E1} ∩ σd(H), µ 6= µ̃. Then

σ(p)(H̃µ̃) = σ(p)(H)\{E0, E1}, (4.20)

σ(p)(H̃
D
µ̃ ) = σ(p)(H

D)\{µ}, µ̃ /∈ σ(H̃D
µ̃ ). (4.21)

In cases (ii)–(iv), the corresponding pairs of operators, restricted to the obvious orthogonal
complements corresponding to µ and/or µ̃, are unitarily equivalent. In particular,

σess, ac, sc(H̃(µ̃,σ̃)) = σess, ac, sc(H̃D
(µ̃,σ̃)) = σess, ac, sc(HD) = σess, ac, sc(H). (4.22)

Proof. This is a direct consequence of Corollary 3.3, Theorems 3.5, 3.7, and 4.4, and the
orthogonal decompositions of HD = HD

− ⊕HD
+ , H̃D

(µ̃,σ̃) = H̃D
(µ̃,σ̃),− ⊕ H̃

D
(µ̃,σ̃),+. Moreover, in

connection with case (iv), one observes that µ ∈ σd(H) ∩ σd(HD) necessarily implies that
µ̃ ∈ {{E0, E1}∩σd(H)}\{µ} cannot lie in σd(H

D) (i.e., two consecutive discrete eigenvalues
of H cannot both belong to the spectrum of HD). �

Remark 4.5. Perhaps the most spectacular consequence of Theorem 4.4(i), from an in-
verse spectral point of view, is the fact that any finite number of deformations of Dirichlet
data within spectral gaps of V yields a potential Ṽ in the isospectral class of V. No fur-
ther constraints on (µj , σj), (µ̃j , σ̃j), other than (µj , σj), (µ̃j , σ̃j) ∈ (Ej−1, Ej) × {−,+},
(Ej−1, Ej) ∈ R\σ(H), j = 1, . . . , N , N ∈ N are involved.

On an intuitive level, the Dirichlet deformation method amounts to the following two-
step procedure. In the first commutation step, effected by ψσ(µ, x) in (2.19), the Dirichlet

eigenvalue µ ∈ (E0, E1) associated withH = − d2

dx2 +V on the interval (x0, σ∞) for some x0 =
x0(µ) ∈ R is moved to ∞, thereby producing a singular intermediate potential deformation
of V (x) in the process. The second commutation step, effected by ψ−σ̃(µ̃, x) in (2.19), then
moves back this “Dirichlet eigenvalue” from ∞ to µ̃ ∈ (E0, E1) associated with the interval

(x0, σ̃∞). In the latter process, the resulting deformation Ṽ(µ̃,σ̃)(x) becomes regular again
(i.e., W(µ̃,σ̃)(x) 6= 0, x ∈ R) and isospectral to the original base potential V (x).

We conclude this section with a series of remarks. A variety of additional results and
possible extensions in connection with the Dirichlet deformation method will be presented
in Section 5.

Remark 4.6. (i) The isospectral property (i) in Theorem 4.4, in the special case of periodic
potentials V (x), has first been proven by Finkel, Isaacson, and Trubowitz [12]. Further
results can be found in Buys and Finkel [4] and Iwasaki [32] (see also [40]). Similar con-
structions in connection with Schrödinger operators on a compact interval can be found
in Pöschel and Trubowitz [48] and Ralston and Trubowitz [49] (see our discussion in the
introduction).

(ii) By inspection, Dirichlet deformations produce the commuting diagram

(µ2, σ2)

↗ ↘
(µ1, σ1) −→ (µ3, σ3)

for (µj , σj) ∈ [E0, E1]× {−,+}, 1 ≤ j ≤ 3 according to (H.2.3).
(iii) Let µ ∈ (E0, E1). Then the (isospectral) Dirichlet deformation (µ, σ) → (µ,−σ) is

precisely the isospectral case of the double commutation method considered in Appendix B
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(see Remark B.3(i)). It simply flips the Dirichlet eigenvalue µ on the half-line (x0, σ∞) to
the other half-line (x0,−σ∞). In the special case where V (x) is periodic, this procedure has
first been used by McKean and van Moerbeke [46].

(iv) In analogy to Remark 3.6, the Dirichlet deformation method as displayed in (4.12)–
(4.14) changes magnitudes of discontinuities of ρ(λ) at all eigenvalues λn ∈ σp(H) as long
as µ̃ 6= µ. Even in the special case (µ̃, σ̃) = (µ,−σ) discussed in item (iii) above, one obtains
invariance of the magnitudes of jumps at λn only for the spectral matrix element ρ2,2(λ).

(v) In the non-isospectral cases (ii)–(iv), a combination of the present Dirichlet deforma-
tion method with the double commutation method in Appendix B can restore isospectrality
by inserting an eigenvalue at µ, µ̃, or both.

Remark 4.7. In certain cases where the base (background) potential V is reflectionless
(cf. (5.6)) and H is bounded from below and has no singularly continuous spectrum, the

isospectral class Iso(V ) of V (the set of all Ṽ ’s such that σ(H̃) = σ(H)) is completely char-
acterized by the distribution of Dirichlet (initial) data (µj+1(x0), σj+1(x0)) ∈ [Ej , Ej+1] ×
{−,+}, j ∈ J in non-trivial spectral gaps of H. Here x0 ∈ R is a fixed reference point and
J = {0, 1, . . . , N −1}, N ∈ N or j ∈ J = N0 (= N∪{0}) parametrizes these non-trivial spec-
tral gaps (Ej , Ej+1) of H (the trivial one being (−∞, inf σ(H))). Prime examples of this type
are periodic potentials, algebro-geometric quasi-periodic finite-gap potentials, and certain
limiting cases thereof (e.g., soliton potentials). In these cases, an iteration of the Dirichlet
deformation method, in the sense that (µj+1(x0), σj+1(x0)) → (µ̃j+1(x0), σ̃j+1(x0)) within
[Ej , Ej+1] × {−,+} for each j ∈ J , independently of each other (cf. (5.4), (5.5)) yields an
explicit realization of the underlying isospectral class Iso(V ) of potentials with base V. In
the periodic case, this has first been proved by Finkel, Isaacson, and Trubowitz [12] (see also
[4], [32]). More precisely, the inclusion of limiting cases µj+1(x0) ∈ {Ej , Ej+1} ∩ σess(H)
requires a special argument (since it is excluded by (H.2.3)) but this can be provided in the
special cases at hand.

Remark 4.8. Another case of primary interest concerns potentials V with purely discrete
spectra bounded from below, that is,

σ(H) = σd(H) = {Ej}j∈N0
, −∞ < E0, Ej < Ej+1, j ∈ N0,

σess(H) = ∅.

(For simplicity, one may think in terms of the harmonic oscillator V (x) = x2, [38], [45].) In
this case, either

(µj+1(x0), σj+1(x0)) ∈ (Ej , Ej+1)× {−,+}

or
µj+1(x0) = Ej+1 = µj+2(x0),

that is, Dirichlet eigenvalues necessarily meet in pairs whenever they hit an eigenvalue of H.
The following trace formula for V (x) in terms of σ(H) = {Ej}j∈N0

and σ(HD
x ) = {µj(x)}j∈N

(HD
y the Dirichlet operator associated with τ = − d2

dx2 + V (x) and an additional Dirichlet
boundary condition at x = y), proven in [24],

V (x) = E0 + lim
α↓0

α−1
∞∑
j=1

(2e−αµj(x) − e−αEj − e−αEj+1), (4.23)

then shows one crucial difference to the periodic-type cases mentioned previously. Unlike
in the periodic case, though, the initial Dirichlet eigenvalues µj+1(x0) cannot be prescribed
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arbitrarily in the spectral gaps (Ej , Ej+1) of H. Indeed, the fact that the Abelian regu-
larization in the trace formula (4.23) for V (x) converges to a limit restricts the asymptotic
distribution of µj+1(x) ∈ [Ej , Ej+1] as j → ∞. However, as stressed in Remark 4.5, one
of the fundamental consequences of this paper concerns the fact that there is no such re-
striction for any finite number of spectral gaps of H (see (5.4), (5.5)). In other words, only
the tail end of the Dirichlet eigenvalues µj+1(x0) as j →∞ is restricted (the precise nature
of this restriction being unknown at this point), any finite number of them can be placed
arbitrarily in the spectral gaps (Ej , Ej+1) (with the obvious “crossing” restrictions at the
common boundary Ej+1 of (Ej , Ej+1) and (Ej+1, Ej+2)). This fact served as one of our
prime motivations for this paper.The only other known restriction to date on Dirichlet ini-
tial data (µj(x0), σj(x0)) is that σj(x0) = − and σj(x0) = + infinitely often, that is, both
half-lines (−∞, x0) and (x0,∞) support (naturally) infinitely many Dirichlet eigenvalues.

The general characterization of the full isospectral class of operators with purely discrete
spectra remains a (very interesting) open problem. It is quite surprising that more than sixty
years after the founding of quantum mechanics, the isospectral class of the one-dimensional
harmonic oscillator remains shrouded in mystery.

Finally, it seems appropriate to comment on the map from V to Dirichlet data alluded
to in the introduction and describe the role played by the additional parameter needed in
the Dirichlet data in the special case where eigenvalues of HD and H coincide.

Remark 4.9. Suppose H (and hence HD) has empty essential spectrum and is bounded from
below. In order to show that the map from V to Dirichlet data (suitable interpreted to allow
for eigenvalue coincidences of HD and H) is one-one when defined on the isospectral set of V ,
one can use results in [23] and [24] as follows. Since the spectra of both H and HD are purely
discrete they determine the diagonal Green’s function G(z, x0, x0) = [m−(z)−m+(z)]−1 by
formula (6.7) of [24]. Moreover, since the Weyl m-functions are meromorphic, we only need
to know whether the pole of G(z, x0, x0)−1 at each z = µ belongs to m+(z) or m−(z) in
order to recover m±(z), that is, we need σ as in (2.7). If µ is an eigenvalue of HD and
H, and hence a pole of m−(z) and m+(z), σ is not merely a sign but needs to contain the
information about how the residue of G(z, x0, x0)−1 at z = µ is distributed between m+(z)
and m−(z) as discussed in Theorem 3.6 of [23]. A convenient choice for this additional
parameter (see, e.g., [20]) would be σ = (γ+−γ−)/(γ+ +γ−) ∈ (−1, 1), where γ± denote the
respective residues of m±(z) at z = µ. In this extended sense (when compared to (2.7)) the
spectrum of H and the Dirichlet data (µ, σ) uniquely determine V (x) for a.e. x ∈ R. These
considerations are not confined to operators with purely discrete spectra but also apply to
situations where H is reflectionless and has no singularly continuous spectrum. This has
been discussed in the context of Jacobi operators in [20] but analogous arguments work in
the Schrödinger operator case.

Remark 4.10. The additional parameter σ0 introduced in Remark 4.9 in the case where E0

is an eigenvalue of H and HD (and both have purely discrete spectra) can be tuned to
produce all corresponding isospectral potentials in Iso(V ). In fact, the double commutation
procedure (see Appendix B) allows to add/subtract γ̃1 to the residues of the Weyl m-
functions (see (B.27)) as long as the term under the logarithm in (B.14) does not become
zero.

In addition, one can use the following three-step procedure to generate a prescribed
degeneracy at an eigenvalue E0 of H:

(i) Use the Dirichlet deformation method to move µ to a discrete eigenvalue E0 of H.
(This removes both the discrete eigenvalue E0 of H and the (Dirichlet) eigenvalue µ of HD).
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(ii) As a consequence of step (i), there is now another eigenvalue µ̃ of HD in the resulting
larger spectral gap of H. Move µ̃ to E0 using the Dirichlet deformation method.

(iii) Use the double commutation method to insert an eigenvalue of H at E0.
Finally, use the method at the beginning of this remark to change σ0 into any allowed

value.
Theorems 3.7 and B.2 then show that the resulting operator is unitarily equivalent to

the original operator H, and (3.17) and (B.27) then prove that the remaining Dirichlet
eigenvalues remain invariant.

§5. Various Additional Results and Possible Extensions

In our final section we discuss a variety of additional results and sketch possible exten-
sions, including limit point/limit circle considerations, iterations of the Dirichlet deformation
procedure, scattering theory, and general Sturm-Liouville operators on arbitrary intervals.

We start with two limit point results. The first, although trivial from a technical point
of view, nevertheless will apply in a great variety of situations.

Lemma 5.1. Assume (H.2.3) and define H and HD
± as in (2.3) and (2.4). Let σ ∈ {−,+}

and suppose that one of the following conditions (i)–(iii) holds.

(i) σess(H
D
σ ) 6= ∅.

(ii) σess(H
D
σ ) = ∅ and HD

σ is bounded from below.
(iii) σ(HD

σ ) = σd(H
D
σ ) = {Eσ,n}n∈Z with

∑
n∈Z(1 + E2

σ,n)−1 =∞.

Then, both τ and τ̃(µ̃,σ̃) are in the limit point case at σ∞.

Proof. Clearly, τ is l.p. at σ∞ if condition (i) holds since differential expressions being
regular at x0 and l.c. at σ∞ can only generate self-adjoint operators in L2((x0, σ∞)) with
purely discrete spectra. (Indeed, all solutions of τψ = zψ, z ∈ C being in L2((x0, σ∞)) yield
a compact, in fact, Hilbert-Schmidt resolvent). These spectra necessarily accumulate at +∞
and −∞ (see, e.g., Lemma C.1 in [19] for a short argument based on principal solutions in
Hartman’s terminology.) Finally, the Hilbert-Schmidt argument for the resolvent would lead
to
∑
n∈Z(1 +E2

n)−1 <∞ for the corresponding eigenvalues {En}n∈Z in the l.c. case at σ∞.

Theorem 3.7 then shows that H̃D
(µ̃,σ̃),σ shares the corresponding property (i), (ii), or (iii),

rendering τ̃(µ̃,σ̃) l.p. at σ∞ as well. �

Our second limit point result is a bit more refined and tailored toward the Dirichlet
deformation method (denoted as DDM for brevity in the remainder of this section).

Lemma 5.2. In addition to (H.2.3), assume that µ, µ̃ ∈ (E0, E1), µ 6= µ̃ and σ̃ = σ. Then
τ̃(µ̃,σ) is in the limit point (resp., limit circle) case at ω∞ if and only if τ is limit point
(resp., limit circle) at ω∞, ω ∈ {−,+}.

Proof. Assume that τ is l.p. at ω∞ and suppose the contrary for τ̃(µ̃,σ), that is, suppose
τ̃(µ̃,σ) is l.c. at ω∞ and hence

ψ̃σ(µ̃, · ), ψ̃−σ(µ, · ) ∈ L2((x0, ω∞)). (5.1)

Since by hypothesis, τ is l.p. at ω∞, both functions in (5.1) generate the same m-function

m̃(µ̃,σ̃),ω(z) associated with H̃(µ̃,σ̃) on (x0, ω∞). This follows directly from (3.18) and (3.19).

In particular, both ψ̃σ(µ̃, x) and ψ−σ(µ, x) fulfill the boundary conditions of H̃(µ̃,σ̃) and the
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analog of (3.25) at ω∞. As a consequence of (5.1), we obtain existence, in fact, vanishing
of the limit

lim
x→ω∞

W (ψ̃σ(µ̃), ψ̃−σ(µ))(x) = 0.

Since by Corollary 3.4 ψ̃σ(µ̃, · ) ∈ L2((x0, σ∞)) and ψ̃−σ(µ, · ) ∈ L2((x0,−σ∞)) satisfy

lim
x→σ∞

W (ψ̃σ(µ̃), g̃)(x) = 0, lim
x→−σ∞

W (ψ̃−σ(µ̃), g̃)(x) = 0

for all g̃ ∈ D(H̃(µ̃,σ)), we arrive at the following case distinction. Either

(i) ω = σ. Then ψ̃−σ(µ) ∈ D(H̃(µ̃,σ)) and hence µ ∈ σp(H̃(µ̃,σ)),
or

(ii) ω = −σ. Then ψ̃σ(µ̃) ∈ D(H̃(µ̃,σ)) and hence µ̃ ∈ σp(H̃(µ̃,σ)).

Either way, since σ(H̃(µ̃,σ)) = σ(H) by Theorem 4.4(i), we get a contradiction since by
hypothesis µ, µ̃ ∈ (E0, E1) ⊂ R\σ(H). If τ is l.c. at ω∞, suppose τ̃(µ̃,σ̃) is l.p. at ω∞. By
studying the reverse deformation (µ̃, σ) → (µ, σ), τ would have to be l.p. at ω∞ by our
previous argument. This contradiction shows τ̃(µ̃,σ) is l.c. at ω∞. By symmetry in τ and
τ̃(µ̃,σ), the proof is complete. �

After these encouraging results, we shall take a chance (and possibly disappoint the
reader) by describing a construction showing that DDM in general neither respects the
l.c. nor the l.p. case if σ̃ = −σ. More precisely, we will construct an example where we
“hop” from l.c. to l.p. and then back to a l.c. case. This illustrates our warning raised in
the paragraph following (2.3).

Lemma 5.3. If σ̃ = −σ, the Dirichlet deformation method (as presented by (H.2.3), (2.3),
and (2.32)), in general, neither preserves the limit point nor limit circle case.

Proof. Let µ ∈ (E0, E1) and choose H in such a way that τ is l.c. at σ∞ but l.p. at −σ∞
by assuming σess(H

D
−σ) 6= ∅. Now consider the (sign flip) deformation (µ, σ) → (µ,−σ).

Clearly, τ̃(µ,−σ) is l.p. at −σ∞ since σess(H̃
D
(µ,σ),−σ) = σess(H

D
−σ) 6= ∅. However, we claim

that τ̃(µ,−σ) is l.p. at σ∞ as well. To prove this assertion, we suppose the contrary, that
is, we assume τ̃(µ,−σ) to be l.c. at σ∞. Then the left-hand side of the following identity
(cf. (2.17))

ψ̃−σ(µ, x)ψ̃−σ(µ, x) = − d

dx

( x∫
σ∞

dx′ ψσ(µ, x′)2

)−1

is in L1((x0, σ∞)). However, the right-hand side is clearly not integrable near σ∞, providing
the desired contradiction. Hence, τ̃(µ,−σ) is indeed l.p. at ±∞. A further sign flip, that is,
(µ,−σ) → (µ, σ), restores the original differential expression τ which was l.c. at σ∞ (see
Remark 4.6(ii)). Summarizing,

τ −→ τ̃(µ,−σ) −→ ˜(τ̃(µ,−σ))(µ,σ)
= τ, (5.2)

that is, in obvious notation,

(µ, σ)
l.c.

−→ (µ,−σ)
l.p.

−→ (µ, σ)
l.c.

, (5.3)

displays the required deformations. �
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By Remark 4.6(ii) again, (5.3) can be modified to an example of the type

(µ, σ)
l.p.

−→ (µ̃,−σ)
l.c.

, µ, µ̃ ∈ (E0, E1), µ 6= µ̃

using the chain

(µ, σ)
l.p.

−→ (µ̃, σ)
l.p.

−→ (µ̃,−σ)
l.c.

(relying on Lemma 5.2 in the first step).
Next, we briefly comment on how to iterate DDM (see [4], [12]). Suppose V ∈ L1

loc(R)
and

(En, En+1), µn+1, µ̃n+1 ∈ [En, En+1], σn+1, σ̃n+1 ∈ {−,+}

satisfy (H.2.3) for each n = 0, 1, . . . , N − 1, N ∈ N. Then the Dirichlet deformation result
after N steps, denoted by τ̃(µ̃1,σ̃1),...,(µ̃N ,σ̃N ), reads as follows.

τ̃(µ̃1,σ̃1),...,(µ̃N ,σ̃N ) = − d2

dx2
+ Ṽ(µ̃1,σ̃1),...,(µ̃N ,σ̃N )(x),

Ṽ(µ̃1,σ̃1),...,(µ̃N ,σ̃N )(x) = V (x)− 2
{

ln[W(µ̃1,σ̃1),...,(µ̃N ,σ̃N )(x)]
}′′
, x ∈ R, (5.4)

W(µ̃1,σ̃1),...,(µ̃N ,σ̃N )(x) =
W (ψσ1(µ1), ψ−σ̃(µ̃1), . . . , ψσN

(µN ), ψ−σ̃N
(µ̃N ))(x)

(µ̃1 − µ1) . . . (µ̃N − µN )
,

µn+1, µ̃n+1 ∈ [En, En+1], µn 6= µ̃n, 0 ≤ n ≤ N − 1.
(5.5)

In case (µ̃n0 , σ̃n0) = (µn0 ,−σn0) for some 0 ≤ n0 ≤ N − 1, one amends (5.5) by replacing

the pair (µ̃n0
−µn0

)−1(ψσn0
(µ̃n0

), ψ−σ̃n0
(µ̃n0

)) by (ψσn0
(µn0

), ψ̇σn0
(µn0

)) (where “ · ” abbre-

viates d/dλ). It should perhaps be pointed out that W (ψσ1(µ1), . . . , ψ−σ̃N
(µ̃N ))(x) in (5.5)

denotes a slightly modified 2N × 2N Wronskian of solutions of τψ(z) = zψ(z). In partic-
ular, it is understood that ψ′′(z, x) must be replaced by (V (x) − z)ψ(z, x) with −zψ(z, x)
remaining, and similarly for higher derivatives of ψ. At the end of this process only ψ, ψ′,
and z enter (5.5) and no additional smoothness on V is required. At this point each of our
previous results has an obvious counterpart in connection with (5.4), (5.5).

Next, we will show that DDM leaves reflectionless potentials invariant. We recall that H
(resp. V ) is called reflectionless if and only if

for all x ∈ R, arg(G(λ+ i0, x, x)) = π/2 for (Lebesgue) a.e. λ ∈ σess(H). (5.6)

Here G(z, x, x′) denotes the Green’s function of H (i.e., the integral kernel of (H − z)−1)
and G(λ+ i0, x, x) = limε↓0G(λ+ iε, x, x) in obvious notation. As discussed in [21], (5.6) is
equivalent to

m+(λ+ i0) = m−(λ+ i0) for a.e. λ ∈ σess(H). (5.7)

This then implies

Lemma 5.4. Assume (H.2.3). Then H̃(µ̃,σ̃), is reflectionless if and only if H is.

Proof. By (3.17) and Theorem 4.4, one observes that (5.7) holds if and only if

m̃(µ̃,σ̃),+(λ+ i0) = m̃(µ̃,σ̃),−(λ+ i0) for a.e. λ ∈ σess(H̃(µ̃,σ̃)) = σess(H). �
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Since
G(z, x0, x0) = [m−(z)−m+(z)]−1, (5.8)

we might add the fact that by (4.2) and (4.5),

G̃(µ̃,σ̃)(z, x0, x0) =
z − µ̃
z − µ

G(z, x0, x0), (5.9)

where G̃(µ̃,σ̃)(z, x, x
′) denotes the Green’s function of H̃(µ̃,σ̃). (5.9) again underscores the

change µ→ µ̃ (but it stops short of indicating σ → σ̃).
In the following we describe how to define DDM for general Sturm-Liouville operators. To

keep this section within a reasonable length, we only point out the major changes required
in this context.

V ∈ L1
loc(R) real-valued, x0 ∈ R→ p−1, q,k ∈ L1

loc((a, b)), kp ∈ ACloc((a, b))

p > 0, k > 0, q real-valued,

−∞ ≤ a < b ≤ ∞, x0 ∈ (a, b),

f ′ → pf ′,

W (f, g)(x)→ Ŵ (f, g)(x) = f(x)p(x)g′(x)− p(x)f ′(x)g(x),

L2(R)→ L2((a, b); kdx),

τ → τ̂ =
1

k(x)

(
− d

dx
p(x)

d

dx
+ q(x)

)
, x ∈ (a, b), (5.10)

τ̃(µ̃,σ̃) → ˜̂τ (µ̃,σ̃) =
1

k(x)

(
− d

dx
p(x)

d

dx
+ q̃(µ̃,σ̃)(x)

)
,

q̃(µ̃,σ̃)(x) = q(x) +

(
1

k(x)
(k(x)p(x))′ − 2

d

dx
p(x)

)
d

dx
ln[Ŵ(µ̃,σ̃)(x)],

Ŵ(µ̃,σ̃)(x) =

{
(µ̃− µ)−1Ŵ (ψσ(µ), ψ−σ̃(µ̃))(x), µ, µ̃ ∈ [E0, E1], µ 6= µ̃

−σ
∫ x
σ∞ k(x′) dx′ψσ(µ, x′)2, (µ̃, σ̃) = (µ,−σ), µ ∈ (E0, E1)

,

τψσ(µ) = µψσ(µ), τψ−σ̃(µ̃) = µ̃ψ−σ̃(µ̃).

Since (a generalization of ) Lemma 2.2 is actually proven in [25] for the general Sturm-
Liouville case on (a, b), every result in this paper extends to the general setting in (5.10).
In particular, the fundamental Theorems 3.2, 3.5, 3.7, 4.1, 4.3, and 4.4 (replacing φ(µ, x′)2

by k(x′)φ(µ, x′)2 if (µ̃, σ̃) = (µ,−σ)) do not change at all.
Next, we turn to short-range scattering. Assuming temporarily

V ∈ L1(R, (1 + |x|) dx) to be real-valued, (5.11)

the Jost solutions f±(z, x) associated with V are defined as usual by

f±(z, x) = e±iz
1/2x +

x∫
±∞

dx′ z−1/2 sin[z1/2(x− x′)]V (x′)f±(z, x′), z ∈ C\{0}, Im(z1/2) ≥ 0.

(5.12)
Denoting

f±(λ, x) = lim
ε↓0

f±(λ+ iε, x), λ > 0, (5.13)
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one obtains

f±(λ, x) =
1

T (λ)
f∓(λ, x) +

R
`
r(λ)

T (λ)
f∓(λ, x), λ > 0 (5.14)

and

T (λ) =
2iλ1/2

W (f−(λ), f+(λ))
,

R`(λ) = −W (f−(λ), f+(λ))

W (f−(λ), f+(λ))
, Rr(λ) = −W (f−(λ), f+(λ))

W (f−(λ), f+(λ))
, λ > 0

(5.15)

define the scattering matrix S(λ) in C2 associated with the pair (H,H0), where H0 = − d2

dx2 ,

D(H0) = H2,2(R),

S(λ) =

(
T (λ) Rr(λ)
R`(λ) T (λ)

)
, λ > 0. (5.16)

(5.12) and (5.14) then yield (see, e.g. [8], Section 2)

f±(λ, x) =

 e±iλ
1/2x + o(1), x→ ±∞

1
T (λ)e

±iλ1/2x + R
`
r(λ)
T (λ) e

∓iλ1/2x + o(1), x→ ∓∞,
,

f ′±(λ, x) =

 ±iλ
1/2e±iλ

1/2x + o(1), x→ ±∞

±iλ1/2

T (λ) e
±iλ1/2x ∓ iλ1/2R

`
r(λ)
T (λ) e

∓iλ1/2x + o(1), x→ ∓∞
, λ > 0.

(5.17)

The following result proves that DDM preserves the class of L1(R; (1 + |x|) dx) potentials

and computes the scattering matrix S̃(µ̃,σ̃)(λ),

S̃(µ̃,σ̃)(λ) =

(
T̃(µ̃,σ̃)(λ) R̃r(µ̃,σ̃)(λ)

R̃`(µ̃,σ̃)(λ) T̃(µ̃,σ̃)(λ)

)
, λ > 0, (5.18)

associated with the pair (H̃(µ̃,σ̃), H0) in terms of S(λ) in (5.16) associated with (H,H0).

Lemma 5.5. In addition to (H.2.3), assume µ, µ̃ ∈ (E0, E1) ⊂ (−∞, 0). Then Ṽ(µ̃,σ̃) ∈
L1(R; (1+ |x|) dx) if and only if V ∈ L1(R; (1+ |x|) dx) and the scattering matrices S̃(µ̃,σ̃)(λ)

and S(λ) in (5.18) and (5.16) associated with (H̃(µ̃,σ̃), H0) and (H,H0), respectively, are
related via

T̃(µ̃,σ̃)(λ) = T (λ),

R̃
`
r
(µ̃,σ̃)(λ) =

λ1/2 ∓ iσ̃(−µ̃)1/2

λ1/2 ± iσ̃(−µ̃)1/2

λ1/2 ± iσ(−µ)1/2

λ1/2 ∓ iσ(−µ)1/2
R
`
r(λ), λ > 0.

(5.19)

Proof. First, we prove that V ∈ L1(R; (1 + |x|) dx) if and only if Ṽ(µ̃,σ̃) ∈ L1(R; (1 + |x|) dx)
for µ 6= µ̃. We adopt the strategy of Deift and Trubowitz [8] in their proof of Theorem 3.2
(which treats the analog of Lemma 5.5 in the single commutation context; see Appendix A
and especially the paragraph preceding (A.32), (A.33)). Introduce

gσ(µ, x) = ψσ(µ, x)eσ(−µ)1/2x, g−σ̃(µ̃, x) = ψ−σ̃(µ̃, x)e−σ̃(−µ)1/2x, µ 6= µ̃. (5.20)
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Then Lemmas 2.1 and 2.6 of [8] yield

gσ(µ, x) = Cσ,±(µ)(1 + o(1)), x→ ±∞, (5.21)

with Cσ,±(µ) > 0 and

g′σ(µ, x) = o(1), |x| → ∞,
g′σ(µ, · ) ∈ L∞(R) ∩ L1(R; (1 + |x|) dx)

(5.22)

and similarly for g−σ̃(µ̃, x). Next, abbreviatingW (x) = W (ψσ(µ), ψ−σ̃(µ̃))(x), one computes
using (5.21),

Ṽ(µ̃,σ̃) − V = 2W−2[W ′2 −WW ′′]

= {[σ̃(−µ̃)1/2 + σ(−µ)1/2]gσg−σ̃ + gσg
′
−σ̃ − g−σ̃g′σ}−2 (5.23)

× 2(µ̃− µ){2σ̃(−µ̃)1/2g2
σg−σ̃g

′
−σ̃ + 2σ(−µ)1/2gσg

2
−σ̃g

′
σ + g2

σg
′2
−σ̃ − g2

−σ̃g
′2
σ },

µ 6= µ̃.

By (5.21) and (5.22), the right-hand side of (5.23) is clearly in L1(R; (1 + |x|) dx) at least
as long as (µ̃, σ̃) 6= (µ,−σ). The case (µ̃, σ̃) = (µ,−σ) leads to a rather cumbersome
0/0 expression in (5.23). Fortunately, this is quite irrelevant since we can simply apply
DDM twice, that is, use the deformation sequence (µ, σ) → (µ̃,−σ) → (µ,−σ) with µ̃ 6= µ
(instead of (µ, σ) → (µ,−σ) in one step) by appealing to Remark 4.6(ii). This then proves

Ṽ(µ̃,σ̃) ∈ L1(R; (1 + |x|) dx) if and only if V ∈ L1(R; (1 + |x|) dx) in all cases.
Next, define

f̃(µ̃,σ̃),±(λ, x) = (U(µ̃,σ̃),±(λ)f±(λ))(x), λ > 0, µ̃ 6= µ

(cf. (3.1)). Then (5.17) yields

f̃(µ̃,σ̃),±(λ, x) =
λ1/2 ± iσ̃(−µ̃)1/2

λ1/2 ± iσ(−µ)1/2
[e±iλ

1/2x + o(1)], x→ ±∞,

f̃(µ̃,σ̃),±(λ, x) =
λ1/2 ± iσ̃(−µ̃)1/2

λ1/2 ± iσ(−µ)1/2

[
1

T (λ)
e±iλ

1/2x +
R
`
r(λ)

T (λ)

× λ1/2 ∓ iσ̃(−µ̃)1/2

λ1/2 ± iσ̃(−µ̃)1/2

λ1/2 ± iσ(−µ)1/2

λ1/2 ∓ iσ(−µ)1/2
e∓iλ

1/2x + o(1)

]
, x→ ∓∞

=
λ1/2 ± iσ̃(−µ̃)1/2

λ1/2 ± iσ(−µ)1/2

[
1

T̃(µ̃,σ̃)(λ)
e±iλ

1/2x +
R̃
`
r
(µ̃,σ̃)(λ)

T̃(µ̃,σ̃)(λ)
e∓iλ

1/2x + o(1)

]
,

x→ ∓∞, λ > 0, µ̃ 6= µ,

(5.24)

with T̃(µ̃,σ̃)(λ), R̃
`
r
(µ̃,σ̃)(λ) as given by (5.19). Applying this two-step procedure to S̃(µ̃,σ̃)(λ)

then proves (5.19) also in the remaining (sign flip) case (µ, σ)→ (µ,−σ). �

For simplicity we only considered the case µ, µ̃ ∈ (E0, E1) in Lemma 5.5 There is no
problem in moving µ̃ to the boundary of the interval (E0, E1) as long as the boundary



SPECTRAL DEFORMATIONS OF ONE-DIMENSIONAL SCHRÖDINGER OPERATORS 31

point in question is an eigenvalue of H (i.e., different from E1 = 0). Indeed, in the case
(µ, σ)→ µ̃ ∈ {E0, E1} ∩ σd(H), µ ∈ (E0, E1), the analog of (5.19) then reads

T̃µ̃(λ) =
λ1/2 − i(−µ̃)1/2

λ1/2 + i(−µ̃)1/2
T (λ),

R̃
`
r
µ̃(λ) =

λ1/2 − i(−µ̃)1/2

λ1/2 + i(−µ̃)1/2

λ1/2 ± iσ(−µ̃)1/2

λ1/2 ∓−iσ(−µ̃)1/2
R
`
r(λ),

λ > 0, (µ, σ) ∈ (E0, E1)× {−,+}, µ̃ ∈ {E0, E1} ∩ σd(H).

(5.25)

One observes that the transmission coefficient in (5.19) stays invariant with respect to DDM

(since Lemma 5.5 describes the isospectral case σ(p)(H̃(µ̃,σ̃)) = σ(p)(H) as µ, µ̃ ∈ (E0, E1))
whereas (5.25) exhibits a change of T (λ) (as it must since now µ̃ ∈ {E0, E1} ∩ σd(H) got

knocked out of the spectrum of H̃(µ̃,σ̃), σ(p)(H̃(µ̃,σ̃)) = σ(p)(H)\{µ̃}). In this context we
invite the reader to compare with the corresponding single and double commutation results
in Appendices A and B (see (A.32), (A.33), and (B.35), (B.36)).

Remark 5.6. It should be pointed out at the end that the material in this paper is not
at all confined to Schrödinger or Sturm-Liouville operators. In fact, (a generalization of)
Lemma 2.2 for general second-order finite-difference (Jacobi) operators appeared in [52].
Moreover, the discrete analog of DDM was used in [28] to construct an explicit realization
of the isospectral torus for algebro-geometric quasi-periodic Jacobi operators. A detailed
analysis of the discrete version of DDM will be given in [53].

Acknowledgments. F.G. is indebted to C.W. Peck and A. Kechris for kind invitations
to Caltech during the summers of 1994 and 1996 where some of this work was done. The
extraordinary hospitality and support by the Department of Mathematics at Caltech are
gratefully acknowledged.

Appendix A. The Single Commutation or Crum-Darboux Method

We briefly summarize the main spectral characteristics of the single commutation
method (abbreviated occasionally as SCM in this appendix). The principal source for the
following material is the fundamental paper by Deift [7] (see also [8], [26], [50]). Further
hints to the literature and to applications of this method in spectral theory and completely
integrable systems are collected at the end of this appendix.

Suppose

V ∈ L1
loc(R) is real valued (A.1)

and assume that the differential expression

τ = − d2

dx2
+ V (x), x ∈ R is non-oscillatory at both ±∞. (A.2)

Denote by H the uniquely associated self-adjoint operator in L2(R), maximally defined, that
is,

Hf = τf,

f ∈ D(H) = {g ∈ L2(R) | g, g′ ∈ ACloc(R); τg ∈ L2(R)}.
(A.3)
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Because of (A.2), H is bounded from below,

H ≥ Σ0, Σ0 = inf σ(H) > −∞. (A.4)

Next, let ψ±(z, x), z ∈ C\σess(H) be the unique (up to constant multiples) solutions of

τψ(z) = zψ(z) (A.5)

satisfying for all z ∈ C\σess(H), R ∈ R,

ψ±(z, , · ) ∈ L2((R,±∞)) and ψ±(λ, x) > 0 for λ < Σ0. (A.6)

(The latter condition in (A.6) can always be achieved since ψ±(λ, x) 6= 0 for λ < Σ0.) One
defines

ψν1(λ1, x) =
1

2
(1− ν1)ψ−(λ1, x) +

1

2
(1 + ν1)ψ+(λ1, x), ν1 ∈ [−1, 1], λ1 < Σ0 (A.7)

(we identify ψ±1 = ψ± for notational convenience) and

φν1(λ1, x) = ψ′ν1(λ1, x)/ψν1(λ1, x), (A.8)

αν1(λ1) =
d

dx
+ φν1(λ1, x), αν1(λ1)+ = − d

dx
+ φν1(λ1, x). (A.9)

(We note that ψν1(λ1, x) 6= 0 for λ1 < Σ0). One infers that

τ = αν1(λ1)αν1(λ1)+ + λ1 = − d2

dx2
+ V (x) (A.10)

is independent of ν1 ∈ [−1, 1] and λ1 < Σ0 and introduces a commutation of αν1(λ1) and
αν1(λ1)+,

τ̃ν1(λ1) = αν1(λ1)+αν1(λ1) + λ1 = − d2

dx2
+ Ṽν1(λ1, x), x ∈ R,

Ṽν1(λ1, x) = V (x)− 2{ln[ψν1(λ1, x)]}′′, λ1 < Σ0, ν1 ∈ [−1, 1].

(A.11)

One verifies

αν1(λ1)+ψν1(λ1) = 0, αν1(λ1)ψν1(λ1)−1 = 0,

ψ±(λ1, · ) ∈ L2((R,±∞)), ψ±(λ1, · ) /∈ L2((R,∓∞)), R ∈ R,
ψν1(λ1, · ) /∈ L2((−∞, R)) ∪ L2((R,∞)), R ∈ R,

ψν1(λ1, · )−1 ∈ L2(R), ν1 ∈ (−1, 1).

(A.12)

Next, let Aν1(λ1), Aν1(λ1)
∗
, and H̃ν1(λ1) be the following closed linear operators in L2(R)

associated with αν1(λ1), αν1(λ1)+, and τ̃ν1(λ1), respectively. Consider

D0 = {g ∈ D(H) | supp(g) compact}, (A.13)

Aν1(λ1) = αν1(λ1)|D0
. (A.14)
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Then,
Aν1(λ1)∗|D0

= αν1(λ1)+
∣∣
D0

(A.15)

and (cf. [30])

H = Aν1(λ1) Aν1(λ1)
∗

+ λ1, H̃ν1(λ1) = Aν1(λ1)
∗
Aν1(λ1) + λ1. (A.16)

In particular, by Lemma 5.1(i), τ̃ν1(λ1) (and, of course, τ) is l.p. at ±∞ since H̃ν1(λ1) ≥ λ1

(H ≥ Σ0). Let

Aν1(λ1)
∗

= Sν1(λ1)|Aν1(λ1)
∗
| = |Aν1(λ1)|Sν1(λ1),

|Aν1(λ1)
∗
| = [Aν1(λ1) Aν1(λ1)

∗
]1/2, |Aν1(λ1)| = [Aν1(λ1)

∗
Aν1(λ1)]1/2

(A.17)

denote the polar decomposition of Aν1(λ1)
∗
, where

Sν1(λ1) : L2(R)→ Ker(Aν1(λ1) )⊥ (A.18)

is unitary. At this point we used the fact that Ker(Aν1(λ1)
∗
) = {0} by the hypothe-

sis λ1 < Σ0 = inf σ(H). Moreover, we introduce the orthogonal projection P̃ν1(λ1) onto

Ker(Aν1(λ1)), that is,

P̃ν1(λ1) =

{
0, ν1 ∈ {−1, 1}
‖ψν1(λ1)−1‖−2

2 (ψν1(λ1)−1, · )ψν1(λ1)−1, ν1 ∈ (−1, 1)
(A.19)

(cf. (A.12)).

The fundamental result regarding the spectra of H and H̃ν1(λ1) then follows as a special

case of the unitary equivalence of AA
∗

and A
∗
A, restricted to the orthogonal complements

of their respective null spaces (see Deift [7]).

Theorem A.1 (Deift [7], see also [26], [50]). Let H, H̃ν1(λ1), ν1 ∈ [−1, 1], λ1 < Σ0 =

inf σ(H), and Sν1(λ1), P̃ν1(λ1) be given as in (A.3), (A.16), and (A.18), (A.19). Then

H̃ν1(λ1) � Ran(1− P̃ν1(λ1)) = Sν1(λ1)HSν1(λ1)−1, (A.20)

that is, H̃±1(λ1) and H, and H̃ν1(λ1) and H, ν1 ∈ (−1, 1), restricted to the orthogonal com-

plement of the (one-dimensional) eigenspace associated with the eigenvalue λ1 of H̃ν1(λ1),
are unitarily equivalent. In particular,

σ(p)(H̃ν1(λ1)) =

{
σ(p)(H), ν1 ∈ {−1, 1}
σ(p)(H) ∪ {λ1}, ν1 ∈ (−1, 1)

,

Ker(H̃ν1(λ1)− λ1) =

{ {0}, ν1 ∈ {−1, 1}
span{ψν1(λ1)−1}, ν1 ∈ (−1, 1)

, (A.21)

σess, ac, sc(H̃ν1(λ1)) = σess, ac, sc(H).

Next, we describe a variety of additional results and possible extensions paralleling Section
5. This is intended to facilitate comparisons with DDM as well as the double commutation
method in Appendix B.
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One verifies that

ψ̃ν1,±(z, λ1, x) = W (ψ±(z), ψν1(λ1))(x)/ψν1(λ1, x) (A.22)

satisfies
τ̃ν1(λ1)ψ̃ν1,±(z, λ1) = zψ̃ν1,±(z, λ1),

ψ̃ν1,±(z, λ1, · ) ∈ L2((R,±∞)), z ∈ C\σ(H), R ∈ R.
(A.23)

(The latter fact is proven in [26], Appendix A for z ≤ λ1; one can use (2.16) to extend it to
z ∈ C\σ(H).) Hence, normalizing ψ±(z, x) temporarily (and without loss of generality) by

ψ±(λ1, x0) = 1, x0 ∈ R fixed, (A.24)

the Weyl-Titchmarsh m-function m̃ν1,±(z, λ1) associated with H̃ν1(λ1) and the reference
point x0 is given by (cf. [21])

m̃ν1,±(z, λ1) =
z − λ1

cot(αν1(λ1))−m±(z)
− cot(αν1(λ1)),

cot(αν1(λ1)) =
1

2
(1− ν1)m−(λ1) +

1

2
(1 + ν1)m+(λ1), ν1 ∈ [−1, 1], z ∈ C\R.

(A.25)

Here use has been made of

m̃ν1,±(z, λ1) = ψ̃′ν1,±(z, λ1, x0),

(A.22), (A.24), and the fact that τ̃ν1(λ1) is l.p. at ±∞.

Given (A.25) one can compute M̃ν1(z, λ1), the Weyl-Titchmarsh M -matrix in C2 associ-

ated with H̃ν1(λ1) in terms of M(z), the M -matrix of H (see (4.1)). One obtains

M̃ν1,1,1(z, λ1) =
cot2(αν1(λ1))

z − λ1
M1,1(z) + 2 cot(αν1(λ1))

[
1− cot2(αν1(λ1))

z − λ1

]
M1,2(z)

+

[
(z − λ1)− 2 cot2(αν1(λ1)) +

cot4(αν1(λ1))

z − λ1

]
M2,2(z), (A.26)

M̃ν1,1,2(z, λ1) = −cot(αν1(λ1))

z − λ1
M1,1(z) +

[
2 cot2(αν1(λ1))

z − λ1
− 1

]
M1,2(z), (A.27)

M̃ν1,2,2(z, λ1) =
1

z − λ
M1,1(z)− 2 cot(αν1(λ1))

z − λ1
M1,2(z) +

cot2(αν1(λ1))

z − λ1
M2,2(z),

z ∈ C\R.
(A.28)

One readily confirms that all matrix elements M̃ν1,p,q(z, λ1), 1 ≤ p, q ≤ 2 have a pole at
z = λ1 if and only if ν1 ∈ (−1, 1) (i.e., if and only if cot(αν1(λ1)) 6= m±(λ1) in agreement with
Theorem A.1. Moreover, we might note that m−(λ1) 6= m+(λ1) since λ1 < Σ0 = inf σ(H).

One could use (A.26)–(A.28) to compute the corresponding C2-valued spectral matrix

ρ̃ν1(λ, λ1) of H̃ν1(λ1) in terms of ρ(λ), the one associated with H. The resulting formulas
(although providing an alternative proof of Theorem A.1), however, are rather complex and
hence omitted. (A.26)–(A.28) become simpler if the Dirichlet boundary condition ψ(x0 ±
0) = 0, used to compute m̃ν1,±(z, λ1), M̃ν1(z, λ1), is replaced by sin(αν1(λ1))ψ′(x0 ± 0) +
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cos(αν1(λ1))ψ(x0 ± 0) = 0. We will not pursue this now but return to this approach in
Appendix B.

Iterations of SCM can be handled as follows. Assume V ∈ L1
loc(R) to be real-valued and

pick λ1 < λ2 < · · · < λN < Σ0 = inf σ(H), νj ∈ [−1, 1], C±,j > 0, 1 ≤ j ≤ N , N ∈ N. Then
the SCM result after N iteration steps, denoted by τ̃ν1,...,νN (λ1, . . . , λN ), reads as follows.

τ̃ν1,...,νN (λ1, . . . , λN ) = − d2

dx2
+ Ṽν1,...,νN (λ1, . . . , λN , x), x ∈ R, (A.29)

Ṽν1,...,νN (λ1, . . . , λN , x) = V (x)− 2{ln[W (ψν1(λ1), . . . , ψνN (λN ))(x)]}′′,

ψνj (λj , x) =
1

2
(1− νj)C−,jψ−(λj , x) +

1

2
(1 + νj)C+,jψ+(λj , x), 1 ≤ j ≤ N.

The obvious analog of Theorem A.1 (distinguishing between νj ∈ (−1, 1) and νj ∈ {−1, 1})
then applies to H̃ν1,...,νN (λ1, . . . , λN ), the unique semi-bounded self-adjoint operator associ-
ated with τ̃ν1,...,νN (λ1, . . . , λN ) (see [26], Appendix A for more details).

In analogy to Lemma 5.4, one infers from (A.25) that H̃ν1(λ1) is reflectionless if and only
if H is (as observed in [21]).

In order to obtain the Sturm-Liouville generalization of (A.1)–(A.16) (see [27], [50]), one
assumes

p, p′, k, k′ ∈ ACloc((a, b), q ∈ L1
loc((a, b)) real-valued,

p > 0, k > 0,−∞ ≤ a < b ≤ ∞,
(A.30)

and makes the changes

αν1(λ1)→ α̂ν1(λ1) =
1

k(x)

(√
k(x)p(x)

d

dx
+ φν1(λ1, x)

)
,

αν1(λ1)+ → α̂ν1(λ1)+ =
1

k(x)

(
− d

dx

√
k(x)p(x) + φν1(λ1, x)

)
,

τ → τ̂ = α̂ν1(λ1)α̂ν1(λ1)+ + λ1 =
1

k(x)

(
− d

dx
p(x)

d

dx
+ q(x)

)
,

τ̃ν1(λ1)→ ˜̂τν1(λ1) = α̂ν1(λ1)+α̂ν1(λ1) + λ1 =
1

k(x)

(
− d

dx
p(x)

d

dx
+ q̃ν1(λ1, x)

)
,

q̃ν1(λ1, x) = q(x)− p′′(x)

2
+
p′(x)2

4p(x)
+

3k′(x)2p(x)

4k(x)2
− k′′(x)p(x)

2k(x)

+

(
1

k(x)
(k(x)p(x))′ − 2

d

dx
p(x)

)
d

dx
ln[ψν1(λ1, x)],

τ̂ψν1(λ1) = λ1ψν1(λ1), φν1(λ1, x) =
(√

k(x)p(x)ψν1(λ1, x)
)′/

ψν1(λ1, x).

(A.31)

It remains to sketch the scattering theory formulas analogous to (5.19), assuming V ∈
L1(R; (1+|x|) dx) to be real-valued. (We use the conventions established in (5.11)–(5.17).) It

was proved by Deift and Trubowitz ([8], Theorem 3.2) that Ṽν1(λ1) ∈ L1(R; (1+|x|) dx) if and

only if V is, and also the scattering matrix S̃ν1(λ, λ1) associated with the pair (H̃ν1(λ1), H0)
in terms of S(λ) in (5.16), the one corresponding to (H,H0), was determined as follows.

T̃ν1(λ, λ1) =
λ1/2 + i(−λ1)1/2

λ1/2 − i(−λ1)1/2
T (λ),

R̃
`
r
ν1(λ, λ1) = −λ

1/2 + i(−λ1)1/2

λ1/2 − i(−λ1)1/2
R
`
r(λ), λ > 0, λ1 < Σ0, ν1 ∈ (−1, 1),

(A.32)
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T̃ν1(λ, λ1) = T (λ),

R̃
`
r
ν1(λ, λ1) = −λ

1/2 ± iν1(−λ1)1/2

λ1/2 ∓ iν1(−λ1)1/2
R
`
r(λ), λ > 0, λ1 < Σ0, ν1 ∈ {−1, 1}.

(A.33)

Further generalizations of (A.32), (A.33) in the context of supersymmetric quantum me-
chanics can be found in [3] and [22].

The discrete analog of SCM for general second-order finite-difference (Jacobi) operators
has been developed in detail in [28].

Finally we provide a brief historical account and hints to some applications of SCM. SCM,
or as it is often called, the Crum-Darboux method, (A.7)–(A.11) goes back at least to Jacobi
[33] and Darboux [6]. Important later contributions are due to Crum [5], Schmincke [50],
and especially, Deift [7] (see also [8]). In particular, the spectral deformation results of this
method, as summarized in Theorem A.1, are due to Deift [7].

In recent years, this method has been applied to a description of the isospectral man-
ifold of periodic and algebro-geometric quasi-periodic finite-gap solutions of the (m)KdV
hierarchy (see, e.g, [10], [11], [17], [18], [22], [29], [40], [41], [42], [43], [44], and the refer-
ences therein) and the construction of soliton solutions (resp., reflectionless potentials) of the
(m)KdV hierarchy relative to given background (base) solutions (resp., potentials) by means
of Bäcklund transformations (cf., e.g., [7], [8], [14], [17], [26], [22], [42], and the literature
cited therein).

As is obvious from (A.11), ψν1(λ1, x) had to be chosen zero-free (and hence λ1 < Σ0) in
order to guarantee Vν1(λ1) ∈ L1

loc(R). This considerable restriction on the range of λ1 will
be overcome in the following appendix.

Appendix B. The Double Commutation Method

We review the double commutation method (occasionally abbreviated as DCM) to insert
eigenvalues into spectral gaps of general background (base) Schrödinger operators following
[19] and [27]. Applications of this method and pertinent references to the literature are
collected at the end of this appendix.

Assuming V satisfies

V ∈ L1
loc(R), V real-valued (B.1)

and introducing the differential expression τ = − d2

dx2 + V (x), x ∈ R, we pick λ0 ∈ R and
η±(λ0, x) satisfying

τψ(λ0) = λ0ψ(λ0),

η±(λ0, · ) ∈ L2((R,±∞)), R ∈ R, η±(λ0, x) real-valued.
(B.2)

Given η±(λ0, x), we define the self-adjoint background (base) operator H± in L2(R) via

H±f = τf,

f ∈ D(H±) = {g ∈ L2(R) | g, g′ ∈ ACloc(R); τg ∈ L2(R);

lim
x→ω∞

W (η±(λ0), g)(x) = 0 if τ is l.c. at ω∞, ω ∈ {−,+}}.
(B.3)

Our choice of notation purposely stresses a possible dependence of H± on η±(λ0, x). If τ
is in the l.p. case at ω∞, ω ∈ {−,+}, the corresponding boundary condition in (B.3) is
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superfluous at ω∞ and hence to be deleted from (B.3). In particular, if τ is l.p. at ±∞,
then H− = H+ = H is independent of the choice of η±(λ0, x).

Next, denote

L2
loc([∓∞,±∞)) = {g ∈ L2

loc(R) | g ∈ L2((∓∞, c))}

for some c ∈ R and pick γ1 ∈ (0,∞), λ1 ∈ R and ψ±(z, x) satisfying

τψ(z) = zψ(z),

ψ±(z, · ) ∈ L2((R,±∞)), z ∈ C\σess(H±), R ∈ R,
ψ±(λ, x) real-valued for λ ∈ R,

ψ±(λ1, · ) ∈ L2((R,±∞)), R ∈ R,
lim

x→ω∞
W (η±(λ0), ψ±(λ1))(x) = 0 if τ is l.c. at ω∞, ω ∈ {−,+}.

(B.4)

As in (B.3), the last condition in (B.4) is superfluous at ω∞ if τ is l.p. at ω∞, ω ∈ {−,+}.
Given γ1 > 0 and ψ±(λ1, x), we define the linear transformation

Û±,γ1(λ1) :

{
L2

loc([±∞,∓∞))→ L2
loc([±∞,∓∞))

f(x)→ f̃±,γ1(λ1, x) = f(x)± γ1ψ̃±,γ1(λ1, x)
∫ x
±∞ dx′ψ±(λ1, x

′)f(x′)
, (B.5)

where

ψ̃±,γ1(λ1, x) = (Û±,γ1(λ1)ψ±(λ1))(x) =

[
1∓ γ1

x∫
±∞

dx′ ψ±(λ1, x
′)2

]−1

ψ±(λ1, x). (B.6)

By inspection, one infers for the inverse transformation

Û±,γ1(λ1)−1 :

{
L2

loc([±∞,∓∞))→ L2
loc([±∞,∓∞))

h(x)→ h(x)∓ γ1ψ±(λ1, x)
∫ x
±∞ dx′ψ̃±,γ1(λ1, x

′)h(x′)
. (B.7)

We list a few more facts (cf. [27]) which explain Lemma B.1 and Theorem B.2 below.

1± γ1

x∫
±∞

dx′ ψ̃±,γ1(λ1, x
′)2 =

[
1∓ γ1

x∫
±∞

dx′ ψ±(λ1, x
′)2

]−1

, (B.8)

ψ̃±,γ1(λ1) ∈ L2(R), ‖ψ̃±,γ1(λ1)‖22 = γ−1
1

{
1− lim

x→∓∞

[
1∓ γ1

x∫
±∞

dx′ ψ±(λ1, x
′)2

]−1}
, (B.9)

∓
x∫

±∞

dx′ f̃±,γ1(λ1, x′) g̃±,γ1(λ1, x
′) = ∓

x∫
±∞

dx′ f(x′) g(x′)

± γ1

[
1∓ γ1

x∫
±∞

dx′ ψ±(λ1, x
′)2

]−1
x∫

±∞

dx′ ψ±(λ1, x
′)f(x′)

x∫
±∞

dx′′ ψ±(λ1, x
′′)g(x′′), (B.10)
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∓
x∫

±∞

dx′ f(x′) g(x′) = ∓
x∫

±∞

dx′ f̃±,γ1(λ1, x′) g̃±,γ1(λ1, x
′)

∓ γ1

[
1± γ1

x∫
±∞

dx′ ψ̃±,γ1(λ1, x
′)2

]−1
x∫

±∞

dx′ ψ̃±,γ1(λ1, x
′) ψ̃±,γ1(λ1, x′)

×
x∫

±∞

dx′′ ψ̃±,γ1(λ1, x
′′)g̃±,γ1(λ1, x

′′). (B.11)

Next, we denote the restriction of Û±,γ1(λ1) to L2(R) by

U±,γ1(λ1) = Û±,γ1(λ1)
∣∣∣
L2(R)

, (B.12)

define the orthogonal projections

P±(λ1) =

{
0, ψ±(λ1) /∈ L2(R)

‖ψ±(λ1)‖−2
2 (ψ±(λ1), · )ψ±(λ1), ψ±(λ1) ∈ L2(R)

,

P̃±,γ1(λ1) = ‖ψ̃±,γ1(λ1)‖−2
2 (ψ̃±,γ1(λ1), · )ψ̃±,γ1(λ1),

(B.13)

and introduce the double commutation differential expression

τ̃±,γ1(λ1) = − d2

dx2
+ Ṽ±,γ1(λ1, x), x ∈ R,

Ṽ±,γ1(λ1, x) = V (x)− 2

{
ln

[
1∓ γ1

x∫
±∞

dx′ ψ±(λ1, x
′)2

]}′′
.

(B.14)

Relations (B.5)–(B.11) then yield

Lemma B.1 [27].

(i) U±,γ1(λ1) : (1− P±(λ1))L2(R)→ (1− P̃±,γ1(λ1))L2(R) is unitary.

(ii) τ̃±,γ1(λ1)(Û±,γ1(λ1)f) = Û±,γ1(λ1)(τf).

Lemma B.1(ii) shows that U±,γ1(λ1) are transformation operators for the pairs

(H̃±,γ1(λ1), H±) in the terminology of [37], Chapter 1, [39], Chapter 1, that is, they map

solutions of τψ(z) = zψ(z), z ∈ C\{λ1} into those of τ̃±,γ1(λ1)ψ̃(z) = zψ̃(z).

The self-adjoint operator H̃±,γ1(λ1) corresponding to τ̃±,γ1(λ1) is then defined by

H̃±,γ1(λ1)f = τ̃±,γ1(λ1)f,

f ∈ D(H̃±,γ1(λ1)) = {g ∈ L2(R) | g, g′ ∈ ACloc(R); τ̃±,γ1(λ1)g ∈ L2(R); (B.15)

lim
x→ω∞

W (ψ̃±,γ1(λ1), g)(x) = 0 if τ̃±,γ1(λ1) is l.c. at ω∞, ω ∈ {−,+}}.

As usual, the last boundary condition at ω∞ in (B.15) is to be deleted if τ̃±,γ1(λ1) is l.p. at
ω∞.

The principal result concerning the spectra of H̃±,γ1(λ1) and H± then reads as follows.
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Theorem B.2 [27]. Let H±, H̃±,γ1(λ1), γ1 > 0, ψ±(λ1, x), ψ̃±,γ1(λ1, x), λ1 ∈ R, and

U±,γ1(λ1), P±(λ1), P̃±,γ1(λ1) be given as in (B.3), (B.15), (B.4), (B.6), and (B.12), (B.13).
Then

(i) λ1 ∈ σp(H̃±,γ1(λ1)) and

Ker(H̃±,γ1(λ1)− λ1) = span{ψ̃±,γ1(λ1)}. (B.16)

(ii) If ψ±(λ1) /∈ L2(R) and (and hence τ is l.p. at ±∞), one obtains

H̃±,γ1(λ1)(1− P̃±,γ1(λ1)) = U±,γ1(λ1)HU±,γ1(1− P̃±,γ1(λ1)), (B.17)

that is, H̃±,γ1(λ1) and H, restricted to the orthogonal complement of the (one-dimensional)

eigenspace associated with the eigenvalue λ1 of H̃±,γ1(λ1), are unitarily equivalent. In par-
ticular,

σ(p)(H̃±,γ1(λ1)) = σ(p)(H) ∪ {λ1}. (B.18)

(iii) If ψ±(λ1) ∈ L2(R), then there exists a unitary operator Ũ±,γ1(λ1) = Ũ±,γ1(λ1) ⊕√
1 + γ1‖ψ±(λ1)‖22 1 on (1− P±(λ1))L2(R)⊕ P±(λ1)L2(R) such that

H̃±,γ1(λ1) = Ũ±,γ1(λ1)H±Ũ±,γ1(λ1)−1. (B.19)

Moreover,
σess, ac, sc(H̃±,γ1(λ1)) = σess, ac, sc(H±) (B.20)

in cases (ii) and (iii).

Remark B.3. (i) Thus far we considered the case 0 < γ± < ∞. The limit γ± → ∞ in

(B.14) (implying ψ̃±,γ1(λ1, x) −→
γ1→∞

0 and hence P̃±,γ1(λ1) = 0) formally seems to yield an

isospectral deformation of H± when compared with Theorem B.2. One computes

τ̃±,∞(λ1) = − d2

dx2
+ Ṽ±,∞(λ1, x), x ∈ R,

Ṽ±,∞(λ1, x) = V (x)− 2

{
ln

[
∓

x∫
±∞

dx′ ψ±(λ1, x
′)2

]}′′
.

(B.21)

A quick look at (2.19) and (2.20) then shows that (B.21) is precisely the (sign flip) Dirichlet
deformation (cf. Remark 4.6(iii)) where

(λ1,±)→ (λ1,∓), τ̃±,∞(λ1) = τ̃(λ1,∓), µ = µ̃ = λ1, σ̃ = −σ = ∓. (B.22)

As a consequence of (B.22), Cases II and III in (2.34) and (2.35) coincide and the boundary

conditions in H̃(λ1,∓) (if any) are identical to those in (B.15), upon replacing ψ̃±,γ1(λ1, x)

by γ1ψ̃±,γ1(λ1, x) and formally letting γ1 →∞. Thus

H̃ω,∞(λ1) = H̃(λ1,−ω), (λ1, ω) = (µ, ω) = (µ̃,−ω), ω ∈ {−,+} (B.23)

is the right definition for the self-adjoint operator associated with τ̃ω,∞(λ1) in (B.21). Hence
the case γ1 =∞ is fully covered by Sections 3–5, and (B.21) indeed gives rise to an isospectral
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deformation of H±. The isospectral nature of (B.21) has been systematically exploited in
the context of Bäcklund transformations for the (m)KdV equation in [26].

(ii) If H± has an eigenfunction ψ±(λ1) ∈ D(H±) associated with the eigenvalue λ1,
one can reverse DCM and remove λ1 upon choosing γ1 = −‖ψ±(λ1)‖−2

2 . In this case,

ψ̃±,γ1(λ1) /∈ L2(R) and hence τ̃±,γ1(λ1) is l.p. at ±∞ (cf. [19], [27]).
(iii) Similarly to DDM (and in contrast to SCM in Appendix A where we exploited

that τ was non-oscillatory and hence l.p. at ±∞), DCM does not necessarily produce a
l.p. differential expression τ̃±,γ1(λ1) at ∓∞ even if τ was l.p. at ∓∞. In fact, one can use
(ii) above to construct an example where τ is l.p. at ∓∞ but τ̃±,γ1(λ1) is l.c. at ∓∞ ([19],
[27]). However, τ̃±,γ1(λ1) is l.p. at ±∞ if and only if τ is and τ̃±,γ1(λ1) is l.c. at ∓∞ if τ is
([19], [27]). Of course, Lemma 5.1 immediately covers the present situation upon entering
the obvious changes in notation.

Next, we turn to a computation of Weyl-Titchmarsh functions associated with H̃±,γ1(λ1)
in terms of those of H±. Since some of the following results (such as (B.26)) are new, we
provide a bit more details. First, some necessary notation. Let x0 ∈ R be a fixed reference

point and assume temporarily the notation used in Lemma 3.1. Given Ĥ, V̂ , and m̂±(z),
the corresponding m-functions associated with the half-line (x0,±∞), we define the usual
fractional linear transformation of m̂±(z),

m̂α
±(z) =

−1 + cot(α)m̂±(z)

cot(α) + m̂±(z)
, α ∈ (0, π),

m̂0
±(z) = m̂±(z), z ∈ C\R

(B.24)

and

M̂α(z) =

(
cos(α) − sin(α)
sin(α) cos(α)

)
M̂(z)

(
cos(α) − sin(α)
sin(α) cos(α)

)−1

= [m̂α
−(z)− m̂α

+(z)]−1

(
m̂α
−(z)m̂α

+(z) 1
2 [m̂α

−(z) + m̂α
+(z)]

1
2 [m̂α

−(z) + m̂α
+(z)] 1

)
,

M̂0(z) = M̂(z), z ∈ R,

(B.25)

with M̂(z) defined in terms of m̂±(z) as in (4.1). (B.24) and (B.25) are associated with the
boundary condition sin(α)ψ′(x0 ± 0) + cos(α)ψ(x0 ± 0) = 0, α ∈ (0, π) as opposed to the

Dirichlet boundary condition α = 0, ψ(x0 ± 0) = 0 in connection with m̂±(z) and M̂(z).

Lemma B.4. Denote by m̃β
ω,γ1,±(z, λ1) and mα

±(z) the corresponding m-functions for

H̃ω,γ1(λ1), ω ∈ {−,+} and H (= Hω) associated with the half-line (x0,±∞).
(i) Suppose m0

ω(λ1) 6=∞ (i.e., ψω(λ1, x0) 6= 0), ω ∈ {−,+}. Then

m̃
βω(λ1)
ω,γ1,±(z, λ1) = cot(βω(λ1))

+
sin2(αω(λ1))

sin2(βω(λ1))

[
m
αω(λ1)
± (z)− cot(αω(λ1)) +

ωγ̃1

(
ψω(λ1, x0)2 + ψ′ω(λ1, x0)2

)
z − λ1

]
,

γ̃1 = γ1

[
1− ωγ1

x0∫
ω∞

dxψω(λ1, x)2

]−1

, (B.26)

cot(αω(λ1)) = −m0
ω(λ1), cot(βω(λ1)) = cot(αω(λ1))− ωγ̃1ψω(λ1, x0)2.
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(ii) Suppose m0
ω(λ1) =∞ (i.e., ψω(λ1, x0) = 0), ω ∈ {−,+}. Then

m̃0
ω,γ1,±(z, λ1) = m0

±(z) +
ωγ̃1ψ

′
ω(λ1, x0)2

z − λ1
, (B.27)

with γ̃1 as in (B.26).

Proof. We recall that

ψ̃ω,γ1,±(z, λ1, x) = ψ±(z, x)− ωγ1
ψ̃ω,γ1(λ1, x)

z − λ1
W (ψω(λ1), ψ±(z))(x) (B.28)

satisfies
τ̃ω,γ1(λ1)ψ̃ω,γ1,±(z, λ1) = zψ̃ω,γ1,±(z, λ1),

ψ̃ω,γ1,±(z, λ1, · ) ∈ L2((R,±∞)), z ∈ C\σ(H̃ω,γ1(λ1)), R ∈ R
(B.29)

and also note that

ψ̃ω,γ1,ω(λ1, λ1, x) = ψ̃ω,γ1(λ1, x) =

[
1− ωγ1

x∫
ω∞

dx′ ψω(λ1, x
′)2

]−1

ψω(λ1, x),

d

dx
W (ψω1

(z1), ψω2
(z2))(x)

∣∣∣∣
x=x0

= z1 − z2,

m0
ω(z) = ψ′ω(z, x0)/ψω(z, x0),

W (ψω1(z1), ψω2(z2))(x0) = m0
ω2

(z2)−m0
ω1

(z1).

(B.30)

(B.29) and (B.30) then yield

m̃0
ω,γ1,±(z, λ1) = ψ̃′ω,γ1,±(z, λ1, x0)/ψ̃ω,γ1,±(z, λ1, x0)

= {1− ωγ̃1ψω(λ1, x0)2(m0
±(z)−m0

ω(λ1))(z − λ1)−1}−1 (B.31)

× {m0
±(z) + ωγ̃1ψω(λ1, x0)2 − ωγ̃1ψω(λ1, x0)2

× [(m0
ω(λ1) + ωγ̃1ψω(λ1, x0)2)(m0

±(z)−m0
ω(λ1))](z − λ1)−1} if m0

ω(λ1) 6=∞

and (B.27) by a limiting procedure if m0
ω(λ1) = ∞. Applying (B.24) to m0

±(z) and
m̃0
ω,γ1,±(z, λ1) with the choices cot(αω(λ1)) = −m0

ω(λ1) and cot(βω(λ1)) = cot(αω(λ1)) −
ωγ̃1ψω(λ1, x0)2 then shows by a straightforward (but somewhat painful) computation that
(B.31) is equivalent to (B.26). �

The singularity structure of (B.26) and (B.27) near z = λ1 then leads to a corresponding

pole behavior of M̃
βω(λ1)
ω,γ1 (z, λ1), M̃0

ω,γ1(z, λ1) (the C2-valued M -matrices of H̃ω,γ1(λ1)) when

compared to Mαω(λ1)(z), M0(z) (the M -matrices of H). The actual expressions for the M -

matrices, the half-line spectral functions, and the C2-valued spectral matrix of H̃ω,γ1(λ1)
for αω 6= 0, βω 6= 0 in terms of those of H are similar to the special case αω = βω = 0
and mω0

(λ1) = ∞ described in detail in [19]. While they provide an alternative proof of
Theorem B.2, we resist the temptation of providing detailed formulas at this point. (B.26)
appears to be a new result.
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Iterations of DCM can now be performed as follows. Assume V ∈ L1
loc(R) to be real-

valued and pick ω ∈ {−,+}, γj > 0, λj ∈ R, 1 ≤ j ≤ N , N ∈ N. Then the DCM result
after N iteration steps, denoted by τ̃ω,γ1,...,γN (λ1, . . . , λN ), reads as follows.

τ̃ω,γ1,...,γN (λ1, . . . , λN ) = − d2

dx2
+ Ṽω,γ1,...,γN (λ1, . . . , λN , x), x ∈ R,

Ṽω,γ1,...,γN (λ1, . . . , λN , x) = V (x)− 2{ln[det(1 + Cω,N (x))]}′′,

Cω,N (x) =

(
−ωγ1/2

k γ
1/2
`

x∫
ω∞

dx′ ψω(λk, x
′)ψω(λ`, x

′)

)
1≤k,`≤N

.

(B.32)

The analog of Theorem B.2 then applies to H̃ω,γ1,...,γN (λ1, . . . , λN ), the self-adjoint operator
associated with τ̃ω,γ1,...,γN (λ1, . . . , λN ) (defined similarly to (B.15)) as discussed in detail in
[27] (see also [22], [26]).

As in Lemma 5.4 one infers from (B.31) that H̃ω,γ1(λ1) is reflectionless if and only if H
is (as observed in [21]).

The Sturm-Liouville generalization of (B.1)–(B.14) then leads to the following results.
One assumes

p−1, q, k ∈ L1
loc((a, b)), kp ∈ ACloc((a, b)), q real-valued,

p > 0, k > 0, −∞ ≤ a < b ≤ ∞

and makes the substitutions (see [27])

τ → τ̂ =
1

k(x)

(
− d

dx
p(x)

d

dx
+ q(x)

)
,

τ̃ω,γ1(λ1)→ ˜̂τω,γ1(λ1) =
1

k(x)

(
− d

dx
p(x)

d

dx
+ q̃ω,γ1(λ1, x)

)
,

q̃ω,γ1(λ1, x) = q(x) +

(
1

k(x)
(k(x)p(x))′ − 2

d

dx
p(x)

)

× d

dx
ln

[
1− ωγ1

x∫
ω∞

k(x′)dx′ ψω(λ1, x
′)2

]
, ω ∈ {−,+}.

(B.33)

It remains to sketch scattering theory for real-valued potentials V ∈ L1(R; (1 + |x|) dx)
similar to DDM and SCM in Section 5 and Appendix A. (We again use the conventions
established in (5.11)–(5.17).) Suppose λ1 < 0, γ1 > 0. Then we claim that DCM leaves
L1(R; (1 + |x|) dx) potentials invariant as in DDM and SCM. More precisely, we assert that

Ṽω,γ1(λ1) ∈ L1(R; (1 + |x|) dx) if and only if V ∈ L1(R; (1 + |x|) dx). Indeed, since

Ṽω,γ1(λ1, x)− V (x) =

[
1− ωγ1

x∫
ω∞

dx′ ψω(λ1, x
′)2

]−2

2γ2
1ψω(λ1, x)4

+

[
1− ωγ1

x∫
ω∞

dx′ ψω(λ1, x
′)2

]−1

4ωγ1ψω(λ1, x)ψ′ω(λ1, x), ω ∈ {−,+}, (B.34)
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the right-hand side of (B.34) is exponentially decreasing near ω∞ and hence in
L1((R,ω∞); (1 + |x|) dx) for all R ∈ R. In order to treat (B.34) near −ω∞, one expands

[
γ−1

1 − ω
x∫

ω∞

dx′ψω(λ1, x
′)2

]−1

=
x→−ω∞

(
− ω

x∫
ω∞

dx′ψω(λ1, x
′)2

)−1

×
[
1 +O

((
−ω

x∫
ω∞

dx′ψω(λ1, x
′)2

)−1)]

in (B.34) and notices that O((. . . )−1) is exponentially decreasing as x → −ω∞. The
proof of our assertion is then finished by observing that the leading order term in (B.34)
is precisely the isospectral double commutation deformation corresponding to γ1 = ∞
(cf. Remark B.4(i)), which in turn corresponds to the (sign flip) Dirichlet deformation
(λ1,+ω)→ (λ1,−ω). The latter has been dealt with in Lemma 5.5.

The fact that DCM leaves L1(R; (1 + |x|) dx) potentials invariant was proved by Levitan

[37], Section 6.6 using a different strategy (which yields exponential decay of [Ṽω,γ1(λ1, x)−
V (x)] also as x→ −ω∞).

Finally, we compute the scattering matrix in this context. Following the arguments
in (5.11)–(5.20), one readily verifies the following expressions for the scattering matrix

S̃ω,γ1(λ, λ1) of the pair (H̃ω,γ1(λ1), H0) in terms of S(λ) corresponding to (H,H0).

T̃ω,γ1(λ, λ1) =
λ1/2 + i(−λ1)1/2

λ1/2 − i(−λ1)1/2
T (λ), ω ∈ {−,+},

R̃`ω,γ1(λ, λ1) =

{
R`(λ), ω = −(λ1/2+i(−λ1)1/2

λ1/2−i(−λ1)1/2

)2
R`(λ), ω = +

, (B.35)

R̃rω,γ1(λ, λ1) =

{ (λ1/2+i(−λ1)1/2

λ1/2−i(−λ1)1/2

)2
Rr(λ), ω = −

Rr(λ), ω = +
, λ > 0, λ1 ∈ (−∞, 0)\σd(H), γ1 > 0,

T̃ω,γ1(λ, λ1) = T (λ), R̃
`
r
ω,γ1(λ, λ1) = R

`
r(λ), ω ∈ {−,+}, λ > 0, λ1 ∈ σd(H), γ1 > 0.

(B.36)

The case γ1 =∞ is a special case of (5.19) with µ = µ̃ = λ1, σ = −σ̃ = ω.
The discrete analog of DCM for general second-order finite-difference (Jacobi) operators

can be found in [28].
As in Appendix A, we conclude with a brief account of the history of DCM and references

to further applications of it. The seminal work by Gel’fand and Levitan [16] in 1955 on a
solution of the inverse spectral problem seems to mark the first appearance of DCM where
it has been used in connection with Wigner-von Neumann examples on the half-line (0,∞).
(For a more recent treatment of the half-line case (0,∞), see [7].) Shortly afterward, the

construction of reflectionless potentials in the particular case of τ = − d2

dx2 (i.e., V ≡ 0),
using double commutation formulas as a result of applying the inverse scattering approach,
was derived by Kay and Moses [34]. Their result regained prominence when Gardner,
Greene, Kruskal, and Miura [15] used this formalism to solve the initial value problem
for the KdV equation and derived the KdV N -soliton solutions. The case of background
(base) potentials V ∈ L1(R; (1 + |x|) dx) is considered at length in [8] and [37], Section
6.6. The case of periodic finite-gap background potentials is treated in [13], [14], [26], and
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[35]. Close connections between the double commutation technique and the inverse spectral
method based on Marchenko’s approach can be inferred, for instance, from [13], [14], [15],
[22], [34], and [35]. General backgrounds were first treated in [26] (see also [9], Chapter 4). In
particular, the construction of KdV and mKdV soliton solutions relative to general (m)KdV
background solutions on the basis of (single and double) commutation techniques has been
systematically studied in [26]. In spite of the widespread use of the double commutation
method, its spectral characterization, as summarized in Theorem B.2, under slightly stronger
assumptions on τ , was first proven only recently in [19].
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