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Abstract. We provide a method of inserting and removing any finite number

of prescribed eigenvalues into spectral gaps of a given one-dimensional Dirac
operator. This is done in such a way that the original and deformed operator

are unitarily equivalent when restricted to the complement of the subspace

spanned by the newly inserted eigenvalue. Moreover, the unitary transfor-
mation operator which links the original operator to its deformed version is

explicitly determined.

1. Introduction

Methods of inserting (and removing) eigenvalues in spectral gaps of a given one-
dimensional Schrödinger operator H have been quite popular recently. This is due
to their important role in diverse fields such as the inverse scattering approach
introduced by Deift and Trubowitz [3], level comparison theorems (cf. [1] and the
literature cited therein), and as a tool for constructing soliton solutions of the
Korteweg–de Vries hierarchy relative to known background solutions (see, e.g., [7],
and the references therein). For more information and a brief historic account we
refer the reader to [6], [8].

It is surprising that even though Dirac operators are as important in applications
as Sturm–Liouville operators, no analogous methods are available for these oper-
ators (except for the case of supersymmetric Dirac operators where results from
Sturm–Liouville operators apply). This lack is clearly connected to the fact that
Dirac operators are not bounded from below and hence cannot be factored into
a product of type A∗A (which would be necessarily non-negative). However, this
factorization lies at the heart of methods for inserting eigenvalues into the spectra
of Sturm–Liouville operators (cf. [2]). This shows that, for inserting eigenvalues
into the spectra of Dirac operators, an entirely new strategy is needed. Our new
approach is modeled after “Hilbert’s hotel”. That is, our idea is to use a trans-
formation operator which “compresses” the underlying Hilbert space a little such
that the range has codimension one. This way we create a one-dimensional sub-
space to accommodate the new eigenvalue. On the remainder of the Hilbert space
we require the transform to be unitary such that all other spectral features of the
original operator are preserved.
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Clearly, not any transformation can be used since, in general, the transformed
operator will not be a Dirac operator. However, a generalized version of a trans-
formation found in [8] will do the trick.

Let I = (a, b) ⊆ R (with −∞ ≤ a < b ≤ ∞) be an arbitrary interval, m ∈ R+ =
[0,∞), and φam, φel, φsc ∈ L1

loc(I,R) real-valued. Consider the Dirac differential
expression

(1.1) τ = σ2
1

i

d

dx
+ φ(x).

Here

(1.2) φ(x) = φel(x)1l + φam(x)σ1 + (m+ φsc(x))σ3,

where σ1, σ2, σ3 denote the Pauli matrices

(1.3) σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
and m, φsc, φel, and φam are interpreted as mass, scalar potential, electrostatic
potential, and anomalous magnetic moment, respectively (see [12], Chapter 4). We
don’t include a magnetic moment since it can be easily eliminated by a simple gauge
transformation (there is also a gauge transformation which gets rid of φam; see [10],
Section 7.1.1).

If τ is limit point (l.p.) at both a and b (cf., e.g., [10], [13], [14]), then τ gives
rise to a unique self-adjoint operator H when defined maximally. Otherwise, we fix
a boundary condition at each endpoint where τ is limit circle (l.c.).

By u+(z, x) (resp. u−(z, x)) we will denote (non identically vanishing) solutions
of the differential equation τu = zu, z ∈ C, which are integrable near b (resp. a)
and fulfill the boundary condition of H at b (resp. a) if any (i.e., if τ is limit circle
at b (resp. a)). A sufficient criterion for u±(z, x) to exist is z ∈ C\σess(Hc,±) or
z ∈ σp(Hc,±), where σp(.), σess(.) denotes the point, essential spectrum, respec-
tively. Here Hc,− (resp. Hc,+), c ∈ I denotes the self-adjoint operators associated
with τ on L2((a, c),C2) (resp. L2((c, b),C2)) obtained from H by imposing the ad-
ditional boundary condition f1(c) = 0. Then Hc,− ⊕Hc,+ is a rank one resolvent
perturbation of H and hence σess(H) = σess(Hc,−) ∪ σess(Hc,+) (cf. [14], Korol-
lar 6.2).

Using this notation, the operator H is explicitly given by

(1.4) H : D(H) → L2(I,C2)
f 7→ τf

,

where

(1.5) D(H) = {f ∈ L2(I,C2)| f ∈ ACloc(I,C2), τf ∈ L2(I,C2),
Wa(u−(z0), f) = Wb(u+(z0), f) = 0}

with

(1.6) Wx(f, g) = f1(x)g2(x)− f2(x)g1(x)

the usual Wronskian (we remark that the the limit Wa,b(., ..) = limx→a,bWx(., ..)
exists for functions as in (1.5)).
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2. Construction of a transformation operator

Fix n ∈ N and let k be a positive definite n by n matrix with coefficients in
L1
loc(I). We pick H = L2(I,Cn; k dx) to be the underlying Hilbert space. The

scalar product and norm in H are given by

(2.1) 〈f, g〉 =

∫ b

a

f(t)k(t)g(t)dt, ‖f‖2 = 〈f, f〉.

Denote by H− (resp. H+) functions in L2
loc(I,Cn; k dx) which are in H near a (resp.

b) and choose a function u ∈ H− plus a constant γ ∈ [−‖u‖−2,∞) ∪ {∞}. Define

(2.2) cγ(x) =
1

γ
+ 〈u, u〉xa, γ 6= 0

(setting ∞−1 = 0), where

(2.3) 〈f, g〉xy =

∫ x

y

f(t)k(t)g(t)dt.

Consider the following linear transformation

(2.4)
Uγ : H → L2

loc(I,Cn, k dx)
f(x) 7→ f(x)− uγ(x)〈u, f〉xa

,

(U0 = 1l), where

(2.5) uγ(x) =
u(x)

cγ(x)
,

(u0 = 0). We note that Uγ can be defined on H− and Uγu = γ−1uγ , γ 6= 0.
Furthermore,

(2.6) uγ(x)k(x)uγ(x) = − d

dx

1

cγ(x)
,

and hence

(2.7) ‖uγ‖2 =

{
γ, u 6∈ H

γ2‖u‖2
1+γ‖u‖2 , u ∈ H

implying uγ ∈ H if −‖u‖−2 < γ <∞. If γ = −‖u‖−2, γ =∞ we only have that uγ
is in H−, H+, respectively. In addition, we remark that for fγ = Uγf we have

uγ(x)k(x)fγ(x) =
d

dx

〈u, f〉xa
cγ(x)

,(2.8)

fγ(x)k(x)fγ(x) = f(x)k(x)f(x)− d

dx

|〈u, f〉xa|2

cγ(x)
.(2.9)

Integrating over x and taking limits (if γ =∞ use Cauchy-Schwarz) shows

〈uγ , fγ〉xa =

{
cγ(x)−1〈u, f〉xa, γ ∈ R

〈u,f〉
‖u‖2 − c∞(x)−1〈u, f〉bx, γ =∞ ,(2.10)

〈fγ , fγ〉xa = 〈f, f〉xa −
|〈u, f〉xa|2

cγ(x)
.(2.11)

Clearly, the last equation implies Uγ : H → H. In addition, we remark that this
also shows Uγ : H− → H−.
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Denote by P, Pγ the orthogonal projections onto the one-dimensional subspaces
of H spanned by u, uγ (set P, Pγ = 0 if u, uγ 6∈ H), respectively. Define

(2.12)
U−1γ : H → L2

loc(I,Cn, k dx)

g(x) 7→
{

g(x) + u(x)〈uγ , g〉xa, γ ∈ R
g(x)− u(x)〈u∞, g〉bx, γ =∞

and note

(2.13) c−1γ (x) =

{
γ − 〈uγ , uγ〉xa, γ ∈ R

‖u‖−2 + 〈u∞, u∞〉bx, γ =∞ .

As before one can show U−1γ : (1l− Pγ)H→ H and one verifies

(2.14)
UγU

−1
γ = 1l, U−1γ Uγ = 1l, γ ∈ R,

U∞U
−1
∞ = 1l, U−1∞ U∞ = 1l− P, γ =∞,

If P = 0, γ ∈ (−‖u‖−2,∞), then UγU
−1
γ = 1l should be replaced by UγU

−1
γ =

1l(1l−Pγ)H since U−1γ uγ 6∈ H by

(2.15) U−1γ uγ =

{
γu, γ ∈ R

‖u‖−2u, γ =∞ .

Summarizing,

Lemma 2.1. The operator Uγ is unitary from (1l−P )H onto (1l−Pγ)H with inverse

U−1γ . If P, Pγ 6= 0, then Uγ can be extended to a unitary transformation Ũγ on H
by

(2.16) Ũγ = Uγ(1l− Pγ) +
√

1 + γ‖u‖2 UγPγ .

Proof. Equation (2.10) shows that Uγ maps (1l − P )H onto (1l − Pγ)H. Unitarity
follows from (2.11) and

(2.17) lim
x→b

|〈u, f〉xa|2

〈u, u〉xa
= 0

for any f ∈ H if u 6∈ H. In fact, suppose ‖f‖ = 1, pick y and x > y so large that
〈f, f〉by ≤ ε/2 and 〈u, u〉ya/〈u, u〉xa ≤ ε/2. Splitting up the sum in the numerator and
applying Cauchy’s inequality then shows that the limit of (2.17) is smaller than
ε. �

We remark that (2.11) plus the polarization identity implies

(2.18) 〈fγ , gγ〉xa = 〈f, g〉xa −
〈f, u〉xa〈u, g〉xa

cγ(x)
,

where fγ = Uγf , gγ = Uγg.

3. Inserting a single eigenvalue

Now we turn to the Dirac operator H defined in the Introduction. We will choose
(λ1, γ1) satisfying

Hypothesis H.3.1. Suppose (λ, γ) ∈ R2 satisfies the following conditions.
(i). u−(λ, x) exists.
(ii). γ ∈ [−‖u−(λ)‖−2,∞) ∪ {∞}.
(iii). If u−(λ) ∈ H, then λ ∈ σp(H).
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and use Lemma 2.1 with u = u−(λ1), γ = γ1 to prove

Theorem 3.2. Suppose (H.3.1) and let Hγ1 be the operator associated with

Hγ1f = τγ1f, D(Hγ1) = { f ∈ H| f ∈ ACloc(I,C2); τγ1f ∈ H;
Wa(uγ1,−(λ1), f) = Wb(uγ1,−(λ1), f) = 0},

(3.1)

where

(3.2) φγ1 = φ+
u−(λ1)⊗σ u−(λ1)

cγ1(λ1, x)
, f ⊗σ g =

f ⊗ (σ2g) + (σ2f)⊗ g
i

,

and

(3.3) uγ1,−(λ1, x) =
u−(λ1, x)

cγ1(λ1, x)
, cγ1(λ1, x) =

1

γ1
+ 〈u−(λ1), u−(λ1)〉xa.

Then

(3.4) Hγ1(1l− Pγ1(λ1)) = Uγ1HU
−1
γ1 (1l− Pγ1(λ1))

and τγ1uγ1,−(λ1) = λ1uγ1,−(λ1).

Proof. Only the case γ 6= 0 is of interest. The claim τγ1uγ1,−(λ1) = λ1uγ1,−(λ1) is
straightforward and implies that τγ1 is l.p. at a, b if γ = ∞,−‖u−(λ1)‖−2, respec-
tively. Moreover, let f ∈ D(H) then another straightforward calculation shows

(3.5) τγ1(Uγ1f) = Uγ1(τf)

and it remains to compute Uγ1D(H). It suffices to vindicate

(3.6) (1l− Pγ1(λ1))Uγ1D(H) ⊆ (1l− Pγ1(λ1))D(Hγ1)

since (1l−Pγ1(λ1))Uγ1D(H) cannot be properly contained in (1l−Pγ1(λ1))D(Hγ1) by
the property of self-adjoint operators being maximal. Only the boundary conditions
are not obvious. If γ ∈ R the formula

(3.7) Wx(uγ1,−(λ1), Uγ1f) =
Wx(u−(λ1), f)

cγ1(λ1, x)

reveals Wa(uγ1,−(λ1), Uγ1f) = 0 for f ∈ D(H) (if γ = ∞, then τγ1 is l.p. at a).
For the boundary condition at b we can assume γ 6= −‖u−(λ1)‖−2. If u−(λ1) ∈ H,
then (3.7) shows Wb(uγ1,−(λ1), Uγ1f) = 0 for f ∈ D(H). Otherwise, that is, if
u−(λ1) 6∈ H we use

(3.8) |Wx(uγ1,−(λ1), Uγ1f)|2 =
|〈u−(λ1), (τ − λ1)f〉xa|2

cγ1(λ1, x)2
,

which tends to zero as x→ b for f ∈ D(H) by (2.17). �

We remark that explicitly (3.2) reads

φγ1,el(x) = φel(x),(3.9)

φγ1,am(x) = φam(x) +
u−,1(λ1, x)2 − u−,2(λ1, x)2

cγ1(λ1, x)
,(3.10)

φγ1,sc(x) = φsc(x)− 2
u−,1(λ1, x)u−,2(λ1, x)

cγ1(λ1, x)
.(3.11)



2878 GERALD TESCHL

Corollary 3.3. Suppose u−(λ1) 6∈ H.
(i). If γ1 > 0 then H and (1l− Pγ1(λ1))Hγ1 are unitarily equivalent. Moreover,

Hγ1 has the additional eigenvalue λ1 with eigenfunction uγ1,−(λ1).
(ii). If γ1 =∞ then H and Hγ1 are unitarily equivalent.

Suppose u−(λ1) ∈ H (i.e., λ1 is an eigenvalue of H).
(i). If γ1 ∈ (−‖u−(λ1)‖−2,∞) than H and Hγ1 are unitarily equivalent (using

Ũγ1).
(ii). If γ1 = −‖u−(λ1)‖−2,∞ then (1l− P (λ1))H, Hγ1 are unitarily equivalent,

that is, the eigenvalue λ1 is removed.

The following can be verified directly.

Lemma 3.4. Let u ∈ ACloc(I,C2) fulfill τu = zu (with z ∈ C\{λ1}) and let

(3.12) v(z, x) = u(z, x) +
uγ1,−(λ1, x)

z − λ1
Wx(u−(λ1), u(z)).

Then v ∈ ACloc(I,C2) and v fulfills τγ1v = zv. If u is square integrable near a and
fulfills the boundary condition at a (if any) we have v = Uγ1u. We also note

(3.13) |v(z, x)|2 = |u(z, x)|2 − 1

|z − λ1|2
d

dx

(
|Wx(u−(λ1), u(z))|2

cγ1(λ1, x)

)
,

and if û, v̂ are constructed analogously then

Wx(v(z), v̂(ẑ)) = Wx(u(z), û(ẑ))− 1

cγ1(λ1, x)
×

z − ẑ
(z − λ1)(ẑ − λ1)

Wx(u−(λ1), u(z))Wx(u−(λ1), û(ẑ)).(3.14)

In addition, the solutions

(3.15) u±,γ1(z, x) = u±(z, x) +
uγ1,−(λ1, x)

z − λ1
Wx(u−(λ1), u±(z)).

are square integrable near a, b and satisfy the boundary condition of Hγ1 at a, b,
respectively.

Remark 3.5. From (3.15) one can easily compute the Weyl m-functions corre-
sponding to H. Proceeding as in [6], [9] one can then obtain an alternate proof for
Corollary 3.3.

Since we have already seen, that our method does not preserve l.p./l.c. properties
we want to discuss conditions for τγ1 to be l.p. at a, b. Let c ∈ I and letH+,c denote a
self-adjoint operator associated with τ on (c, b) and the boundary condition induced
by u−(λ1) at c (i.e., Wc(f, u−(λ1)) = 0, f ∈ D(Hc,+)).

Hypothesis H.3.6. Suppose one of the following spectral conditions (i)–(ii) holds.

(i). σess(H+,c) 6= ∅.
(ii). σ(H+,c) = σd(H+,c) = {λn}n∈Z with

∑
n∈Z(1 + λ2n)−1 =∞.

All conditions (i)–(ii) imply that τ is l.p. at b (since τ l.c. at b implies that the
resolvent of H+,c is Hilbert–Schmidt) and we easily obtain (using (3.13))

Theorem 3.7. (i). If γ1 6=∞, then τγ1 is l.p. at a if and only if τ is. Otherwise,
that is, if γ =∞, then τγ1 is l.p. at a.
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(ii). If γ1 6= −‖u−(λ1)‖−2, then τγ1 is l.c. at b if τ is. If γ1 = −‖u−(λ1)‖−2( 6= 0),
then τγ1 is l.p. at b.

(iii). Assume (H.3.6), then τγ1 is l.p. at b.

Remark 3.8. (i). Removing an eigenvalue from an operator which is l.c. at b yields
an operator which is l.p.. This shows that one cannot insert additional eigenvalues
into an operator which is l.c. at b (remove this eigenvalue again to obtain a contra-
diction).
(ii). Clearly we can interchange the role of a and b. One only has to interchange
a, b in the text and 〈., ..〉xa, 〈., ..〉bx in the formulas.
(iii). As long as u−(λ1) exists (e.g., τ is l.c. at a) our method can be used to insert
additional eigenvalues into the spectrum of H (cf. [11]).
(iv). It is well-known that methods of inserting eigenvalues into the spectra of one-
dimensional Schrödinger operators are connected with Bäcklund (Darboux) trans-
formations of the (modified) Korteweg–de Vries hierarchy. This raises the question
whether our method is connected with transformations of the AKNS hierarchy. We
recall that the AKNS hierarchy is associated with the differential expression

(3.16) τ̂ = −σ3
1

i

d

dx
+

1

2
σ2(p(x) + q(x)) +

i

2
σ1(p(x)− q(x)).

Transforming τ̂ to our representation yields

(3.17) τ = Uτ̂U−1 = σ2
1

i

d

dx
− 1

2
σ3(p(x) + q(x)) +

i

2
σ1(p(x)− q(x)),

where

(3.18) U =
1√
2

(
1 i
i 1

)
.

Since we are interested in the self-adjoint case we require p = q. This corresponds
to the nonlinear Schrödinger equation. If in addition Re(p) = 0 we have the case
of supersymmetric operators which is connected to the modified Korteweg–de Vries
hierarchy. Since our transformation does not leave (3.17) invariant, it cannot cor-
respond to a transformation of the AKNS system. This becomes even more evident
in the supersymmetric case, since inserting one eigenvalue λ1 6= 0 must necessarily
destroy supersymmetry.

4. Inserting finitely many eigenvalues

Finally we demonstrate how to iterate this method. We choose a given back-
ground operator H and pick (λ1, γ1) according to (H.3.1). Now define the trans-
formation Uγ1 and the operator Hγ1 as in the previous section. Next we choose
(λ2, γ2) and define u−,γ1(λ2) = Uγ1u−(λ2) and corresponding operators Uγ1,γ2 and
Hγ1,γ2 . Applying this procedure N times leads to

Theorem 4.1. Let H be the background operator and let (λ`, γ`), 1 ≤ ` ≤ N satisfy
(H.3.1). Define the following matrices (1 ≤ ` ≤ N)

(4.1) C`(x) =

(
δr,s
γr

+ 〈u−(λr), u−(λs)〉xa
)

1≤r,s≤`
,
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(4.2) C`(f, g)(x) =


C`−1(x)r,s, r,s≤`−1

〈f, u−(λs)〉xa, s≤`−1,r=`

〈u−(λr), g〉xa, r≤`−1,s=`

〈f, g〉xa, r=s=`


1≤r,s≤`

,

(4.3) U `(f)(x) =


C`(x)r,s, r,s≤`

〈u−(λs), f〉xa, s≤`,r=`+1

u−(λr, x), r≤`,s=`+1

f, r=s=`+1


1≤r,s≤`+1

.

Then we have (set C0(x) = 1, U0(f) = f)

(4.4) 〈Uγ1,...,γ`−1
· · ·Uγ1f, Uγ1,...,γ`−1

· · ·Uγ1g〉xa =
detC`(f, g)(x)

detC`−1(x)

and

(4.5) Uγ1,...,γ` · · ·Uγ1f(x) =
detU `(f)(x)

detC`(x)
.

In particular, we obtain

cγ`(λ`, x) =
1

γ`
+ 〈Uγ1,...,γ`−1

· · ·Uγ1u−(λ`), Uγ1,...,γ`−1
· · ·Uγ1u−(λ`)〉xa

=
detC`(x)

detC`−1(x)
.(4.6)

The corresponding operator Hγ1,...,γN is associated with

(4.7) φγ1,...,γN = φ+

N∑
`=0

detU `−1(u−(λ`))⊗σ detU `−1(u−(λ`))

detC`(x)
.

and we have

Hγ1,...,γN (1l−
N∑
j=1

Pγ1,...,γN (λj))

= (Uγ1,...,γN · · ·Uγ1)H(U−1γ1 · · ·U
−1
γ1,...,γN )(1l−

N∑
j=1

Pγ1,...,γN (λj)),(4.8)

where Pγ1,...,γN (λj) denotes the projection onto the one-dimensional subspace span-
ned by

(4.9) uγ1,...,γN ,−(λ`, x) = γ`
detU `(u−(λ`))(x)

detC`(x)

(the last equation has to be understood as a limit if γ` =∞).

Proof. It suffices to prove (4.4), (4.5) which requires a straightforward induction
argument using Sylvester’s determinant identity ([4], Sect. II.3). The resulting
identity

detC` detC`(f, g)− detC`(u−(λ`), g) detC`(f, u−(λ`))

= detC`−1 detC`+1(f, g),(4.10)
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together with (2.18) then proves (4.4). Similarly,

detC` detU `−1(f)− detU `−1(u−(λ`)) detC`(u−(λ`), f)

= detC`−1 detU `(f),(4.11)

and (2.4) prove (4.5). The rest then follows from these two equations and Theo-
rem 3.2. �

Remark 4.2. (i). The ordering of the pairs (λj , γj), 1 ≤ j ≤ N is clearly irrel-
evant (interchanging row i, j and column i, j leaves all determinants unchanged).
Moreover, if λi = λj, then (λi, γi), (λj , γj) can be replaced by (λi, γi + γj) (by the
first assertion it suffices to verify this for N = 2).
(ii). Equation (4.5) can be rephrased as

(uγ1,...,γN ,−(λ1, x), . . . , uγ1,...,γN ,−(λN , x))

= (CN (x))−1(u−(λ1, x), . . . , u−(λN , x)),(4.12)

where (CN (x))−1 denotes the inverse matrix of CN (x).
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