LONG-TIME ASYMPTOTICS FOR THE CAMASSA-HOLM
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ABSTRACT. We apply the method of nonlinear steepest descent to compute the long-
time asymptotics of the Camassa—Holm equation for decaying initial data, completing
previous results by A. Boutet de Monvel and D. Shepelsky.

1. INTRODUCTION

In this paper we want to study the long-time asymptotics of the Camassa—Holm
(CH) equation, also known as the dispersive shallow water equation,

U + 220Uy — Upzr + 3UUL = 2UzUgy + UlUgzs, t>0, T €R, (1.1)

where v = u(z,t) is the fluid velocity in the = direction, » > 0 is a constant related
to the critical shallow water wave speed, and subscripts denote partial derivatives. It
was first introduced by R. Camassa and D. Holm in [7] and R. Camassa et al. [§] as a
model for shallow water waves, but already appeared earlier in a list by B. Fuchssteiner
and A. Fokas [19]. More on the hydrodynamical relevance of this model can be found
in the recent articles by R. Johnson [22] and A. Constantin and D. Lannes [12]. With

W= U — Ugy + 77, (1.2)
called the “momentum”, equation (I.LT) can be expressed as the condition of compati-
bility between

1 y 1
— | - —fl=A 1.3

HERSI Y (13
and

of =— (o~ +u)f +su'f (1.4)
=—|=—=+4u —u .
! 2 2
that is,
ata:c:r:f = 8a:x8tf

is the same as saying that (I.I)) holds. Equation (I.3]) is the spectral problem associated
to (LI). In particular, the CH equation is completely integrable and can be solved
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via the inverse scattering method. Correspondingly, we consider real-valued classical
solutions u(z,t) of the CH equation (I.IJ), which decay rapidly, that is,

max /(1+|x|)l+1(|w(x,t)%|+|wx(9:,t)|+\wm(x,t)|)da:< o (L5)
o<t<T R

for all T" > 0 and some integer [ > 1. Moreover, we will assume
w(xz,0) >0 (1.6)

throughout this paper. Then u exists for all times ¢ > 0 with w(x,t) > 0 (for exis-
tence of solutions we refer to A. Constantin and J. Escher [I0] and the discussion in
A. Constantin and J. Lenells [13], see also [9]).

The aim of this paper is to establish the long-time asymptotics of such solutions
using the nonlinear steepest descent method from P. Deift and X. Zhou [16] which was
inspired by earlier work of S. Manakov [27] and A. Its [2I]. More on this method and
its history can be found in the survey by P. Deift, A. Its, and X. Zhou [17].

The starting point for this method is the representation of a solution of the nonlinear
equation under consideration in terms of a solution of an associated Riemann-Hilbert
problem.

Recently, A. Boutet de Monvel and D. Shepelsky have used the inverse scattering
approach to the CH equation, based on the construction and analysis of an associated
matrix Riemann-Hilbert problem [3,4]. The analysis, via the nonlinear steepest descent
method, of a vector oscillatory RH problem derived from the original matrix-valued
problem, allowed [5] distinguishing four main regions in the (z, t)-half-plane, where the
leading asymptotic terms were qualitatively different: a solitonic sector, two sectors of
(slowly decaying) modulated oscillations, and a sector of rapid decay.

Here we want to simplify the original approach, deriving the vector Riemann-Hilbert
problem directly from scattering theory for the underlying Sturm—Liouville operator.
We notice that the matrix and vector RH problems, being closely related, have specific
features concerning, particularly, the uniqueness issue. For the matrix problem, we
refer to [5], whereas the uniqueness for the vector problem is addressed in detail in the
present paper, see Section [B] below.

At the same time we want to provide complete proofs including the effects of solitons
in the sectors of decaying oscillations (formulas given in [5] for the oscillatory regions
are true in the solitonless case only) and the error estimates in terms of decay of the
initial condition. Moreover, we will make use of some simplifications to the nonlinear
steepest descent method recently given in H. Kriiger and G. Teschl [24] respectively
K. Grunert and G. Teschl [20].

The asymptotics in the transition regions, near the lines z /st = 2 and =/t = —1/4,
involves Painlevé transcendents. A detailed analysis is presented in [I].

2. MAIN RESULT

In order to state our main result we first need to recall a few things.
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Scattering data. Associated with w(zx,t) is a self-adjoint Sturm-Liouville operator

1 a2 1
H) = o@D <_cia:2 * 4) ’ (2.1)

D(H(t)) = H*(R) C L*(R,wdx).

Here L?(R,w dz) denotes the Hilbert space of square integrable (complex-valued) func-
tions over R and H?(R) the corresponding Sobolev space.

By our assumption (LH) the spectrum of H(t) (independent of ¢) consists of an
absolutely continuous part [ﬁf, 00) plus a finite set of eigenvalues A; € (0, ﬁf), 1<

j < N, possibly empty (“solitonless case”), see [9, Theorem 2.1]. For j =1,..., N we

denote
1/1 9
= (3-%)

1
O</€1</€2<'”</€N<§.

Moreover, associated with the continuous spectrum is a (right) reflection coefficient
R, (k,t), and associated with every eigenvalue J\; is a (right) norming constant v ;(t)
(see the next section for details).

1

One-soliton solution. Given x € (0,3) and v > 0 we have the corresponding one-

soliton solution uggl’ﬂ = usol(, ) given by
ot — s2ct) = 325k a(y(z — ct)) (2.2)
so = , .
(1 —452)% (1 + a(y(z — »et))? + L2525 a(y(z — sct))
with
~2
ay) = 5 e, (2.3a)
1
c= € (2,0), (2.3b)
2(3 — k?)
where y(x) is given implicitly by
1 +o 1+2K
xzy%—log%. (2.4)

1+ a(y) 155,

(ky7)

o | = Wsol(x, 1) of this solution is given by

The momentum w

16k2 a(y(x — xc 2
(s mm»‘ -

— xnct) = 1
Wsol (& = s2ct) %< +1—4/~12 (1+ a(y(x — sct

Note that the one-soliton solution has the form of a single peak which is symmetric
with respect to its center

1 .
2K 2K 1 -2k
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. . . 2
The maximum at xq is given by Usol max = %ﬁ’fmg and taller waves are narrower and

travel faster (for fixed s). See Fig. [l where uso(x — x¢) for fixed s and different values
of k is displayed.

4 Usol (.T)

F1GURE 1. One-solitons for fixed ¢ = 1 and k = .15, .25, .3

Note also that if K = k() is changing in such a way that the soliton velocity

25
v=cx = ——
1 — 4k2
is fixed, then, as > — 0, the form of the soliton approaches that of a peakon, ve™ 1l
which is a nonsmooth, weak solution of the Camassa—Holm equation with » = 0

(see [4]). See Fig. 2l where uso(x — x0) for fixed velocity v and different values of
(», k) is displayed. Note that s max = v — 2.

b Usol (:C)

FIGURE 2. Fixed velocity v = 2.5 and (s, k) = (1, .22), (.5,.39), (.1, .48)

Now we are ready to state our main result.

Theorem 2.1 (solution asymptotics). Suppose u(x,t) is a classical solution of the CH
equation (L)) satisfying (ILBl) for some integer 1 > 1. Let
R(k) = Ry (k,0) and Kj, vj = v+,(0), 7 =1,...,N,

be the (right) scattering data associated with H(0) and the initial condition w(z,0).
There are four sectors in the (x,t) half-plane in which the long-time asymptotics of
a solution of the CH equation satisfying (L) are given by the following formulas:
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(i) The “soliton” region c := % > 2+ C for any small C > 0. Let
1
¢i=—— j=1,...,N,
A

and lie inside (2,00).

and let € > 0 sufficiently small such that the intervals [c; — €, ¢ + €] are disjoint
(i1) If |55 — ¢j| < e for some j, one has

u(z,t) = uj(z — & — »cjt) + O(t*l),

(2.6)
where u; = ugz{’w) is the one-soliton solution formed from k; and
= 1] ﬁa (2.7)
i=j+1 ¢ Y

and having a phase shift

N
14 2k,
=2 log - 2/_; . (2.8)
i=j+1 ¢

For j = N the product is 1 in ([27) and the sum is 0 in (2.8]).
(ia) If ‘% — cj’ > ¢ for all j, one has

u(z,t) = O(t™h. (2.9)
(i) The “first oscillatory” region 0 < c:= 5 <2 —C for any C > 0. Here

o 23tko(c)vo(c) sin 2scko(c)? oo .
u(a:,t) = \/(le + ko(c>2)(% _ k0(0)2)t <<}1 4 ko(c)2>2t O( )1 g(t) +50( ))

+O(t™)

(2.10)
for any % < a <1 provided l > 5, where

k() = ;\/_1+c—c\/1+4c’ 1)

vo(e) = — 5 Toa(1 [ Rko(c)) ),

(2.12)
do(c) = % — arg(R(ko(c))) + arg(I'(iro(c)))

- VO(C) log (8%k0(0)2<3/4 — k0(0)2)>

(1/4+ ko(c)?)?
13 arctan () 1 1 [ 1o8(1¢ ~ ha(e)) dlog(1 - |R(OP)
= ko(c) T J5(e)

N 1+ 2k, 43k (c) log(IT(¢)?)
+ 4xko(c) ]Z::llog <1 — 2/<cj) + - /Z(C) W d¢, (2.13)
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with 3(c) = (—ko(c), ko(c)) and I' the Gamma function.

2nd oscillatory
c = 1 region
4 |
\\ \ |
v Y le=0
| (iii) |
\ |
| ..
\ [ (i)
\ I 15¢ oscillatory
\ : region _c= 2
. \ -
(IV) \ ! = z c=c1
fast decay vl A ===
v -7 ==
v - == _c=c
\ | e 9)/ = ’
& - ==
\ //////’//,/ SOht?_n_S____.——CICN
V] gl VB
P
___________________ - @ OO OO OO OO O _
0 T
FIGURE 3. The different regions of the (z,t)-half-plane, ¢ = %

(ili) The “second oscillatory” region —i +C <c= 5 <0 for any C > 0, where

+0(t™®) (2.14)
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for any % < a <1 providedl > 5. Here, for £ =0,1,

(o) - ;\/_1 teo— (—j)fﬁ T 015
vle) = —5-log(1 — |R(ke(c)) ), (2.16)
5i(c) = 7 — (~1)" arg(R(ke(c))) + arg(D(ive(c)))
(—1) 85cky(c)2(3/4 — ke(c)?
ve(c)log (1/4+ Fo(0)2)? Z4Zarctan

1\
+( ) / log(|¢ — ke(e)])dlog(1 — |R(C)[?)
™ (e)

+ ( 1) 21/(/(0) log :1E i T :zgg

o~ 1+ 2; | dehile) [ loa(T(OP)
+ dacky(c Zlog ey - /Z B e de, (2.17)
with X(c) = (—o0, —k1(c)) U (—ko(c ) ko(c)) U (k1(c),00), 0' =1, and 1" = 0.
(iv) The “fast decay” region c = = < —3 — C for any C >0, where
u(x,t) =0(t™. (2.18)

We can also give the asymptotics of the momentum w(x,t).

Theorem 2.2 (momentum asymptotics). Under the same hypotheses and with the
same notations the momentum of the solution behaves as follows:

(i) In the soliton region c = 5 > 2+ C.
(i1) If | 5 — ¢j| < e for some j, one has

w(z,t) = wj(z — & — »cjt) + O™ (2.19)

where w; is the momentum of the one-soliton solution formed from the same
parameters {kj,v;} and with the same phase shift £ as above.
(i2) If | %5 —¢j| = € for all j, one has

w(z,t) = 2+ O@t™). (2.20)
(ii) In the first oscillatory region 0 < c= 5 < 2—C for any C > 0, one has
o c c scko(c)?
(e t) = 5 — 4\/2 ko(é(_‘;okéo;; )vo(c) sin (@}‘24—:(())((0))2)215 — vg(c) log(t) + 50(c)>
+0(t™), (2.21)

for any % < a <1 provided I > 5.
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(iii) In the second oscillatory region —i +C <c= 5 <0 for any C > 0, one has

w(z,t) = »x — 4\/2%%(6)(‘11 + Fo(e)*)vo(e) sin (( 2%]{30(0):; >t —wo(c) log(t) + 50(0))

1 +ko(c)?)

25¢k1 () (L + k1 ()2 (c) . 25cky(c)?
— 4\/ 1 ZE 1 N in <W11((c))2)2t + v1(c) log(t) — 51(C)>

+0(t™), (2.22)

for any % < a <1 provided l > 5.
(iv) In the fast decay region 5 < —% — C for any C > 0, we have

w(z,t) =2+ O™, (2.23)

In particular we recover the fact that a pure soliton solution (i.e., R(k) = 0) asymp-
totically splits into single solitons with associated phase shifts. This was shown only
recently by R.S. Johnson [23] (for two solitons) and in the general case by Y. Matsuno
[29]. For further results on solitons of the CH equation and their stability we refer to
A. Constantin and W. Strauss [14], L.-C. Li [26], and K. El Dika and L. Molinet [I§].

Notice that the oscillatory regions (ii) and (iii) match at z = 0. Indeed, as x — 0
with x < 0, k&1 — oo in (2I0) and thus the amplitude of the second term in (2.14])
vanishes, while the parameters of the first term in (2I4) match those in (2I0). As
for the transition between the other regions, we have already noticed in Section [ that
there exist transition zones, where the asymptotics are described in terms of Painlevé
transcendents. More precisely (details are given in [I]), these zones are:

(trl) |z/st — 2| t*/3 < Const,
(tr2) |x/ st + 1/4]t*/® < Const.

It should also be emphasized that unlike the (modified) Korteweg-de Vries (KdV)
equation (originally considered in [16]), the asymptotic form is given implicitly, however,
to leading order this fact only manifests itself in additional phase shift. More precisely,
the term ¢; in the soliton region (as already pointed out in [29]) and the last two terms
in 0;(c), have no analog in the (modified) KdV equation (cf. [16], respectively [20]).
For results on CH on the half-line we refer to A. Boutet de Monvel and D. Shepelsky
[2] [©].

Finally, note that if u(x, t) solves the CH equation, then so does u(—x, —t). Therefore
it suffices to investigate the case t — +oo.

3. THE INVERSE SCATTERING TRANSFORM AND THE RIEMANN—HILBERT PROBLEM

In this section we derive a vector Riemann—Hilbert problem directly from the scat-
tering theory for the differential operator (L3]). We begin by recalling some required
results from scattering theory, respectively the inverse scattering transform for the CH
equation from [0} [11] (see also [2§]).
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Recall also that by virtue of the unitary Liouville transform

f(x) = fly) = w(z)'/ f (),

y:x_/:oo< wg) —1>dr, 3

the Sturm-Liouville operator H (t) introduced in (2.I]) can be mapped to a self-adjoint
Schrédinger operator

(3.2)

where

() = s wep(w,t)  w(w,t) — 3 Brwy(z,t)?
N0 =7 w(x,t)? dw(x,t) 16 w(z,t)3
From our assumption (5 it follows that ¢(y,t) € LY(R, (1 + |y dy).

Lemma 3.1. There ezist two Jost solutions ¢4 (k,x,t) which solve the differential
equation

Ht) s (b, 2, 1) = % <i + k2> vk, z,8),  Tm(k) > 0, (3.3)
and
lim ek, (k,x,t) = 1. (3.4)

Both ¢+ (k,x,t) are analytic for Im(k) > 0 and continuous for Im(k) > 0. For large k
we have

) 1/4 +o0 1 1
_ oFky+ () / = il
Yy(k,xz,t)=e 2 w1 (1 F ’ q(r,t)dr Sk + O<k2) (3.5)

H_l(w):/R< “{?—1)@ (3.6)

is a conserved quantity of the CH equation.

as k — oo, where

Proof. This is immediate from the corresponding results for ([8:2)) (cf., e.g., [I5] or [28])
by virtue of our Liouville transform (B.I]). Just observe

koxt) = e W H-1(w) s k,y,t
Yi(k,x,t) =e Wﬂ&( Yy t)s
where 11 (k,y,t) are the Jost solutions of (B2). O

Furthermore, one has the scattering relations
T(k)p(k,z,t) = Yi(k,z,t) + Ry (k, t)p+(k, x, 1), k e R, (3.7)

where T'(k), Ry(k,t) are the transmission, resp. reflection coefficients. We have sym-
metry relations

Ri(—k,t) = Ry(k,t) and T(—k) =T(k).
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Note also that if T(k), }éi(kj t) are the corresponding quantities for H(t), then T(k) =
eFHAWT(k), Ry (k,t) = Ry(k,t), and R_(k,t) = e**H-1(W)R_(k,t) and hence all
results known for ([B2) readily apply in our situation. In particular, they have the
following well-known properties:

Lemma 3.2. The transmission coefficient T(k) is meromorphic for Im(k) > 0 with
simple poles at iky,...,ikN, where as above kj = \/i — 2\ € (0, %), and is continuous

up to the real line. Asymptotically we have

T(k) = ™1 (1 1 O(k™1)). (3.8)
The residues of T'(k) are given by
Resiﬁj T(k) = i/'Lj (t)’er,j (t)2 = ilu’j’Y—Q&-,ja (39)
where
1072 =5 [ g (e s (3.10)
R
and 7/1+ (iﬂja x, t) = My (t)¢— (iﬁju Zz, t) :
Moreover,
TRy (e ) + TR (k) =0, [T(K) + |Ra(k, )2 = 1. (3.11)

Note that one reflection coefficient, say R(k,t) = Ry(k,t), and one set of norming
constants, say v;(t) := v4,;(t), suffices.
The time dependence is given by (see [9]):

Lemma 3.3. The time evolutions of the quantities R(k,t) and ~;(t) are given by,

_j—xk
R(k,t) = R(k)e '7a+:2", (3.12)
%Kj/Q
2
v;(t) = fyjel/‘“”]’ (3.13)

where R(k) = R(k,0) and v; = v;(0).

Vector Riemann—Hilbert problem. We will set up a vector Riemann—Hilbert prob-
lem as follows. Let m(k,z,t) = (ml(k,x,t) mg(k,:):,t)) be defined by

(LD (T (k) o (e ™) Im(k) >0, -
(B4 (g (—hyz, )Y (k) (—k, 2, 0)e ), Tm(k) < 0. '

We are interested in the jump condition of m(k,z,t) on the real k-axis (oriented from
negative to positive). To formulate our jump condition we use the following convention:
when representing functions on R, the lower subscript denotes the non-tangential limit
from different sides. By m4 (k) we denote the limit from above and by m_(k) the one
from below. Using the notation above implicitly assumes that these limits exist in the
sense that m(k) extends to a continuous function on the real axis. In general, for an
oriented contour X, m4 (k) (resp. m—_(k)) will denote the limit of m(x) as k — k from
the positive (resp. negative) side of ¥. Here the positive (resp. negative) side is the one
which lies to the left (resp. right) as one traverses the contour in the direction of the
orientation.
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Theorem 3.4 (vector RH-problem). Let Sy (H(0)) = {R(k), (kj,7;),i=1,...,N} be
the right scattering data of the operator H(0) associated with the initial data w(z,0).
Then m(k) = m(k,z,t) defined in [B.14) is a solution of the following vector Riemann—
Hilbert problem. Find a function m(k) which satisfies:
(i) The analyticity condition:
m(k) is meromorphic away from the real axis with simple poles at £ik;.
(ii) The jump condition, for k € R:

me (k) = m_ (K)o (k),

o) = (1= |R(k)]?2 —R(k)e t*®) (3.15)
— \ R(k)et®®) 1 '
(iii) The pole conditions, for j =1,...,N:
R k) = 1li k 0 0 1
CSik ; m(k) = kirﬁj m(k) i,yjz'etfb(iffj) 0/ (3.16)
In (ii) and (iil) the phase is given by
.k LY
(iv) The symmetry condition
m(—k) =m(k) (° 1), (3.18)
10
(v) The normalization
lim m(k) = (1 1). (3.19)

k—o0
Remarks. (a) Note that det v(k) =1 and v(—k) = oyv(k)"toy with o1 = (§}).
(b) Note also that (iii) and (iv) imply the pole conditions, for j =1,..., N:

0 i,yJZetq)(inj))

Res_jx; m(k) = lim m(k) <0 0

k——ik;
Proof. The jump condition ([BI5]) is a simple calculation using the scattering relations
B1) plus (BII). The pole conditions follow since T'(k) is meromorphic for Im(k) > 0
with simple poles at ix; and residues given by ([3.9). The symmetry condition holds by
construction and the normalization (3.19) is immediate from (B.5]) and

T(k) = e*H-1(w) <1 + / o q(r,t)dr(2ik) ! + O(k:‘2)> (3.20)
which implies
mik,zt) = (1 1)+ Q4 (v, t)ﬁ (1 —1)+0(k2), (3.21)

where Q4 (y,t) = fy+oo q(r,t)dr. O



12 A. BOUTET DE MONVEL, A. KOSTENKO, D. SHEPELSKY, AND G. TESCHL

Observe that the pole condition at ix; is sufficient since the one at —ix; follows by
symmetry. Hence, the Riemann—-Hilbert problem for the Camassa—Holm equation is,
for given scattering data Sy, to find a sectionally meromorphic vector function m(k)
satisfying (B.I0)-(B.19). We will show that the solution given in the above theorem
is in fact the only one in Corollary below. Moreover, it should be pointed out
that except for the phase, this Riemann—Hilbert problem is identical to the one for the
Korteweg—de Vries equation (cf. [20, Thm. 2.3)).

Next we note the following useful asymptotics

Lemma 3.5. The function m(k,x,t) defined in [BI4]) satisfies

7m1(?,x’t) =", (3.22)
m2(§7x)t)
and
my (k, z, tyma(k, z,t) = “’(f{t)@ + By, t) (k- 5) + Ok — 5)2). (3.23)

Proof. The Jost solutions admit the representation ¢ (k,z,t) = et* g (k, z,t), where
g+ (k,z,t) are the solutions of the integral equations

K2+ 1
2ixk
Since w satisfies (LO]), the solution of (B.24) exists and is unique (see, for example,

[28]). Moreover, g4 is analytic for Im(k) > 0.
Since k% 4+ 1 = (k — 3)(k + 1), we get

g+ (k,x,t) =1+

/ ioou — eTHERE=N g (k) (w(r, t) — s)dr. (3.24)

ge(b, ) =1+ i%(k D) F(e, )+ Ok — 12, k—i/2, (3.25)
where e
Fi(o, 1) = / (2 _ 1) (w(r, t) — 30)dr. (3.26)
Moreover, differentiating with resxpect to x, we see
ek, 1) = £ (k — H)FL(e, 1) + Ok — 7%, (3.27)
with e
Fl(z,t) = + / @) (4, ) — s2)dr. (3.28)
Using :
u(z,t) = (1-02) " (w(a,t) — ) = ;/Rel“l(w(r,t) — )dr, (3.29)

we thus obtain

¢+(ka$at)¢—(k73fvt) =1+ i%(F-‘r(x?t) - F—(x7t))(k - %) + O(k - %)2

=1+ i(2u(a;,t) — Ho(u))(k — %)+ O(k — 3)?, (3.30)

x
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where

Hy(u) = /R(w(x,t) —x)dxr = / u(z,t)dx (3.31)

R

is a conserved quantity of the CH equation.
Furthermore, straightforward calculations show that

gyt = W)
=1+ i%(&(x,t) — F_(z,t) — Fi(z,t) — F' (z,t))(k — ) + O(k — $)*
- i%HO(u)(k )+ Ok — 12, (3.32)
where W(F,g) = fg' — f'g is the usual Wronskian. Therefore,

T(k)=1+ i%Ho(u) (k—i)+0(k—1)%. (3.33)

Substituting ([B.25]) and (3.33)) into (B.14), we arrive at (3.22]). Substituting (3.30) and
B33) into ([B.14)), we obtain ([B.23). O

Regular Riemann—Hilbert problem. For our further analysis it will be convenient
to rewrite the pole condition as a jump condition and hence turn our meromorphic
Riemann—Hilbert problem into a holomorphic Riemann—Hilbert problem.

Choose ¢ so small that the discs |k — ik;| < € lie inside the upper half plane and do
not intersect. Then redefine m(k) in a neighborhood of ix;, resp. —ix; according to

1 0
m(k) 26t ®0%;) .|k =ik <e,
B Jk—i/ij
m(k) = | et (3.34)
m(k) ktin .k +ikj| <k,
0 1
m(k), else.

Note that we redefined m(k) such that it respects our symmetry (B.I8).
Then a straightforward calculation using Resi, m(k) = limyg_;x(k — ik)m(k) shows:

Lemma 3.6 (regular RH-problem). Let C; be the circle |k — ikj| = ¢ with e > 0 as
above, 1 < j < N. Let m(k) be defined as in B34). Then m(k) is a solution of the
following vector Riemann—Hilbert problem. Find a function m(k) which satisfies:

(i) (k) is holomorphic away from the real azis and from the circles C; and Cj, for
j=1,....N.
(ii) The jump condition [B.ID) across the real axis.
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(iii) The additional jump conditions across the circles C;, C_'j, forj=1,...,N:

1 0
k—ik;
7w (3.35)
s (k) = m_(k) ((1) —7%?@ > . ke,

where C; is oriented counterclockwise and C_'j 1s oriented clockwise.
(iv) The symmetry condition (3.18]).
(v) The normalization condition (3.19).

\
Fi1GURE 4. Contour of the regular RH problem

Uniqueness result. Next we turn to uniqueness of the solution of this vector Riemann—
Hilbert problem. This will also explain the reason for our symmetry condition. We
begin by observing that if there is a point ky € C, such that m(k;) = (0 0), then
n(k) = k_—lklm(k) is a solution of the associated vanishing Riemann—Hilbert problem,
i.e., it satisfies the same jump and pole conditions as m(k) but the normalization
now reads lim, .o m(ik) = (O 0). In particular, there is a whole family of solutions
m(k) 49 n(k) for any 9 € C. However, these solutions will clearly violate the symmetry
condition unless ¥ = 0! Hence, without the symmetry condition, the solution of our
vector Riemann—Hilbert problem will not be unique in such a situation. Moreover, a
look at the one-soliton solution verifies that this case indeed can happen.

Lemma 3.7 (one-soliton solution). Suppose that the reflection coefficient vanishes, i.e.,

R(k,t) =0 and that there is only one eigenvalue k € (0, %), with the norming constant
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v(t). Then the unique solution of the Riemann—Hilbert problem B.I10)-B.19) is given
by

mo(k) = (f(k) f(=k)) (3.36)
1 k+ik
ﬂ@_1+a<L%k—m>’
o = ﬁeté(in)
2K
In particular,
B 32¢k2 9 1612 -1

u(z,t) = =42y a(y, t)<(1 +a(y,t)” + a2 oz(y,t)) , (3.37)
16x2 aly,t 2

iz, t) = » (1 * 1—4r%(1+ Eyy(y,)t))Q) ’ (3.38)

where

142k
2 —y+log W (3.39)

L+ oy, t) 1o
Proof. By assumption the reflection coefficient vanishes and so the jump along the real
axis disappears. Therefore and by the symmetry condition, we know that the solution
is of the form mg(k) = (f(k) f(—k)) where f(k) is meromorphic. Furthermore the
function f(k) has only a simple pole at ix, so that we can make the ansatz f(k) = C +
D% Then the constants C' and D are uniquely determined by the pole conditions and
the normalization. Formule (B.37)-(3.38) are obtained applying Lemma B35 formula
EZ). 0

In fact, observe that f(ky) = f(—ky) = 0 if and only if k; = 0 and 2k = 42e!®0%),
Furthermore, even in the general case m(ki) = (O 0) can only occur at k1 = 0 as the
following lemma shows.

Lemma 3.8. If m(ky) = (0 0) for m defined as in BI4), then ky = 0. Moreover,
the zero of at least one component is simple in this case.

Proof. By B14) the condition m(k;) = (0 0) implies that the Jost solutions ¢_(k, z)
and ¢4 (k,z) are linearly dependent or that the transmission coefficient T'(k1) = 0.
This can only happen at the band edge, k1 = 0 or at an eigenvalue k1 = ix;.

We begin with the case k1 = ix;. In this case the ¢_(k, x) and ¢, (k, z) are linearly
dependent. Moreover, T'(-) has a simple pole at k = k; since the derivative of the
Wronskian W(k) = ¢ (k,z)y"(k,x) — ¢ (k,z)Y—(k,x) does not vanish by the well-
known formula

T WOy = =2 [ @) o)ue)de £0

(cf. Lemma [3.2). The diagonal Green’s function g(z,x) = W(k) 1 (k, x)¢_(k, ) is
Herglotz as a function of z = —k? and hence can have at most a simple zero at z = —k?.
Since z — —k? is conformal away from z = 0 the same is true as a function of k. Hence,

»
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if ¥4 (ikj,x) = ¥_(ikj,2) = 0, both can have at most a simple zero at k = ix;. But
T'(k) has a simple pole at ix; and hence T'(k)y_(k,z) cannot vanish at k = ix;, a
contradiction.

It remains to show that one zero is simple in the case k; = 0. In fact, one can show

that q
a5 W)=k, # 0

in this case as follows: first of all note that ¥+ (k) (where the dot denotes the derivative
with respect to k) again solves

His() = - (1+42) dsth)
if k&1 = 0. Moreover, by W(k;) = 0 we have ¢ (k1) = ct_(k1) for some constant ¢
(independent of ). Thus we can compute
W(kr) = Wby (k1) Y- (ko) + W (), - (k)
= ¢ Wt (k1), (k1)) + e W(io— (), O (k1))

by letting  — +oo for the first and x — —oo for the second Wronskian (in which case
we can replace ¥+ (k) by e**?), which gives

W(ky) = —i(c+c1).

Hence the Wronskian has a simple zero. But if both functions had more than simple
zeros, so would the Wronskian, a contradiction. Il

By [20), Theorem 3.2] we obtain

Corollary 3.9. The function m(k,x,t) defined in (BI4) is the only solution of the
vector Riemann—Hilbert problem ([B.15])-B.19).

4. CONJUGATION AND DEFORMATION

This section demonstrates how to conjugate our Riemann—Hilbert problem (with
respect to the augmented contour) and how to deform our jump contour, such that
the jumps will be exponentially close to the identity away from the stationary phase
points. Throughout this and the following section, we will assume that the R(k) has
an analytic extension to a small neighborhood of the real axis. This is for example the
case if we assume that our solution is exponentially decaying. This assumption can
then be removed using analytic approximation.

For easy reference we note the following result:

Lemma 4.1 (conjugation). Let S be a part of some contour X. Let D be a matrix of

the form
D(k) = dk)= 0 4.1
(k) < 0 d(k))’ (4.1)

where d: C\ Y- Cisa sectionally analytic function. Set
(k) = m(k)D(k), (4.2)
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then the jump matriz transforms according to
o(k) = D_ (k) 'v(k) Dy (k). (4.3)
If d satisfies d(—k) = d(k)~! and limy_.o d(k) = 1, then the transformation
m(k) = m(k)D(k)

respects our symmetry condition, that is, m(k) satisfies (B18]) if and only if m(k) does,
and our normalization condition.

In particular, we obtain

—2
va1d V22

d—

Hvll U12d+ d- 3

11 s , kex.
V21 d+ d_ df_vgg

2 ~
( V11 U12d>’ kex\ 3,

(k) = (4.4)

In order to analyse the regular vector RH problem from Lemma there are two cases
to distinguish.

(a) If ®(ix;) < O then the corresponding jump matrix ([3.35) is exponentially close to
the identity as ¢ — +o00 and there is nothing to do.

(b) Otherwise we use conjugation to turn the jumps into one with exponentially de-
caying off-diagonal entries.

It turns out that we will have to handle the jumps across C; and C’j in one step in
order to preserve symmetry and in order to not add additional singularities elsewhere.

Lemma 4.2. Assume that the Riemann—Hilbert problem for m has jump conditions

near ik and —ik given by
1 0
m—(k) ( iy? 1) ) ‘k - i/i‘ =g
T k—ik
me (k) = : (4.5)

R
m_ (k) 0 kf““‘“ , |k+ik| =e.

Then this Riemann—Hilbert problem is equivalent to a Riemann—Hilbert problem for
m = mD which has jump conditions near ik and —ik given by

1 — (k+ik)?
m_%)< iﬁw4@>,k—ﬂﬂ=€,

- 0 ! (4.6)

mo (k) =
=1 L |
i) (e ) ein =<

T iy2(k+ik)
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and all remaining data conjugated by

1 _k*%“f k—ik 0
iy k+ik _
in? 0 0 ktis | |k —ir| <e,
3 E—i
kom B 2 i Om
— k+i k+i :
D(k) — fetin ik +ik tin | |kj + 1/4:‘ <eg, (4.7)
5 1 0 e
iy —ik
k—ik 0
k+ik
0 fetine | else.
\ k—ik

The jump along the real axis is of oscillatory type and our aim is to apply a contour
deformation following [16] such that all jumps will be moved into regions where the
oscillatory terms will decay exponentially. Since the jump matrix v contains both
exp(t®) and exp(—tP) we need to separate them in order to be able to move them to
different regions of the complex plane.

We recall that the phase of the associated Riemann—-Hilbert problem is given by

. xk LY
d(k) = —1% yr + 211{:;. (4.8)
Let Y
= t) = —. 4.9
c=clyt) =L (49)

The stationary phase points, i.e., (k) = 0, are given by +k¢ and £k, where

1\/ 1+c—+1+4c

k() = ko(c) = 5 c y
(4.10)
1 1+c++v1+44c
k1 =ki(c) = S\ )
c
There are four cases to distinguish:
(i) 22¢ < ¥, ie. ¢ > 2. In this case
> ko, k1 ¢ R,
> Re(®) < 0 for Im(k) > 0 near RUi(0, kg) and
> Re(®) > 0 for Im(k) > 0 near i(ko, 3), where
Ko = 34/1— 2. (4.11)

We will set kg = 0 for % < 22« for notational convenience later on.
(ii) 0 < ¥ <2, 1. 0<c<2. In this case
> ko €R, k; §Z R,
> Re(®) > 0 for Im(k) > 0 near (—ko, ko) Ui(0, 3) and
> Re(®) < 0 for Im(k) > 0 near (—oo, —ko) U (ko, 00).
(i) =% < %<0, ie —1/4 <c<0. In this case
> kg, k1 € R,
> Re(®) > 0 for Im(k) > 0 near (—oo, —k1) U (—ko, ko) U (k1,00) Ui(0, 3) and
> Re(®) < 0 for Im(k) > 0 near (—ky, —ko) U (ko, k1).
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(iv) ¥ < =%, ie. ¢ < —1/4. In this case

> k(), k:l € R and
> Re(®) > 0 for Im(k) > 0 near RU(0, 3).

The situation is depicted in Figure Bl

c<—1/4 —1/4<c<0 0<e<?2 2<c

A A

3 —ky + ko —ko +\ ko K0
—kA — k1 — — R0
9 + + +

(S

FIGURE 5. Sign of Re(®(k)) for different values of ¢ = %5
Accordingly we will introduce
R, c< —i,
0. — _ _1
E(C): ( 00, k‘l)U( ko,k‘o)U(k’l,OO), 4<C<0, (4.12)
(_kﬂka)a 0<e<?,
@, 2 < c.
As mentioned above we will need the following factorizations of the jump condition
B.15):
o(k) = b (k)b (), (4.13)
where
(1 R(k)e ") _ 1 0
b (k) = (O ) = (o b)) @9
for k € R\ ¥(c) and
1— |R(K)? 0
oy =5 gt (PTG D g, (115)
1-|R(k)[*
where
10 | _E@et®
B_(k) = | _Ret2® E By (k) = 1-|R(K)[* ] . (4.16)
1= R(k)? 0 1
for k € X(c).

To get rid of the diagonal part in the factorization corresponding to k£ € X(c) and to
conjugate the jumps near the eigenvalues we need the partial transmission coefficient
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with respect to ¢ defined by
k-‘rif{j

k—ir;’ c> 2,
Ko<k <1/2
T(k,e)={ N ,: / S, (4.17)
[T 75 o (om Jow B dQ), e<2,

7=1
for k € C\ X(c). Thus T'(k,¢) is meromorphic for & € C\ X(c). Note that T'(k, ¢) can
be computed in terms of the scattering data since |T(k)|> = 1 — |R,(k,t)|?>. Moreover,
we set

> log o, c>2,
. i . R0<I€J<l/2
Ti(c) =log(T(3,¢)) = 1+2n, og((T(O2) (4.18)
Z 10 + = fE w dC, c < 2.

j=
Note that combining T'(k) = e‘kal(“’)T(k ¢) for ¢ < —1 with (333) shows

_ 1+ 2k; log(|T(¢)[?)
2210 1_2/% W/Rdeg. (4.19)

Theorem 4.3. The partial transmission coefficient T'(k, c) is meromorphic in C\ X(c)
with simple poles at ik; and simple zeros at —ik; for all j with kg < kj, and satisfies
the jump condition

Ty (k,¢) =T_(k,c)(1 —|R(K)|?), forkeX(c). (4.20)
Moreover:
(i) T(—k,c) =T(k,c)7t, k€ C\ X(c).
(i) T(=k,c) = T(k,c), k € C, in particular T(k, c) is real for k € iR.

(iii) If ¢ < 2 the behaviour near k = 0 is given by T(k,c) = T(k)(C +o(1)) with C' # 0
for Im(k) > 0.

Proof. That ir; are simple poles and —ix; are simple zeros is obvious from the Blaschke
factors and that T'(k, ¢) has the given jump follows from Plemelj’s formulas. Properties

(1), (ii), and (iii) are straightforward to check. O
Now we are ready to perform our conjugation step. Introduce
k—ik;

l’y2et<1>(1nj) J Do(k)7 |k - IKJJ| < 57 ,{0 < ﬁj’

k ik 0
DI={( o _H

k+ik Fhirg D()(k), |k + iﬁj| <&, ko < Ky,

l’yZet(}(mJ) 1

L Do (k), else,

where
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Observe that D(k) respects our symmetry:

D(—k)—(? (1)) D(k) <(1) (1)>

Now we conjugate our problem using D(k) and set
m(k) = m(k)D(k). (4.21)

Note that even though D(k) might be singular at £ = 0 (if ¢ < 2 and R(0) = —1), m(k)
is nonsingular since the possible singular behaviour of T'(k,c)~! from Dy(k) cancels
with T'(k) in m(k) by virtue of Theorem A3 (iii).

Then using Lemma @I with ¥ = ¥(c) and Lemma the jump corresponding to
ko < k; (if any) is given by

1 - kir
(k) = e IT R )k —iy| =,
0 1

(4.22)

1 0
k) = [ ki ke ting| =,
iy?e@(mj)T(k,CV 1 /

and corresponding to ko > k; (if any) by

1 0
_iy?e@(i”ﬁT(k,c)*? nE |k —ikj| =€,

_ k—ik;
o(k) = ' (4.23)
i'y]zetq)(mj)T(k:,c)2
B ktir; . |k +ikj| =e.
0 1

In particular, all jumps corresponding to poles, except for possibly one if k; = Ko, are
exponentially close to the identity. In the latter case we will keep the pole condition
for k; = ko which now reads

- . 0 0
Resiw, m(k) = Jim (k) <i7?etq’(i“j)T (i, ¢) 2 0) ’ (4.24)
—i72et®R) T (i )2 :
Res_ix; m(k) = k—lj{lilnj (k) (8 ryje ]OT(m]7 c) > )
Furthermore, the jump along R is given by
={ i .
B_(k) "' B.(k), ke 3(e),

where

- ] RBERe® . 1 0
b_(k) = T(*{“’C) o b (R) = rere® ) (4.26)

0 T(k,0)2
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3 1 0 1 0
B_(k)=| _1T (ko 10 (k ) = ( T_(~kyc) 1 (k > ;
(_1—|R<k>2R(k)e W1 — gy Bk)e!®®) 1
. _Ti(k0)?% pr 1\ a—td(k C Ti(ke) pf gyt (k
Bi(k) = (1 e (ke ( )> - ((1) T++(k,c)R1( k)e™ )> .
0 1

Here we have used
R(—k) = R(k), k € R,
Ti(_k7c) = T¢(k‘,0)_1, k€ Z(C)a

and the jump condition (£20) for the partial transmission coefficient T'(k, c¢) along ¥(c)
in the last step. This also shows that the matrix entries are bounded for k£ € R near
k = 0 since T4 (—k,c) = T+ (k, ).

Since we have assumed that R(k) has an analytic continuation to a neighborhood of
the real axis, we can now deform the jump along R to move the oscillatory terms into
regions where they are decaying.

There are four cases to distinguish:

Case (1): ¢ > 2. We set ¥y = {k € C | Im(k) = *e} for some small € such that X1
lies in the region with +Re(®(k)) < 0 and such that the circles C;, C; around +ix; lie
outside the region in between »_ and ¥,. Then we can split our jump by redefining
m(k) according to

m(k)by (k)™ 0<Im(k) <e,
m(k) = { m(k)b_(k)~', —e < Im(k) <0, (4.27)
m(k), else.
Thus the jump along the real axis disappears and the jump along Y is given by
(k) = {[3+(k)’ £EX (4.28)
b_(k)™Y, kex_.

All other jumps are unchanged. By construction the jump along ¥4 is exponentially
close to the identity as t — oco.
Cases (ii) and (iii): 0 < ¢ < 2, respectively —1/4 < ¢ < 0. We set ¥y = L U2
according to Figure [6 respectively Figure [7] again such that the circles around +ix; lie
outside the region in between ¥ and ¥,. Again note that X1 respectively X2 lie in
the region with +Re(®(k)) < 0.

Then we can split our jump by redefining m (k) according to
(k:)@r(/c)_l, k between R and X1,
(k)b_(k)~', Kk between R and X!,
(k)B4 (k)~', k between R and %2, (4.29)
(k)B_(k)~™", k between R and %2,
(k), else.
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One checks that the jump along R disappears and the jump along > is given by

B—l—(k)a ke Z}H
b_(k)™', kex!
Sy = 4 o-R) ke (4.30)
B+(k)7 keX )
B_(k)™', keXx2.

All other jumps are unchanged. Again the resulting Riemann—Hilbert problem still
satisfies our symmetry condition (3.I8) and the jump along ¥4 \ {£ko, £k1} is expo-
nentially decreasing as t — oo.

Case (iv): ¢ < —1/4. We set ¥4 = {k € C | Im(k) = *e} for some small € such that
Y4 lies in the region with +Re(®(k)) > 0 and such that the circles around =+ik; lie
outside the region in between >_ and Y. Then we can split our jump by redefining
m(k) according to

(k)B+(k)_1, 0 < Im(k) < e,
m(k) = m(k)B_(k)~!, —e<Im(k) <0, (4.31)
n(k), else.
Thus the jump along the real axis disappears and the jump along ¥ is given by
(k) = {%“ﬂ)’_ ke, (432)
B_(k)7!, kex_.

All other jumps are unchanged. By construction the jump along > is exponentially
close to the identity as t — oo.

Note that in all cases the resulting Riemann—Hilbert problem still satisfies our sym-
metry condition (3.I8]), since we have

-0 = (1 3)oew (§ g) . Beom= (1 §) B (§ §). @

In Cases (i) and (iv) we can immediately apply Theorem [A1] to m as follows:

Re®>0 | Re®<0 LemT T Re ®<0 ' Re®>0
; 7 Re®>0 el '
2 : 1 - 1 2
X0 X st Ny 2t
: ; | 1
—k R —ko kn/ o/ k1
/N\ /\ AN /\ R
> SO 2 AR 7
' S Red<0 - i
Re®<0 ! Re®>0 el Re®>0 | Re®<0

FIGURE 6. Deformed contour for —1/4 < ¢ <0
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FIGURE 7. Deformed contour for 0 < ¢ < 2

Proof of Theorem (iv). Since (k) = I+ O(t™!) for any [ as t — oo, the same
is true for m(k) = (1 1)+ O(t™") by Theorem [A] (for the case v = 0). Hence

my(k)ma(k) = my(k)ma(k) =14+ O(t™h),
ma(3) _ ezTI(c)”A”Ll(%) — o2T1(e) —
a(0) ey + 0™, (4.34)

for k near % and the claim follows from Lemma in case the reflection coefficient has
an analytic extensions.

Otherwise one has to split the reflection coefficient into an analytic part plus a small
remainder. One can literally follow the argument of [20, Lemma 6.1]. U

Proof of Theorem RIH2.2I (i). If | — ¢;| > ¢ for all j we can choose v = 0 in Theo-
rem [A. Tl Hence as in the proof of (iv),

my (k)yma (k) = ma(k)ma(k) =14 O(t™),

ml(é) = =@ L o™, (4.35)

for k£ near % and the claim follows as before.

Otherwise, if |§ — ¢;j| < € for some j, we choose v = 7;(x,t). Again we conclude

ma(k)yma(k) = i (k)mz (k) = f(k)f(=k) + O™,
mi(3) _ le(c)ml(%) _ o2Ti(c) f(%) Lot 4.36
m) ) ey T 0
where f(k) is the one-soliton solution from Lemma 3.7 O

In the cases (ii) and (iii) the jump will not decay on the small crosses containing the
stationary phase points and we need to continue the investigation of this problem in
the next section.
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5. REDUCTION TO A RIEMANN—HILBERT PROBLEM ON A SMALL CROSS

In the previous section we have seen that for —1/4 < ¢ < 2 we can reduce everything
to a Riemann—Hilbert problem for m(k) such that the jumps are exponentially close
to the identity except in small neighborhoods of the stationary phase points +kg and
+k1. Hence we need to continue our investigation of this case in this section.

Denote by 3¢(+ky), £ = 0,1 the parts of ¥, UX_ inside a small neighborhood of +k;.
We will now show how to solve the two problems on the small crosses ¥.¢(ky) respectively
¥¢(—kg) by reducing them to Theorem [A:3l This will lead us to the solution of our
original problem by virtue of Theorem

Now let us turn to the solution of the problem on

(k) = (B4 US) A {k | [k — kel < <}

for some small € > 0. We can also deform our contour slightly such that ¥¢(k;) consists
of two straight lines. Next, abbreviate

D (ky) . 2k}
Dy = (1) = (—)f ST
0= (D= (=1) (1/4+k2)?
" (ky) 25cky(3/4 — k2)
o) = (—1)° = (-1)* ¢ 5.1
where ®§ > 0 for —1/4 < ¢ <2 and ®{ >0 for —1/4 < ¢ < 0.
As a first step we make a change of coordinates
)4 " (_1)é
Co = (=1)"/ @Y (k — k), k=ky+ Ce (5.2)

V!
such that the phase reads ®(k) = (—1)%i(®, + 3¢2 + O(¢?)).

Next we need the behavior of our jump matrix near kg, that is, the behavior of T'(k, ¢)
near ky.

Lemma 5.1. We have

iy —iv1
()™ (-5) Tk, —1/a<e<o,

T(kac) = ivg -~
(’“*’“0> OT(k,c), 0<c<2,

(5.3)

k+ko
where vy = —L1og(|T(ke)|) > 0 and the branch cut of the logarithm is chosen along the
negative real axis. Here

N

- k+ik;j 1
70h6) =TT g exo( 55z [, oalb =D dlos(TOP)). (5.0)

_ ili .
j=1 J

The function T( -, ¢) is Holder continuous of any exponent less than 1 at the stationary
phase points k = ky and satisfies |T (k¢,c)| = 1.

Proof. This is a straightforward calculation. Holder continuity of any exponent less
than 1 is well-known (cf. [30]). O
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If k(¢¢) is defined as in (5.2) and 0 < o < 1, then there is an L > 0 such that
T(k(Go), ¢) — ¢ Ty(e)e (7D e loaChe/3)

< L‘Cﬂ‘aa (55)

where the branch cut of CW‘ is chosen along the negative real axis and

le/
Tie) = (-0 ) T (5.6
We also have
[R(k(Ce)) — R(ke)| < L|Ce|*. (5.7)
Set
re = R(ke)Ty(c) 2o~V ivelos(@ki ) (5.8)
and note vy = —5-log(1 — |R(ke)|?) since |r¢| = |R(k¢)|. Then the assumptions of

Theorem [A3] are satisfied with r» = 7 near for X¢(ko). Similarly, for X¢(k;) they are
satisfied with r = 77 after a conjugation with (§}).
Therefore we can conclude that the solution on 3¢(ky) is given by

ME(R) =T+~ (0 —ﬂe>+o(ta)

Cztl/Q Be 0
_ 1 i (0 —f —a
_H+\/<I>7(k—kg)t1/2 <5€ O>+O(t ), 1/2<a<1l, (5.9)

where 3y is given by
BO _ \/Ijzei(ﬂ'/4farg(To)Jrarg(F(iVo))7t<1>0)t711/0
— \/%ei(ﬁ/4—arg(R(kg))+2 arg(To(c))—wo log(4k3<1>g)+arg(1"(iu0))—t<1>0)t—iyo’ (510)
:\/ﬁei(—ﬂ'/4—arg(r1)—arg(F(iul))—i-t'I’l)til/l

— \/Ijeei(fw/élfarg(R(kl))JrZ arg(T1 (c))4v1 log(4k2 &Y ) —arg (T (ivy ))+t<I>1)tiz/1 . (5 1 1)

We also need the solution Mg (k) on X¢(—k¢). We make the following ansatz, which is
inspired by the symmetry condition for the vector Riemann—Hilbert problem, outside
the two small crosses:

w0 = (o) mc-m (3 )

_ -D* i (0 B »

Now we are ready to finish the proof of Theorem 2.1H2.2
Proof of Theorem 212,27 (ii). By Theorem [A.2] we infer

m(k) =(1 1)+ \/@Tk k: (Bo —bo) — \/(I)TkJrk (=Bo o)

+0(t™%) (5.13)
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and thus
i 4 _
M) = (1 1)+ \/@Re (1—[32011% 1+21k0> +0@™%),
0
ri 81 .
m/(i) = 1 Re ((1—5?1@0)2 _(1+§10k0)2> +O0(™%). (5.14)
0
Hence
(K)ma (k) =us (k)i (k) L0 g(8y) + Ot
m m =m m =1-—————" _Tm
1 4koi _ ;
— I + 0™ k—2)4+... 5.15
(\/iﬁt(1/4—%k%)2 i)+ O )> =2 (5:19)
for k near % and Lemma implies
Al 8]{50 _
)=s——— 0] o
> 2ko _
1) = — I + 0@ ¢ 5.16

Similarly,

1 2
_ 2T1(c) 1 —a
e ( + 7?6% 71/4 e Re(B0)> + O(t™),

2

v/ CI)” 1/4 4+ k2
Thus the claim follows in case the reflection coefficient has an analytic extensions.
Otherwise one has to split the reflection coefficient into an analytic part plus a small
remainder using [20, Lem. 6.2 and 6.3]. Again one can literally follow the argument
given there. O

implies

z—y=2Ti(c Re(Go) + O(t~9). (5.17)

Proof of Theorem [ZIH2.2] (iii). This follows as in the previous case using
i — 1 i

N 1 _
m(k) = (1 )+\/?O’tk—7ko(ﬂo —fo) — Skt o (=Bo o)
1 i _
\/(I)Tk k: Br —51) - STtk + I (=61 B1)
+0O(t™?). (5.18)
and hence
. 8k‘ % 8]?1 —x
o 2]{}0 a4 2k1 —a
u(a,t) = — % TP (%%\@EOM+%VMWﬁ+Wt) (5.19)
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respectively
2 2

1 1
Ty =t g Y i R

Re(B1) +O(t™®).  (5.20)
O

APPENDIX A. SOME RESULTS FOR RIEMANN—HILBERT PROBLEMS

In this section we state the results required to prove or main theorems. We will
assume that X is a nice contour, say a finite number of smooth oriented finite curves in
C, which intersect at most finitely many times with all intersections being transversal.
Moreover, suppose the distance between ¥ and {iy | y > yo} is positive for some yy > 0.

A.1. Riemann—Hilbert problem for the soliton region. The first result is needed
in the soliton region. Consider the Riemann—Hilbert problem of finding a function m(k)
satisfying

(i) m(k) is sectionally meromorphic with simple poles at +ix & 3,

(ii) the jump condition

mi(k) = m_(kyo(k), ke,
(iii) the pole condition
. 0 O
Resi, m(k) = ;}E{lﬁm(k) <172 O> ,

(iv) the symmetry condition

01
(k) =m(t) (§ ).
(v) the normalization condition

lim m(k) = (1 1).

k—oo

Clearly the symmetry condition implies that our jump data (3, v) should be symmetric

as well, that is,
01 1 (0 1
v(—=k) = (1 0) v(k)™? (1 0), kcx. (A1)

and X is invariant under k£ — —k and oriented such that under the mapping k — —k
sequences converging from the positive sided to > are mapped to sequences converging
to the negative side. Moreover (ii) and (iii) imply

—i2
Res_ijx m(k) = lim m(k) (8 B’Y > .
Finally we will assume ||v — 1|2 < oo and [[v — I||e < o0.

We are interested in comparing this Riemann—Hilbert problem with the one-soliton
problem (where v = 0) in the case where ||v — || and ||v — I||2 are small. For such a
situation we have the following result:
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Theorem A.1 ([20} 24]). Assume v = v(t) satisfies
[v(t) = Iloe < p(2),
[v(t) = Tll2 < p(t)

for some function p(t) — 0 as t — oo. Then the above Riemann—Hilbert problem has

a unique solution for sufficiently large t and the solution differs from the one-soliton
solution by O(p(t)) uniformly in k away from X U {£ik}.

(A.2)

A.2. Riemann—Hilbert problem for oscillatory regions. For the oscillatory re-
gions we will need the following result which allows us to reduce everything to a model
problem whose solution will be given below.

Theorem A.2 ([20] 24]). Consider the vector Riemann—Hilbert problem
my (k) =m_(kv(k),  keZX,
lim m(k) = (1 1), (A-3)
k—o0
with det(v) # 0 and let 0 < a < < 2a, p(t) — oo be given.
Suppose that for every sufficiently small € > 0 both the L? and the L>™ norms of
v are O(t™%) away from some ¢ neighborhoods of some points k; € ¥, 1 < i < n.
Moreover, suppose that the solution of the matriz problem with jump v(k) restricted to
the € neighborhood of k; has a solution which satisfies

M;(k) =1+ p(i)a /c]\fzk‘l +0(p(t)™"), |k — k| > e. (A4)
Then the solution m(k) is given by
m(k)=(1 1)+ ! (1 1) i Mi O(p(t)~") (A.5)
p(t)* k= ki ’

where the error term depends on the distance of k to 3.
Model problem on a cross. Introduce the cross ¥ = ¥y U---UX, (see Figure [§]) by

%1 = {ue™ ™ | u > 0}, Sy = {ue™* | u > 0}, (A6)
Sy = {ue® ™ | u >0}, ¥y = {ue 34 |4 > 0. ‘

Orient Y such that the real part of k increases in the positive direction. Denote by
D = {¢ € C||¢| < 1} the open unit disc. Throughout this section ¢ will denote the
function €¥1°8(Q) where the branch cut of the logarithm is chosen along the negative
real axis (—o0,0).

Introduce the following jump matrices (v; for ( € £, j =1,...,4)

1 —R 2iv ,—t®(C) 1 0
v = <O 1(C)C1 ¢ ) ; V2= <R2(C)<—2iuet¢(0 1) ;

_ (1 —R3(Q)¢Pre©) _ 1 0 (A7)
R\ 1 T R ()¢

—_
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FIGURE 8. Contours of a cross

and consider the RHP given by

MJr(C) = M*(g)UJ(C)v C S E]a ] = 17273747 (A8)
M) — 1, ¢ — 0.

The solution is given in the following theorem of P. Deift and X. Zhou [16], Sect. 3-4]
(for a proof of the version stated below see H. Kriiger and G. Teschl [25, Theorem A.1]).

Theorem A.3 ([I6]). Assume there is some py > 0 such that v;(¢) =1 for [(] > po
and j =1,...,4. Moreover, suppose that within || < po the following estimates hold:

(i) The phase satisfies ®(0) = i®y € iR, ®'(0) =0, "(0) =1, and

h +  for ( € ¥1UZXs3,
—  else,

£Re (9(0)) > 7l (A.9)

ic2
() - @(0) - %] < CIePP. (A.10)

(ii) There is some r € D and constants (a, L) € (0,1] x (0,00) such that Ry, ..., R4
satisfy Hoélder conditions of the form

[R1(¢) — 7| < LI¢|%, |Ra(¢) —r| < LI¢|%,
r r (A.ll)
‘R3<<> - | <K (RO - | < 2l
Then the solution of the RHP (A.8)) satisfies
B 1 i 0 —p ~lia
M (k) —H—I—Em (5 0 ) +O(t ), (A.12)

for |C| > po, where

ﬁ \/‘ i(m/4—arg(r)+arg(T'(iv))) —1t<I>0t—11/ v = _2i log(l _ ’7‘|2). (Alg)
T
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Furthermore, if R;(¢) and ®(¢) depend on some parameter, the error term is uniform
with respect to this parameter as long as r remains within a compact subset of D and
the constants in the above estimates can be chosen independent of the parameters.

Acknowledgments. We are indebted to Ira Egorova for helpful discussions on various
topics of this paper and to Adrian Constantin for comments on a previous version of
this article. One of us (A. K.) gratefully acknowledges financial support from the
International Erwin Schrodinger Institute for Mathematical Physics in the form of a
junior fellowship during which parts of this research were done.

1]
2]
8]

[4]

[5]

[6]

8]

[9]
(10]
(11]
(12]
(13]
(14]
(15]
(16]

(17]

(18]

REFERENCES

A. BOUTET DE MONVEL, A. ITs, AND D. SHEPELSKY, Painlevé-type asymptotics for the
Camassa—Holm equation, preprint, 2009.

A. BOUTET DE MONVEL AND D. SHEPELSKY, The Camassa—Holm equation on the half-line, C.
R. Math. Acad. Sci. Paris 341 (2005), pp. 611-616.

A. BOUTET DE MONVEL AND D. SHEPELSKY, Riemann—Hilbert approach for the Camassa—Holm
equation on the line, C. R. Math. Acad. Sci. Paris 343 (2006), pp. 627-632.

A. BOUTET DE MONVEL AND D. SHEPELSKY, Riemann—Hilbert problem in the inverse scattering
for the Camassa—Holm equation on the line, in “Probability, Geometry and Integrable Systems”,
53-75, Math. Sci. Res. Inst. Publ. 55, Cambridge Univ. Press, Cambridge, 2008.

A. BOUTET DE MONVEL AND D. SHEPELSKY, Long-time asymptotics of the Camassa—Holm
equation on the line, in “Integrable Systems and Random Matrices: In honor of Percy Deift”,
Baik et al. (eds), 99-116, Contemporary Mathematics 458, Amer. Math. Soc., Providence,
2008.

A. BOUTET DE MONVEL AND D. SHEPELSKY, The Camassa—Holm equation on the half-line: a
Riemann—Hilbert approach, J. Geom. Anal. 18 (2008), pp. 285-323.

R. CAMASsSA AND D. HowMm, An integrable shallow water equation with peaked solitons, Phys.
Rev. Letters 71 (1993), pp. 1661-1664.

R. Camassa, D. Houm, AND J. M. HYMAN, A new integrable shallow water equation, Adv.
Appl. Mech. 31 (1994), pp. 1-33.

A. CONSTANTIN, On the scattering problem for the Camassa—Holm equation, Proc. R. Soc.
Lond. A 457 (2001), pp. 953-970.

A. CONSTANTIN AND J. ESCHER, Global existence and blow-up for a shallow water equation,
Annali Sc. Norm. Sup. Pisa 26 (1998), pp. 303-328.

A. CONSTANTIN, V. S. GERDJIKOV, AND R. I. IvANOV, Inverse scattering transform for the
Camassa—Holm equation, Inverse Problems 22 (2006), pp. 2197-2207.

A. CONSTANTIN AND D. LANNES, The hydrodynamical relevance of the Camassa-Holm and
Degasperis—Procesi equations, Arch. Rational Mech. Anal. 192 (2009), pp. 165-186.

A. CONSTANTIN AND J. LENELLS, On the inverse scattering approach for an integrable shallow
water equation, Phys. Lett. A 308 (2003), pp. 432—-436.

A. CONSTANTIN AND W. STRAUSS, Stability of peakons, Comm. Pure Appl. Math. 53 (2000),
pp. 603-610.

P. DEIFT AND E. TRUBOWITZ, Inverse scattering on the line, Commun. Pure Appl. Math. 32
(1979), pp. 121-251.

P. DErrT AND X. ZHOU, A steepest descent method for oscillatory Riemann—Hilbert problems,
Ann. of Math. (2) 137 (1993), pp. 295-368.

P. A. DerrT, A. R. ITs, A. R., anD X. ZHOU, Long-time asymptotics for integrable non-
linear wave equations, in “Important developments in soliton theory”, 181-204, Springer Ser.
Nonlinear Dynam., Springer, Berlin, 1993.

K. EL DikA AND L. MOLINET, Stability of multipeakons, Ann. Inst. H. Poincaré Anal. Non
Linéaire, to appear.



32 A. BOUTET DE MONVEL, A. KOSTENKO, D. SHEPELSKY, AND G. TESCHL

[19] B. FUCHSSTEINER AND A. FOKAS, Symplectic structures, their Bicklund transforms and hered-
itary symmetries, Phys. D 4 (1981), pp. 47-66.

[20] K. GRUNERT AND G. TESCHL, Long-time asymptotics for the Korteweg—de Vries equation via
nonlinear steepest descent, larXiv:0807.5041L

[21] A. R. ITS, Asymptotic behavior of the solutions to the nonlinear Schrodinger equation, and
isomonodromic deformations of systems of linear differential equations, Soviet. Math. Dokl. 24
(1981), pp. 452-456.

[22] R. S. JOHNSON, Camassa—Holm, Korteweg—de Vries and related models for water waves, J.
Fluid Mech. 455 (2002), pp. 63-82.

[23] R. S. JOHNSON, On solutions of the Camassa—Holm equation, Proc. R. Soc. London, Ser. A 459
(2003), pp. 1687-1708.

[24] H. KRUGER AND G. TESCHL, Long-time asymptotics for the Toda lattice in the soliton region,
Math. Z., 262 (2009), pp. 585-602.

[25] H. KRUGER AND G. TESCHL, Long-time asymptotics of the Toda lattice for decaying initial data
revisited, Rev. Math. Phys. 21 (2009), pp. 61-109.

[26] L.-C. L1, Long time behaviour for a class of low-regularity solutions of the Camassa—Holm
equation, Comm. Math. Phys. 285 (2009), pp. 265-291.

[27] S. V. MANAKOV, Nonlinear Frauenhofer diffraction, Sov. Phys. JETP 38 (1974) pp. 693-696.

[28] V. A. MARCHENKO, Sturm—Liouville Operators and Applications, Birkhduser, Basel, 1986.

[29] Y. MATSUNO, Parametric representation for the multisoliton solution of the Camassa—Holm
equation, J. Phys. Soc. Jpn. 74 (2005), pp. 1983-1987.

[30] N. I. MUSKHELISHVILI, Singular Integral Equations, P. Noordhoff Ltd., Groningen, 1953.

INSTITUT DE MATHEMATIQUES DE JUSSIEU, UNIVERSITE PARIS DIDEROT PARIS 7, 175 RUE DU
CHEVALERET, 75013 PARIS, FRANCE

E-mail address: aboutet@math. jussieu.fr

URL: http://wuw.math. jussieu.fr/~aboutet/

INSTITUTE OF APPLIED MATHEMATICS AND MECHANICS, NAS OF UKRAINE, R. LUXEMBURG STR.
74, DONETSK 83114, UKRAINE
E-mail address: [duzer80@gmail. com

B.VERKIN INSTITUTE FOR LOW TEMPERATURE PHYSICS, 47 LENIN AVENUE, 61103 KHARKIV,
UKRAINE
E-mail address: [shepelsky@yahoo.com

FAcuLTY OF MATHEMATICS, NORDBERGSTRASSE 15, 1090 WIEN, AUSTRIA, AND INTERNATIONAL
ERWIN SCHRODINGER INSTITUTE FOR MATHEMATICAL PHYSICS, BOLTZMANNGASSE 9, 1090 WIEN,
AUSTRIA

E-mail address: [Gerald.Teschl@univie.ac.at

URL: http://wuw.mat.univie.ac.at/~gerald/


http://arxiv.org/abs/0807.5041
mailto:aboutet@math.jussieu.fr
http://www.math.jussieu.fr/~aboutet/
mailto:duzer80@gmail.com
mailto:shepelsky@yahoo.com
mailto:Gerald.Teschl@univie.ac.at
http://www.mat.univie.ac.at/~gerald/

	1. Introduction
	2. Main result
	Scattering data
	One-soliton solution

	3. The Inverse scattering transform and the Riemann--Hilbert problem
	Vector Riemann–Hilbert problem
	Regular Riemann–Hilbert problem
	Uniqueness result

	4. Conjugation and Deformation
	5. Reduction to a Riemann--Hilbert problem on a small cross
	Appendix A. Some results for Riemann--Hilbert problems
	A.1. Riemann--Hilbert problem for the soliton region
	A.2. Riemann--Hilbert problem for oscillatory regions
	Model problem on a cross

	References

