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The Camassa–Holm (CH) equation

ut−uxxt +2κux = 2uxuxx−3uux +uuxxx, (1)

is an extensively studied nonlinear equation. It first appeared as an abstract bi-
Hamiltonian partial differential equation in an article of Fuchssteiner and Fokas [39]
but did not receive much attention until Camassa and Holm [15] (see also [16]) de-
rived it as a nonlinear wave equation that models unidirectional wave propagation on
shallow water and discovered its rich mathematical structure. In this context u(x, t)
represents the fluid velocity in the x direction at time t and the real constant κ is related
to the critical shallow water wave speed. Regarding the hydrodynamical relevance, we
refer to the more recent articles [22, 52, 53]. Apart from this, the CH equation was
also found in [25] as a model for nonlinear waves in cylindrical hyperelastic rods.
Since its discovery, the literature on the CH equation has been growing exponentially
(at the moment, the paper by Camassa and Holm [15] has more than 2400 citations in
Google Scholar, 1698 in Scopus and 1016 in MathSciNet) and it is impossible to give
a comprehensive overview here. In fact, our main focus in this review paper lies on
understanding the CH equation and its so-called conservative solutions via the inverse
scattering transform (IST) approach. It was noticed by Camassa and Holm that the CH
equation is completely integrable in the sense that it enjoys a Lax pair structure and
hence may be treated with the help of the IST approach in principal. The corresponding
isospectral problem is a Sturm–Liouville problem of the form

−y′′+
1
4

y = zyω( · , t), (2)

where ω = u− uxx + κ is known as the momentum. Using a simple change of vari-
ables (and dropping the time dependence for a moment), this spectral problem can be
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transformed into the spectral problem for an inhomogeneous string

− f ′′ = z f ω̃. (3)

In the 1950’s, M. G. Krein developed direct and inverse spectral theory for such strings,
assuming that ω̃ is a nonnegative, locally finite measure on [0,L) for some L ∈ (0,∞].
Of course, the original motivation of Krein was far from applications to nonlinear equa-
tions (see, for instance, [42, Appendix 3]). Unlike in the case for strings, applications
to the CH equation make it necessary to deal not only with nonnegative but also with
real-valued (signed) Borel measures, that is, with indefinite strings.
The structure of the present review is as follows: In the next section we give a brief
historical account on the CH equation. Section 2 then discusses multi-soliton solutions
for (1) in the case when κ = 0; the so-called multi-peakons. In the next two sections
we touch upon the concepts of global conservative solutions and generalized indefinite
strings. In Section 5, we overview recent progress in the understanding of the con-
servative CH flow as a completely integrable nonlinear flow. In the final section we
provide an account on the long-time behavior of solutions to the CH equation.

1 The Camassa–Holm equation

Bi-Hamiltonian structure

In the rest of our paper, we will be mostly concentrated on the Cauchy problem for the
CH equation on the line, that is, (x, t) ∈ R×R+ (note that negative times are covered
by the transformation (x, t)→ (−x,−t), which leaves (1) invariant). Then the CH
equation can be written in the equivalent form

ut +uux + px = 0, p(x, t) =
1
2

∫
R

e−|x−y|
(

2κu+u2 +
1
2

u2
x

)
dy, (4)

which is reminiscent of the 3-D incompressible Euler equations. The original deriva-
tion of (1) was obtained by approximating directly in the Hamiltonian for Euler’s equa-
tions in the shallow water regime (see [15, 16]) and hence the CH equation inherits the
Hamiltonian structure

mt =−
(

2κ∂+m∂+∂m
)

δH1[m]

∂m
, m = u−uxx, (5)

where the Hamiltonian is given by

H1[m] :=
1
2

∫
R

u2 +u2
x dx. (6)
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This, in particular, implies that the H1 Sobolev norm of u is a conserved quantity. In
fact, the CH equation is bi-Hamiltonian [39, 15]. Namely, it can also be written in the
following alternative form:

mt =−(∂−∂
3)

δH2[m]

∂m
, H2[m] :=

1
2

∫
R

u3 +uu2
x +2κu2 dx. (7)

The latter leads to an infinite number of conserved quantities Hn[m], n ∈ Z, which are
defined recursively by

(∂−∂
3)

δHn+1[m]

∂m
=
(

2κ∂+m∂+∂m
)

δHn[m]

∂m
, n ∈ Z.

Schemes for the computation of Hn can be found in [36, 51, 64, 76].

Geometric formulation

Equation (1) with κ = 0 can be interpreted as the geodesic flow on the group of diffeo-
morphisms of the line with the Riemannian structure induced by the H1 right-invariant
metric. This resembles the fact that the Euler equation is an expression of the geodesic
flow in the group of incompressible diffeomorphisms (see [1, 28]). Equation (1) rep-
resents the equations of motion in Eulerian coordinates, while the geometric interpre-
tation corresponds to rewriting (1) in Lagrangian coordinates. This connection turned
out to be very useful in the qualitative analysis of solutions of the CH equation.
For κ 6= 0, the CH equation represents the equation for geodesics on the Bott–Virasoro
group [72]. Let us also mention that the analogous correspondence for the Korteweg–
de Vries (KdV) equation

ut +uxxx +6uux = 0 (8)

was established in [75] (see also [57]). In fact, there is a very close connection between
the KdV and the CH equations. First of all, the Virasoro group (a one-dimensional
extension of the group of smooth transformations of the circle) serves as the symmetry
group for these equations [57]. On the other hand, there is a Liouville correspondence
between the CH and the KdV hierarchies [70], [63].

Dynamics of solutions

In this subsection we assume for simplicity that κ = 0 (note that the transformation
u(x, t)→ u(x−κt, t)+κ reduces (1) to this case, but it does not preserve spatial asymp-
totics).
The Sobolev spaces are the natural phase spaces for the CH equation since the Hamil-
tonian H1 given by (6) is exactly the H1 norm of the solution at time t. One of the
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crucial differences between the CH and the KdV equations is the fact that the CH
equation possesses both global solutions as well as solutions developing singularities
in finite time. Moreover, the blow-up happens in a way which resembles wave breaking
to some extent.
First of all, let us mention that the CH equation (1) is locally well-posed in Hs for any
s > 3/2 (the first result was obtained by Escher and Constantin [18] and for further
improvements see [66], [77]). The problem with global well-posedness stems from
the fact that the Sobolev norms Hs are not controlled by the conservation laws if s > 1
and hence one cannot extend local solutions automatically to the whole line and in
fact, the blow-up can occur in finite time. The singularity formation was first noticed
by Camassa and Holm [15]. Moreover, it was shown in [18] that for any even initial
data u0 ∈ H3(R) with u′0(0)< 0 the corresponding solution does not exist globally. In
particular, this result shows that initial data with arbitrary small Hs norm may blow up
in finite time. On the other hand, it was shown in [19] that the encountered blow-up
looks as follows: the solution remains bounded but its slope becomes vertical in finite
time, which resembles a breaking wave. Let us also mention that in certain situations
it is possible to prove global existence. Namely, it was noticed in [18] that solutions
are global for u0 ∈ Hs with s > 3/2 if the corresponding momentum ω0 = u0−u′′0 is a
positive finite measure.
In contrast to classical solutions, weak solutions to the CH equation (4) are global
although they are not necessarily unique anymore. In [82], Xin and Zhang proved the
existence of global weak solutions for any u0 ∈H1(R). It turns out that the positivity of
the corresponding momentum plays a crucial role for the uniqueness of weak solutions.
Namely, it was proved by Constantin and Molinet [24] that for u0 ∈ H1(R) such that
the corresponding momentum ω0 is a positive finite measure on R, a weak solution to
(4) exists and is unique for all times. Moreover, in this case u is continuous with values
in H1(R) and the quantities H0, H1 and H2 are conserved along the trajectories. In fact,
the positivity of ω0 provides a criterion for the uniqueness of weak solutions: McKean
[69], [71] proved that a weak solution exists and is unique if u0 ∈ C∞(R)∩H1(R)
is such that the set S− := {x ∈ R : ω0(x) < 0} lies wholly to the right of the set
S+ := {x ∈ R : ω0(x) > 0}. Hence, either the forward or backward CH flow blows
up in finite time if both sets S+ and S− have a nonzero Lebesgue measure. For further
details and references we refer the reader to a survey by Molinet [73].

The Lax pair

The presence of infinitely many integrals of motion established in [39] indicates that
the CH equation might be completely integrable. The latter was confirmed by Camassa
and Holm [15] by finding the corresponding Lax pair. Indeed, the CH equation can be
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formulated as the compatibility condition between

−yxx +
1
4

y = zyω, ω = u−uxx +κ (9)

and

yt =
1
2

uxy−
(

1
2z

+u
)

yx, (10)

that is, yxxt = ytxx holds if and only if u satisfies (1). Let us also mention that the CH
equation gives a counterexample to the Painlevé integrability test [41].
The spectral problem (9) is a Sturm–Liouville problem. It very much resembles the
1-D Schrödinger spectral problem, −y′′ + qy = zy, which serves as the isospectral
problem for the KdV equation (8). However, the spectral parameter z is in the ”wrong”
place. Of course, under additional smoothness and positivity assumptions (for example
κ > 0, ω ∈C2(R) and ω > 0 on R), the Liouville transformation

f (x) = ω(x)1/4 y(x), x(x) = x−
∫

∞

x

√
ω(s)

κ
−1ds, (11)

converts (9) into the 1-D Schrödinger form

− f ′′+Q( · , t) f = z f , Q(x, t) =
κ

4
ωxx(x, t)
ω(x, t)2 −

ω(x, t)−κ

4ω(x, t)
− 5κ

16
ωx(x, t)2

ω(x, t)3 . (12)

Hence, as for the KdV flow, in this case one can apply the well-developed inverse scat-
tering theory for 1-D Schrödinger equations in order to integrate the CH flow using the
IST approach (see, e.g., [3], [17], [20], [21]). The same trick can be used to investigate
the CH equation on the circle [23]. However, the direct and inverse spectral theory
for (9) without these additional (positivity and smoothness) assumptions has not being
developed and we postpone its further discussion to Section 3.

Solitons

One of the most interesting features of the CH equation is the presence of solitons and
the simplicity of their interaction when κ = 0 (see Section 2). For κ > 0, solitons are
smooth but there is no closed form even for a one-soliton solution of the CH equation.
However, the Liouville correspondence (11)–(12) allows to obtain a detailed descrip-
tion of multi-soliton solutions. Namely, as for the KdV equation, multi-soliton profiles
are reflectionless potentials for (12) and one can employ this fact and the Liouville
transform in order to get various representations of multi-soliton solutions (see, e.g.,
[54], [67], [68], [79]). Unfortunately, it is a difficult task to invert (11)–(12) and this
fact (at least partially) explains the absence of a closed form for multi-soliton solutions.
Finally, notice that the one-soliton solution is a traveling wave and a complete de-
scription of all weak traveling wave solutions to the CH equation (peakons, cuspons,
stumpons, etc.) is given in [65] (see also [62]).
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2 Multi-peakons and the moment problem

Soliton dynamics

In the dispersionless case κ = 0, the traveling wave solution called peakon is given by

u(x, t) = pe−|x−pt+c|,

where p and c are real parameters. It has a peak at x0(t) = pt−c and its height is equal
to its speed (a positive peak travels to the right and a negative peak travels to the left).
Since it obviously has a discontinuous first derivative at x0, it has to be interpreted as
a suitable weak solution of (4) (see [4, 18, 24, 44]). It was noticed by Camassa and
Holm [15] that the multi-soliton solution to the CH equation with κ = 0 is simply a
linear combination of peakons

u(x, t) =
N

∑
n=1

pn(t)e−|x−qn(t)|, (13)

where the coefficients pn and qn satisfy the system of ordinary differential equations

q′n =
N

∑
k=1

pk e−|qn−qk|, p′n =
N

∑
k=1

pn pk sgn(qn−qk)e−|qn−qk|. (14)

This system is Hamiltonian, that is,

dqn

dt
=

∂H(p,q)
∂pn

,
d pn

dt
=−∂H(p,q)

∂qn
, (15)

with the Hamiltonian given by

H(p,q) =
1
2

N

∑
n,k=1

pn pk e−|qn−qk| =
1
4
‖u‖2

H1(R). (16)

Before we proceed further, let us mention that the Hamiltonian system (15)–(16) is a
special case of the Calogero–Françoise systems introduced in [13, 14]

H(p,q) =
1
2

N

∑
n,k=1

pn pkG(qn−qk), G(x) = a+b+ cos(νx)+b− sin(ν|x|), (17)

where a, b+, b− and ν are arbitrary constants. Clearly, a = 0, b+ = 1 and b− = ν = i
gives (16). Let us also mention that a = 0, b+ = coth(1/2), b− = 1 and ν = i gives
rise to periodic multi-peakons (see [5, 23]); the limiting case G(x) = a+b|x|+ cx2 is
associated to the Hunter–Saxton equation (see [48, 49]).
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The right-hand side in (14) is not Lipschitz if qn−qk is close to zero and hence in this
case, one cannot get existence and uniqueness of solutions of (14) by using the standard
arguments. However, if we know in advance that all the positions stay distinct, then
the right-hand side in (14) becomes Lipschitz and thus the Picard theorem applies. Let
us also mention that the Calogero–Françoise flows are completely integrable in the
Liouville sense, that is, there exist N integrals of motion in involution [14]. However,
the classical Arnold–Liouville theorem is not applicable since the Hamiltonians (17)
are not continuously differentiable whenever b− 6= 0.
One of the most prominent features of multi-peakons is the fact that almost all qual-
itative properties of solutions to the CH equation can be seen just by considering
multi-peakons, i.e., finite dimensional reductions (15)–(16) of the infinite dimensional
Hamiltonian system (5)–(6). For example, the behavior of multi-peakon solutions cru-
cially depends on whether all the heights pn of the single peaks are of the same sign or
not. Notice that the corresponding momentum is simply given by

ω( · , t) = 2
N

∑
n=1

pn(t)δqn(t). (18)

So, ω is a positive measure precisely when all the heights are positive and in this case,
all the positions qn of the peaks stay distinct, move to the right and the system (14)
allows a unique global solution [18, 24, 44]. Otherwise, some of the positions qn of
the peaks will collide eventually, which causes the corresponding heights pn to blow
up in finite time [15]. All this happens in such a way that the solution u in (13) stays
uniformly bounded but its derivative develops a singularity at the points where two
peaks collide. Let us demonstrate this by considering the interaction of two peakons.

Example 1 (Two peakons) Consider the case N = 2 and assume that q1(0)< q2(0).
Introducing the new variables Q = q2− q1 as well as P = p2− p1 and noting that
Q > 0 in a vicinity of zero, we can rewrite the system as

Q′ = P(1− e−Q), P′ =
P2

0 −P2

2
e−Q,

where P0 ≡ p1(t)+ p2(t) is a constant of motion. Notice also that

2H(p,q) =
P2

0 +P2

2
+

P2
0 −P2

2
e−Q = P2

0 −
P2

0 −P2

2
(1− e−Q)≡ 2H2

0 . (19)

Therefore, we get

P′ = 2H2
0 −

P2
0 +P2

2
, Q′ = 2P

P2
0 −2H2

0

P2
0 −P2

. (20)
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One then easily obtains

P(t) = h0
(P(0)+h0)eh0t +(P(0)−h0)

(P(0)+h0)eh0t− (P(0)−h0)
, h0 =

√
4H2

0 −P2
0 , (21)

and

Q(t) = Q(0)+ log

∣∣∣∣∣∣
(

eh0t− P0+h0
P0−h0

P(0)−h0
P(0)+h0

)(
eh0t− P0−h0

P0+h0

P(0)−h0
P(0)+h0

)
(

1− P0+h0
P0−h0

P(0)−h0
P(0)+h0

)(
1− P0−h0

P0+h0

P(0)−h0
P(0)+h0

)
eh0t

∣∣∣∣∣∣ . (22)

Clearly, P is discontinuous only if (P(0)−h0)(P(0)+h0)> 0 and in this case

P(t)→−∞ as t→ t× :=
1
h0

log
(

P(0)−h0

P(0)+h0

)
. (23)

Notice that

(P(0)−h0)(P(0)+h0) = P(0)2 +P2
0 −4H2

0 = (P(0)2−P2
0 )e
−Q

is positive only if p1(0)p2(0)< 0. Hence there are two distinct cases. If p1(0)p2(0)>
0, i.e., both peaks are of the same sign, then the solution is global and peaks never
collide. If we have a peakon-antipeakon interaction, then the blowup happens at t = t×

given by (23) and in this case P(t)= p2(t)− p1(t) tends to−∞ and Q(t)= q2(t)−q1(t)
tends to zero as t approaches t×.

Complete integrability and the Stieltjes moment problem

It was noticed by Beals, Sattinger and Szmigielski [4] that similar to the finite Toda
lattice on the line [74], the multi-peakon flow can be solved by using the solution of the
Stieltjes moment problem [80]. More precisely, consider the corresponding spectral
problem (9) with the moment ω given by (18) (we omit the time dependence):

−y′′+
1
4

y = zyω, ω = 2
N

∑
n=1

pnδqn . (24)

Without loss of generality, we can assume that pn 6= 0 for all n ∈ {1,2, ...,N} and

−∞ < q1 < q2 < ... < qN < ∞.

Some function y is a solution of the differential equation (24) if it satisfies

−y′′+
1
4

y = 0 (25)
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away from the points {q1, . . . ,qN}, together with the interface conditions(
y(qn+)
y′(qn+)

)
=

(
1 0

−2zpn 1

)(
y(qn−)
y′(qn−)

)
, n ∈ {1, . . . ,N}. (26)

The set of all values z ∈ C for which there is a nontrivial solution of the differential
equation (24) that lies in H1(R) is referred to as the spectrum σ of the spectral prob-
lem (24). Note that in this case, the solution in H1(R) of this differential equation is
unique up to scalar multiples. Since the measure ω has a compact support, for every
z ∈ C one has spatially decaying solutions φ±(z, ·) of (24) with φ±(z,x) = e∓

x
2 for all

x near ±∞. In particular, note that φ±( · ,x) and φ′±( · ,x) are real polynomials for each
fixed x ∈ R. The Wronski determinant of these solutions

W (z) = φ+(z,x)φ′−(z,x)−φ
′
+(z,x)φ−(z,x), z ∈ C (27)

is independent of x ∈ R and vanishes at some point λ ∈ C if and only if the solutions
φ−(λ, ·) and φ+(λ, ·) are linearly dependent. As a consequence, one sees that the spec-
trum σ is precisely the set of zeros of the polynomial W and, moreover, the spectrum
σ of (24) consists of exactly N real and simple eigenvalues (see, e.g., [4]). Associated
with each eigenvalue λ ∈ σ is the quantity

1
γλ

:=
∫
R
|φ′−(λ,x)|2dx+

1
4

∫
R
|φ−(λ,x)|2dx > 0, (28)

which is referred to as the (modified) norming constant (associated with λ).
The central role in the inverse spectral theory for (24) is played by the Weyl–Titchmarsh
m-function, which is defined by

M(z) = lim
x→−∞

−1
z

W (φ+(z,x),e−x/2)

W (φ+(z,x),ex/2)
= lim

x→−∞
−W (φ+(z,x),e−x/2)

zW (z)
, z ∈C\R. (29)

M is a Herglotz–Nevanlinna function and it admits the partial fraction expansion:

M(z) = ∑
λ∈σ

γλ

λ− z
, z ∈ C\R. (30)

On the other hand, taking into account the fact that φ+(z, ·) solves the difference equa-
tion (24), it is also possible to write down a finite continued fraction expansion for M
in terms of ω:

zM(z)−1 =
1

−l0 +
1

m1 z+
1

. . . +
1

−lN−1 +
1

mN z− 1
lN

, z ∈ C\R, (31)
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where
mn = 8 pn cosh2

(qn

2

)
, ln =

1
2

(
tanh

(qn+1

2

)
− tanh

(qn

2

))
. (32)

Hereby, we set q0 =−∞ and qN+1 = ∞ for simplicity of notation.
In the case when all pn are positive, the classical result of Stieltjes [80] (see also [55,
§13]) recovers the coefficients (32) in terms of the spectrum σ and the correspond-
ing norming constants {γλ}λ∈σ. For that purpose, one needs to consider the Laurent
expansion of M(z) at infinity (taking into account the partial fraction expansion (30)):

M(z)− 1
z
=−

∞

∑
k=0

sk

zk+1 , |z| → ∞; sk =

{
1+∑λ∈σ γλ, k = 0,

∑λ∈σ λkγλ, k ∈ N.
(33)

Introducing the Hankel determinants

∆0,k =
∣∣si+ j

∣∣k
i, j=0, ∆1,k =

∣∣si+ j+1
∣∣k
i, j=0, (34)

the formulas of Stieltjes read as follows

mn =
∆2

0,n

∆1,n−1∆1,n
, ln−1 =

∆2
1,n−1

∆0,n−1∆0,n
, n ∈ {1, . . . ,N}. (35)

Since sk, k ∈ N are the moments of a nonnegative measure ρ = δ0 +∑λ∈σ γλδλ, the
Hankel determinants ∆0,n are positive for all n ∈ {0, . . . ,N} (see [40], [80]). On the
other hand, the Hankel determinants ∆1,n are positive for all n ∈ {0, . . . ,N} if and only
if the support of ρ is contained in [0,∞), i.e., the spectrum σ consists only of positive
eigenvalues, which is further equivalent to the positivity of the measure ω. Introducing
the time dependence

γ̇λ =
1

2λ
γλ, λ ∈ σ,

one then can integrate the multi-peakon flow by using the Stieltjes solution of the
moment problem (32)–(35) if all pn are positive. Moreover, the formulas (31)–(35)
remain true until the denominators in (35) become zero, that is, one can exploit Stieltjes
solution of the moment to integrate the multi-peakon flow in the general case (see [4]
for further details). One of the important observations made in [4] is that one of the
Hankel determinants ∆1,n vanishes exactly when two adjacent peakons collide.

3 Generalized indefinite strings

The direct and inverse spectral theory for the spectral problem (9) is of vital importance
for investigating the CH equation by using the IST approach. Assume for a moment
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that ω is a locally finite measure on R. A simple change of variables

x 7→ x = x(x) =
1
2

tanh(x/2), x ∈ R; f (x) :=
y(x)

2cosh(x/2)
, (36)

transforms the spectral problem (9) into

− f ′′ = z f ω̃ (37)

on the interval (−1/2,1/2), where the measure ω̃ is given by∫
(0,x]

dω̃(s) = 4
∫
(0,x]

cosh2(s/2)dω(s).

Notice that this change of variables also explains the coefficients in (32). In the case
when ω̃ is a nonnegative measure, (37) describes small oscillations of an inhomoge-
neous string with mass density ω̃ and is known in the literature as the string spectral
problem. Direct and inverse spectral theory for (37) with a nonnegative measure ω̃

was developed by Krein in the early 1950’s [55] and subsequently applied to study
interpolation and filtration problems for stationary stochastic processes; see [27]. The
first problem which appears in this context is how to understand the differential equa-
tion (37) with measure coefficients? Krein suggested to replace the differential equa-
tion by an integral equation and as a result one can successfully develop the basic direct
spectral theory for the string spectral problem (see, e.g., [27, 55]). In fact, this can be
done for a much larger class of Sturm–Liouville-type spectral problems [33].
The inverse spectral problem aims to recover the coefficients of the differential equa-
tion (in our case the measure ω̃) from the spectral data. In order to explain the solution
to the inverse spectral problem for strings, let us consider (37) on the interval [0,L) as-
suming that L ∈ (0,∞] and ω̃ is a nonnegative measure on [0,L). The pair S+ = (L, ω̃)
is called a string (L and ω̃ are its length and mass distribution, respectively). For a
given string S+, let c(z,x) and s(z,x) be a fundamental system of solutions to (37)
satisfying the following boundary conditions

c(z,0) = s′(z,−0) = 1, c′(z,−0) = s(z,0) = 0.

These solutions are entire functions in z for every x ∈ [0,L). Moreover, the limit

M(z) := lim
x→L
− c(z,x)

zs(z,x)
(38)

exists and is finite for all z ∈ C\ [0,∞). The function M : C\ [0,∞)→ C is called the
Weyl–Titchmarsh function of the string S+. It turns out that the function M is a Stieltjes
function, that is, it is analytic on C\ [0,∞), M(z∗) = M(z)∗ and Im(z)ImM(z)≥ 0 for
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all z ∈ C \ [0,∞) and M(z) ≥ 0 for all z < 0. Every Stieltjes function admits a unique
integral representation which, in our case, reads as follows

M(z) = ω̃({0})− 1
Lz

+
∫
(0,∞)

dρ(λ)

λ− z
, z ∈ C\R,

where ρ is a nonnegative measure on (0,∞) such that the integral∫
(0,∞)

dρ(λ)

1+λ

is finite. The measure ρ is called the spectral measure of S+ and it contains all the
spectral information about S+. Notice that (38) defines a map from the set of all strings
to the set of Stieltjes functions. A celebrated result of Krein states that this map is
a bijection, that is, every Stieltjes function M is the Weyl–Titchmarsh function of a
unique string S+ (see [27, 55, 59]). Moreover, this map is homeomorphic with respect
to appropriate weak topologies. The proof of this result is based on the Krein–de
Branges theory of Hilbert spaces of entire functions and can be found in [27].
There were many attempts to extend the results of Krein to the case when ω̃ is a real-
valued measure (see, e.g., [6, 7, 8, 9, 29, 56]) but only insufficient partial results were
available in this case, even though applications to the CH equation demand to have
such a generalization. One of the key problems in this context is the fact that the
natural framework for Krein strings is the Hilbert space L2([0,L); ω̃). However, the
inner product is nonnegative precisely when the measure ω̃ is nonnegative. Otherwise
L2([0,L); ω̃) becomes a Krein space, an indefinite inner product space [2]. In this
respect, the spectral problem (37) is one of the basic toy models in the spectral theory
of operators in Krein spaces (see [37, 38]). Notice that during the last three decades a
lot of work has been devoted to the study of (37), due to its importance in numerous
applications (we refer to [37, 38, 58] for further information and references).
Returning to the inverse spectral problem for indefinite strings, a first guess could
suggest that instead of the class of Stieltjes functions one obtains the entire class of
Herglotz–Nevanlinna functions. However, this is not the case as it turned out that the
class of spectral problems (37) with real-valued Borel measures ω̃ is too narrow in
this respect, even for rational Herglotz–Nevanlinna functions (notice that in the multi-
peakon situation there are cases when the inverse problem cannot be solved). The
deeper reason for why this fails in the real-valued case in some sense lies in the fact
that the class of real-valued Borel measures is not closed with respect to a particular
topology, whereas the class of nonnegative Borel measures is. Altogether, it does not
seem very likely that there is a simple and concise description of the class of Weyl–
Titchmarsh functions that arise from the spectral problem (37) with real-valued Borel
measures ω̃.
One way to overcome this problem by means of extending the class of spectral prob-
lems was suggested by Krein and Langer [60], who considered the modified differen-
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tial equation
− f ′′ = z f ω̃+ z2 f υ̃ (39)

on an interval [0,L), where ω̃ is a real-valued Borel measure on [0,L) and υ̃ is a non-
negative Borel measure on [0,L). In particular, they showed in [60] that indeed every
rational Herglotz–Nevanlinna function arises as the Weyl–Titchmarsh function of such
a spectral problem. However, the totality of all Weyl–Titchmarsh functions which are
obtained in this way is still a proper subset of the class of Herglotz–Nevanlinna func-
tions (see [61]).
Let us consider the set of all triplets S = (L, ω̃, υ̃), where L ∈ (0,∞], ω̃ ∈ H−1

loc [0,L)
is a real-valued distribution on [0,L) and υ̃ is a nonnegative Borel measure on [0,L).
The corresponding differential equation (39) has to be understood in a suitable dis-
tributional sense in general (see [78] and also [31, 32]). Following [31], S is called
an indefinite generalized string. It turns out that every Herglotz–Nevanlinna function
can be realized as the Weyl–Titchmarsh function of a unique generalized string. More
precisely, under the above assumptions on the coefficients, the spectral problem (39)
admits a fundamental system of solutions c(z,x) and s(z,x) with similar properties as
for Krein strings. Moreover, one can define the Weyl–Titchmarsh function via (38) for
all z ∈ C\R, however, M is now only a Herglotz–Nevanlinna function, which admits
the integral representation

M(z) = υ̃({0})z+ c− 1
Lz

+
∫
R

(
1

λ− z
− λ

1+λ2

)
dρ(λ), z ∈ C\R,

with some c ∈ R and a nonnegative Borel measure ρ on R with ρ({0}) = 0 for which
the integral ∫

R

dρ(λ)

1+λ2

is finite. The main result in [31] states that every Herglotz–Nevanlinna function is
the Weyl–Titchmarsh function of a unique generalized indefinite string. The proof of
this result is based on de Branges’ solution of the inverse spectral problem for 2× 2
canonical systems [26]. Let us also mention that in view of applications to the CH
equation, the regularity of coefficients is exactly what is desired.

4 Global conservative solutions

Even though solutions of the CH equation (1) may blow up in finite time, it turned out
that it is always possible to continue them globally in a reasonable weak sense [82].
Since such continuations are not unique anymore in general, one is led to impose ad-
ditional constraints on them in order to guarantee uniqueness. Among all possible
continuations, there are two (in some sense) extremal cases; dissipative continuations
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and conservative continuations. Whereas the former one postulates a loss of energy
due to wave-breaking, the latter one requires the total energy of the solution (measured
by the H1(R) norm) to be conserved.

Example 2 (Peakon-antipeakon interaction) Let us continue with Example 1. As-
sume for simplicity that p1(0) = −p2(0) > 0 and q1(0) = −q2(0) < 0. Notice that
then p1(t) = −p2(t), q1(t) = −q2(t) for all t ∈ (0, t×), which, in particular, implies
that u( · , t) is odd for all t ∈ (0, t×). Taking into account the formulas (20)–(22), one
can show that u(x, t)→ 0 for all x ∈ R as t→ t×. On the other hand, one finds that∫ q2(t)

q1(t)
|u(x, t)|2 + |ux(x, t)|2 dx =

P(t)2

2

(
1− e−2Q(t)

)
→ 4H2

0 = 4H(p,q) (40)

as t → t× (to this end, use (19) and notice that Q(t) = 2q2(t)→ 0 as t → t×). The
latter shows that in the limit, the whole energy concentrates at a single point.

In order for the Cauchy problems for these weak kinds of solutions to be well-posed, it
is thus necessary to introduce an additional quantity µ, which measures the energy den-
sity of the solution. A solution now consists of a pair (u,µ), where µ is a nonnegative
Borel measure, whose absolutely continuous part is determined by u via

µac(B, t) =
∫

B
|u(x, t)|2 + |ux(x, t)|2dx, t ∈ R, (41)

for each Borel set B ⊆ R. Within this picture, blow-up of solutions corresponds to
concentration of energy (measured by µ) to sets of Lebesgue measure zero. Existence
of such global dissipative and conservative solutions for initial data in H1(R) has been
established in [10, 11, 45, 46, 47] by means of a generalized method of characteristics
that relies on a transformation from Eulerian to Lagrangian variables. Let us also
stress the fact that, within the Lagrangian viewpoint, the CH flow is fine for all times
was noticed in [70].

5 Complete integrability

Although there is a multitude of further possibilities to guarantee uniqueness, the no-
tion of global conservative solutions is the suitable one for our purposes, as it retains
the completely integrable structure of the CH equation. In fact, it turns out that this
kind of solution indeed allows an associated isospectral problem. Of course, an eligi-
ble modification of the isospectral problem (2) now also has to incorporate the singular
part of µ (with respect to the Lebesgue measure) in some way. It will turn out that the
appropriately generalized spectral problem is simply given by

−y′′+
1
4

y = zyω( · , t)+ z2 yυ( · , t), (42)
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where υ denotes the singular part of the measure µ. Using the Liouville transform (36)
it is not difficult to see that (42) is transformed to the following equation

− f ′′ = z f ω̃+ z2 f υ̃,

on the interval (−1/2,1/2). The idea for considering this particular spectral problem
goes back to work of Krein and Langer [60] on the indefinite moment problem and
generalized strings, which carry not only negative mass but also dipoles. It is indeed
interesting to observe the parallels between the developments described here in con-
nection with conservative solutions of the CH equation and their work from the 1970s.

Example 3 Let us continue with Example 2. We observed in Section 2 that the multi-
peakon flow can be solved by employing the solution of the Stieltjes moment problem.
Let M( · , t) denote the Weyl–Titchmarsh function of the corresponding spectral problem
at time t ∈ [0, t×). Using (31) and (32), one then observes that

zM(z, t)→ zM(z, t×) := 1+
1

−1/2+
1

16H2
0 z2 +

1
−1/2

=
4H2

0 z2

1−4H2
0 z2

,

for all z ∈ C\R as t → t×. First of all, note that the function M( · , t×) is a Herglotz–
Nevanlinna function. Moreover, the function M( · , t×) is the Weyl–Titchmarsh function
(in the sense of Section 2) for the quadratic spectral problem

−y′′+
1
4

y = z2
υy,

where υ = 4H2
0 δ0.

Conservative multi-peakons

A detailed description of global conservative multi-peakon solutions was given in [46].
Following [46], a global conservative solution (u,µ) of the CH equation is said to be a
multi-peakon solution if for some t0 ∈ R, the measure µ( · , t0) is absolutely continuous
and the function u( · , t0) is of the form (13). For these solutions, at any time t ∈ R, the
quantities ω and υ are of the form

ω( · , t) =
N(t)

∑
n=1

ωn(t)δxn(t), υ( · , t) =
N(t)

∑
n=1

υn(t)δxn(t), (43)

where N(t)∈N0, x1(t), . . . ,xN(t)(t)∈R are strictly increasing, ωn(t)∈R and υn(t)≥ 0
for n= 1, . . . ,N(t). In this case, the spectral problem (42) can be treated similarly to the
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multi-peakon case (see Section 2) with the only modification concerning the norming
constants (cf. (28)) associated with an eigenvalue λ:

1
γλ(t)

:=
∫
R
|φ′−(λ,x, t)|2dx+

1
4

∫
R
|φ−(λ,x, t)|2dx+

∫
R
|λφ−(λ,x, t)|2dυ(x, t). (44)

The first two trace formulas (see [30])

∑
λ∈σ

1
λ
=

∫
R

dω, ∑
λ∈σ

1
λ2 = 2

∫
R

dµ,

indicate that (42) might serve as an isospectral problem for the conservative CH flow
(compare with (16)). And indeed, the main result in [30] states that the pair (u,µ)
is a global conservative multi-peakon solution of the CH equation if and only if the
problems (42), (43) are isospectral with

γ̇λ =
1

2λ
γλ, λ ∈ σ. (45)

Moreover, utilizing the solution of the indefinite moment problem given by Krein and
Langer [60], it was proved in [30] that the conservative CH flow is completely inte-
grable by the inverse spectral transform in the multi-peakon case. Let us also mention
that the Krein–Langer solution of the indefinite moment problem plays the same role
for the conservative multi-peakon flow as the solution to the Hamburger moment prob-
lem for the finite Toda lattice on the line (see [74]).

General conservative solutions

In order to be able to treat general conservative solutions, we need to allow u to be
an arbitrary function in H1(R), rendering ω a distribution in H−1(R), and υ to be a
nonnegative finite Borel measure on R. Thus, the differential equation (42) has to be
understood in a suitable distributional sense in general (see [78] and also [31, 32]). The
associated spectrum is then again defined as the set of all those z ∈ C for which there
is a solution of the differential equation (42) that belongs to H1(R).
For a given global conservative solution (u,µ) of the CH equation, one can indeed show
that the spectrum associated with (42) is independent of time. Under the condition that
the associated spectrum σ is a discrete set of nonzero reals that satisfies

∑
λ∈σ

1
|λ|

< ∞, (46)

one may prove existence of two (unique) solutions φ±(z, · , t) of the differential equa-
tion (42) with the spatial asymptotics

φ±(z,x, t)∼ e∓
x
2 , x→±∞,
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for every z ∈ C and t ∈ R, generalizing the corresponding solutions from the multi-
peakon case. These solutions are entire of genus zero when considered as a function
of z ∈C. The asymptotic normalization implies that the solutions φ±(z, · , t) are square
integrable near ±∞, but will not be square integrable near ∓∞ in general. However,
we see that some z∈C belongs to the spectrum σ if and only if the functions φ−(z, · , t)
and φ+(z, · , t) are linearly dependent. Thus for every λ ∈ σ we may write

φ+(λ,x, t) = cλ(t)φ−(λ,x, t), x, t ∈ R, (47)

for some function cλ. As in the case of multi-peakons in the previous section, it turns
out that the time evolution of these spectral quantities and the norming constants is
linear and simply given by

γ̇λ =
1

2λ
γλ, ċλ =− 1

2λ
cλ,

for every λ ∈ σ. Since one can show that the pair (u,µ) is uniquely determined by
the spectrum σ and the corresponding sequence of norming constants {γλ}λ∈σ, this
implies that the transformation (u,µ) 7→ {γλ}λ∈σ maps the conservative CH flow on
isospectral sets to a simple, explicitly solvable linear flow on Rσ

+. This is reminiscent
of the fact that the conservative CH flow can be viewed as a completely integrable
infinite dimensional Hamiltonian system.

6 Long-time asymptotics

In the theory of linear partial differential equations a key role is played by dispersion
which implies that waves decay over time as different plane waves travel at different
speeds leading to destructive interference. On the other hand, nonlinear partial dif-
ferential equations lead to wave breaking and it thus came as a surprise when John
Scott Russell in 1834 observed his famous Wave of Translation in a narrow channel.
At that time his observation seemed to contradict generally accepted believes and it
took another 37 years until Boussinesq (1871), Lord Rayleigh (1876) and finally Ko-
rteweg and his student de Vries (1895) supported his observation with mathematical
theory. Despite these results, the real significance of solitons remained hidden for an-
other century until Zabusky and Kruskal in 1965 used the KdV equation (8) to explain
the Fermi–Pasta–Ulam experiment (another observation — this time in one of the first
computer experiments — which originally seemed to contradict generally accepted be-
lieves). In fact, their numerical experiments suggested that any decaying initial wave
profile of the KdV equation asymptotically splits into a finite number of solitons plus a
dispersive tail. Hence the solitons were rendered from a peculiar solution into a central
object. Moreover, many other integrable wave equations with soliton solutions were
found and proving that decaying initial conditions asymptotically split into a sum of
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solitons over time became a major task known as soliton resolution conjecture (see
[81] for a review).
Building on the inverse scattering transform discovered by Gardner, Greene, Kruskal
and Miura, it was possible to give a detailed description of the long-time asymptotics
for the KdV equation with decaying initial conditions. While first approaches required
an ansatz for the asymptotic form of the solution, this was eventually overcome by Its
(1981) who outlined how to complete an original idea by Manakov (1974). Finally,
Deift and Zhou (1993) turned these ideas into a fully rigorous theory now known as
nonlinear steepest descent method for oscillatory Riemann–Hilbert problems. We refer
to [43] for further historic details and an expository introduction to this method. See
also the review [50] for further information.
This method also applies to the CH equation, but only when the constant κ and the
momentum ω are strictly positive. Since this method is rather technical, even a brief
overview is beyond the scope of this review and we refer to [12] for further details.
Here we want to focus on the case κ= 0 when there is no dispersive tail and the solution
splits into a pure (but infinite) sum of peakons. Despite the fact that this behavior
was already expected from the original work of Camassa and Holm and emphasized
as an important conjecture by McKean in [70], this corresponding peakon resolution
conjecture for the CH equation remained open and was only solved by two of us in [34].
As already mentioned, the standard techniques developed so far did not apply in this
situation and a new approach was required. Here we will sketch a particularly simple
method based on a novel coupling problem for entire functions [35].
For this purpose, suppose that (u,µ) is a global conservative solution of the CH equa-
tion. As always the starting point is the isospectral problem (42), where we assume
that the underlying spectrum satisfies the condition (46). With the principal notation
from the previous section, we now proceed with a simple rescaling

Φ±(z,x, t) = e±
x
2 φ±(z,x, t), z ∈ C, (48)

such that the coupling condition reads

Φ+(λ,x, t) = ex− t
2λ cλ(0)Φ−(λ,x, t), λ ∈ σ, (49)

and switch to a moving frame, letting t → ∞ as η := t
2x is kept constant. Now for

every λ ∈ σ with η−1 > λ−1 we have that ex− t
2λ = e

t
2 (

1
η
− 1

λ
)→ 0 as t→∞ and for every

λ ∈ σ with η−1 < λ−1 we have that ex− t
2λ = e

t
2 (

1
η
− 1

λ
)→ ∞ as t→ ∞. Consequently, in

the first case the coupling condition asymptotically reads Φ+(λ,x,∞) = 0 and in the
second case Φ−(λ,x,∞) = 0. Finally, one uses the fact that the function

zΦ−(z,x, t)Φ+(z,x, t)
W (z)

, z ∈ C\R, (50)
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is the diagonal of the kernel of the Green’s function of our isospectral problem and as
such, a meromorphic Herglotz–Nevanlinna function. But it is a well-known result that
for a meromorphic Herglotz–Nevanlinna function the poles and zeros are interlacing
implying that in the limit as t → ∞ the zeros of Φ−(z,x, t)Φ+(z,x, t) will cancel with
the zeros of W (z), except for at most one in the case η ∈ σ. Hence we can cancel these
zeros from the picture and are asymptotically left with a coupling problem which has
at most one coupling condition. Since such a problem can easily be solved explicitly,
this leads to the following asymptotics (see [35])

u(x, t) = ∑
λ∈σ

1
2λ

e−|x−
t

2λ
+ξλ|+o(1), (51)

which hold uniformly for all x ∈ R as t → ∞. The phase shifts ξλ appearing in this
formula are given by

ξλ = ln |cλ(0)|+ ∑
k∈σ\{λ}

sgn
(

1
λ
− 1

k

)
ln
∣∣∣∣1− λ

k

∣∣∣∣ , λ ∈ σ. (52)

Therefore, the typical long-time behavior of the function u of our global conservative
solution (u,µ) of the CH equation can be depicted as follows:

u(x, t)

x

t

Each of the dotted lines x = 1
2λ

t emanating from the origin and accumulating towards
the t-axis corresponds to an eigenvalue λ ∈ σ of the underlying isospectral problem.
After long enough time, one can see that the solution u splits into a train of single
peakons, each of which travels along one of the rays, with height and speed determined
by the corresponding eigenvalue.
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