
COMMUTATION METHODS FOR JACOBI OPERATORS

F. GESZTESY AND G. TESCHL

Abstract. We offer two methods of inserting eigenvalues into spectral gaps of a given back-

ground Jacobi operator: The single commutation method which introduces eigenvalues into
the lowest spectral gap of a given semi-bounded background Jacobi operator and the dou-

ble commutation method which inserts eigenvalues into arbitrary spectral gaps. Moreover,
we prove unitary equivalence of the commuted operators, restricted to the orthogonal com-

plement of the eigenspace corresponding to the newly inserted eigenvalues, with the original

background operator. In addition we compute the (matrix-valued) Weyl m-functions of the
commuted operator in terms of the background Weyl m-functions. Finally we show how to

iterate the above methods and give explicit formulas for various quantities (such as eigen-

functions and spectra) of the iterated operators in terms of the corresponding background
quantities and scattering matrix. Concrete applications include an explicit realization of the

isospectral torus for algebro-geometric finite-gap Jacobi operators and the N -soliton solutions

of the Toda and Kac-van Moerbeke lattice equations with respect to arbitrary background
solutions.

1. Introduction

For a variety of reasons, techniques to insert and remove eigenvalues in spectral gaps of a given
one-dimensional second-order differential (i.e., Sturm-Liouville) respectively difference (i.e., Ja-
cobi) operator have recently attracted great interest. In fact, these techniques are vital in diverse
fields such as the inverse scattering approach used by Deift and Trubowitz [16], supersymmetric
quantum mechanics (cf. the literature cited, e.g., in [34]), level comparison theorems (see, e.g.,
[4]), in the construction of soliton solutions of the Korteweg-de Vries (KdV) and Toda hierar-
chies relative to general KdV and Toda background solutions (see, e.g., [6], [7], [14], [16], [17],
Ch. 4, [23], [26], [30], [34], [38]-[40], [41], Sect. 6.6, [45]–[48]), and in connection with Bäcklund
transformations for the KdV and Toda hierarchies (cf., e.g., [7], [18], [20], [24], [30], [32], [34],
[42], [43], [53]).

Historically, methods of inserting eigenvalues in the case of differential operators go back to
Jacobi [37], Darboux [13], Crum [12], Gel’fand and Levitan [27], Schmincke [46], and especially
Deift [14]. Two particular such methods, the so called single commutation or Crum-Darboux
method and the double commutation method, shortly to be described below, turned out to be of
particular importance. The operator theoretic approach developed in [14] applies to the single
commutation method and has been used in [14] to give a complete spectral characterization
in the differential operator case. The double commutation method on the other hand required
entirely different methods and was only recently solved in the differential operator case. A
solution based on ODE techniques was given in [28] and most recently, a more general and at
the same time greatly simplifying operator theoretic approach to a spectral characterization of
the double commutation method appeared in [31].

Surprisingly, a complete spectral characterization of both the single and double commutation
methods in the difference operator context is lacking in the literature thus far. Although special
cases of the single commutation method with constant or algebro-geometric backgrounds have
been discussed in [7], [15], [52], no treatment of general backgrounds is known to us. Moreover,
with the exception of reference [52], where an eigenvalue is inserted into the spectral gap of a two-
band periodic Jacobi operator with period 2, no general formulation of the double commutation
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method for finite difference operators seems to be available in the literature. The present paper
fills these gaps and provides a complete spectral characterization of the single commutation
method (based on Deift’s operator theoretic approach) in Sections 2 and 3 and develops the
corresponding results for the double commutation method in Sections 4-6. Section 7 gives three
applications of our results. The discrete analog of the FIT formula for the isospectral torus of
periodic Schrödinger operators, thereby deriving an explicit realization of the isospectral torus of
all algebro-geometric quasi-periodic finite-gap Jacobi operators, and the N -soliton solutions of
the Toda and Kac-van Moerbeke equations on an arbitrary background solution using the single
and double commutation methods. Section 8 collects various appendices on the Weyl-Titchmarsh
theory for second-order difference operators.

In the remainder of this introduction we provide an informal discussion of commutation
methods and restrict ourselves to the case of the whole line and bounded Jacobi operators
(so we don’t have to bother with domain considerations). Throughout this paper we denote
by `(I) = `((M,N)), I = {n ∈ Z|M < n < N}, M,N ∈ Z ∪ {±∞} the set of complex-valued
sequences {u(n)}n∈I and by `p(I), 1 ≤ p ≤ ∞ the sequences u ∈ `(I) such that |u|p is summable.
Furthermore, `0(I) denotes the set of sequences with only finitely-many values being nonzero.
The scalar product in the Hilbert space `2(I) will be denoted by

(1.1) 〈u, v〉 =
∑
n∈I

u(n)v(n), u, v ∈ `2(I).

For brevity we focus in the following on the case I = Z.
We first review the single commutation method [35]: Let a, b ∈ `(Z) be two bounded, real-

valued sequences satisfying

(1.2) a(n) < 0, b(n) ∈ R,
and introduce the corresponding Jacobi operator H in `2(Z)

(1.3) (Hf)(n) = a(n)f(n+ 1) + a(n− 1)f(n− 1)− b(n)f(n), u ∈ `2(Z).

Next (cf. Lemma 2.3), assume the existence of two weak positive solutions u±(λ1, n) of

(1.4) Hu± = λ1u±, u±(λ1, n) > 0, u±(λ1, n) ∈ `2(±N)

(implying b(n) + λ1 < 0, i.e., H − λ1 ≥ 0). u± are the principal solutions as used, e.g., in [33].
Any positive solution can then be written as

(1.5) uσ1(λ1, n) =
1 + σ1

2
u+(λ1, n) +

1− σ1

2
u−(λ1, n), σ1 ∈ [−1, 1].

Now define the operator Aσ1 in `2(Z) by

(1.6) (Aσ1f)(n) = ρo,σ1(n)f(n+ 1) + ρe,σ1(n)f(n), f ∈ `2(Z),

where

(1.7) ρo,σ1(n) = −

√
−a(n)uσ1(λ1, n)
uσ1(λ1, n+ 1)

, ρe,σ1(n) =

√
−a(n)uσ1(λ1, n+ 1)

uσ1(λ1, n)
.

We will always take the positive branch of all square roots involved. We note that ρo,σ1 and
ρe,σ1 are bounded sequences as can be seen from

(1.8) |a(n)uσ1(λ1, n+ 1)
u1

σ1
(λ1, n)

|+ |a(n− 1)uσ1(λ1, n− 1)
uσ1(λ1, n)

| = |b(n) + λ1|.

The adjoint operator A∗σ1
of Aσ1 is given by

(1.9) (A∗σ1
f)(n) = ρo,σ1(n− 1)f(n− 1) + ρe,σ1(n)f(n), f ∈ `2(Z),

and for the (positive self-adjoint) operator A∗σ1
Aσ1 one infers

(1.10) A∗σ1
Aσ1 = H − λ1.

This shows that (H − λ1) ≥ 0 is a necessary condition for the existence of a positive solution of
(1.4). We remark that this condition is also sufficient (see, e.g., [33], Theorem 2.8). Commuting
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A∗σ1
and Aσ1 (observing (A∗σ1

)∗ = Aσ1) yields a second positive self-adjoint bounded operator
Aσ1A

∗
σ1

and further the commuted operator

(1.11) Hσ1 = Aσ1A
∗
σ1

+ λ1.

A straightforward calculation shows

(1.12) (Hσ1f)(n) = aσ1(n)f(n+ 1) + aσ1(n− 1)f(n− 1)− bσ1(n)f(n),

with

aσ1(n) = −
√
a(n)a(n+ 1)uσ1(λ1, n)uσ1(λ1, n+ 2)

uσ1(λ1, n+ 1)
,(1.13)

bσ1(n) = a(n)
( uσ1(λ1, n)
uσ1(λ1, n+ 1)

+
uσ1(λ1, n+ 1)
uσ1(λ1, n)

)
− λ1.(1.14)

As proven by Deift [14], the operators H − λ1 and Hσ1 − λ1, restricted to the orthogonal
complements of their respective null-spaces, are unitarily equivalent. Specifically, we have

(1.15)
σ(Hσ1) =

{
σ(H) ∪ {λ1}, σ1 ∈ (−1, 1)

σ(H), σ1 ∈ {−1, 1} , σac(Hσ1) = σac(H),

σp(Hσ1) =
{
σp(H) ∪ {λ1}, σ1 ∈ (−1, 1)

σp(H), σ1 ∈ {−1, 1} , σsc(Hσ1) = σsc(H).

Here σp(.), σac(.), and σsc(.) denote the the point spectrum (i.e., the set of eigenvalues), abso-
lutely, and singularly continuous spectrum, respectively.

This method is known as the single commutation method [35] and we will give a complete
spectral characterization of it in Sections 2 and 3.

Our next aim is to remove the condition that H is bounded from below and thereby introduce
the double commutation method. Fix γ± > 0 and define

ρo,γ±(n) = ρe,±1(n+ 1)

√
cγ±(λ1, n)

cγ±(λ1, n+ 1)
,(1.16)

ρe,γ±(n) = ρo,±1(n)

√
cγ±(λ1, n+ 1)
cγ±(λ1, n)

,(1.17)

where

(1.18) cγ±(λ1, n) = 1 + γ±

n+1
n∑

j=±∞
u±(λ1, j)2,

and introduce corresponding operators Aγ± , A
∗
γ± in `2(Z) by

(Aγ±f)(n) = ρo,γ±(n)f(n+ 1) + ρe,γ±(n)f(n),(1.19)
(A∗γ±f)(n) = ρo,γ±(n− 1)f(n− 1) + ρe,γ±(n)f(n).(1.20)

A simple calculation shows that A∗γ±Aγ± = A±1A
∗
±1 and hence

(1.21) H±1 = A∗γ±Aγ± + λ1.

Performing a second commutation yields the doubly commuted operator

(1.22) Hγ± = Aγ±A
∗
γ± + λ1.

Explicitly, one verifies

(1.23) (Hγ±f)(n) = aγ±(n)f(n+ 1) + aγ±(n− 1)f(n− 1)− bγ±(n)f(n),
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with

aγ±(n) = a(n+ 1)

√
cγ±(λ1, n)cγ±(λ1, n+ 2)

cγ±(λ1, n+ 1)
,(1.24)

bγ±(n) = b(n+ 1)± γ±

(a(n)u±(λ1, n)u±(λ1, n+ 1)
cγ±(λ1, n)

− a(n+ 1)u±(λ1, n+ 1)u±(λ1, n+ 2)
cγ±(λ1, n+ 1)

)
.(1.25)

Now observe that Hγ± remains well-defined even if u± is no longer positive. This ap-
plies, in particular, in the case where u±(λ1) has zeros and hence all intermediate operators
A±1, Aγ± ,H±1, etc., become ill-defined. Thus to define Hγ± it suffices to assume the existence
of a solution u±(λ1) which is square summable near ±∞. This condition is much less restrictive
than the existence of a positive solution (e.g., σ(H) 6= R, i.e., the existence of a spectral gap for
H around λ1 is sufficient in this context).

One expects that formulas analogous to (1.15) will carry over to this more general setup.
That this is actually the case will be shown in our principal Theorem 4.4 of Section 4. Hence
the double commutation method (contrary to the single commutation method) enables one to
insert eigenvalues not only below the spectrum of H but into arbitrary spectral gaps of H.

2. The single commutation method

In this section we intend to give a detailed investigation of the single commutation method.
We will need the following condition on a, b which will be used throughout Sections 2 and 3.

Hypothesis (H.2.1). Suppose

(2.1) a(n) < 0, b(n) ∈ R, b(n) ≥ c, c ∈ R, n ∈ Z.

We shall consider (self-adjoint) Jacobi operators H associated with the difference expression

(2.2) (τf)(n) = a(n)f(n+ 1) + a(n− 1)f(n− 1)− b(n)f(n),

in the Hilbert space `2(Z). We remark that the case a(n) 6= 0 can be reduced to the case a(n) > 0
or a(n) < 0 (cf., e.g., [19], p. 141). In fact one has

Lemma 2.2. Assume (H.2.1) and let H be a Jacobi operator associated with the difference
expression (2.2). Introduce aε by

(2.3) aε(n) = ε(n)a(n), ε(n) ∈ {+1,−1}, n ∈ Z

and the unitary operator Uε by

(2.4) Uε = {ε̃(n)δm,n}m,n∈Z, ε̃(n) ∈ {+1,−1}, ε̃(n)ε̃(n+ 1) = ε(n).

Then Hε defined as

(2.5) Hε = U−1
ε HUε,

is associated with the difference expression

(2.6) (τεf)(n) = aε(n)f(n+ 1) + aε(n− 1)f(n− 1)− bε(n)f(n).

In particular, Hε is unitarily equivalent to H.

As a preparation we prove

Lemma 2.3. Assume (H.2.1). Let H be a given Jacobi operator in `2(Z) and let λ < inf(σ(H))
((H.2.1) implies that H is semi-bounded, cf. [33]). Then there exist unique positive solutions
u±(λ, n) of τu = λu (up to constant multiples) which are square summable near ±∞. (They are
sometimes called principal solutions of (H − z)u = 0 near ±∞.)
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Proof. For the existence of square summable sequences u+(λ) near ∞ consider the sequence
((H−λ)−1δ0)(n) for n > 0 and extend it to a solution of (τ −λ)u = 0 for all n ∈ Z. Let H+,n be
the restriction of H to `2((n,∞)) with a Dirichlet boundary condition at n. From (H − λ) > 0
one infers (H+,n − λ) > 0 and hence

(2.7) 0 < 〈δn+1, (H+,n − λ)−1δn+1〉 =
u+(λ, n+ 1)
−a(n)u+(λ, n)

which shows that u+(λ) can be chosen to be positive. The existence of u− is proven similarly. �

We start with operators associated with the difference expression (2.2) on the half axis ±N.
For simplicity we will do most calculations only for `2(N). Let u(λ1) be a positive solution of
τu = λ1u and define

ρo,+(n) = −

√
−a(n)u(λ1, n+ 1)

u(λ1, n)
,(2.8)

ρe,+(n) =

√
−a(n− 1)u(λ1, n− 1)

u(λ1, n)
, n > 0.(2.9)

Define the operator Ȧ+ on `0(N)

(2.10) (Ȧ+f)(n) = ρo,+(n)f(n+ 1) + ρe,+(n)f(n), f ∈ `0(N)

and denote its operator closure (in `2(N)) by A+. One verifies,

(2.11) D(A+) ⊆ {f ∈ `2(N)|ρo,+(n)f(n+ 1) + ρe,+(n)f(n) ∈ `2(N)}.

The adjoint A∗+ of A+ is then given by

(A∗+f)(n) = ρo,+(n− 1)f(n− 1) + ρe,+(n)f(n),(2.12)

D(A∗+) = {f ∈ `2(N)|f(0) = 0; ρo,+(n− 1)f(n− 1) + ρe,+(n)f(n) ∈ `2(N)}.

(The boundary condition f(0) = 0 is only introduced so that we don’t have to specify (A∗+f)(1)
separately.) Due to a well known result of von Neumann (see, e.g., [54], Theorem 5.39) the
operator A+A

∗
+ is a positive self-adjoint operator when defined naturally

(2.13) D(A+A
∗
+) = {f ∈ D(A∗+)|A∗+f ∈ D(A+)}.

A simple calculation shows A+A
∗
+f = (τ − λ1)f and hence we may define

(2.14) H+ = A+A
∗
+ + λ1, D(H+) ⊆ {f ∈ `2(N)|f(0) = 0, τf ∈ `2(N)},

where equality in the last relation is equivalent to τ being limit point (l.p.) at +∞. Similarly
one defines for n < 0

(2.15) ρo,−(n) = −

√
−a(n)u(λ1, n)
u(λ1, n+ 1)

, ρe,−(n) =

√
−a(n)u(λ1, n+ 1)

u(λ1, n)

and operators A−, and A∗− in `2(−N) which satisfy H− = A∗−A− + λ1.
Commuting A∗± and A± yields a second positive self-adjoint operator A−A∗−, respectively

A∗+A+, and further the commuted operators

(2.16) H+,1 = A∗+A+ + λ1, H−,1 = A−A
∗
− + λ1.

The next theorem characterizes H±,1 in terms of H±, but first we need to introduce

Hypothesis (H.2.4). Suppose H± satisfies one of the following spectral conditions.

(i). σess(H±) 6= ∅.
(ii). σ(H±) = σd(H±) = {λ±,j}j∈J± with

∑
j∈J±

(1 + λ2
±,j)

−1 = ∞.
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Hypothesis (H.2.4) is satisfied if a, b are bounded near ±∞.
Either one of the conditions (i), (ii) implies that τ is l.p. at ±∞. This follows since otherwise

the resolvent of H± would be a Hilbert-Schmidt operator contradicting (i), (ii). This further
implies that the domain of H± is given by

(2.17) D(H±) = {f ∈ `2(±N)|f(0) = 0, τf ∈ `2(±N)}.

Theorem 2.5. Assume (H.2.1) and (H.2.4). Then the operators H±,1 constructed above satisfy
(H.2.1) and (H.2.4) and are given by

(H±,1f)(n) = (τ±,1f)(n)
= a±,1(n)f(n+ 1) + a±,1(n− 1)f(n− 1)− b±,1(n)f(n),(2.18)

D(H±,1) = {f ∈ `2(±N)|f(0) = 0, τ±,1f ∈ `2(±N)},
with

a+,1(n) = −
√
a(n− 1)a(n)u(λ1, n− 1)u(λ1, n+ 1)

u(λ1, n)
, n > 0,(2.19)

b+,1(n) = a(n− 1)
( u(λ1, n)
u(λ1, n− 1)

+
u(λ1, n− 1)
u(λ1, n)

)
− λ1, n > 1,

b+,1(1) = a(0)
u(λ1, 0)
u(λ1, 1)

− λ1,(2.20)

and

a−,1(n) = −
√
a(n)a(n+ 1)u(λ1, n)u(λ1, n+ 2)

u(λ1, n+ 1)
, n < −1,(2.21)

b−,1(n) = a(n)
( u(λ1, n)
u(λ1, n+ 1)

+
u(λ1, n+ 1)
u(λ1, n)

)
− λ1, n < −1,

b−,1(−1) = a(−1)
u(λ1, 0)
u(λ1,−1)

− λ1.(2.22)

Moreover, H± − λ1 and H±,1 − λ1 restricted to the orthogonal complements of their null-spaces
are unitarily equivalent and hence

(2.23)
σ(H±,1)\{λ1} = σ(H±)\{λ1}, σac(H±,1) = σac(H±),
σp(H±,1)\{λ1} = σp(H±)\{λ1}, σsc(H±,1) = σsc(H±).

Proof. The unitary equivalence follows from [14], Theorem 1 and clearly settles the spectral
claims. Thus both H± and H±,1 satisfy (H.2.4) and hence τ± and τ±,1 are l.p. at ±∞. The rest
are straightforward calculations. �

Next we turn to the case of the whole lattice `2(Z). We pick σ1 ∈ [−1, 1] and λ1 < inf(σ(H)).
Further denote by u±(λ, n) (for λ < inf(σ(H))) the solutions constructed in Lemma 2.3 and set

(2.24) uσ1(λ1, n) =
1 + σ1

2
u+(λ1, n) +

1− σ1

2
u−(λ1, n).

Now define sequences

(2.25) ρo,σ1(n) = −

√
−a(n)uσ1(λ1, n)
uσ1(λ1, n+ 1)

, ρe,σ1(n) =

√
−a(n)uσ1(λ1, n+ 1)

uσ1(λ1, n)
,

and the corresponding operator Aσ1 (first on `0(Z) and then take the closure in `2(Z) as before)
together with its adjoint A∗σ1

,

(Aσ1f)(n) = ρo,σ1(n)f(n+ 1) + ρe,σ1(n)f(n),(2.26)
D(Aσ1) ⊆ {f ∈ `2(Z)|ρo,σ1(n)f(n+ 1) + ρe,σ1(n)f(n) ∈ `2(Z)},

(A∗σ1
f)(n) = ρo,σ1(n− 1)f(n− 1) + ρe,σ1(n)f(n),(2.27)

D(A∗σ1
) = {f ∈ `2(Z)|ρo,σ1(n− 1)f(n− 1) + ρe,σ1(n)f(n) ∈ `2(Z)}.
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Again by von Neumann’s result A∗σ1
Aσ1 is a positive self-adjoint operator when defined naturally

by

(2.28) D(A∗σ1
Aσ1) = {f ∈ D(Aσ1)|Aσ1f ∈ D(A∗σ1

)}.

A simple calculation shows A∗σ1
Aσ1 = τ − λ1 and we hence may define

(2.29) H = A∗σ1
Aσ1 + λ1, D(H) ⊆ {f ∈ `2(Z)|τf ∈ `2(Z)}.

Commuting A∗σ1
and Aσ1 yields a second positive self-adjoint operator Aσ1A

∗
σ1

and further the
commuted operator

(2.30) Hσ1 = Aσ1A
∗
σ1

+ λ1, D(Hσ1) ⊆ {f ∈ `2(Z)|τσ1f ∈ `2(Z)},

where τσ1 is the difference expression corresponding to Hσ1 . The next theorem characterizes
Hσ1 under Assumption (H.2.2) for H+ and H− implying that τ is l.p. at ±∞ and hence that

(2.31) D(H) = {f ∈ `2(Z)|τf ∈ `2(Z)}.

Theorem 2.6. Assume (H.2.1) and (H.2.4). Then the operator Hσ1 ,

(Hσ1f)(n) = (τσ1f)(n)
= aσ1(n)f(n+ 1) + aσ1(n− 1)f(n− 1)− bσ1(n)f(n),(2.32)

D(Hσ1) = {f ∈ `2(Z)|τσ1f ∈ `2(Z)},

is self-adjoint. Moreover,

aσ1(n) = −
√
a(n)a(n+ 1)uσ1(λ1, n)uσ1(λ1, n+ 2)

uσ1(λ1, n+ 1)
,(2.33)

bσ1(n) = a(n)
( uσ1(λ1, n)
uσ1(λ1, n+ 1)

+
uσ1(λ1, n+ 1)
uσ1(λ1, n)

)
− λ1(2.34)

and aσ1 , bσ1 satisfy (H.2.1). The equation τσ1v = λ1v has the positive solution

(2.35) vσ1(λ1, n) =
1√

−a(n)uσ1(λ1, n)uσ1(λ1, n+ 1)

which is an eigenfunction of Hσ1 if and only if σ1 ∈ (−1, 1). H − λ1 and Hσ1 − λ1 restricted
to the orthogonal complements of their corresponding one-dimensional null-spaces are unitarily
equivalent and hence

(2.36)
σ(Hσ1) =

{
σ(H) ∪ {λ1}, σ1 ∈ (−1, 1)

σ(H), σ1 ∈ {−1, 1} , σac(Hσ1) = σac(H),

σp(Hσ1) =
{
σp(H) ∪ {λ1}, σ1 ∈ (−1, 1)

σp(H), σ1 ∈ {−1, 1} , σsc(Hσ1) = σsc(H).

In addition, the sequence

(2.37) (Aσ1u)(z, n) =
Wn(uσ1(λ1), u(z))√

−a(n)uσ1(λ1, n)uσ1(λ1, n+ 1)

solves τσ1u = zu if u(z) solves τu = zu for some z ∈ C, where Wn(u, v) = a(n)(u(n)v(n+ 1)−
u(n+ 1)v(n)) denotes the modified Wronskian. Moreover, one obtains

(2.38) Wσ1,n(Aσ1u(z), Aσ1v(z)) = (λ1 − z)Wn(u(z), v(z))

for solutions u, v of τu = zu, where Wσ1,n(u, v) = aσ1(n)(u(n)v(n + 1) − u(n + 1)v(n)). The
resolvents of H,Hσ1 for z ∈ C\(σ(H) ∪ {λ1}) are related via

(2.39) (Hσ1 − z)−1 =
1

z − λ1

(
Aσ1(H − z)−1A∗σ1

− 1
)
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or, in terms of Green’s functions for n ≥ m, z ∈ C\(σ(H) ∪ {λ1}),

G(z, n,m) = u+(z, n)u−(z,m)
Wn(u+(z), u−(z))

implies Gσ1(z, n,m) = (Aσ1u+)(z, n)(−Aσ1u−)(z,m)
(z − λ1)W (u+(z), u−(z)) .(2.40)

Furthermore, uσ1,±(z, n), the principal solutions of (Hσ1 − z)u = 0 for z < λ1, are given by

(2.41) uσ1,±(z, n) = ±Aσ1u±(z, n) =
∓Wn(uσ1(λ1), u±(z))√

−a(n)uσ1(λ1, n)uσ1(λ1, n+ 1)
.

In addition, we have

(2.42)
∑
n∈Z

vσ1(λ1, n)2 =
4

1− σ2
1

W (u−(λ1), u+(λ1))−1, σ1 ∈ (−1, 1)

and, if τu(λ) = λu(λ), u(λ, .) ∈ `2(Z),

(2.43)
∑
n∈Z

(Aσ1u)(λ, n)2 = (λ− λ1)
∑
n∈Z

u(λ, n)2.

Proof. The unitary equivalence together with equation (2.39) follow from [14], Theorem 1. That
Hσ1 is l.p. at ±∞ follows upon looking at the restrictions H±, H±,1 and using Theorem 2.5.
Equation (2.39) together with (2.38) imply (2.40). The facts concerning the point spectrum
follow since Gσ1(z, n, n) has a pole at z = λ1 if and only if σ1 ∈ (−1, 1). (2.42) can be obtained by
investigating the residue of Gσ1(z, n, n) at z = λ1. The rest are straightforward calculations. �

Remark 2.7. (i). Hypothesis (H.2.4) is only needed in Theorem 2.6 to characterize the domains
of H and Hσ1 explicitly.
(ii). Multiplying uσ1 with a positive constant leaves all formulas and, in particular, Hσ1 invariant.
(iii). If H is bounded from above we can insert eigenvalues into the highest spectral gap, i.e.,
above the spectrum of H, upon considering −H. Then λ > sup(σ(H)) implies that we don’t
have positive but rather alternating solutions and all our previous calculations carry over with
minor changes.
(iv). We can weaken (H.2.1) by requiring a(n) 6= 0 instead of a(n) < 0. Everything stays the
same with the only difference that u± are not positive but change sign in such a way that (2.7)
stays positive. Moreover, the signs of aσ1(n) can also be prescribed arbitrarily by altering the
signs of ρo,σ1 and ρe,σ1 .
(v). The fact that vσ1 ∈ `2(Z) if and only if σ1 ∈ (−1, 1) gives an alternate proof of

(2.44)
±∞∑
n=0

1
−a(n)uσ1(λ1, n)uσ1(λ1, n+ 1)

<∞ if and only if σ1 ∈
[−1, 1)
(−1, 1]

(cf. [44] and [33], Lemma 2.10, Remark 2.11).

At the end of this section we will show some connections between the single commutation
method and some other theories. We start with the Weyl-Titchmarsh theory and freely use the
definitions of Appendices B and C.

Lemma 2.8. Assume (H.2.1). The Weyl m̃-functions m̃±,σ1(z) of Hσ1 , σ1 ∈ [−1, 1] in terms
of m̃±(z), the ones of H, read

(2.45) m̃±,σ1(z) =
−uσ1(λ1, 1)
a(1)uσ1(λ1, 2)

(
1 +

(z − λ1)m̃±(z)

1 + a(0)uσ1 (λ1,0)

uσ1 (λ1,1) m̃±(z)

)
.

Proof. The above formulas are straightforward calculations using (2.40) and (C.20), (C.21). �
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Finally we turn to scattering theory. In order to facilitate comparison with the standard
literature on (inverse) scattering theory for second-order difference operators (cf. [9], [10], [21],
[29], [51]) we now assume

(2.46) a(n) > 0, b(n) ∈ R, n|1− 2a(n)|, nb(n) ∈ `1(Z)

(cf. Remark 2.7). This implies

(2.47) σac(H) = [−1, 1], σsc(H) = ∅, σp(H) = {λj}j∈J ⊆ R\[−1, 1],

where J ⊆ N is a suitable (finite) index set, and the existence of the so called Jost solutions
f±(k, n),

(2.48)
(
τ − k + k−1

2

)
f±(k, n) = 0, lim

n→±∞
k∓nf±(k, n) = 1, |k| ≤ 1.

Transmission T (k) and reflection R±(k) coefficients are then defined via

(2.49) T (k)f∓(k, n) = f±(k−1, n) +R±(k)f±(k, n), |k| = 1,

and the norming constants γ±,j corresponding to λj ∈ σp(H) are given by

(2.50) γ−1
±,j =

∑
n∈Z

|f±(kj , n)|2, kj = λj +
√
λ2

j − 1 ∈ (−1, 0), j ∈ J.

Lemma 2.9. Suppose H satisfies (2.46) and let Hσ1 be constructed as in Theorem 2.6 with

(2.51) uσ1(λ1, n) =
1 + σ1

2
f+(k1, n) +

1− σ1

2
f−(k1, n).

Then the transmission Tσ1(k) and reflection coefficients R±,σ1(k) of Hσ1 in terms of the corre-
sponding scattering data T (k), R±(k) of H are given by

(2.52) Tσ1(k) =
1− k k1

k − k1
T (k), R±,σ1(k) = k±1 k − k1

1− k k1
R±(k), σ1 ∈ (−1, 1),

(2.53) Tσ1(k) = T (k), R±,σ1(k) =
kσ1
1 − k∓1

kσ1
1 − k±1

R±(k), σ1 ∈ {−1, 1},

where k1 = λ1 +
√
λ2

1 − 1 ∈ (−1, 0). Moreover, the norming constants γσ1,±,j associated with
λj ∈ σp(Hσ1) in terms of γ±,j corresponding to H read

γσ1,±,j = |kj |±1 1− kjk1

(kj − k1)
γ±,j , j ∈ J, σ1 ∈ (−1, 1),

γσ1,±,1 =
(

1− σ1

1 + σ1

)±1

|1− k∓2
1 |T (k1), σ1 ∈ (−1, 1),(2.54)

(2.55) γσ1,±,j = |kσ1
1 − k∓1

j |γ±,j , j ∈ J, σ1 ∈ {−1, 1}.

Proof. The claims follow easily after observing that up to normalization the Jost solutions of
Hσ1 are given by Aσ1f±(k, n) (compare (2.40)). �

3. Iteration of the single commutation method

By choosing λ2 < λ1 and σ2 ∈ [−1, 1] we can define

(3.1) uσ1,σ2(λ2, n) =
1 + σ2

2
uσ1,+(λ2, n) +

1− σ2

2
uσ1,−(λ2, n)

and repeat the process of the previous section by defining ρo,σ1,σ2 , ρe,σ1,σ2 and corresponding
operators Aσ1,σ2 , A

∗
σ1,σ2

which satisfy

(3.2) Hσ1 = A∗σ1,σ2
Aσ1,σ2 − λ2.

A further commutation then yields the operator

(3.3) Hσ1,σ2 = Aσ1,σ2A
∗
σ1,σ2

− λ2
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associated with sequences aσ1,σ2 , bσ1,σ2 . The result after N steps is summarized in

Theorem 3.1. Assume (H.2.1) and (H.2.4). Let H be as in Section 2 and choose

(3.4) λN < · · · < λ2 < λ1 < inf(σ(H)), σ` ∈ [−1, 1], 1 ≤ ` ≤ N, N ∈ N.

Then we have

aσ1,...,σN
(n) = −

√
a(n)a(n+N)

√
Cn(u1

σ1
, . . . , uN

σN
)Cn+2(u1

σ1
, . . . , uN

σN
)

Cn+1(u1
σ1
, . . . , uN

σN
)

,(3.5)

bσ1,...,σN
(n) = −λN + a(n)

Cn+2(u1
σ1
, . . . , uN−1

σN−1
)Cn(u1

σ1
, . . . , uN

σN
)

Cn+1(u1
σ1
, . . . , uN−1

σN−1)Cn+1(u1
σ1
, . . . , uN

σN
)

+ a(n+N − 1)
Cn(u1

σ1
, . . . , uN−1

σN−1
)Cn+1(u1

σ1
, . . . , uN

σN
)

Cn+1(u1
σ1
, . . . , uN−1

σN−1)Cn(u1
σ1
, . . . , uN

σN
)
,(3.6)

where

(3.7) u`
σ`

(n) =
1 + σ`

2
u+(λ`, n) + (−1)`+1 1− σ`

2
u−(λ`, n),

and Cn denotes the n-dimensional Casoratian

(3.8) Cn(u1, . . . , uN ) = det{ui(n+ j − 1)}1≤i,j≤N .

Moreover, for 1 ≤ ` ≤ N , λ < λ`

(3.9) uσ1,...,σ`,±(λ, n) =

±

√
`−1∏
j=0

(−a(n+ j))Cn(u1
σ1
, . . . , u`

σ`
, u±(λ))√

Cn(u1
σ1
, . . . , u`

σ`
)Cn+1(u1

σ1
, . . . , u`

σ`
)

,

are the principal solutions of τσ1,...,σ`
u = λu and

(3.10) uσ1,...,σ`
(λ`, n) =

1 + σ`

2
uσ1,...,σ`−1,+(λ`, n) +

1− σ`

2
uσ1,...,σ`−1,−(λ`, n)

is used to define Hσ1,...,σ`
. We also have

ρo,σ1,...,σN
(n) = −

√
−a(n)

Cn+2(u1
σ1

,...,uN−1
σN−1 )Cn(u1

σ1
,...,uN

σN
)

Cn+1(u1
σ1

,...,uN−1
σN−1 )Cn+1(u1

σ1
,...,uN

σN
)
,(3.11)

ρe,σ1,...,σN
(n) =

√
−a(n+N − 1)

Cn(u1
σ1

,...,uN−1
σN−1 )Cn+1(u1

σ1
,...,uN

σN
)

Cn+1(u1
σ1

,...,uN−1
σN−1 )Cn(u1

σ1
,...,uN

σN
)
.(3.12)

The spectrum of Hσ1,...,σN
is given by

(3.13) σ(Hσ1,...,σN
) = σ(H) ∪ {λ` | σ` ∈ (−1, 1), 1 ≤ ` ≤ N}.

Proof. It is enough to prove the formulas for aσ1,...,σN
(n) and uσ1,...,σN

(n), the remaining asser-
tions then follow easily. We will use a proof by induction on N . They are valid for N = 1 and
we need to show

(3.14) uσ1,...,σN+1,±(λ, n) =

√
−aσ1,...,σN

(n)Cn(uσ1,...,σN
(λN ), uσ1,...,σN ,±1(λ))

±
√
uσ1,...,σN

(λN , n)uσ1,...,σN
(λN , n+ 1)

,

aσ1,...,σN+1(n) =
√
aσ1,...,σN

(n)aσ1,...,σN
(n+ 1)×√

uσ1,...,σN
(λN , n)uσ1,...,σN

(λN , n+ 1)
uσ1,...,σN

(λN , n+ 1)
.(3.15)
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The first relation follows after a straightforward calculation using Sylvester’s determinant iden-
tity (cf. [25], Sect. II.3)

Cn(u1
σ1
, . . . , uN

σN
, u±(λ))Cn+1(u1

σ1
, . . . , uN+1

σN+1
)

− Cn+1(u1
σ1
, . . . , uN

σN
, u±(λ))Cn(u1

σ1
, . . . , uN+1

σN+1
)

= Cn+1(u1
σ1
, . . . , uN

σN
)Cn(u1

σ1
, . . . , uN+1

σN+1
, u±(λ)),(3.16)

and the second is a simple calculation. �

Remark 3.2. If u(z, n) is any solution of τu = zu, z ∈ C define uσ1,...,σN
(z, n) as in (3.9) but

with ` = N and u±(λ, n) replaced by u(z, n). Then uσ1,...,σN
(z, n) solves τσ1,...,σN

u = zu.

Finally we extend Lemma 2.9 and assume for brevity σ` ∈ (−1, 1).

Lemma 3.3. Suppose H satisfies (2.46) and let Hσ1,...,σN
, σ` ∈ (−1, 1, ), 1 ≤ ` ≤ N be con-

structed as in Theorem 3.1 with

(3.17) u`
σ`

(n) =
1 + σ`

2
f+(k`, n) + (−1)`+1 1− σ`

2
f−(k`, n).

Then the transmission Tσ1,...,σN
(k) and reflection coefficients R±,σ1,...,σN

(k) of the operator
Hσ1,...,σN

in terms of the corresponding scattering data T (k), R±(k) of H are given by

Tσ1,...,σN
(k) =

(
N∏

`=1

1− k k`

k − k`

)
T (k),(3.18)

R±,σ1,...,σN
(k) = k±N

(
N∏

`=1

k − k`

1− k k`

)
R±(k),(3.19)

where k` = λ` +
√
λ2

` − 1 ∈ (−1, 0), 1 ≤ ` ≤ N . Moreover, the norming constants γσ1,...,σN ,±,j

associated with λj ∈ σp(Hσ1,...,σN
) in terms of γ±,j corresponding to H read

γσ1,...,σN ,±,j =
(

1−σj

1+σj

)±1

|kj |−2∓(N−1)

∏N
`=1 |1− kjk`|∏N

`=1
` 6=j

|kj − kl|
T (kj), 1 ≤ j ≤ N,

γσ1,...,σN ,±,j = |kj |±N
N∏

`=1

1− kjk`

|kj − k`|
γ±,j , j ∈ J.(3.20)

Proof. Observe that

uσ1,σ2(λ2, n) =
1 + σ2

2
Aσ1f+(k2, n) +

1− σ2

2
Aσ1f−(k2, n)

= c
(1 + σ̂2

2
fσ1,+(k2, n) +

1− σ̂2

2
fσ1,−(k2, n)

)
,(3.21)

where c > 0 and σ2, σ̂2 are related via

(3.22)
1 + σ̂2

1− σ̂2
=

1
k2

1 + σ1

1− σ1
.

The claims now follow from Lemma 2.9 after extending this result by induction. �

4. The double commutation method

In this section we provide a complete characterization of the double commutation method for
Jacobi operators. We start with a linear transformation which turns out to be unitary when
restricted to proper subspaces of our Hilbert space. We use this transformation to construct
an operator Hγ1 from a given background operator H. This operator Hγ1 will be the doubly
commuted operator of H as discussed in the Introduction. The results of Sections 4-6 appear to
be without precedent.
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Let H = `2((M− − 1,M+ + 1)) be the underlying Hilbert space (−∞ ≤M− < M+ ≤ ∞) and
let ψ(n) be a given real-valued sequence which is square summable near M−. Choose a positive
constant γ > 0 and define

(4.1) cγ(n) = 1 + γ
n∑

j=M−

ψ(j)2, n ≥M−.

(We set in addition cγ(M− − 1) = 1 if M− is finite.) Denote the set of sequences in `((M− −
1,M+ + 1)) which are square summable near M− by H− and consider the following (linear)
transformation

(4.2)
Uγ : H− → H−

f(n) 7→ fγ(n) =
√

cγ(n)
cγ(n−1)f(n)− γψγ(n)

n∑
j=M−

ψ(j)f(j).

By inspection, the sequence fγ is also square summable near M− and the inverse transformation
is given by

(4.3)
U−1

γ : H− → H−

g(n) 7→
√

dγ(n)
dγ(n−1)g(n) + γψ(n)

n∑
j=M−

ψγ(j)g(j) ,

where

(4.4) dγ(n) = cγ(n)−1 = 1− γ
n∑

j=M−

ψγ(j)2, ψγ(n) =
ψ(n)√

cγ(n− 1)cγ(n)
.

Lemma 4.1. Define ψγ as in (4.4). Then ψγ ∈ H and

(4.5) ‖ψγ‖2 =
1
γ

(
1− lim

n→M+
cγ(n)−1

)
.

If P, Pγ denote the orthogonal projections onto the one-dimensional subspaces of H spanned by
ψ,ψγ (set P = 0 if ψ 6∈ H) the operator Uγ is unitary from (1− P )H onto (1− Pγ)H.

Proof. For the claims concerning ψ we use

(4.6)
n∑

j=M−

|ψγ(j)|2 =
1
γ

n∑
j=M−

( 1
cγ(j − 1)

− 1
cγ(j)

)
=

1
γ

(
1− 1

cγ(n)

)
.

Next we note that

(4.7) cγ(n)
n∑

j=M−

ψγ(j)fγ(j) =
n∑

j=M−

ψ(j)f(j)

and a direct calculation shows

(4.8)
n∑

j=M−

|fγ(j)|2 =
n∑

j=M−

|f(j)|2 − γ

cγ(n)
|

n∑
j=M−

f(j)ψ(j)|2.

This clearly proves the lemma if ψ ∈ H. Otherwise, i.e., if ψ 6∈ H, consider Uγ , U−1
γ on the dense

subspace `0((M−,M+)) and take closures (cf., e.g., [54], Theorem 6.13). �

Using, e.g., the polarization identity, we further get

(4.9)
n∑

j=M−

gγ(j)fγ(j) =
n∑

j=M−

g(j)f(j)− γ

cγ(n)

n∑
j=M−

ψ(j)f(j)
n∑

j=M−

ψ(j)g(j).

Next we take two sequences a, b satisfying

Hypothesis (H.4.2). Suppose

(4.10) a, b ∈ `((M− − 1,M+ + 1)), a(n) ∈ R\{0}, b(n) ∈ R



COMMUTATION METHODS FOR JACOBI OPERATORS 13

and introduce the difference expression

(4.11) (τf)(n) = a(n)f(n+ 1) + a(n− 1)f(n− 1)− b(n)f(n).

We want to consider a self-adjoint operator H associated with τ and separated boundary con-
ditions at M± and assume the existence of a sequence ψ(λ1, n) of the following kind.

Hypothesis (H.4.3). Suppose ψ(λ) satisfies the following conditions.
(i). ψ(λ, n) is a real-valued solution of τψ(λ) = λψ(λ).
(ii). ψ(λ, n) is square summable near M− and fulfills the boundary condition (of H) at M−

(if any, i.e., if τ is l.c. at M−).
(iii). ψ(λ, n) also fulfills the boundary condition (of H) at M+ if τ is l.c. at M+ (ψ(λ, n) is

then an eigenfunction of H).
Sufficient conditions for the above function to exist are
(a). λ ∈ σp(H), or
(b). τ is l.c. at M− but not at M+, or
(c). σ(H) 6= R (and λ ∈ R\σ(H)), or
(d). σ(H−) 6= R (and λ ∈ R\σ(H−)), where H− is a restriction of H to `2((M− − 1, M̂ + 1))

with M̂ ∈ Z and (for instance) a Dirichlet boundary condition at M̂ + 1.
It follows that H is explicitly given by

(4.12) D(H) = {f ∈ H| τf ∈ H; WM−−1(ψ(λ1), f) = 0 if τ is l.c. at M−,
WM+(ψ(λ1), f) = 0 if τ is l.c. at M+}.

We now use Lemma 4.1 with ψ(n) = ψ(λ1, n), γ = γ1, Uγ = Uγ1 to prove

Theorem 4.4. Suppose (H.4.2) and (H.4.3) and let τγ1 be the difference expression

(4.13) (τγ1f)(n) = aγ1(n)f(n+ 1) + aγ1(n− 1)f(n− 1)− bγ1(n)f(n),

where

aγ1(n) = a(n)

√
cγ1(λ1, n− 1)cγ1(λ1, n+ 1)

cγ1(λ1, n)
,(4.14)

bγ1(n) = b(n) + γ1

(a(n− 1)ψ(λ1, n− 1)ψ(λ1, n)
cγ1(λ1, n− 1)

− a(n)ψ(λ1, n)ψ(λ1, n+ 1)
cγ1(λ1, n)

)
.(4.15)

Then the operator Hγ1 defined by

Hγ1f = τγ1f,(4.16)
D(Hγ1) = {f ∈ H|τγ1f ∈ H;Wγ1,M−−1(ψγ1(λ1), f) = Wγ1,M+(ψγ1(λ1), f) = 0},

where Wγ1,n(u, v) = aγ1(n)(u(n)v(n+1)−u(n+1)v(n)), is self-adjoint and has the eigenfunction

(4.17) ψγ1(λ1, n) =
ψ(λ1, n)√

cγ1(λ1, n− 1)cγ1(λ1, n)

associated with the eigenvalue λ1. If ψ(λ1) 6∈ H (and hence τ is l.p. at M+) we have

(4.18) (1− Pγ1(λ1))Hγ1 = Uγ1HU
−1
γ1

(1− Pγ1(λ1)),

where Uγ1 is the unitary transformation of Lemma 4.1 and thus

(4.19)
σ(Hγ1) = σ(H) ∪ {λ1}, σac(Hγ1) = σac(H),
σp(Hγ1) = σp(H) ∪ {λ1}, σsc(Hγ1) = σsc(H).

If ψ(λ1) ∈ H there is a unitary operator Ũγ1 = Uγ1 ⊕
√

1 + γ1‖ψ(λ1)‖21 on (1 − Pγ1(λ1))H ⊕
Pγ1(λ1)H such that

(4.20) Hγ1 = Ũγ1HŨ
−1
γ1
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and thus

(4.21)
σ(Hγ1) = σ(H), σac(Hγ1) = σac(H),
σp(Hγ1) = σp(H), σsc(Hγ1) = σsc(H).

Proof. It suffices to prove

(4.22) (1− Pγ1(λ1))Hγ1 = Uγ1HU
−1
γ1

(1− Pγ1(λ1)).

Let f be a sequence which is square summable near M− such that τf is also square summable
nearM− and assume that f fulfills the boundary condition atM−, if any. Then a straightforward
calculation shows

(4.23) τγ1(Uγ1f) = Uγ1(τf)

and we only have to check the boundary conditions at M±. Equation (4.8) shows that τγ1 is l.c.
at M− if and only if τ is and that τγ1 is l.c. at M+ if τ is. The formula

(4.24) Wγ1,n(ψγ1(λ1), Uγ1f) =
Wn(ψ(λ1), f)
cγ1(λ1, n)

shows that

(4.25) Wγ1,M−−1(ψγ1(λ1), Uγ1f) = 0, f ∈ D(H).

We further claim that

(4.26) Wγ1,M+(ψγ1(λ1), Uγ1f) = 0, f ∈ D(H).

This is clear if ψ(λ1) ∈ H. Otherwise, i.e., if ψ(λ1) 6∈ H, we use

(4.27)
Wn(ψ(λ1), f)
cγ1(λ1, n)

=

∑n
j=M−

ψ(λ1, j)(λ1 − τ)f(j)

cγ1(λ1, n)
.

The right hand side tends to zero for f ∈ D(H) as can be seen from (4.8) and the fact that Uγ1

is unitary. Combining (4.25) and (4.26) yields

(4.28) (1− Pγ1(λ1))Uγ1D(H) ⊆ (1− Pγ1(λ1))D(Hγ1).

But (1−Pγ1(λ1))Uγ1D(H) cannot be properly contained in (1−Pγ1(λ1))D(Hγ1) by the property
of self-adjoint operators being maximally defined. �

Remark 4.5. (i). By choosing λ1 ∈ σac(H) ∪ σsc(H) (provided the continuous spectrum is not
empty and a solution satisfying (H.4.3) exists) we can use the double commutation method to
construct operators with eigenvalues embedded in the continuous spectrum.
(ii). If M+ = ∞ and H has an eigenfunction ψ(λ1) one can remove this eigenfunction from
the spectrum upon choosing γ1 = −‖ψ(λ1)‖−2. The corresponding function ψγ1(λ1) is then no
longer in H, implying that τγ1 is l.p. at M+.
(iii). Especially, removing an eigenvalue from an operator which is l.c. at ∞ yields an operator
which is l.p.. Thus τγ1 is not necessary l.p. if τ is. Moreover, this shows that one cannot insert
additional eigenvalues into an operator which is l.c. at M+ (remove this eigenvalue again to
obtain a contradiction).
(iv). The limiting case γ1 = ∞ can be handled analogously producing a unitarily equivalent
operator if ψ(λ1) 6∈ H and removes the eigenvalue λ1 otherwise.

The previous theorem tells us only how to transfer solutions of τu = zu into solutions of
τγ1v = zv if u is square summable near M−. The following lemma treats the general case.

Lemma 4.6. The sequence

(4.29) uγ1(z, n) =
cγ1(λ1, n)u(z, n)− γ1

z−λ1
ψ(λ1, n)Wn(ψ(λ1), u(z))√

cγ1(λ1, n− 1)cγ1(λ1, n)
, z ∈ C\{λ1}
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solves τγ1u = zu if u(z) solves τu = zu. If u(z) is square summable near M− and fulfills the
boundary condition at M− (if any) we have uγ1(z, n) = (Uγ1u)(z, n) justifying our notation.
Furthermore, we note

|uγ1(z, n)|2 = |u(z, n)|2

− γ1

|z − λ1|2
( |Wn(ψ(λ1), u(z))|2

cγ1(λ1, n)
− |Wn−1(ψ(λ1), u(z))|2

cγ1(λ1, n− 1)

)
,(4.30)

and

(4.31) Wγ1,n(ψγ1(λ1), uγ1(z)) =
Wn(ψ(λ1), u(z))

cγ1(λ1, n)
.

Hence uγ1 is square summable near M+ if u is. If ûγ(ẑ) is constructed analogously then

Wγ1,n(uγ1(z), ûγ1(ẑ)) = Wn(u(z), û(ẑ)) +
γ1

cγ1(λ1, n)
z − ẑ

(z − λ1)(ẑ − λ1)
×

Wn(ψ(λ1), u(z))Wn(ψ(λ1), û(ẑ)).(4.32)

Proof. All facts are tedious but straightforward calculations. �

Next we want to give some conditions implying the l.p. case of τγ1 at M+, assuming M+ = ∞.
Let M− < M̂ < ∞ and let H+ denote a self-adjoint operator associated with τ on (M̂ − 1,∞)
and the boundary condition induced by ψ(λ1) at M̂ (cf. equation (4.12)).

Hypothesis (H.4.7). Suppose H+ satisfies one of the following spectral conditions:
(i). σess(H+) 6= ∅.
(ii). σ(H+) = σd(H+) = {λ+,j}j∈J+ with

∑
j∈J+

(1 + λ2
+,j)

−1 = ∞.
Clearly Hypothesis (H.4.7) is satisfied if a, b are bounded near ∞ (which is equivalent to H+

being bounded) since then τ is l.p. at ∞.

Theorem 4.8. Assume (H.4.2), (H.4.3), and (H.4.7). Then τγ1 is l.p. at M+ = ∞.

Proof. Let γ1,+ = cγ1(λ1, M̂)−1γ1 and consider the doubly commuted operator H+,γ1,+ of H+.
Then τγ1 |(M̂,∞) = τγ1,+ and H+,γ1,+ also satisfies (H.4.7). Hence τγ1 is l.p. at ∞ as claimed. �

Remark 4.9. We can interchange the role of M− and M+ in this section by substituting M− ↔
M+,

∑n
j=M−

→
∑M+

j=n+1 and γ1 → −γ1.

Let M± = ±∞ and H be a given Jacobi operator satisfying (2.46). Our next aim is to show
how the scattering data of the operators H,Hγ1 are related, where Hγ1 is defined as in Theorem
4.4.

Lemma 4.10. Let H be a given Jacobi operator satisfying (2.46). Then the doubly commuted
operator Hγ1 , defined via ψ(λ1, n) = f−(k1, n), λ1 = (k1 + k−1

1 )/2 as in Theorem 4.4, has the
transmission and reflection coefficients

(4.33) Tγ1(k) = sgn(k1)
k k1 − 1
k − k1

T (k),

(4.34) R−,γ1(k) = R−(k), R+,γ1(k) =
(
k − k1

k k1 − 1

)2

R+(k),

where k and z are related via z = (k + k−1)/2. Furthermore, the norming constants γ−,j

corresponding to λj ∈ σp(H), j ∈ J (cf. (2.50)) remain unchanged except for an additional
eigenvalue λ1 with norming constant γ−,1 = γ1 if ψ(λ1) 6∈ H respectively with norming constant
γ̃−,1 = γ−,1 + γ1 if ψ(λ1) ∈ H and γ−,1 denotes the original norming constant of λ1 ∈ σp(H).
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Proof. By Lemma 4.6 the Jost solutions fγ1,±(k, n) are up to a constant given by

(4.35)
cγ1(λ1, n− 1)f±(k, n)− γ1

z−λ1
ψ(λ1, n)Wn−1(ψ(λ1), f±(k))√

cγ1(λ1, n− 1)cγ1(λ1, n)
.

This constant is easily seen to be 1 for fγ1,−(k, n). Thus we can compute R−(λ) using (4.32)
(the second unknown constant cancels). The rest follows by a straightforward calculation. �

5. Double commutation and Weyl–Titchmarsh theory

In this section we want to reveal the connections between Weyl–Titchmarsh theory and the
double commutation method. Without loss of generality we consider only the cases `2(N) and
`2(Z). We start with the half-line N and freely use the notation employed in Appendices A–D.

Let H+ be a self-adjoint operator associated with τ on N and a Dirichlet boundary condition
at 0. Without loss of generality we assume ψ(λ1, 1) = 1.

Remark 5.1. We have restricted ourselves to a Dirichlet boundary condition since the general
boundary condition

(5.1) cos(α)u(0) + sin(α)u(1) = 0

can be reduced to the case α = 0 by the transformation b(1) → b(1) + a(0) tan(α) for α 6= π/2,
whereas for α = π/2 one can replace `2(N) by `2((1,∞)).

Theorem 5.2. Assume (H.4.2), ψ(λ1, 1) = 1 and let m+(z, 0), m+,γ1(z, 0) denote the Weyl
m-functions of H+, H+,γ1 . Then we have

(5.2) m+,γ1(z, 0) =
1

1 + γ1

(
m+(z, 0)− γ1

z − λ1

)
.

If µ+ and µ+,γ1 denote the corresponding spectral functions of H+ and H+,γ1 it follows that

(5.3) µ+,γ1(λ) =
1

1 + γ1

(
µ+(λ) + γ1Θ(λ− λ1)

)
,

where Θ(.) denotes the (right continuous) step function

(5.4) Θ(x) =
{

1, x ≥ 0
0, x < 0 .

Proof. As in Appendix B we use the finite approximations mN (z, 0) and mN,γ1(z, 0). If γj(N),
γj,γ1(N) are the corresponding norming constants we have

(5.5) γj,γ1(N) =
1

1 + γ1

{
γj(N) + γ1, λj = λ1

γj(N), λj 6= λ1
.

This follows since ψ(z, 0) = 0, ψ(z, 1) = 1 implies ψγ1(z, 0) = 0, ψγ1(z, 1) = (1 + γ1)−1/2. Hence
we infer

(5.6) mN,γ1(z, 0) =
1

1 + γ1

(
mN (z, 0)− γ1

z − λ1

)
and the theorem follows upon taking the limit N →∞. �

Remark 5.3. If we transform the operatorH+ into it’s diagonal form as in Appendix C the double
commutation method gets particularly transparent: it corresponds to adding a step function to
the spectral function. This approach can also be used to derive the unitary transformation stated
in Section 2 in the following way. Take the spectral function µ+ of a given Jacobi operator, switch
to µ+,γ1 , and compute the orthogonal polynomials with respect to this new measure (compare
Appendix C and [1], Ch. 1). Now take a sequence f(n) and its transform F (z) and use (C.8) to
obtain (4.2).

Next we turn to operators in `2(Z). Without loss of generality we assume

(5.7) ψ(λ1, 0) = − sin(α), ψ(λ1, 0) = cos(α), α ∈ [0, π).
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Theorem 5.4. Assume (H.4.2) and let m̃±(z, α), m̃±,γ1(z, α) denote the Weyl m̃-functions of
H, Hγ1 as introduced in Appendix B. Then we have

(5.8) m̃±,γ1(z, α̃) =
cγ1(λ1, 0)
cγ1(λ1,−1)

1 + cot(α̃)2

1 + cot(α)2
(
m̃±(z, α)− γ̃1

z − λ1
+

cot(α)cγ1(λ1, 1)−1

a(0)(1 + cot(α̃)2)

)
,

where

(5.9) γ̃1 =
γ1

cγ1(λ1, 0)
, tan(α̃) =

√
cγ1(λ1, 1)
cγ1(λ1,−1)

tan(α).

Proof. Consider the sequences

(5.10) φα,γ1(z, n), θα,γ1(z, n)−
( γ̃1

z − λ1
− cot(α)cγ1(λ1, 1)−1

a(0)(1 + cot(α̃)2)

)
φα,γ1(z, n)

constructed from the fundamental system θα(z, n), φα(z, n) for τ (cf. (B.1)) as in Lemma 4.6.
They form a fundamental system for τγ1 corresponding to the initial conditions associated with
α̃ up to constant multiples. Now use (4.31) to evaluate (B.3). �

The WeylM -matrix and the corresponding spectral matrix can now be computed in a straight-
forward manner (cf. Appendix D).

6. Iteration of the double commutation method

Finally we demonstrate how to iterate the double commutation method. We choose a given
background operator H (with coefficients a, b satisfying (H.4.2)) and further γ1 > 0, λ1 ∈ R.
Next choose ψ(λ1) as in Hypothesis (H.4.3) to define the transformation Uγ1 and the operator
Hγ1 . In the second step, we choose γ2 > 0, λ2 ∈ R and another function ψ(λ2) to define
ψγ1(λ2) = Uγ1ψ(λ2), a corresponding transformation Uγ1,γ2 , and an operator Hγ1,γ2 . Applying
this procedure N -times results in

Theorem 6.1. Assuming (H.4.2) let H be a given background Jacobi operator in H = `2((M−−
1,M+ + 1)) and let γj > 0, λj, 1 ≤ j ≤ N be such that there exist corresponding solutions
ψ(λj , n) of τψ = λjψ satisfying Hypothesis (H.4.3). We set ψγ1,...,γk

(λj) = Uγ1,...,γk
· · ·Uγ1ψ(λj)

and define the following matrices (1 ≤ ` ≤ N)

(6.1) C`(n) =

δr(s) +
√
γrγs

n∑
m=M−

ψ(λr,m)ψ(λs,m)


1≤r,s≤`

,

(6.2) C`
i,j(n) =



C`−1(n)r,s r,s≤`−1

√
γs

n∑
m=M−

ψ(λi,m)ψ(λs,m) s≤`−1,r=`

√
γr

n∑
m=M−

ψ(λr,m)ψ(λj ,m) r≤`−1,s=`

n∑
m=M−

ψ(λi,m)ψ(λj ,m) r=s=`


1≤r,s≤`

,

(6.3) Ψ`(λj , n) =


C`(n)r,s r,s≤`

√
γs

n∑
m=M−

ψ(λj ,m)ψ(λs,m) s≤`,r=`+1

√
γrψ(λr, n) r≤`,s=`+1

ψ(λj , n) r=s=`+1


1≤r,s≤`+1

.

Then we have (set C0(n) = 1)

(6.4) cγ`
(λ`, n) = 1 + γ`

n∑
m=M−

ψγ1,...,γ`−1(λ`,m)2 =
detC`(n)

detC`−1(n)
,
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and hence

(6.5)
N∏

`=1

cγ`
(λ`, n) = detCN (n).

Moreover,

(6.6)
n∑

m=M−

ψγ1,...,γ`−1(λi,m)ψγ1,...,γ`−1(λj ,m) =
detC`

i,j(n)
detC`−1(n)

and

(6.7) ψγ1,...,γ`
(λj , n) =

detΨ`(λj , n)√
detC`(n− 1) detC`(n)

.

In addition, we get

aγ1,...,γN
(n) = a(n)

√
detCN (n− 1) detCN (n+ 1)

detCN (n)
,(6.8)

bγ1,...,γN
(n) = b(n)−

N∑
`=1

γ`

(
a(n)

detΨ`(λ`, n) detΨ`(λ`, n+ 1)
detC`−1(n) detC`(n)

− a(n− 1)
detΨ`(λ`, n− 1) det Ψ`(λ`, n)
detC`−1(n− 1) detC`(n− 1)

)
= −λN + a(n)

detCN (n− 1)
detCN (n)

detΨN (λN , n+ 1)
detΨN (λN , n)

− a(n− 1)
detCN (n)

detCN (n− 1)
detΨN (λN , n− 1)

detΨN (λN , n)
,(6.9)

the last equation only being valid if detΨN (λN , n) 6= 0 (e.g., if λN ≤ inf σ(H)). The spectrum
of Hγ1,...,γN

is given by

(6.10)
σ(Hγ1,...,γN

) = σ(H) ∪ {λj}N
j=1, σac(Hγ1,...,γN

) = σac(H),
σp(Hγ1,...,γN

) = σp(H) ∪ {λj}N
j=1, σsc(Hγ1,...,γN

) = σsc(H).

Moreover,

Hγ1,...,γN
(1−

N∑
j=1

Pγ1,...,γN
(λj))

= (Uγ1,...,γN
· · ·Uγ1)H(U−1

γ1
· · ·U−1

γ1,...,γN
)(1−

N∑
j=1

Pγ1,...,γN
(λj)),(6.11)

where Pγ1,...,γN
(λj) denotes the projection onto the one-dimensional subspace of H spanned by

ψγ1,...,γN
(λj).

Proof. We start with (6.6). Using Sylvester’s determinant identity (cf. [25], Sect. II.3) we obtain

detC`−1(n) detC`+1
i,j (n)

= detC`(n) detC`
i,j(n)− γ` detC`

`,j(n) detC`
i,`(n),(6.12)

which proves (6.6) together with a look at (4.9) by induction on N . Next, (6.4) easily follows
from (6.6). Similarly,

detC`(n) det Ψ`+1(λj , n)

= detC`+1(n) detΨ`(λj , n)− γ` detΨ`(λ`, n) detC`
j,`(n),(6.13)

and (4.3) prove (6.7). The rest follows in a straightforward manner. �
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Remark 6.2. (i). If f is square summable near M−, fγ1,...,γj
= Uγ1,...,γj

· · ·Uγ1f is given by
substituting ψ(λj) → f in (6.7). Similarly we get the scalar product of fγ1,...,γi

and gγ1,...,γj

from (6.6) by substituting f → ψ(λi) and g → ψ(λj) in (6.2).
(ii). Equation (6.7) can be rephrased as

(γ1ψγ1,...,γ`
(λ1, n), . . . , γ`ψγ1,...,γ`

(λ`, n)) =√
detC`(n)

detC`(n− 1)
(C`(n))−1(γ1ψ(λ1, n), . . . , γ`ψ(λ`, n)),(6.14)

where (C`(n))−1 is the inverse matrix of C`(n).

Clearly Theorem 4.8 extends (by induction) to this more general situation.

Theorem 6.3. Assume (H.4.2) and (H.4.7). Then τγ1,...,γN
is l.p. at M+.

Finally we also extend Lemma 4.10. For simplicity we assume ψ(λj , n) 6∈ H, 1 ≤ j ≤ N .

Lemma 6.4. Let H be a given Jacobi operator satisfying (2.46). Then Hγ1,...,γN
, defined via

ψ(λ`, n) = f−(k`, n), λ` = (k` + k−1
` )/2 ∈ R\σ(Hγ1,...,γ`−1), 1 ≤ ` ≤ N has the transmission

and reflection coefficients

Tγ1,...,γN
(k) =

∏N
`=1 sgn(k`)k k`−1

k−k`
T (k),(6.15)

R−,γ1,...,γN
(k) = R−(k), R+,γ1,...,γN

(k) =
(

N∏
`=1

( k − k`

k k` − 1

)2
)
R+(k),(6.16)

where z = (k + k−1)/2. Furthermore, the norming constants γ−,j corresponding to λj ∈ σp(H),
j ∈ J (cf. (2.50)) remain unchanged and the additional eigenvalues λ` have norming constants
γ−,` = γ`.

Remark 6.5. Of special importance is the case a(n) = 1/2, b(n) = 0. Here we have f±(k, n) =
k±n, T (k) = 1, and R±(k) = 0. It is well known from inverse scattering theory that R±(k), |k| =
1 together with the point spectrum and corresponding norming constants uniquely determine
a(n), b(n). Hence we infer from Lemma 3.3 that Hγ1,...,γN

constructed from ψ(λ`, n) = f−(k`, n)
as in Theorem 6.1 andHσ1,...,σN

constructed from u`
σ`

= 1+σ`

2 kn
` +(−1)`+1 1−σ`

2 k−n
` as in Theorem

3.1 coincide if

(6.17) γj =
(

1− σj

1 + σj

)−1

|kj |−1−N

∏N
`=1 |1− kjk`|∏N

`=1
` 6=j

|kj − k`|
, 1 ≤ j ≤ N.

For a direct proof compare [35].

7. Applications

First we state the discrete analogue of the FIT-formula derived in [22] for the isospectral torus
of periodic Schrödinger operators. This yields an explicit realization of the isospectral torus of
all algebro-geometric quasi-periodic finite-gap Jacobi operators.

Let a(n), b(n) be given algebro-geometric quasi-periodic g-gap sequences characterized by the
band-edges E0 < E1 < · · · < E2g+1 and Dirichlet data {(µj , σj)}g

j=1 at the reference point n = 0
(cf. [7]), where µj ∈ [E2j−1, E2j ] and σj ∈ {±}, 1 ≤ j ≤ g. Then the spectrum of the associate
Jacobi operator H is of the type

σ(H) = σac(H) =
⋃g+1

n=1[E2n−2, E2n−1],
σsc(H) = σp(H) = ∅.(7.1)

and (cf. (2.29))

(7.2) σ(H±) = σ(H) ∪ {µj |σj = ±, 1 ≤ j ≤ g}.



20 F. GESZTESY AND G. TESCHL

Then considerations as in Theorem 3.1 readily yield that all other isospectral algebro-geometric
g-gap sequences can be realized in the following way

a(µ̃1,σ̃1),...,(µ̃g,σ̃g)(n) = −
√
a(n− g)a(n− g + 2)×√
Cn−g(ψσ1(µ1), ψ−σ̃1(µ̃1), . . . , ψσg

(µg), ψ−σ̃g
(µ̃g))

Cn−g+1(ψσ1(µ1), ψ−σ̃1(µ̃1), . . . , ψσg
(µg), ψ−σ̃g

(µ̃g))
×√

Cn−g+2(ψσ1(µ1), ψ−σ̃1(µ̃1), . . . , ψσg (µg), ψ−σ̃g (µ̃g))
Cn−g+1(ψσ1(µ1), ψ−σ̃1(µ̃1), . . . , ψσg

(µg), ψ−σ̃g
(µ̃g))

,(7.3)

b(µ̃1,σ̃1),...,(µ̃g,σ̃g)(n) = a(n− g)
Cn−g+2(ψσ1(µ1), ψ−σ̃1(µ̃1), . . . , ψσg

(µg))
Cn−g+1(ψσ1(µ1), ψ−σ̃1(µ̃1), . . . , ψσg

(µg))
×

Cn−g(ψσ1(µ1), ψ−σ̃1(µ̃1), . . . , ψσg (µg), ψ−σ̃g (µ̃g))
Cn−g+1(ψσ1(µ1), ψ−σ̃1(µ̃1), . . . , ψσg

(µg), ψ−σ̃g
(µ̃g))

+ a(n+ 1)
Cn−g(ψσ1(µ1), ψ−σ̃1(µ̃1), . . . , ψσg

(µg))
Cn−g+1(ψσ1(µ1), ψ−σ̃1(µ̃1), . . . , ψσg

(µg))
×

Cn−g+1(ψσ1(µ1), ψ−σ̃1(µ̃1), . . . , ψσg
(µg), ψ−σ̃g

(µ̃g))
Cn−g(ψσ1(µ1), ψ−σ̃1(µ̃1), . . . , ψσg (µg), ψ−σ̃g (µ̃g))

− µ̃g,(7.4)

where ψ±(z, n) are the branches of the Baker-Akhiezer function associated with a, b (i.e., the
solutions of τψ = zψ which are square summable near ±∞) and the new sequences are associated
with the new Dirichlet data {(µ̃j , σ̃j)}g

j=1 at the same reference point n = 0. Even though
ψ±(z, n) is not necessarily positive as required in our Theorem 3.1, the above sequences can be
shown to be well-defined by using the explicit theta-function representations for ψ±(z, n) (cf.,
e.g., [7]) as long as µ̃j ∈ [E2j−1, E2j ] and σ̃j ∈ {±}, 1 ≤ j ≤ g. In fact, consider the hyperelliptic
Riemann surface Kg associated with the function

(7.5) R2g+2(z)1/2 =
2g+1∏
j=0

(z − Ej)1/2

and branch points E0 < E1 < · · · < E2g+1. A point P ∈ Kg will be denoted by P =
(z,±R2g+2(z)1/2) and we add two points ∞± ∈ Kg such that Kg is compact. Introduce

(7.6) z(P, n) = ÂP0
(P )−

g∑
j=1

ÂP0
(µ̂j) + 2nÂP0

(∞+)− Ξ̂P0
,

where ÂP0
is Abel’s map with base point P0 = (E0, 0) and Ξ̂P0

is the vector of Riemann constants
(cf. [7] for more details). Then

a(n) = ã[θ(z(∞+, n− 1))θ(z(∞+, n+ 1))/θ(z(∞+, n))2]1/2,(7.7)

b(n) = −E0 + ã
θ(z(∞+, n− 1))θ(z(P0, n+ 1))

θ(z(∞+, n))θ(z(P0, n))

+ ã
θ(z(∞+, n))θ(z(P0, n− 1))
θ(z(∞+, n− 1))θ(z(P0, n))

,(7.8)

where θ is Riemann’s theta function associated withKg and ã is a constant depending only onKg

(i.e.,on {Ej}2g+1
j=0 ). Performing one single commutation at a point Q = (z, σR2g+2(z)1/2) ∈ Kg

(i.e., choosing ψσ(z, n) to perform the commutation) it is shown in [7], Chapter 9 that the new
sequences are again given by (7.7), (7.8) if z(P, n) is replaced by

(7.9) z̃(P, n) = z(P, n) + ÂP0
(Q) + ÂP0

(∞+).

As a consequence we note that for the standard procedure as in Theorem 2.6 (i.e., with Q =
(λ1, σ1R2g+2(λ1)1/2), σ1 ∈ {±1}) the corresponding commuted operator Hσ1 is again quasi-
periodic and isospectral to H.



COMMUTATION METHODS FOR JACOBI OPERATORS 21

Hence, choosing Q = µ̂j we obtain

(7.10) z̃(P, n) = z(P, n) + ÂP0
(µ̂j) + ÂP0

(∞+)

and the Dirichlet eigenvalue at µ̂j is formally replaced by one at ∞− (since ÂP0
(∞−) =

−ÂP0
(∞+)). The corresponding sequences are neither real-valued nor well-defined. To re-

pair this we perform a second single commutation choosing Q = (µ̃j ,−σ̃jR2g+2(µ̃j)1/2). The
resulting sequences a(µ̃j ,σ̃j), b(µ̃j ,σ̃j) are associated with

(7.11) z(µ̃j ,σ̃j)(P, n) = z(P, n+ 1) + ÂP0
(µ̂j)− ÂP0

((µ̃j , σ̃jR2g+2(µ̃j)1/2))

and are again real-valued. Moreover, we have replaced the Dirichlet eigenvalue (µj , σj) by
(µ̃j , σ̃j) and we have shifted the reference point for the Dirichlet boundary condition by one
(since z(P, n+ 1) and not z(P, n) occurs in (7.11)) whereas everything else remains unchanged.
From Section 3 we know that a(µ̃j ,σ̃j), b(µ̃j ,σ̃j) are equivalently given by

(7.12) a(µ̃j ,σ̃j)(n+ 1) = −
√
a(n)a(n+ 2)

√
Cn(ψσj

(µj), ψ−σ̃j
(µ̃j))Cn+2(ψσj

(µj), ψ−σ̃j
(µ̃j))

Cn+1(ψσj (µj), ψ−σ̃j (µ̃j))2
,

b(µ̃j ,σ̃j)(n+ 1) = a(n)
ψσj

(µj , n+ 2)Cn(ψσj
(µj), ψ−σ̃j

(µ̃j))
ψσj

(µj , n+ 1)Cn+1(ψσj
(µj), ψ−σ̃j

(µ̃j))
+

a(n+ 1)
ψσj (µj , n)Cn+1(ψσj (µj), ψ−σ̃j (µ̃j))
ψσj

(µj , n+ 1)Cn(ψσj
(µj), ψ−σ̃j

(µ̃j))
− µ̃j ,(7.13)

where the n + 1 on the left-hand-side takes the aforementioned shift of reference point into
account. Thus, applying this procedure g times we can replace all Dirichlet eigenvalues proving
(7.3), (7.4).

The reader might be puzzled by the fact that the Dirichlet eigenvalue µ̂j is shifted to ∞− (as
opposed to∞+) which seemingly distinguishes∞− from∞+. However, this apparent asymmetry
between ∞+ and ∞− is related to our way of factorizing H. If we would instead split up H as

(7.14) H = Ã∗σj
Ãσj + µj ,

where

(7.15) (Ãσj
)f(n) = −

√
−
a(n− 1)ψσj (µj , n)
ψσj

(µj , n− 1)
f(n− 1) +

√
−
a(n− 1)ψσj (µj , n− 1)

ψσj
(µj , n)

f(n),

with Ã∗σj
being the adjoint of Ãσj

, the role of ∞+ and ∞− would be interchanged.
We stress again that (7.3), (7.4) represent an explicit realization of the isospectral torus of all

algebro-geometric quasi-periodic g-gap Jacobi operators with spectrum (7.1).
Next we turn to bounded solutions (a(n, t), b(n, t)) of the Toda equations and construct N -

soliton solutions on these (arbitrary) background solutions using the single commutation method.
The corresponding Jacobi operators H(t) satisfy inf(σ(H(t))) = inf(σ(H(0))) > −∞ for all

t ∈ R. Furthermore, this implies the existence of principal solutions u±(λ, n, t) which satisfy

H(t)u±(λ, n, t) = λu±(λ, n, t),(7.16)
d

dt
u±(λ, n, t) = P (t)u±(λ, n, t), (n, t) ∈ Z× R,(7.17)

where the difference expression P (t) associated with (a(t), b(t)) is defined by

(7.18) (P (t)f)(n) = a(n, t)f(n+ 1)− a(n− 1, t)f(n− 1).

(7.16) and (7.17) then imply the Toda lattice equations,

(7.19)

d

dt
a(n, t) = a(n, t)

(
b(n, t)− b(n+ 1, t)

)
d

dt
b(n, t) = 2

(
a(n, t− 1)2 − a(n, t)2

) , (n, t) ∈ Z× R



22 F. GESZTESY AND G. TESCHL

which are well-known to be equivalent to the Lax equation

(7.20)
d

dt
H(t)− [P (t),H(t)] = 0, t ∈ R

(where [., .] denotes the commutator).
Next, let H(t) be as above and choose

(7.21) λN < · · · < λ1 < inf(σ(H(0))), σj ∈ [−1, 1], 1 ≤ j ≤ N ∈ N.
Then Theorem 3.1 implies

aσ1,...,σN
(n, t) = −

√
a(n, t)a(n+N, t)×√

Cn(u1
σ1
, . . . , uN

σN
)Cn+2(u1

σ1
, . . . , uN

σN
)

Cn+1(u1
σ1
, . . . , uN

σN
)

,(7.22)

bσ1,...,σN
(n, t) = −λN

+a(n, t)
Cn+2(u1

σ1
, . . . , uN−1

σN−1
)Cn(u1

σ1
, . . . , uN

σN
)

Cn+1(u1
σ1
, . . . , uN−1

σN−1)Cn+1(u1
σ1
, . . . , uN

σN
)

+ a(n+N − 1, t)
Cn(u1

σ1
, . . . , uN−1

σN−1
)Cn+1(u1

σ1
, . . . , uN

σN
)

Cn+1(u1
σ1
, . . . , uN−1

σN−1)Cn(u1
σ1
, . . . , uN

σN
)
,(7.23)

where

(7.24) u`
σ`

(n, t) =
1 + σ`

2
u+(λ`, n, t) + (−1)`+1 1− σ`

2
u−(λ`, n, t).

Moreover, for λ < λN ,

(7.25) uσ1,...,σN ,±(λ, n, t) =

±

√
N−1∏
j=0

(−a(n+ j, t))Cn(u1
σ1
, . . . , u`

σN
, u±(λ))√

Cn(u1
σ1
, . . . , uN

σN
)Cn+1(u1

σ1
, . . . , uN

σN
)

are the principal solutions of τσ1,...,σN
(t)u = λu satisfying

(7.26)
d

dt
uσ1,...,σN ,±(λ, n, t) = Pσ1,...,σN

(t)uσ1,...,σN ,±(λ, n, t),

where Pσ1,...,σN
(t) is defined as in (7.18) with a replaced by aσ1,...,σN

. We also have (cf. (3.11),
(3.12))

ρo,σ1,...,σN
(n, t) = −

√
−a(n, t) Cn+2(u1

σ1
,...,uN−1

σN−1 )Cn(u1
σ1

,...,uN
σN

)

Cn+1(u1
σ1

,...,uN−1
σN−1 )Cn+1(u1

σ1
,...,uN

σN
)
,(7.27)

ρe,σ1,...,σN
(n, t) =

√
−a(n+N − 1, t)

Cn(u1
σ1

,...,uN−1
σN−1 )Cn+1(u1

σ1
,...,uN

σN
)

Cn+1(u1
σ1

,...,uN−1
σN−1 )Cn(u1

σ1
,...,uN

σN
)
.(7.28)

Finally, the sequences aσ1,...,σN
(n, t), bσ1,...,σN

(n, t) fulfill the Toda lattice equations (7.19)
and the sequence

(7.29) ρσ1,...,σN
(n, t) =

{
ρe,σ1,...,σN

(m, t), n = 2m
ρo,σ1,...,σN

(m, t), n = 2m+ 1 ,

fulfills the Kac–van Moerbeke lattice equation

(7.30)
d

dt
ρ(n, t) = ρ(n, t)

(
ρ(n+ 1, t)2 − ρ(n− 1, t)2

)
.

At the end we derive the N -soliton solutions relative to an arbitrary Toda background solution
(a(t), b(t)) using the double commutation method.

Denote by ψ(λ, n, t) the solutions of τ(t)ψ = λψ which are square summable near −∞ and
satisfy

(7.31)
d

dt
ψ(λ, n, t) = P (t)ψ(λ, n, t).
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As in Theorem 6.1 we define the following matrices

(7.32) CN (n, t) =

δr(s) +
√
γrγs

n∑
m=M−

ψ(λr,m, t)ψ(λs,m, t)


1≤r,s≤N

,

(7.33) ΨN (λj , n, t) =


CN (n, t)r,s r,s≤N

√
γs

n∑
m=M−

ψ(λj ,m, t)ψ(λs,m, t) s≤`,r=N+1

√
γrψ(λr, n, t) r≤`,s=N+1

ψ(λj , n, t) r=s=N+1


1≤r,s≤N+1

.

Then the sequences

aγ1,...,γN
(n, t) = a(n, t)

√
detCN (n− 1, t) detCN (n+ 1, t)

detCN (n, t)
,(7.34)

bγ1,...,γN
(n, t) = b(n, t)− 1

2
d

dt
ln

detCN (n, t)
detCN (n− 1, t)

.(7.35)

satisfy the Toda lattice equations (7.19). Moreover,

(7.36) ψγ1,...,γN
(λj , n, t) =

det ΨN (λj , n, t)√
detCN (n− 1, t) detCN (n, t)

satisfies

(7.37)
d

dt
ψγ1,...,γN

(λj , n, t) = Pγ1,...,γN
(t)ψγ1,...,γN

(λj , n, t),

where again Pγ1,...,γN
(t) is defined as in (7.18) with a replaced by aγ1,...,γN

.

8. Appendices

Appendix A lists some formulas for Jacobi operators which are used in Sections 2 and 3.
Appendices B–D contain some facts about Weyl–Titchmarsh theory for Jacobi operators which
are needed in Section 3. Finally Appendix D states a l.p. criterion which seems to be novel and
of independent interest.

Appendices B–D generalize some well-known facts about Sturm–Liouville operators (to be
found, e.g., in [11],[28],[49],[54]) to Jacobi operators. The following material is essentially taken
from [1],[3],[5],[8].

Appendix A. General Background

Assume (H.4.2) and define the Jacobi difference expression

(A.1) (τf)(n) = a(n)f(n+ 1) + a(n− 1)f(n− 1)− b(n)f(n).

A simple calculation yields Green’s formula for f, g ∈ `(Z)

(A.2)
n∑

j=m

(
f(τg)− gτf

)
(j) = Wn(f, g)−Wm−1(f, g),

where we have introduced the modified Wronskian

(A.3) Wn(f, g) = a(n)
(
f(n)g(n+ 1)− f(n+ 1)g(n)

)
, n ∈ Z.

The main object of our interest will be the equation

(A.4) τu = z u, u ∈ `(Z), z ∈ C.
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A glance at (A.2) shows that the modified Wronskian of two solutions is constant and nonzero if
and only if they are linearly independent. If we choose f = u(z), g = u(z) in (A.2), where u(z)
is a solution of (A.4) with z ∈ C\R, we obtain

(A.5) [u(z)]n = [u(z)]m−1 −
n∑

j=m

|u(z, j)|2,

where [.]n denotes the Weyl bracket

(A.6) [u(z)]n =
Wn(u(z), u(z))

2 i Im(z)
= a(n)

Im(u(z, n)u(z, n+ 1))
Im(z)

, n ∈ Z.

Taking limits in (A.2) shows that W±∞(f, g) = limn→±∞Wn(f, g) exists if f, g, τf , and τg are
square summable near ±∞.

Appendix B. Weyl m-functions

Let θα(z, .), φα(z, .) be the fundamental system of (A.4) corresponding to the initial conditions

(B.1)
φα(z, 0) = − sin(α), φα(z, 1) = cos(α),

θα(z, 0) =
cos(α)
a(0)

, θα(z, 1) =
sin(α)
a(0)

such that

(B.2) W (θα(z), φα(z)) = 1.

Next pick λ1 ∈ R and define the following rational function with respect to z,

(B.3) mN (z, α) =
WN (φα(λ1), θα(z))
WN (φα(λ1), φα(z))

, N ∈ Z\{0},

which has poles at the zeros λj(N) ∈ R, λ1(N) ≡ λ1 of WN (φα(λ1), φα(.)) = 0. The fact that
one can rewrite mN (z, α) with λ1 replaced by λj(N) together with

lim
z→λj(N)

WN (φα(λj(N)), θα(z)) = −1,(B.4)

lim
z→λj(N)

WN (φα(λj(N)), φα(z))
z − λj(N)

= WN (φα(λj(N)),
d

dz
φα(λj(N)))(B.5)

imply that all poles of mN (z, α) are simple. Using (A.2) to evaluate (B.5) one infers that ∓1
times the residue at λj(N) is given by

(B.6) γj(α,N) =
( N

0∑
n= 1

N+1

φα(λj(N), n)2
)−1

, N >< 0.

The γj(α,N) are called norming constants. Hence one gets

(B.7) mN (z, α) =
∑

j

∓γj(α,N)
z − λj(N)

+


± tan(α)±1

a(0) , α ∈ [0,π)
(0,π]

±z−b( 1
0 )

a(0)2 , α = π
0

, N >< 0.

(We note that λj(N) depend on α for j > 1.) Furthermore, the function

(B.8) uN (z, n) = θα(z, n)−mN (z, α)φα(z, n)

satisfies

(B.9)

N
0∑

n= 1
N+1

|uN (z, n)|2 = ± Im(mN (z, α))
Im(z)

, N >< 0,

i.e., ±mN (z, α) are Herglotz functions for N >< 0.
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Next we want to investigate the limits N → ±∞. Fix z ∈ C\R. Then, as in the Sturm-
Liouville case, the function mN (z, α) (for different values of λ1 ∈ R) lies on a circle given by

(B.10) {m ∈ C|[θα(z)−mφα(z)]N = 0}.
Since [.]N is decreasing in N for N > 0, the circle corresponding to N + 1 lies inside the circle
corresponding to N . Similarly for N < 0. Hence these circles either tend to a limit point or a
limit circle, depending on whether

(B.11)
±∞∑

|φα(z, n)|2 = ∞, or
±∞∑

|φα(z, n)|2 <∞.

Accordingly, one says that τ is limit point (l.p.) respectively limit circle (l.c.) at ±∞. One can
show that this definition is independent of z ∈ C\R. Thus the pointwise convergence of mN (z, α)
is clear in the l.p. case. In the l.c. case both Wronskians in (B.3) converge and we may set

(B.12) m̃±(z, α) = lim
N→±∞

mN (z, α).

Remark B.1. (i). m̃±(z, 0) are not the usual Weyl m-functions defined in the literature. For a
connection with the standard Weyl m-functions m±(z) see (C.20), (C.21). We have chosen to
introduce m̃±(z, α) in order to simplify our notation in various places.
(ii). This explicit construction of converging sequences, even in the l.c. case, also works for
Sturm-Liouville operators and seems to be novel to the best of our knowledge. Previously one
usually proved the existence of such sequences using Helly’s selection theorem (cf., e.g., [11]).

Moreover, the above sequences are locally bounded in z (fix an N and take all circles corre-
sponding to a (sufficiently small) neighborhood of any point z and note that all following circles
lie inside the ones corresponding to N) and by Vitali’s theorem ([50], p. 168) they converge
uniformly on every compact set in C± = {z ∈ C| ± Im(z) > 0}, implying that ±m̃±(z, α) are
again Herglotz functions.

Upon setting

(B.13) u±(z, n) = θα(z, n)− m̃±(z, α)φα(z, n)

we get a function which is square summable near ±∞

(B.14)
∑

n= 1
−∞

∞
0

|u±(z, n)|2 = ± Im(m̃±(z, α))
Im(z)

.

In addition,

(B.15) W±∞(φα(λ1), u±(z)) = 0,

if τ is l.c. at ±∞. We remark that (independently of the l.c. and l.p. case at ±∞)

(B.16) m̃±(z) = m̃±(z, 0) =
−u±(z, 1)
a(0)u±(z, 0)

and that m̃±(z, α) can be expressed in terms of m̃±(z, β) (use that u± is unique up to a constant)
by

(B.17) m̃±(z, α) =
1

a(0)
a(0) cos(β − α)m̃±(z, β)− sin(β − α)
a(0) sin(β − α)m̃±(z, β) + cos(β − α)

.

Appendix C. Weyl–Titchmarsh Theory on N

Let H+ be a given self-adjoint operator associated with τ on N and a Dirichlet boundary
condition at n = 0. Abbreviate φ(z, n) = φ0(z, n) and let u+(z, n), z ∈ C\σ(H+) be a solution
of (A.4) which is square summable near ∞ and fulfills the boundary condition at ∞ (if any).
The resolvent of H+ then reads

(C.1) ((H+ − z)−1f)(n) =
∑
m∈N

G+(z,m, n)f(m), z ∈ C\σ(H+),
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where

(C.2) G+(z,m, n) =
1

W (φ(z), u+(z))

{
φ(z, n)u+(z,m), m ≥ n
φ(z,m)u+(z, n), m ≤ n

.

Since φ(z, n) is a polynomial in z we infer by induction

(C.3) φ(H+, n)δ1 = δn, δn(k) =
{

1, k = n
0, k 6= n

,

implying that δ1 is a cyclic vector for H+. If E+(.) denotes the family of spectral projections
corresponding to H+ we introduce the measure

(C.4) dρ+(.) = d〈δ1, E+(.)δ1〉.

Equation (C.3) now shows that the polynomials φ(z, n), n ∈ N are orthogonal with respect to
this measure, i.e.,

(C.5) 〈φ(j), φ(k)〉 =

∞∫
−∞

φ(λ, j)φ(λ, k) dρ+(λ) = δj(k),

implying

(C.6) a(n) = 〈φ(n+ 1), λφ(n)〉, b(n) = −〈φ(n), λφ(n)〉, n ∈ N.

Now consider the following transformation U from the set `0(N) onto the set of polynomials

(Uf)(λ) =
∞∑

n=1

f(n)φ(λ, n),(C.7)

(U−1F )(n) =
∫

R
φ(λ, n)F (λ)dρ+(λ).(C.8)

A simple calculation for F (λ) = (Uf)(λ) shows that

(C.9)
∞∑

n=1

|f(n)|2 =
∫

R
|F (λ)|2dρ+(λ).

Thus U extends to a unitary transformation

(C.10) Ũ : `2(N) → L2(R, dρ+)

(since the set of polynomials is dense in L2(R, dρ+), [5], Theorem VII.1.7) which maps the
operator H+ to the multiplication operator by λ,

(C.11) ŨH+Ũ
−1 = H̃,

where

(C.12) H̃F (λ) = λF (λ), D(H̃) = {F ∈ L2(R, dρ+)|λF (λ) ∈ L2(R, dρ+)}.

This is easily verified for f ∈ `0(N). If τ is l.p. at ∞ note that `0(N) is a core for H+ and if
τ is l.c. at ∞ note that dρ+ is a pure point measure and that eigenfunctions are mapped onto
eigenfunctions (all finite linear combinations of eigenfunctions form again a core).

This implies that the spectrum of H+ can be characterized as follows. Let the Lebesgue
decomposition of dρ+ be given by

(C.13) dρ+ = dρ+,p + dρ+,ac + dρ+,sc,

then we have (ρ+(λ) =
∫
(−∞,λ]

dρ+)

σ(H+) = {λ ∈ R|λ is a growth point of ρ+},(C.14)
σp(H+) = {λ ∈ R|λ is a growth point of ρ+,p},(C.15)
σac(H+) = {λ ∈ R|λ is a growth point of ρ+,ac},(C.16)
σsc(H+) = {λ ∈ R|λ is a growth point of ρ+,sc}.(C.17)
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The Stieltjes transform of the spectral function ρ+ is called the Weyl m-function

(C.18) m+(z) =
∫

R

dρ+(λ)
λ− z

, z ∈ C\R.

Conversely, the spectral function ρ+ can be recovered from m+(z) by the Stieltjes inversion
formula

(C.19) ρ+(λ) =
1
π

lim
δ↓0

lim
ε↓0

λ+δ∫
−∞

Im(m+(ν + i ε))dν.

We have normalized ρ+ such that it is right continuous and satisfies lim
λ→−∞

ρ+(λ) = 0. One infers

(C.20) m+(z) = G+(z, 1, 1) =
−u+(1)
a(0)u+(0)

= m̃+(z),

and we remark that the local compact convergence of mN (z, 0) to m̃+(z) = m+(z) implies the
convergence of the associated spectral functions at every point of continuity ([2], p. 332). The
second Weyl m-function is usually defined as

(C.21) m−(z) = G−(z,−1,−1) =
−u−(−1)
a(−1)u−(0)

= −z + b(0) + a(0)2m̃−(z)
a(−1)2

.

m±(z), like ±m̃±(z), are Herglotz functions.

Appendix D. Weyl–Titchmarsh Theory on Z

In Appendix C we have dealt with the half-line N. In this appendix we extend these results
to all of Z.

Let H be a given self-adjoint operator associated with τ . Let u±(z, n) be a solution of (A.4)
which is square summable near ±∞ (provided such a solution exists) and fulfills the boundary
condition at ±∞ if any. The resolvent of H then reads

(D.1) ((H − z)−1f)(n) =
∑
m∈Z

G(z,m, n)f(m), z ∈ ρ(H),

where

(D.2) G(z,m, n) =
1

W (u−(z), u+(z))

{
u−(z, n)u+(z,m), m ≥ n
u−(z,m)u+(z, n), m ≤ n

.

Consider the vector-valued polynomials

(D.3) φ(z, n) =
(
φ1(z, n), φ2(z, n)

)
,

where φ1,2(z, n) are solutions of (A.4) satisfying the initial conditions

(D.4)
φ1(z, 0) = 0, φ1(z, 1) = 1,
φ2(z, 0) = 1, φ2(z, 1) = 0.

The analog of (C.3) reads

(D.5) φ1(H,n)δ1 + φ2(H,n)δ0 = δn.

This is obvious for n = 0, 1 and the rest follows from induction upon applying H to (D.5). If E(.)
denotes the spectral resolution of the identity corresponding to H we introduce the measures

(D.6) dρj,k(.) = d〈δj , E(.)δk〉,

and the (hermitian) matrix-valued measure

(D.7) dρ =
(
dρ1,1 dρ1,2

dρ2,1 dρ2,2

)
.
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By (D.5) the vector-valued polynomials are orthogonal with respect to dρ

〈φ(m), φ(n)〉 =
2∑

j,k=1

∫
R
φj(λ,m) φk(λ, n)dρj,k(λ)

≡
∫

R
φ(λ,m)dρ(λ) φ(λ, n) = δn(m).(D.8)

The analogous formulas to (C.6) then read

(D.9) a(n) = 〈φ(n+ 1), λφ(n)〉, b(n) = 〈φ(n), λφ(n)〉, n ∈ Z.

Next we consider the following transformation U from the set `0(Z) onto the set of vector-
valued polynomials

(Uf)(λ) =
∑
n∈Z

f(n)φ(λ, n),(D.10)

(U−1F )(n) =
∫

R
φ(λ, n)dρ(λ)F (λ).(D.11)

Again a simple calculation for F (λ) = (Uf)(λ) shows that

(D.12)
∑
n∈Z

|f(n)|2 =
∫

R
F (λ)dρ(z)F (λ).

Thus U extends to a unitary transformation

(D.13) Ũ : `2(Z) → L2(R, dρ)

which maps the operator H to the multiplication operator by λ,

(D.14) ŨHŨ−1 = H̃,

where

(D.15) H̃F (λ) = zF (λ), D(H̃) = {F ∈ L2(R, dρ)|λF (λ) ∈ L2(R, dρ)},

as in Appendix B.
In order to characterize the spectrum of H one only needs to consider the trace dρt of dρ

(D.16) dρt = dρ1,1 + dρ2,2.

Let the Lebesgue decomposition of dρt be given by

(D.17) dρt = dρt
p + dρt

ac + dρt
sc,

then we have (ρt(λ) =
∫
(−∞,λ]

dρt, etc.)

σ(H) = {λ ∈ R|λ is a growth point of ρt},(D.18)
σp(H) = {λ ∈ R|λ is a growth point of ρt

p},(D.19)

σac(H) = {λ ∈ R|λ is a growth point of ρt
ac},(D.20)

σsc(H) = {λ ∈ R|λ is a growth point of ρt
sc}.(D.21)

The Weyl-matrix M(z) is defined as

(D.22) M(z) =

∞∫
−∞

dρ(λ)
λ− z

, z ∈ C\R.

Explicit evaluation yields

M(z) =
(
G(z, 0, 0) G(z, 1, 0)
G(z, 0, 1) G(z, 1, 1)

)
=

a(0)−2

m̃−(z)− m̃+(z)

(
1 −a(0)m̃+(z)

−a(0)m̃+(z) a(0)2m̃+(z)m̃−(z)

)
.(D.23)
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Finally, assuming ρ to be right continuous and normalizing ρ(−∞) = 0 one obtains

(D.24) ρj,k(λ) =
1
π

lim
δ↓0

lim
ε↓0

λ+δ∫
−∞

Im(Mj,k(ν + i ε))dν, 1 ≤ j, k ≤ 2.

Appendix E. A limit point criterion

Lemma E.1. Let w, a, b be real–valued sequences, w > 0, a < 0. Define

(E.1) (τu)(n) =
1

w(n)

(
a(n)u(n+ 1) + a(n− 1)u(n− 1)− b(n)u(n)

)
and suppose that τ is bounded from below. Then τ is in the l.p. case at ∞ if

∑∞ |w(n)/a(n)|1/2 =
∞.

Proof. Since τ is bounded from below, there exists a principal solution u+ > 0 of τu = λu near
∞ for λ ∈ R sufficiently small. (See, e.g. [33], [44] for the definition and basic properties of
(non)principal solutions associated with τ .) Then û+ defined by

(E.2) û+(n) = u+(n)
n∑ 1
a(m)u+(m)u+(m+ 1)

is nonprincipal near ∞, i.e.,

(E.3)
∞∑ 1

a(m)û+(m)û+(m+ 1)
<∞.

Now suppose that τ is l.c. at ∞ which implies

(E.4)
∞∑
w(m)

∣∣û+(m)
∣∣2 <∞.

Then Cauchy’s inequality yields the contradiction

∞ =
∞∑
|w(n)/a(n)|1/2 =

∞∑
|(w(m)û+(m)û+(m+ 1))/(a(m)û+(m)û+(m+ 1))|1/2 ≤∣∣∣∣∣

∞∑
w(m)|û+(m)|2

∣∣∣∣∣
1/2 ∣∣∣∣∣

∞∑
|a(m)û+(m)û+(m+ 1)|−1

∣∣∣∣∣
1/2

< ∞.(E.5)

�

For further l.p. criteria we refer the reader, e.g., to [1], [36].
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