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CHAPTER 1

Introduction

The primary goal of this exposition is to construct all real-valued algebro-
geometric quasi-periodic finite-gap solutions of the Kac-van Moerbeke (KM) hier-
archy of nonlinear evolution equations.

While there exists a direct method to construct the finite-gap solutions of the
KM hierarchy, we shall use an alternative route that exploits the close connec-
tion between the Toda and KM hierarchies and characterizes the KM hierarchy
as the modified Toda hierarchy in precisely the same manner that connects the
Korteweg-de Vries (KdV) and modified Korteweg-de Vries (mKdV) hierarchies or
more generally, the Gel’fand-Dickey (GD) hierarchy and its modified counterpart,
the Drinfeld-Sokolov (DS) hierarchy. The deep connection between these hierar-
chies of nonlinear evolution equations and their modified counterparts is based on
Miura-type transformations which in turn rely on factorization techniques of the
associated Lax differential, respectively difference expressions, as will be indicated
below. (Alternatively, one can use the discrete analog of the formal pseudo differ-
ential calculus in connection with the GD and DS hierarchy as in [60], Ch. IV.)
Accordingly, our approach consists of three main parts:
(i) A thorough treatment of the Toda hierarchy.
(ii) The algebro-geometric approach to completely integrable nonlinear evolution
equations.
(iii) A transfer of classes of solutions of the Toda hierarchy to that of the Kac-van
Moerbeke hierarchy and vice versa.
Our major results then may be summarized as follows:
(α) Construction of an alternative approach to the Toda hierarchy, modeled after
Al’ber [6], Jacobi [47], McKean [63], and Mumford [73], Sect. III a).1, particularly
suited to derive its algebro-geometric quasi-periodic finite-gap solutions. Derivation
of an intimate connection of this approach with spectral properties of the corre-
sponding Lax operator.
(β) A complete presentation of the algebro-geometric approach to the Toda hi-
erarchy which goes beyond results in the literature and leads, in particular, to
an alternative theta function representation of b(n, t) (in Flaschka’s variables [35],
cf. (6.66)).
(γ) A complete derivation of all real-valued algebro-geometric quasi-periodic finite-
gap solutions of the KM hierarchy, our principal new result.

Before we describe the content of each chapter, and hence (α)–(γ) in some
detail, we shall comment on items (i)–(iii) a bit further.
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2 1. INTRODUCTION

The (Abelian) Toda lattice (TL) in its original variables reads

(1.1)
d2

dt2
Q(n, t) = exp[Q(n− 1, t)−Q(n, t)]− exp[Q(n, t)−Q(n+ 1, t)],

(n, t) ∈ Z× R

and similarly, the original Kac-van Moerbeke system, also called the Volterra sys-
tem, in physical variables, is of the type

(1.2)
d

dt
R(n, t) =

1
2
{exp[−R(n− 1, t)]− exp[−R(n+ 1, t)]}, (n, t) ∈ Z× R.

In Flaschka’s variables [35] for (1.1) and similarly for (1.2),

a(n, t) =
ε(n)
2

exp{[Q(n, t)−Q(n+ 1, t)]/2},

b(n, t) = Q̇(n, t)/2, ε(n) ∈ {+1,−1},
(1.3)

ρ(n, t) =
ε(n)
2

exp[−R(n, t)/2], ε(n) ∈ {+1,−1}(1.4)

one can rewrite (1.1) and (1.2) in the form

(1.5) TL0(a, b) =
(

ȧ− a(b− b+)
ḃ− 2[(a−)2 − a2]

)
= 0

and

(1.6) KM0(ρ) = ρ̇− ρ[(ρ+)2 − (ρ−)2] = 0,

the latter also known as Langmuir lattice. Here “˙” denotes d/dt and we employed
the notation f±(n) = f(n± 1), n ∈ Z and regarded all equations in the multiplica-
tion algebra of sequences. Moreover, introducing the shift operators

(1.7) (S±f)(n) = f(n± 1) = f±(n), n ∈ Z

in `∞(Z), the systems (1.5) and (1.6) are well-known to be equivalent to the Lax
equations

L̇− [P2, L] = 0(1.8)

and

Ṁ − [Q2,M ] = 0.(1.9)

Here L and P2 are the difference expressions

(1.10) L = aS+ + a−S− − b, P2 = aS+ − a−S−

defined on `∞(Z), and M and Q2 the matrix-valued difference expressions

M =
(

0 ρ−o S
− + ρe

ρoS
+ + ρe 0

)
,

Q2 =
(
ρeρoS

+ − ρ−e ρ
−
o S

− 0
0 ρ+

e ρoS
+ − ρeρ

−
o S

−

)(1.11)

defined on `∞(Z)⊗ C2, with ρe and ρo the “even” and “odd” parts of ρ, that is,

(1.12) ρe(n, t) = ρ(2n, t), ρo(n, t) = ρ(2n+ 1, t), n ∈ Z,

assuming a, b, ρ ∈ `∞(Z).



1. INTRODUCTION 3

Since the literature on the Toda lattice (even if one considers only the infinite
lattice Z, our main interest) is extensive, we will only refer to a few standard
monographs such as [29], [76], [77], [84]. In the case of the Kac-van Moerbeke
system we refer to [15], [39], [49], [50], [53], [60], [61], [62], [71], [87] and the
references therein.

While (1.5) and (1.6) describe the original Toda and Kac-van Moerbeke lattices,
one can develop a systematic generalization to Lax pairs of the type (L,P2g+2)
and (M,Q2g+2), where P2g+2 (Q2g+2) are (matrix-valued) difference expressions of
order 2g + 2 with certain polynomial coefficients in a, b (ρ). The associated Lax
equations

L̇− [P2g+2, L] = 0(1.13)

and

Ṁ − [Q2g+2,M ] = 0(1.14)

(cf. Chapter 2) are then equivalent to the TLg and KMg equations denoted by

TLg(a, b) = 0(1.15)

and

KMg(ρ) = 0.(1.16)

Varying g ∈ N0 then yields the corresponding hierarchies of nonlinear evolution
equations for (a, b) and ρ.

The special case of stationary TLg and KMg equations, characterized by L̇ = 0,
Ṁ = 0 in (1.13), (1.14), or equivalently, by commuting difference expressions of the
type

[P2g+1, L] = 0,(1.17)

[Q2g+2,M ] = 0,(1.18)

then yields a polynomial relationship between L and P2g+2, respectively M and
Q2g+2. In fact, (1.17) and (1.18) imply the following analogs of the Burchnall-
Chaundy polynomials familiar from the theory of commuting ordinary differential
expressions [16], [17]

P 2
2g+2 =

2g+1∏
m=0

(L− Em), {Em}0≤m≤2g+1 ⊂ C,(1.19)

Q2
2g+2 =

2g+1∏
m=0

(M2 − em), {em}0≤m≤2g+1 ⊂ C.(1.20)

In particular, (1.19) and (1.20) yield the following hyperelliptic curves

y2 =
2g+1∏
m=0

(z − Em),(1.21)

y2 =
2g+1∏
m=0

(w2 − em),(1.22)
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the fundamental ingredients of the algebro-geometric approach for the TL and KM
hierarchies. For spectral theoretic reasons (see, e.g., Theorems 4.2 and 8.2) algebro-
geometric solutions (a, b) and ρ of (1.15) and (1.16) are called g-gap solutions
following the conventional terminology.

If θ denotes the Riemann theta function associated with the curve (1.21) (and
a fixed homology basis), the ultimate goal of the algebro-geometric approach is
then a θ-function representation of the solutions (a, b) and ρ of the TLr and KMr

equations,

(1.23) TLr(a, b) = 0, KMr(ρ) = 0, r ∈ N0

with g-gap initial conditions,

(1.24) (a, b) = (a(0), b(0)), ρ = ρ(0) at t = t0,

where (a(0), b(0)) and ρ(0) are stationary solutions of the TLg and KMg equations,
that is,

TLg(a(0), b(0)) = 0, ȧ(0) = ḃ(0) = 0,

KMg(ρ(0)) = 0, ρ̇(0) = 0(1.25)

for some fixed g ∈ N0.
Next, we illustrate the close connection between the Toda hierarchy and its

modified counterpart, the KM hierarchy. Introducing the difference expressions

(1.26) A = ρoS
+ + ρe, A∗ = ρ−o S

− + ρe

in `∞(Z) one infers that

M =
(

0 A∗

A 0

)
,(1.27)

M2 =
(
A∗A 0

0 AA∗

)
= L1 ⊕ L2 ,(1.28)

with

L1 = A∗A, L2 = AA∗,(1.29)

Lk = akS
+ + a−k S

− − bk, k = 1, 2,(1.30)

a1 = ρeρo, b1 = −ρ2
e − (ρ−o )2,(1.31)

a2 = ρ+
e ρo, b2 = −ρ2

e − ρ2
o(1.32)

and

(1.33) Q2g+2 =
(
P1,2g+2 0

0 P2,2g+2

)
= P1,2g+2 ⊕ P2,2g+2 .

Here Pk,2g+2 is constructed as in (1.10) and (1.13) with (a, b) replaced by (ak, bk),
k = 1, 2, respectively. Relations (1.28) and (1.33) then can be exploited to prove
the implication

(1.34) KMg(ρ) = 0 ⇒ TLg(ak, bk) = 0, k = 1, 2,

that is, a solution ρ of the KMg equations (1.16) yields two solutions (ak, bk),
k = 1, 2 of the TLg equations (1.15) related to one another by (1.31), (1.32), the
discrete analog of Miura’s transformation [67], familiar from the (m)KdV hierarchy.
(According to a footnote in [71], the connection between the KM and TL lattices
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was mentioned by Hénon in a letter to Flaschka as early as 1973.) Incidentally,
(1.28)–(1.32) illustrate the factorization of the Lax difference expression L alluded
to earlier. The implication (1.34) was first systematically studied by Adler [1] using
factorization techniques. Transformations between the KM and TL systems were
studied earlier by Wadati [87] (see also [84]). In a recent paper [39] the converse of
(1.34) was established. More precisely, assuming the existence of a solution (a1, b1)
of the TLg equations (1.15), that is,

(1.35) TLg(a1, b1) = 0,

a solution ρ of the KMg equations (1.16) and another solution (a2, b2) of the TLg

equations (1.15) are constructed,

(1.36) KMg(ρ) = 0, TLg(a2, b2) = 0

related to each other by the Miura-type transformation (1.31), (1.32) (we refer to
Chapter 7 for a detailed discussion of these facts). Equations (1.34) and especially
(1.35), (1.36) yield the possibility of transferring classes of solutions (such as finite-
gap solutions) from the Toda hierarchy to the KM hierarchy and vice versa.

Having illustrated items (i)–(iii) to some extent, we finally turn to a description
of the content of each chapter. In Chapter 2 we develop an alternative recursive ap-
proach to the Toda hierarchy modeled after Al’ber [6]. In particular, we recursively
compute the difference expressions P2g+2 in (1.13). We chose to develop this ap-
proach in detail since it most naturally leads to the fundamental Burchnall-Chaundy
polynomials and hence to the underlying hyperelliptic curves in connection with the
stationary Toda hierarchy. In addition it provides direct insight into the spectral
properties of the underlying Lax operator as detailed later in Chapter 4.

Chapter 3 is devoted to the algebro-geometric approach to integrate nonlinear
evolution equations and in particular to the Baker-Akhiezer (BA) function, the
fundamental object of this approach. Historically, these techniques go back to
the work of Baker [8], Burchnall and Chaundy [16], [17], and Akhiezer [5]. The
modern approach was initiated by Its and Matveev [46] in connection with the KdV
equation and further developed into a powerful machinery by Krichever (see, e.g.,
the review [58]) and others. We refer, in particular, to the extensive treatments
in [10], [25], [26], [27], [62], [72], and [76]. In the special context of the Toda
equations we refer to [2], [19], [26], [27], [56], [58], [62], [66], and [70]. Our
own presentation starts with commuting difference expressions and their associated
hyperelliptic curves and then develops the stationary algebro-geometric approach
from first principles. In particular, we chose to follow Jacobi’s classic representation
of positive divisors of degree g of the hyperelliptic curve (1.21) [47] which was
first applied to the KdV case by Mumford [73], Sect. III a).1 with subsequent
extensions due to McKean [63]. The reader will find a meticulous account which
provides more details on the BA-function than usually found in the literature (see,
e.g., Theorem 3.5).

Spectral theoretic properties and Green’s functions of self-adjoint `2(Z) real-
izations H of L are the main topic of Chapter 4. Assuming that L is defined in
terms of stationary solutions (a, b) of the TLg equations, we determine the spec-
trum of the Jacobi operator H in Theorem 4.2 and provide a link between the 2×2
spectral matrix of H and our recursive approach to the stationary Toda hierar-
chy (cf. (4.32)–(4.36)). The latter result appears to be new and underscores the
fundamental importance of the recursion formalism chosen in Chapter 2.
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In Chapter 5 we continue our stationary algebro-geometric approach to the
Toda hierarchy and provide a detailed derivation of the standard θ-function repre-
sentation of all stationary TLg solutions (cf. Theorem 5.2).

In Chapter 6 we finally complete the algebro-geometric approach to the Toda
hierarchy. In addition to a detailed discussion of the time-dependent BA-function in
Theorem 6.2 we derive the well-known (time-dependent) θ-function representation
of the TLr equations with g-gap initial conditions in Theorem 6.3. Our detailed
account in Chapter 5 and 6 also leads to an alternative θ-function representation
of b in Corollaries 5.6 and 6.5 which, much to our surprise, seems to have escaped
notice in the literature thus far.

In Chapter 7 we turn to the KM hierarchy and its connection with the Toda
hierarchy. In addition to developing a recursive approach to the KM hierarchy
(which appears to be new) and in particular to a computation of Q2g+2 in (1.14),
we describe at length the Miura-type transformation (1.31), (1.32) and especially
the transfer of solutions from the Toda to the KM hierarchy in Theorem 7.2.

In analogy to Chapter 4, Chapter 8 establishes spectral properties of the self-
adjoint realization D of M in `2(Z) ⊗ C2 associated with finite-gap solutions ρ of
the KMg equations. Theorem 8.2, in particular, reduces the spectral analysis of the
Dirac-type difference operator D to that of the Jacobi operators Hk, the self-adjoint
realizations of Lk, k = 1, 2 in `2(Z) (cf. (1.27), (1.29)–(1.32)) by using factorization
(commutation) methods indicated in (1.28).

Finally, in Chapter 9 we complete the principal objective of this exposition
and derive all real-valued algebro-geometric quasi-periodic finite-gap solutions of
the KM hierarchy in Theorems 9.3 and 9.5. Isospectral manifolds of finite-gap
KM solutions are briefly considered in Remark 9.4 and a brief outlook on possible
applications of these completely integrable lattice models ends this exposition.

For convenience of the reader, and for the sake of being self-contained, we
added Appendix A which summarizes basic facts on hyperelliptic curves and their
θ-functions and defines the notation used in the main body of this exposition. Ap-
pendix B records the principal results of Chapters 3–5 in the important special case
of periodic rather than quasi-periodic Jacobi operators by explicitly invoking Flo-
quet theory. Appendix C finally records the simplest explicit examples associated
with genus g = 0 and 1.



CHAPTER 2

The Toda Hierarchy, Recursion Relations, and
Hyperelliptic Curves

In this chapter we review the construction of the Toda hierarchy by using a
recursive approach first advocated by Al’ber [6] and derive the Burchnall-Chaundy
polynomials in connection with the stationary Toda hierarchy. Our recursive ap-
proach to the Toda hierarchy, though equivalent to the conventional one (see, e.g.,
[60], [70],[72], [77],[81],[82],[85]), markedly differs from the standard treatment.
We have chosen to present the formalism below since it most naturally yields
the Burchnall-Chaundy polynomials associated with the stationary Toda hierarchy
and hence the underlying hyperelliptic curves for algebro-geometric quasi-periodic
finite-gap solutions of the Toda and Kac-van Moerbeke hierarchies to be consid-
ered in Chapters 6 and 9. Moreover, as shown in Chapter 4 (cf. (4.32)–(4.36)),
this recursive approach provides a fundamental link to the spectral matrix of the
underlying Lax operator.

We start by introducing some notations. In the following we denote by `p(M),
where 1 ≤ p ≤ ∞, M = N, N0 = N ∪ {0}, Z, etc., the usual space of p-summable
respectively bounded (if p = ∞) complex-valued sequences f = {f(m)}m∈M and by
`pR(M) the corresponding restriction to real-valued sequences. The scalar product
in the Hilbert space `2(M) will be denoted by

(2.1) (f, g) =
∑
n∈M

f(n)g(n), f, g ∈ `2(M).

Since `∞(Z) ⊆ `p(Z) in a natural way it suffices to make all further definitions for
p = ∞. In `∞(Z) we introduce the shift operators

(2.2) (S±f)(n) = f(n± 1), n ∈ Z, f ∈ `∞(Z)

and in order to simplify notations we agree to use the short cuts

f± = S±f, that is, f±(n) = f(n± 1),

(f + g)(n) = f(n) + g(n), (fg)(n) = f(n)g(n), n ∈ Z, f, g ∈ `∞(Z)
(2.3)

whenever convenient. Moreover, if R : `∞(Z) → `∞(Z) denotes a difference expres-
sion, let

(2.4) R = {R(m,n)}m,n∈Z, R(m,n) = (δm, Rδn)

denote its corresponding matrix representation with respect to the standard basis

(2.5) em = {δm(n)}n∈Z, m ∈ Z, δm(n) =

{
1, m = n

0, m 6= n
.

7



8 2. THE TODA HIERARCHY

In connection with (2.4) we define the diagonal and upper and lower triangular
parts of R as follows

R0 = {R0(m,n)}m,n∈Z, R0(m,n) =

{
R(m,m), m = n

0, m 6= n
,

R± = {R±(m,n)}m,n∈Z, R±(m,n) =

{
R(m,n), ±(n−m) > 0
0, otherwise

.(2.6)

Clearly,

(2.7) R = R+ +R0 +R−.

Given these notations one can now introduce the Toda hierarchy. Let

a(t) = {a(n, t)}n∈Z ∈ `∞(Z), b(t) = {b(n, t)}n∈Z ∈ `∞(Z), t ∈ R,
0 6= a(n, .), b(n, .) ∈ C1(R), n ∈ Z

(2.8)

and introduce the difference expressions (L(t), P2g+2(t)) (the Lax pair) in `∞(Z)

L(t) = a(t)S+ + a−(t)S− − b(t), t ∈ R,(2.9)

P2g+2(t) = −L(t)g+1 +
g∑

j=0

[gj(t) + 2a(t)fj(t)S+]L(t)g−j + fg+1(t),

g ∈ N0, t ∈ R,
(2.10)

where {fj(n, t)}0≤j≤g+1 and {gj(n, t)}0≤j≤g satisfy the recursion relations

f0 = 1, g0 = −c1,
2fj+1 + gj + g−j + 2bfj = 0, 0 ≤ j ≤ g,

gj+1 − g−j+1 + 2[a2f+
j − (a−)2f−j ] + b[gj − g−j ] = 0, 0 ≤ j ≤ g − 1.

(2.11)

Note that a enters in fj and gj only quadratically. Then the Lax equation

(2.12)
d

dt
L(t)− [P2g+2(t), L(t)] = 0, t ∈ R

(here [. , .] denotes the commutator) is equivalent to

TLg(a(t), b(t))1 = ȧ(t) + a(t)[g+
g (t) + gg(t) + f+

g+1(t) + fg+1(t)

+ 2b+(t)f+
g (t)] = 0,

TLg(a(t), b(t))2 = ḃ(t) + 2[b(t)(gg(t) + fg+1(t)) + a(t)2f+
g (t)

− a−(t)2f−g (t) + b(t)2fg(t)] = 0, t ∈ R.

(2.13)

Varying g ∈ N0 yields the Toda hierarchy

(2.14) TLg(a, b) = (TLg(a, b)1,TLg(a, b)2)T = 0, g ∈ N0.
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Explicitly, one obtains from (2.11),

f1 = −b+ c1,

g1 = −2a2 − c2,

f2 = a2 + (a−)2 + b2 − c1b+ c2,

g2 = 2a2(b+ b+)− 2c1a2 − c3,

f3 = −(a−)2(b− + 2b)− a2(b+ + 2b)− b3

+ c1(a2 + (a−)2 + b2)− c2b+ c3,

etc.

(2.15)

and hence from (2.13),

TL0(a, b) =
(

ȧ− a(b− b+)
ḃ− 2[(a−)2 − a2]

)
= 0,

(2.16)

TL1(a, b) =
(
ȧ− a[(a+)2 − (a−)2 + (b+)2 − b2]
ḃ− 2a2(b+ + b) + 2(a−)2(b+ b−)

)
+ c1

(
−a(b− b+)

−2[(a−)2 − a2]

)
= 0,

(2.17)

TL2(a, b) =
(

ȧ−a[b3−(b+)3+2(a−)2b−2(a+)2b++a2(b−b+)−(a+)2b++−(a−)2b−]

ḃ−2(a−)2[b2+bb−+(b−)2+(a−)2+(a−−)2]+2a2[b2+bb++(b+)2+a2+(a+)2]

)
+ c1

(
−a[(a+)2−(a−)2+(b+)2−b2]

−2a2(b++b)+2(a−)2(b+b−)

)
+ c2

(
−a(b−b+)

−2[(a−)2−a2]

)
= 0,(2.18)

etc.

represent the first few equations of the Toda hierarchy. Here c` denote summation
constants which naturally arise by solving the resulting difference equations for
gg+1,` in (2.11). Throughout this exposition we will chose these constants c` to be
real-valued. The corresponding homogeneous Toda equations obtained by taking
all summation constants equal to zero, c` ≡ 0, ` ∈ N, are then denoted by

(2.19) T̂Lg(a, b) := TLg(a, b)
∣∣
c`≡0, 1≤`≤g

and similarly we denote by P̂2g+2 := P2g+2(c` ≡ 0), f̂j := fj(c` ≡ 0), ĝj := gj(c` ≡
0) the corresponding homogeneous quantities. One verifies

(2.20) P2g+2 =
g∑

m=0

cg−mP̂2m+2, c0 = 1.

Next we relate the homogeneous quantities f̂j , ĝj to certain matrix elements of
L(t)j .

Lemma 2.1. The homogeneous coefficients {f̂j(t)}0≤j≤g+1 and {ĝj(t)}0≤j≤g

satisfy

f̂j(n, t) = (δn, L(t)jδn), 0 ≤ j ≤ g + 1, n ∈ Z,(2.21)

ĝj(n, t) = −2a(n)(δn+1, L(t)jδn), 0 ≤ j ≤ g, n ∈ Z,(2.22)

where δn = {δn,m}m∈Z.
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Proof. We abbreviate

f̃j(n) = (δn, Ljδn), g̃j(n) = −2a(n)(δn+1, L
jδn).(2.23)

Then

f̃j+1 = (Lδn, Ljδn) = −1
2
(g̃j + g̃−j )− bf̃j(2.24)

and similarly,

g̃j+1 = −bg̃j − 2a2f̃+
j + h̃j = −b+g̃j − 2a2f̃j + h̃+

j ,(2.25)

where

h̃j(n) = −2a(n)a(n− 1)(δn+1, L
jδn−1).(2.26)

Eliminating h̃j in (2.25) results in

(2.27) g̃j+1 − g̃−j+1 = −2[a2f̃+
j − (a−)2f̃−j ]− b[g̃j − g̃−j ].

By inspection, (2.24) and (2.27) are equivalent to (2.11). In order to determine
which solution of (2.11) has been found (i.e., determine the summation constants
c1, . . . , cg) we temporarily assign the weight one to a(n) and b(n), n ∈ Z. Then f̂j

and ĝj+1 have weight j and hence

(2.28) c0 = 1, cj = 0, 1 ≤ j ≤ g

completing the proof. �

Now we are in the position to reveal the connections with the usual approach
to the Toda equations. It suffices to consider the homogeneous case.

Lemma 2.2. The homogeneous Lax operator P̂2g+2 satisfies

(2.29) P̂2g+2(t) = [L(t)g+1]+ − [L(t)g+1]−

(cf. the notation in (2.6)).

Proof. We use induction on g. g = 0 is trivial. Suppose (2.29) holds for
g = 0, . . . , g0 − 1. By (2.10) we have

(2.30) P̂2g0+2(t) = P̂2g0(t)L(t) + [ĝg0(t) + 2a(t)f̂g0(t)S
+]− f̂g0(t)L(t) + f̂g0+1(t).

In order to prove (2.29) one considers (δm, P̂2g0+2(t)δn) and makes the case distinc-
tions m < n− 1,m = n− 1,m = n,m = n+ 1,m > n+ 1. Explicitly, one verifies,
for instance, in the case m = n,

(δm, P̂2g0+2δn)

= (δn, P̂2g0(aδn−1 + a−δn+1 − bδn)) + ĝg0(n) + b(n)f̂g0(n) + f̂g0+1(n)

= (δn, [(Lg0)+ − (Lg0)−](aδn−1 + a−δn+1 − bδn)) + ĝg0(n) + b(n)f̂g0(n) + f̂g0+1(n)

= (δn, (Lg0)+ a−δn+1)− (δn, (Lg0)− aδn−1) + ĝg0(n) + b(n)f̂g0(n) + f̂g0+1(n)

= a(n)(δn, Lg0δn+1)− a(n− 1)(δn, Lg0δn−1) + ĝg0(n) + b(n)f̂g0(n) + f̂g0+1(n)

=
1
2
ĝg0(n) +

1
2
ĝg0(n− 1) + b(n)f̂g0(n) + f̂g0+1(n) = 0

(2.31)
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using (2.11), (2.21), and (2.22). Since obviously

(2.32) (δn, [(Lg0+1)+ − (Lg0+1)−]δn) = 0

by (2.6), this settles the case m = n in (2.29). The remaining cases are settled one
by one in a similar fashion. �

Before we turn to a discussion of the stationary Toda hierarchy we briefly sketch
the main steps leading to (2.10)–(2.13). If Ker(L(t) − z), z ∈ C denotes the two-
dimensional nullspace of L(t)−z (in the algebraic sense as opposed to the functional
analytic one), we seek a representation of P2g+2(t) in Ker(L(t)− z) of the form

(2.33) P2g+2(t)
∣∣
Ker(L(t)−z)

= 2a(t)Fg(z, t)S+ +Gg+1(z, t),

where Fg and Gg+1 are polynomials in z of the type

(2.34) Fg(z, t) =
g∑

j=0

zjfg−j(t), Gg+1(z, t) = −zg+1 +
g∑

j=0

zjgg−j(t) + fg+1(t),

with f`(t) = {f`(n, t)}n∈Z ∈ `∞(Z), g`(t) = {g`(n, t)}n∈Z ∈ `∞(Z). The Lax
equation (2.12) restricted to Ker(L(t)− z) then yields

0 = {L̇− [P2g+2, L]}
∣∣
Ker(L−z)

= {L̇+ (L− z)P2g+2}
∣∣
Ker(L−z)

=
{
a
[ ȧ
a
− ȧ−

a−
+ 2(b+ + z)F+

g − 2(b+ z)Fg +G+
g+1 −G−g+1

]
S+

+
[
− ḃ+ (b+ z)

ȧ−

a−
+ 2(a−)2F−g

− 2a2F+
g + (b+ z)(G−g+1 −Gg+1)

]}∣∣
Ker(L−z)

.

(2.35)

Hence one obtains

ȧ

a
− ȧ−

a−
= 2(b+ + z)F+

g − 2(b+ z)Fg +G−g+1 −G+
g+1,(2.36)

ḃ = (b+ z)
ȧ−

a−
+ 2(a−)2F−g − 2a2F+

g + (b+ z)(G−g+1 −Gg+1).(2.37)

Upon summing (2.36) (adding Gg+1 − Gg+1 and neglecting a trivial summation
constant) one infers

(2.38) ȧ = −a[2(b+ + z)F+
g +G+

g+1 +Gg+1], g ∈ N0.

Insertion of (2.38) into (2.37) then implies

(2.39) ḃ = −2[(b+ z)2Fg + (b+ z)Gg+1 + a2F+
g − (a−)2F−g ], g ∈ N0.

Insertion of (2.34) into (2.38) and (2.39) then produces the recursion relation (2.11)
(except for the relation involving fg+1 which serves as a definition) and the result
(2.13). Relation (2.33) then yields (2.10). We omit further details and just record



12 2. THE TODA HIERARCHY

as an illustration a few of the polynomials Fg and Gg+1,

F0 = 1 = F̂0,

G1 = −b− z = Ĝ1,

F1 = c1 − b+ z = c1F̂0 + F̂1,

G2 = c1(−b− z) + (a−)2 − a2 + b2 − z2 = c1Ĝ1 + Ĝ2,

F2 = c2 + c1(−b+ z) + a2 + (a−)2 + b2 − bz + z2 = c2F̂0 + c1F̂1 + F̂2,

G3 = c2(−b− z) + c1((a−)2 − a2 + b2 − z2) + a2b+ − (a−)2b−

− 2(a−)2b− b3 − 2a2z − z3 = c2Ĝ1 + c1Ĝ2 + Ĝ3,

etc.

(2.40)

Remark 2.3. Since by (2.11), (2.34), a enters quadratically in Fg and Gg+1,
the Toda hierarchy (2.13) (respectively (2.38), (2.39)) is invariant under the sub-
stitution

(2.41) a(t) → aε(t) = {ε(n)a(n, t)}n∈Z, ε(n) ∈ {+1,−1}, n ∈ Z.

This result should be compared with (the last part of) Lemma 3.1 and Lemma 4.1.

Finally, we specialize to the stationary Toda hierarchy characterized by ȧ =
ḃ = 0 in (2.14) (respectively (2.13)), or more precisely, by commuting difference
expressions

(2.42) [P2g+2, L] = 0

of order 2g + 2 and 2, respectively. Equations (2.37) and (2.38) then yield

(b+ z)(Gg+1 −G−g+1) = 2(a−)2F−g − 2a2F+
g ,(2.43)

G+
g+1 +Gg+1 = −2(b+ + z)F+

g .(2.44)

Because of (2.42) one computes[
P2g+2

∣∣
Ker(L−z)

]2 =
[
(2aFgS

+ +Gg+1)
∣∣
Ker(L−z)

]2
=
{
2aFg[G+

g+1 +Gg+1 + 2(b+ + z)F+
g ]S+

+G2
g+1 − 4a2FgF

+
g

}∣∣
Ker(L−z)

={G2
g+1 − 4a2FgF

+
g }
∣∣
Ker(L−z)

=: R2g+2.

(2.45)

A simple calculation, using (2.43) and (2.44) then proves that R2g+2 is a lattice
constant and hence a polynomial of degree 2g + 2 with respect to z:

(b+ z)(R2g+2 −R−2g+2)

= (b+ z){(Gg+1 +G−g+1)(Gg+1 −G−g+1)− 4Fg[a2F+
g − (a−)2F−g ]}

(2.43)
= −[Gg+1 +G−g+1 + 2(b+ z)Fg]2[a2F+

g − (a−)2F−g ]
(2.44)
= 0.

(2.46)

Thus one infers

(2.47) R2g+2(z) =
2g+1∏
m=0

(z − Em), {Em}0≤m≤2g+1 ⊂ C
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and, since z ∈ C is arbitrary, obtains the Burchnall-Chaundy polynomial (see [16],
[17] in the case of differential expressions) relating P2g+2 and L,

(2.48) P 2
2g+2 = R2g+2(L) =

2g+1∏
m=0

(L− Em).

The resulting hyperelliptic curve Kg of (arithmetic) genus g obtained upon com-
pactification of the curve

(2.49) y2 = R2g+2(z) =
2g+1∏
m=0

(z − Em)

will be the basic ingredient in our algebro-geometric treatment of the Toda and
Kac-van Moerbeke hierarchies in the remainder of this exposition.

The spectral theoretic content of the polynomials Fg and Gg+1 is clearly dis-
played in (4.8), (4.19),(4.20) and especially in (4.32)–(4.36).





CHAPTER 3

The Stationary Baker-Akhiezer Function

In this chapter we provide a major part of our thorough review of the algebro-
geometric methods to construct quasi-periodic finite-gap solutions of the Toda hier-
archy, a subject we shall complete in Chapter 6. As explained in the Introduction,
the origins of our approach go back to a classic representation of positive divisors of
degree g of Kg due to Jacobi [47] and its application to the KdV case by Mumford
[73], Sect. III a).1 and subsequently McKean [63].

Although these finite-gap integration techniques (especially in the special case
of spatially periodic solutions) have been discussed in several references on the
subject, see, for instance, [2], [19], [26], [27], [56], [58], [62], [66], [70], [72], [84],
we have chosen to give a detailed account. This decision is based both on the
necessity of this material for our main Chapter 9 on algebro-geometric solutions of
the Kac-van Moerbeke hierarchy and on the fact that we believe to be able to offer
a simpler and more streamlined approach than the existing ones.

As indicated at the end of Chapter 2 (cf. (2.42), (2.47)–(2.49)), the stationary
Toda hierarchy is intimately connected with pairs of commuting difference expres-
sions (P2g+2, L) of orders 2g + 2 and 2, respectively and hyperelliptic curves Kg

obtained upon compactification of the curve

(3.1) y2 = R2g+2(z) =
2g+1∏
m=0

(z − Em)

described in detail in Appendix A (whose results and notations we shall freely use
in the remainder of this exposition). Since we are interested in real-valued Toda
solutions and especially in their expressions in terms of the Riemann theta function
associated with Kg, we shall make the assumption (cf. (A.1))

(3.2) {Em}0≤m≤2g+1 ⊂ R, E0 < E1 < · · · < E2g+1, g ∈ N0.

For a fixed but arbitrary point n0 in Z consider

(3.3) {µ̂j(n0)}1≤j≤g ⊂ Kg, π̃(µ̂j(n0)) = µj(n0) ∈ [E2j−1, E2j ], 1 ≤ j ≤ g

and

Fg(z, n0) =
g∏

j=1

[z − µj(n0)],

(3.4)

Gg+1(z, n0) = −
g∑

j=1

R
1/2
2g+2(µ̂j(n0))

g∏
k=1
k 6=j

[z − µk(n0)]
[µj(n0)− µk(n0)]

− [z + b(n0)]Fg(z, n0),

(3.5)

15
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where

(3.6) b(n0) =
g∑

j=1

µj(n0)−
1
2

2g+1∑
m=0

Em

and

R
1/2
2g+2(µ̂j(n0)) = σj(n0)R2g+2(µj(n0))1/2 = −Gg+1(µj(n0), n0),

µ̂j(n0) = (µj(n0),−Gg+1(µj(n0), n0)), 1 ≤ j ≤ g.
(3.7)

Given (3.3)–(3.7) we define Fg(z, n0 + 1) by (cf. (2.45))

(3.8) Gg+1(z, n0)2 − 4a(n0)2Fg(z, n0)Fg(z, n0 + 1) = R2g+2(z),

where the constant a(n0)2 6= 0 has been introduced in (3.8) in order to guarantee
that Fg(z, n0+1) is a monic polynomial in z (i.e., its highest coefficient is normalized
to one). Since

(3.9) a(n0)2Fg(z, n0)Fg(z, n0 + 1) ≥ 0 for z = E2j−1, E2j , E2g+1

the left-hand side of (3.9) has at least two zeros in [E2j−1, E2j ]. Thus Fg(z, n0 +1)
is of the form

(3.10) Fg(z, n0 + 1) =
g∏

j=1

[z− µj(n0 + 1)], µj(n0 + 1) ∈ [E2j−1, E2j ], 1 ≤ j ≤ g.

Equation (3.9) with z = E2g+1 shows a(n0)2 ≥ 0 and hence a(n0)2 > 0 and one
computes from (3.5) and (3.8) that
(3.11)

a(n0)2 =
1
2

g∑
j=1

R
1/2
2g+2(µ̂j(n0))

g∏
k=1
k 6=j

[µj(n0)− µk(n0)]−1 − 1
4
[b(n0)2 + b(2)(n0)] > 0,

where we used the notation

(3.12) b(k)(n0) =
g∑

j=1

µj(n0)k − 1
2

2g+1∑
m=0

Ek
m, k ∈ N,

(thus b(n0) = b(1)(n0)). Introducing µ̂j(n0 + 1) by

(3.13) µ̂j(n0 + 1) = (µj(n0 + 1), Gg+1(µj(n0 + 1), n0)), 1 ≤ j ≤ g,

we have constructed the set {µ̂j(n0 +1)}1≤j≤g from the set {µ̂j(n0)}1≤j≤g and get
in addition,

Gg+1(z, n0) =
g∑

j=1

R
1/2
2g+2(µ̂j(n0 + 1))

g∏
k=1
k 6=j

[z − µk(n0 + 1)]
[µj(n0 + 1)− µk(n0 + 1)]

− [z + b(n0 + 1)]Fg(z, n0 + 1),

(3.14)

with

(3.15) b(n0 + 1) =
g∑

j=1

µj(n0 + 1)− 1
2

2g+1∑
m=0

Em

and

(3.16) Gg+1(z, n0 + 1) = −Gg+1(z, n0)− 2[z + b(n0 + 1)]Fg(z, n0 + 1).
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Since by (3.5) and (3.14) Fg(z, n0) and Fg(z, n0 + 1) enter symmetrically in the
expression for Gg+1(z, n0), we can reverse this process, that is, start with {µ̂j(n0 +
1)}1≤j≤g and (3.14) and determine {µ̂j(n0)}1≤j≤g. Hence we obtain

Lemma 3.1. Given {µ̂j(n0)}1≤j≤g satisfying (3.3) we can determine the num-
bers {µ̂j(n)}1≤j≤g for all n ∈ Z satisfying again (3.3), that is,

(3.17) π̃(µ̂j(n)) = µj(n) ∈ [E2j−1, E2j ], 1 ≤ j ≤ g, n ∈ Z.

Moreover, we obtain two sequences {a(n)}n∈Z, {b(n)}n∈Z ∈ `∞R (Z) defined by

a(n)2 =
1
2

g∑
j=1

R
1/2
2g+2(µ̂j(n))

g∏
k=1
k 6=j

[µj(n)− µk(n)]−1 − 1
4
[b(n)2 + b(2)(n)] > 0,(3.18)

b(n) =
g∑

j=1

µj(n)− 1
2

2g+1∑
m=0

Em,(3.19)

b(k)(n) =
g∑

j=1

µj(n)k − 1
2

2g+1∑
m=0

Ek
m, k ∈ N.

(3.20)

The sign of a(n) is not determined by this procedure and can be chosen freely (cf.
also Remark 2.3 and Lemma 4.1).

Proof. It remains to prove the boundedness of a and b. But this follows
immediately from (3.17). �

Remark 3.2. While the trace formula (3.19) for b(n) is a standard result, the
explicit representation (3.18) of a(n) in terms of the Dirichlet data {µ̂j(n)}1≤j≤g

appears to be new to the best of our knowledge.

We emphasize that (3.4)–(3.6), (3.8)–(3.12), and (3.14)–(3.16) still hold if n0

is replaced by n. In addition, we note for later use

a(n)2Fg(z, n+ 1)− a(n− 1)2Fg(z, n− 1) + (b(n) + z)2Fg(z, n)

= −(b(n) + z)Gg+1(z, n).(3.21)

For reasons to become obvious in the next chapter (cf. the spectral properties
described in Theorem 4.2 in connection with the self-adjoint `2(Z) realization H
associated with L = aS+ +a−S−−b) we shall call a = {a(n)}n∈Z, b = {b(n)}n∈Z of
the type (3.18), (3.19) finite-gap sequences (respectively g-gap sequences whenever
we want to emphasize the genus g of the underlying curve Kg).

Next, we define a meromorphic function φ(P, n) on Kg,

φ(P, n) =
−Gg+1(π̃(P ), n) +R

1/2
2g+2(P )

2a(n)Fg(π̃(P ), n)
=

−2a(n)Fg(π̃(P ), n+ 1)

Gg+1(π̃(P ), n) +R
1/2
2g+2(P )

,

P = (z, σR2g+2(z)1/2) = (π̃(P ), R1/2
2g+2(P ))

(3.22)
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and with the help of φ(P, n) another meromorphic function ψ(P, n, n0) on Kg, the
stationary Baker-Akhiezer (BA) function

(3.23) ψ(P, n, n0) =


∏n−1

m=n0
φ(P,m), n ≥ n0 + 1

1, n = n0∏n0−1
m=n φ(P,m)−1, n ≤ n0 − 1

.

As will turn out in the course of this chapter and in Chapters 5, 6, and 9, these
meromorphic functions are the fundamental ingredients of the finite-gap integration
technique and φ(., n), specifically, is the central object in our presentation of this
material.

Lemma 3.3. The function φ(P, n) satisfies the “Riccati-type” equation

(3.24) a(n)φ(P, n) + a(n− 1)φ(P, n− 1)−1 = b(n) + π̃(P ), n ∈ Z

and the BA-function ψ(P, n, n0) satisfies the Jacobi equation

(3.25) a(n)ψ(P, n+ 1, n0) + a(n− 1)ψ(P, n− 1, n0) = [b(n) + π̃(P )]ψ(P, n, n0),
n, n0 ∈ Z.

Proof. (3.16) implies

(3.26)

a(n)φ(P, n)+a(n−1)φ(P, n−1)−1 = 1
2 [R1/2

2g+2(P )−Gg+1(π̃(P ), n)]Fg(π̃(P ), n)−1

− 1
2 [R1/2

2g+2(P ) +Gg+1(π̃(P ), n− 1)]Fg(π̃(P ), n)−1 = b(n) + π̃(P )

and (3.25) follows from (3.26) and

(3.27) φ(P, n) = ψ(P, n+ 1, n0)/ψ(P, n, n0).

�

We collect a few more useful relations which follow from (3.8) and (3.22), (3.23),

φ(P, n)φ(P ∗, n) = Fg(π̃(P ), n+ 1)/Fg(π̃(P ), n),(3.28)

ψ(P, n, n0)ψ(P ∗, n, n0) = Fg(π̃(P ), n)/Fg(π̃(P ), n0),(3.29)

φ(P, n)− φ(P ∗, n) = R
1/2
2g+2(P )/[a(n)Fg(π̃(P ), n)],(3.30)

φ(P, n) + φ(P ∗, n) = −Gg+1(π̃(P ), n)/[a(n)Fg(π̃(P ), n)].(3.31)

It will be convenient later on to denote by φ±(z, n), ψ±(z, n, n0) the chart
expressions (branches) of φ(P, n), ψ(P, n, n0) in the charts (Π±, π̃) (see (A.13)).

In order to analyze φ and the BA-function ψ further, it is convenient to express
them in terms of the Riemann theta function associated with Kg. First we note
that by (3.22) and (3.23), the divisors (φ) of φ and (ψ) of ψ are given by

(φ(., n)) = Dµ̂(n+1) −Dµ̂(n) +D∞+ −D∞−(3.32)

and

(ψ(., n, n0)) = Dµ̂(n) −Dµ̂(n0) + (n− n0)(D∞+ −D∞−)(3.33)
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(cf. our notation established in Appendix A). By Abel’s theorem (cf. (A.43)), (3.33)
yields

αP0
(Dµ̂(n)) = αP0

(Dµ̂(n0))− (n− n0)A∞−
(∞+)

= αP0
(Dµ̂(n0))− 2(n− n0)AP0

(∞+),
(3.34)

where, for convenience only, from this point on we agree to fix the base point P0 as
the branch point (E0, 0),

(3.35) P0 = (E0, 0).

Next we introduce the abbreviations,

z(P, n) = ÂP0
(P )− α̂P0

(Dµ̂(n))− Ξ̂P0
∈ Cg,(3.36)

z(n) = z(∞+, n),(3.37)

where

(3.38) Ξ̂P0
= (Ξ̂P0,1, . . . , Ξ̂P0,g), Ξ̂P0,j =

1 + τj,j
2

−
g∑

k=1
k 6=j

∫
ak

ÂP0,jωk


denotes a representative of the vector of Riemann constants ΞP0

= Ξ̂P0
mod (Lg).

Since for any Q0 ∈ Kg,

(3.39) AQ0
(.) = AP0

(.)−AP0
(Q0), ΞQ0

= ΞP0
+ (g − 1)AP0

(Q0),

z(P, n) is independent of the chosen base point P0. For later purposes we recall
that

(3.40) 2ΞP0
= 0 mod (Lg)

and, due to (3.34), that

(3.41) z(∞−, n) = z(∞+, n− 1) mod (Zg).

Next, consider the normal differential of the third kind ω
(3)
∞+,∞− which has simple

poles at ∞+ and ∞−, corresponding residues +1 and −1, vanishing a-periods, and
is holomorphic otherwise on Kg. Hence we have (cf. (A.37))

ω(3)
∞+,∞−

=

∏g
j=1(π̃ − λj)dπ̃

R
1/2
2g+2

, ω(3)
∞−,∞+

= −ω(3)
∞+,∞−

,(3.42) ∫
aj

ω(3)
∞+,∞−

= 0, 1 ≤ j ≤ g,(3.43)

U
(3)
j =

1
2πi

∫
bj

ω(3)
∞+,∞−

= Â∞−,j(∞+) = 2ÂP0,j(∞+), 1 ≤ j ≤ g,(3.44)

where the numbers {λj}1≤j≤g are determined by the normalization (3.43).
Recalling that Dµ̂(n) are nonspecial by (3.17) and Lemma A.2, that is,

(3.45) i(Dµ̂(n)) = 0, n ∈ Z,

and that by (a special case of) Riemann’s vanishing theorem

(3.46) θ(z(P, n)) = 0 if and only if P ∈ {µ̂j(n)}1≤j≤g,
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the zeros and poles of φ and ψ as recorded in (3.32) and (3.33) suggest consideration
of the expressions

θ(z(P, n+ 1))
θ(z, (P, n))

exp

[∫ P

P0

ω(3)
∞+,∞−

]
(3.47)

and

θ(z(P, n))
θ(z(P, n0))

exp

[
(n− n0)

∫ P

P0

ω(3)
∞+,∞−

]
.(3.48)

Here we agree to use the same path of integration from P0 to P on Kg in the Abel
map ÂP0

(P ) in z(P, n) and in the integral over ω(3)
∞+,∞− in the exponents of (3.47)

and (3.48). With this convention, both expressions (3.47), (3.48) are well-defined
on Kg (due to (3.43), (3.44), and (A.27)) and we infer

φ(P, n) = C(n)
θ(z(P, n+ 1))
θ(z(P, n))

exp

[∫ P

P0

ω(3)
∞+,∞−

]
,(3.49)

ψ(P, n, n0) = C(n, n0)
θ(z(P, n))
θ(z(P, n0))

exp

[
(n− n0)

∫ P

P0

ω(3)
∞+,∞−

]
(3.50)

since ψ (and hence φ) is determined up to a constant by its zeros and poles. It
remains to determine the constants C(n), C(n, n0). Since the original literature
appears to be vague at this point we shall dwell on this a bit. As a consequence of
(3.29) one infers

(3.51) ψ(∞+, n, n0)ψ(∞−, n, n0) = 1

and hence (3.37) and (3.49) yield

(3.52) C(n, n0)2 =
θ(z(n0))θ(z(n0 − 1))
θ(z(n))θ(z(n− 1))

.

Because of

(3.53) φ(P, n) = ψ(P, n+ 1, n),

we get

(3.54) C(n) =
[
θ(z(n− 1))
θ(z(n+ 1))

]1/2

,

where the determination of the square root will be given later (see (3.71)).
Next we collect a few useful results.

Lemma 3.4. (i). ω(3)
∞+,∞− satisfies

(3.55) Re

(∫ P

P0

ω(3)
∞+,∞−

){
= 0, π̃(P ) ∈

⋃g
j=0[E2j , E2j+1]

< 0, π̃(P ) ∈ R\
⋃g

j=0[E2jE2j+1]
, P ∈ Π+

(the sign in (3.55) being reversed for P ∈ Π−) and

(3.56) λj ∈ [E2j−1, E2j ], 1 ≤ j ≤ g.



3. THE STATIONARY BAKER-AKHIEZER FUNCTION 21

(ii). Let D ∈ σgKg. Then

i Im[α̂P0
(D) + Ξ̂P0

] = 0 mod (Lg)

if and only if D = Dµ̂

=
g∑

j=1

Dµ̂j

 , µ̂ = (µ̂1, . . . , µ̂g),

π̃(µ̂j) ∈ [E2j−1, E2j ], 1 ≤ j ≤ g.

(3.57)

(iii). Suppose µ̂j ∈ Kg, π̃(µ̂j) = µj ∈ [E2j−1, E2j ], 1 ≤ j ≤ g. Then

(3.58) i Im

(∫ µ̂

P0

ω(3)
∞+,∞−

)
= −2πiÂP0

(∞+), 1 ≤ j ≤ g.

(iv). One has

(3.59) θ(z(P, n))θ(z(P, n0)) > 0 for π̃(P ) < E0 or π̃(P ) > E2g+1, n, n0 ∈ Z,

in particular, C(n) in (3.54) is real-valued.

Proof. (i). The normalization (3.43), that is,

(3.60)
∫

aj

ω(3)
∞+,∞−

= −2
∫ E2j

E2j−1

∏g
k=1(z − λk) dz
R2g+2(z)1/2

= 0, 1 ≤ j ≤ g,

immediately yields (3.56). In order to prove (3.55) we assume P ∈ Π+ and choose
as integration path the lift of the straight line from E0 + iε to π̃(P ) + iε and then
take ε ↓ 0. (Since we are required to stay in the interior of K̂g, whenever we are
to intersect some bj-cycle we first go around aj and then back on the other side of
bj . Since the parts on bj cancel and due to our normalization (3.60) the aj-periods
of ω(3)

∞+,∞− are zero, this does not alter the value of the integral in question.) The
rest follows from (3.56) and (A.5).
(ii). First assume D = Dµ̂ with π̃(µ̂j) ∈ [E2j−1, E2j ], 1 ≤ j ≤ g. Then, using (A.5),
one can show that

(3.61) i Im[ÂP0,j(µ̂k)] =
1
2
τj,k = i Im

[∫
ak

ÂP0,jωk

]
by taking all integrals as lifts obtained from limits of straight line sequent of the
type π̃(P1) + iε to π̃(P2) + iε as ε ↓ 0 for various points P1, P2. Again, in order
to stay on K̂g, crossings of bj-cycles can be avoided by adding contributions along
aj-cycles (which are real-valued) as in the proof of part (i). Equation (3.61) yields

(3.62) i Im[α̂P0
(Dµ̂) + Ξ̂P0

] = 0 mod (Lg).

Next consider αP0
as a holomorphic map from σgKg to J(Kg) and restrict αP0

to
divisors D satisfying

(3.63) D = Dµ̂, π̃(µ̂
j
) = µj ∈ [E2j−1, E2j ], 1 ≤ j ≤ g.

Denote this restriction by α̃P0
. The set of divisors D in (3.63) is a connected

submanifold of σgKg since it is isomorphic to ×g
j=1S

1. Moreover, by the arguments
leading to (3.62), the image of α̃P0

is a subset of J = {x ∈ J(Kg)
∣∣i Im(x+Ξ̂P0

) = 0
mod (Lg)}. Since

(3.64) rank(dαP0
(Dµ̂)) = g − i(Dµ̂) = g
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as Dµ̂ is nonspecial by (3.63) and Lemma A.2, α̃P0
is invertible and hence its image

is all of J . Thus αP0
provides an isomorphism from {Dµ̂ ∈ σgKg

∣∣π̃(µ̂j) = µj ∈
[E2j−1, E2j ], 1 ≤ j ≤ g} onto J .
(iii). This is clear from (3.44).
(iv). Since

(3.65) i Im[z(P, n)] = i Im[ÂP0
(P )] = 0 mod (Lg), π̃(P ) < E0, π̃(P ) > E2g+1,

a combination of (A.27), (3.37), (3.57), and (3.65) yields

(3.66) Im[θ(z(P, n))θ(z(P, n0))] = 0 for π̃(P ) < E0, π̃(P ) > E2g+1, n, n0 ∈ Z.

But then (3.59) immediately follows by considering n = n0 and the fact that all
zeros of θ(z(P, n)) occur precisely at P = µ̂j(n), 1 ≤ j ≤ g for all n ∈ Z. �

Lemma 3.4 is the main ingredient for the following characterization of φ(P, n)
and ψ(P, n, n0).

Theorem 3.5. (i).

φ(P, n) = C(n)
θ(z(P, n+ 1))
θ(z(P, n))

exp

[∫ P

P0

ω(3)
∞+,∞−

]
,(3.67)

ψ(P, n, n0) = C(n, n0)
θ(z(P, n))
θ(z(P, n0))

exp

[
(n− n0)

∫ P

P0

ω(3)
∞+,∞−

]
,(3.68)

where C(n), C(n, n0) are real-valued and

C(n) = C(n+ 1, n) = [θ(z(n− 1))/θ(z(n+ 1))]1/2,(3.69)

C(n, n0) =


∏n−1

m=n0
C(m), n ≥ n0 + 1

1, n = n0∏n0−1
m=n C(m)−1, n ≤ n0 − 1

=
[
θ(z(n0))θ(z(n0 − 1))
θ(z(n))θ(z(n− 1))

]1/2

.

(3.70)

In addition, the sign of C(n) is opposite that of a(n), that is,

(3.71) sgn[C(n)] = − sgn[a(n)], n ∈ Z.

(ii). The function φ(P, n) and hence ψ(P, n, n0) is real-valued for all P such that
π(P ) ∈ R\

⋃g
j=0[E2j , E2j+1] and all n, n0 ∈ Z.

(iii). Let λ ∈
⋃g

j=0[E2j , E2j+1]. Then

(3.72) ψ±(λ, ., n0) ∈ `∞(Z).

(iv). Let λ ∈ R\
⋃g

j=0[E2j , E2j+1]. Then there exist constants M , K(λ) > 0 such
that

(3.73) |ψ±(λ, n, n0)| ≤Me∓(n−n0)K(λ).

Moreover,

(3.74) ψ±(λ, ., n0) ∈ `2((N0,±∞)), N0 ∈ Z.

Proof. (i). Equations (3.67)–(3.70) follow from equations (3.23), (3.49)–
(3.54), and Lemma 3.4 (iv) except for the sign correlation (3.71) of C(n) and a(n).
The latter can be inferred as follows. Expanding φ(P, n) in (3.67) near P = ∞+

on Π+ yields in the chart (Π+\{(0, R2g+2(0)1/2)}, z = ζ−1), integrating from P0 to
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P along the lift of the corresponding straight line segment along the negative real
axis,

φ(P, n) =
ζ→0

C(n)
[
θ(z(n+ 1))
θ(z(n))

+O(ζ)
]

exp{ln[ãζ +O(ζ2)]}

=
ζ→0

C(n)
θ(z(n+ 1))
θ(z(n))

ãζ +O(ζ2),
(3.75)

where ã < 0 is an appropriate integration constant. Inserting this expansion into
(3.24) (with n replaced by n+ 1) yields

(3.76) a(n)φ(P, n)−1 − π̃(P ) =
ζ→0

O(1) =
ζ→0

a(n)
C(n)ã

θ(z(n))
θ(z(n+ 1))

ζ−1 − ζ−1 +O(1),

that is,

(3.77) a(n) = ãC(n)θ(z(n+ 1))θ(z(n))−1, n ∈ Z.
Since [θ(z(n+ 1))/θ(z(n))] > 0 by (3.59) we obtain (3.71).
(ii). This follows directly from (3.22) and (3.23), or alternatively, by combining (i)
and Lemma 3.4 (i), (iii), (iv).
(iii), (iv). Relations (3.72)–(3.74) are an immediate consequence of the quasi-
periodicity and hence boundedness of θ(z(P, n)) with respect to n ∈ Z and Lemma 3.4 (i).

�

Relation (3.72) extends to all z ∈ C\
⋃g

j=0[E2j , E2j+1]. Since this is conve-
niently proved by invoking Weyl m-functions we postpone this fact to the next
chapter.





CHAPTER 4

Spectral Theory for Finite-Gap Jacobi Operators

In this chapter we shortly digress into spectral properties and Green’s functions
of self-adjoint `2(Z) realizations associated with finite-gap difference expressions.

We start with a general difference expression L of the type

(4.1) L = aS+ + a−S− − b

assuming a, b ∈ `∞R (Z), a(n) 6= 0, n ∈ Z implying that L is in the limit point case
near ±∞. Then the following Jacobi operator H in `2(Z) defined by

(4.2) Hf = Lf, f ∈ D(H) = `2(Z)

is the unique self-adjoint realization associated with L in `2(Z). The corresponding
Green’s function G(z,m, n) of H, defined by

(4.3) ((H − z)−1f)(m) =
∑
n∈Z

G(z,m, n)f(n), f ∈ `2(Z), z ∈ C\σ(H),

with σ(H) denoting the spectrum of H, can be expressed as
(4.4)

G(z,m, n) = W (f−(z), f+(z))−1

{
f−(z,m)f+(z, n), m ≤ n

f+(z,m)f−(z, n), m ≥ n
, z ∈ C\σ(H).

Here

(4.5) f±(z, .) ∈ `2((N0,±∞)), z ∈ C\σ(H), N0 ∈ Z

are weak solutions of

(4.6) Lψ(z, n) = zψ(z, n)

and

(4.7) W (f, g)(n) = a(n)[f(n)g(n+ 1)− f(n+ 1)g(n)]

denotes the Wronskian of f and g.
By general principles, G(z, n0, n0), G(z, n0 + 1, n0 + 1), and G(z, n0, n0 + 1)

uniquely determine both sequences {a(n)2}n∈Z and {b(n)}n∈Z. These results are
standard and a consequence of the 2× 2 Weyl M -matrix associated with H,

(4.8) Mn0(z) =
(

G(z, n0, n0) G(z, n0, n0 + 1)
G(z, n0, n0 + 1) G(z, n0 + 1, n0 + 1)

)
.

We recall the asymptotic behavior,

G(z, n, n) =
z→∞

−z−1 +O(z−2),

G(z, n, n+ 1) =
z→∞

−a(n)z−2 +O(z−3), n ∈ Z.
(4.9)

25
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Moreover, the identity

(4.10) [2a(n)G(z, n, n+ 1)− 1]2 = 1 + 4a(n)2G(z, n, n)G(z, n+ 1, n+ 1), n ∈ Z
proves that G(z, n0, n0 + 1) is determined up to a sign by a(n0), G(z, n0, n0), and
G(z, n0 + 1, n0 + 1).

Next, we define restrictions H±,n0 of H to `2([n0 ± 1,±∞)) with a Dirichlet
boundary condition at n0,

(4.11) H±,n0f = Lf, f ∈ D(H±,n0) = {f ∈ `2([n0 ± 1,±∞))|f(n0) = 0}.
Denoting by G±,n0 the corresponding Green’s functions of H±,n0 , the associated
Weyl m-functions on [n0,±∞) then read

m±,n0(z) = G±,n0(z, n0 ± 1, n0 ± 1) = (δn0±1, (H±,n0 − z)−1δn0±1)

=

{
−a(n0)−1[f+(z, n0 + 1)/f+(z, n0)]
−a(n0 − 1)−1[f−(z, n0 − 1)/f−(z, n0)]

,
(4.12)

with f±(n, z) as in (4.5) and δm(n) = δm,n =

{
1, m = n

0, m 6= n
.

The following is a simple but useful result concerning the spectral invariants of
H.

Lemma 4.1. (See, e.g., [29], p. 141.) Suppose a, b ∈ `∞R (Z), a(n) 6= 0, n ∈ Z
and introduce aε ∈ `∞R (Z) by

(4.13) aε = {ε(n)a(n)}n∈Z, ε(n) ∈ {+1,−1}, n ∈ Z.
Define Hε in `2(Z) as in (4.2) with L replaced by Lε = aεS

+ + a−ε S
− − b. Then H

and Hε are unitarily equivalent, that is, there exists a unitary operator Uε in `2(Z)
such that

(4.14) H = UεHεU
−1
ε .

Proof. Uε is explicitly represented by the diagonal matrix

(4.15) Uε = (ε̃(n)δm,n)m,n∈Z, ε̃(n) ∈ {+1,−1}, ε̃(n)ε̃(n+ 1) = ε(n), n ∈ Z.
�

Next, let c(z, n, n0), s(z, n, n0), z ∈ C be a fundamental system of solutions of
(4.6) satisfying

(4.16) c(z, n0, n0) = s(z, n0 + 1, n0) = 1, c(z, n0 + 1, n0) = s(z, n0, n0) = 0.

Returning to our special g-gap sequences a(n), b(n) in (3.18), (3.19), the branches
ψ±(z, n, n0) of ψ(P, n, n0) in (3.23) satisfy

(4.17) ψ±(z, n, n0) = c(z, n, n0) + φ±(z, n0)s(z, n, n0)

and

(4.18) W (ψ−(z, ., n0), ψ+(z, ., n0)) = a(n0)[φ+(z, n0)− φ−(z, n0)],

with φ±(z, n) the corresponding branches of φ(P, n) in (3.22). Taking into account
(3.28)–(3.31) then enables one to further identify

G(z, n, n) = Fg(z, n)/R2g+2(z)1/2,(4.19)

G(z, n, n+ 1) = {1− [Gg+1(z, n)/R2g+2(z)1/2]}/[2a(n)],(4.20)
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m+,n(z) = G+,n(z, n+ 1, n+ 1) = −φ+(z, n)/a(n)

= [Gg+1(z, n)−R2g+2(z)1/2]/[2a(n)2Fg(z, n)],
(4.21)

m−,n(z) = G−,n(z, n− 1, n− 1) = −1/[a(n− 1)φ−(z, n− 1)]

= [Gg+1(z, n− 1) +R2g+2(z)1/2]/[2a(n− 1)2Fg(z, n)].
(4.22)

We note that a(n0) and Gg+1(z, n0) determine the sign of G(z, n0, n0 +1) left open
in (4.10).

We conclude this chapter with a summary of spectral properties of H, H±,n in
connection with the g-gap sequences (3.18) and (3.19). Let σ(.), σac(.), σsc(.), and
σp(.) denote the spectrum, absolutely continuous, singularly continuous, and point
spectrum (set of eigenvalues), respectively. Then we have

Theorem 4.2. Suppose a, b ∈ `∞R (Z) are g-gap sequences satisfying (3.18),
(3.19) and let H, H±,n be as in (4.2), (4.11). Then

σ(H) = σac(H) =
g⋃

j=0

[E2j , E2j+1],(4.23)

σsc(H) = σp(H) = ∅(4.24)

and for all n ∈ Z,

σ(H−,n ⊕H+,n) = σ(H) ∪ {µj(n)}1≤j≤g,(4.25)

σac(H±,n) = σ(H), σsc(H±,n) = ∅,(4.26)

σp(H−,n ⊕H+,n) = {µj(n)}1≤j≤g ∩ {
g⋃

k=1

(E2k−1, E2k)}.(4.27)

In addition, σ(H) has uniform spectral multiplicity two whereas σ(H±,n), n ∈ Z is
simple.

Proof. Consider the trace of the Weyl M -matrix (4.8), that is,

(4.28) T (z) = G(z, n0, n0) +G(z, n0 + 1, n0 + 1).

Then C\σ(H) coincides with the holomorphy domain of T . This identifies σ(H) in
(4.23). For any λ0 ∈ σp(H) one must necessarily have

(4.29) lim
ε↓0

[iεT (λ0 + iε)] < 0.

The explicit structure of G(z, n, n) in (4.19) then proves the impossibility of (4.29)
and hence σp(H) = ∅. In order to prove σsc(H) = ∅ we apply Theorem XIII.20 of
[79] with D = `0(Z) (the subspace of sequences with at most finitely many elements
being nonzero), p = 2 and (a, b) = (E2j + ε, E2j+1 − ε), ε > 0. Upon letting ε ↓ 0
one infers the spectrum to be purely absolutely continuous on [E2j , E2j+1]. This
proves (4.23) and (4.24). Next, define in `2((−∞, n0 − 1])⊕ `2([n0 + 1,∞))

(4.30) HD
n = H−,n ⊕H+,n.

Then the Green’s function GD
n (z,m,m′) of HD

n is given by

(4.31) GD
n (z,m,m′) = G(z,m,m′)−G(z, n, n)−1G(z,m, n)G(z, n,m′),

z ∈ C\{µj(n)}1≤j≤g, m,m
′ ∈ Z\{n0}.

This proves (4.25) and (4.27) (cf. (4.19)). The relation (4.26) can again be proved
by alluding to Theorem XIII.20 of [79]. Finally, self-adjoint half-line operators
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(like H±,n) always have simple spectra, and uniform spectral multiplicity two of H
follows from the existence of the two linearly independent branches ψ±(λ, n, n0) for
λ ∈

⋃g
j=0(E2j , E2j+1). �

Alternatively, one can prove Theorem 4.2 directly, that is, by pure ODE tech-
niques by explicitly computing the 2 × 2 spectral matrix of H given the Weyl
M -matrix (4.8) (with entries (4.19), (4.20)) and by calculating the spectral func-
tion of H±,n given the corresponding Weyl m-functions m±,n in (4.21), (4.22). This
also settles the multiplicity of the spectrum following [48] in the context of second-
order differential operators in L2(R) (see also Appendices A–C of [38] for a short
summary of the relevant spectral theoretic results). Here we only mention that if

(4.32) dρn0 = (dρn0,j,k)1≤j,k≤2

denotes the (self-adjoint) matrix-valued spectral measure of H, related to the Weyl
M -matrix (4.8) via

(4.33) Mn0(z) =
∫

R

dρn0(λ)
z − λ

,

one explicitly obtains from (4.19), (4.20) in the g-gap context of Theorem 4.2 that

dρn0,1,1(λ)
dλ

=


Fg(λ, n0)

πiR2g+2(λ)1/2
, λ ∈ σ(H)

0, λ ∈ R\σ(H)
,(4.34)

dρn0,1,2(λ)
dλ

=
dρn0,2,1(λ)

dλ
=


−Gg+1(λ, n0)

2πia(n0)R2g+2(λ)1/2
, λ ∈ σ(H)

0, λ ∈ R\σ(H)
,(4.35)

dρn0,2,2(λ)
dλ

=


Fg(λ, n0 + 1)
πiR2g+2(λ)1/2

, λ ∈ σ(H)

0, λ ∈ R\σ(H)
(4.36)

(cf. (A.5) for our conventions on R2g+2(λ)1/2).
Finally we relate the polynomials Fg(z, n), Gg+1(z, n) used in Chapter 3 to

the homogeneous quantities F̂g(z, n), Ĝg+1(z, n) (cf. (2.19)). We introduce the
constants cj(E) via

(4.37) R2g+2(z)1/2 = −zg+1
∞∑

j=0

cj(E)z−j , |z| > ‖H‖,

where E = (E0, . . . , E2g−1), implying

(4.38) c0(E) = 1, c1(E) = −1
2

2g+1∑
j=0

Ej , etc.

Lemma 4.3. Let Fg(z, n), Gg+1(z, n) be the polynomials defined in (3.4), (3.5)
and let a(n)2, b(n) be defined as in (3.18), (3.19). Then we have

(4.39) Fg(z, n) =
g∑

`=0

cg−`(E)F̂`(z, n), Gg+1(z, n) =
g∑

`=0

cg−`(E)Ĝ`+1(z, n).
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Proof. From (4.19), (4.20) we infer for |z| > ‖H‖ using Neumann’s expansion
for the resolvent of H and Lemma 2.1 that

Fg(z, n) = −R2g+2(z)1/2

z

∞∑
`=0

f̂`(n)z−`,(4.40)

Gg+1(z, n) = R2g+2(z)1/2
(
1− 1

z

∞∑
`=0

ĝ`(n)z−`
)
,(4.41)

which, together with (4.37), completes the proof. �

For interesting recent generalizations of almost periodic Jacobi operators to
cases where formally g →∞, and Cantor spectra and solutions of infinite-dimensional
Jacobi inversion problems are involved, we refer to [7], [80].





CHAPTER 5

Quasi-Periodic Finite-Gap Solutions of the
Stationary Toda Hierarchy

Given the detailed preparations in Chapter 3 we are now ready to derive the
algebro-geometric finite-gap solutions of the stationary Toda hierarchy.

Starting with high-energy expansions for ω(3)
∞+,∞− and θ(z(P, n)) we formulate

Lemma 5.1. Given the canonical charts (Π±\{(0, R2g+2(0)1/2)}, z = ζ−1) we
obtain the following expansions for P near ∞±.
(i).

(5.1) exp

[∫ P

P0

ω(3)
∞+,∞−

]
=

ζ→0
(ãζ)±1

[ ∞∑
`=0

b̃`(−ζ)`

]±1

, P near ∞±,

where ã, {b̃`}`∈N0 only depend on Kg (i.e., on {Em}0≤m≤2g+1) and

(5.2) ã < 0

is an integration constant,

b̃0 = 1,

b̃1 =
g∑

j=1

λj −
1
2

2g+1∑
m=0

Em,

etc.

(5.3)

(ii).

(5.4)
θ(z(P, n+ 1))
θ(z(P, n))

=
ζ→0

θ
(
z
(
n+1

n

))
θ
(
z
(

n
n−1

)) ∞∑
`=0

θ̃±,`(n)ζ`, P near ∞±,

where

θ̃±,0(n) = 1,

θ̃±,1(n) = ±
g∑

j=1

cj(g)
∂

∂wj
ln

[
θ
(
w + z

(
n+1

n

))
θ
(
w + z

(
n

n−1

))]∣∣∣∣∣
w=0

,

etc.,

(5.5)
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and cj(k) are defined in (A.19).
(iii).

φ(P, n) =
ζ→0

ãC(n)
θ(z(n+ 1))
θ(z(n))

ζ

+ ãC(n)
θ(z(n+ 1))
θ(z(n))

−b̃1 +
g∑

j=1

cj(g)
∂

∂wj
ln
[
θ(w + z(n+ 1))
θ(w + z(n))

]∣∣∣∣
w=0

 ζ2

+O(ζ3), P near ∞+.

(5.6)

Proof. (i). Using the representation (3.42) for ω(3)
∞+,∞− and Lemma 3.4 (i)

one readily finds (5.1)–(5.3) as follows. First one expands
(5.7)

ω(3)
∞+,∞−

=
ζ→0

±ζ−1

1 +

1
2

2g+1∑
m=0

Em −
g∑

j=1

λj

 ζ + 0(ζ2)

 dζ, P near ∞±

in a sufficiently small neighborhood of ∞± and integrates term by term. The
remaining contribution to the integral in (5.1) is then absorbed into the integration
constant ã by integrating along the lift of the straight line segment from E0 to π̃(P̂ )
for some P̂ near ∞± along the negative real axis.
(ii). This follows from (3.36), (3.37), (3.41), and from

(5.8) (ÂP0
◦ z−1)(ζ) =

ζ→0
±c(g)ζ +O(ζ2) mod (Lg) near ∞±

(cf. (A.24)).
Item (iii) is obvious from (i), (ii), and (3.67). �

Now we are in a position to derive the major result of this chapter expressing
the g-gap sequences a, b in (3.18), (3.19) in terms of the θ-function associated with
Kg.

Theorem 5.2. The stationary TLg solutions, or equivalently, the g-gap se-
quences a = {a(n)}n∈Z, b = {b(n)}n∈Z in (3.18), (3.19), are given by

a(n) = ã[θ(z(n− 1))θ(z(n+ 1))/θ(z(n))2]1/2, n ∈ Z,

(5.9)

b(n) =
g∑

j=1

λj −
1
2

2g+1∑
m=0

Em −
g∑

j=1

cj(g)
∂

∂wj
ln
[

θ(w + z(n))
θ(w + z(n− 1))

]∣∣∣∣
w=0

, n ∈ Z.

(5.10)
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Proof. Inserting expansion (5.6) near ∞+ into (3.24) yields

0 = a(n− 1)φ(P, n− 1)−1 − π̃(P )− b(n) +O(ζ)

=
a(n− 1)θ(z(n− 1))
ãC(n− 1)θ(z(n))ζ

{
1 +

 b̃1 − g∑
j=1

cj(g)
∂

∂wj
ln
(

θ(w + z(n))
θ(w + z(n− 1))

)∣∣∣∣∣∣
w=0

 ζ
+O(ζ2)

}
− ζ−1 − b(n) +O(ζ),

(5.11)

that is, one infers (3.77) (again) and (5.10). Equation (5.9) is clear from (3.69) and
(3.77). �

Remark 5.3. Alternatively, one could have derived (5.10) by evaluating the
integral

I =
1

2πi

∫
∂K̂g

π̃(.) d ln[θ(z(., n))]

=
g∑

j=1

µj(n) +
∑

P∈{∞±}

res
P
{π̃(.) d ln[θ(z(., n)]}

(5.12)

using the residue theorem. Since on the other hand a direct calculation shows that

(5.13) I =
g∑

j=1

∫
aj

π̃ωj ,

the trace relation (3.19) for b(n) yields

(5.14) b(n) =
g∑

j=1

∫
aj

π̃ωj −
1
2

2g+1∑
m=0

Em −
g∑

j=1

cj(g)
∂

∂wj
ln
[

θ(w + z(n))
θ(w + z(n− 1))

] ∣∣∣∣∣
w=0

.

A comparison of (5.10) and (5.14) then reveals that

(5.15)
g∑

j=1

∫
aj

π̃ωj =
g∑

j=1

λj .

Next we shall show that the BA-function is determined by the location of its
poles on Kg\{∞±} and its behavior near ∞±.

Lemma 5.4. Let ψ(., n), n ∈ Z be meromorphic on Kg satisfying

(ψ(., n)) ≥ −Dµ̂(n0) + (n− n0)(D∞+ −D∞−).(5.16)

Define a divisor D0(n) by

(ψ(., n)) = D0(n)−Dµ̂(n0) + (n− n0)(D∞+ −D∞−).(5.17)

Then

(5.18) D0(n) ∈ σgKg, D0(n) > 0, deg(D0(n)) = g.

Moreover, if D0(n) is nonspecial for all n ∈ Z, that is, if

(5.19) i(D0(n)) = 0, n ∈ Z
then ψ(., n) is unique up to a constant multiple (which may depend on n).
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Proof. By the Riemann-Roch theorem (see (A.42)) there exists at least one
such function ψ(., n). If ψj(., n), j = 1, 2 are two such functions satisfying (5.17)
with corresponding divisors D0,j(n), j = 1, 2, one infers

(5.20) (ψ1(n)/ψ2(n)) = D0,1(n)−D0,2(n).

Since i(D0,2(n)) = 0, deg(D0,2(n)) = g by hypothesis, (A.42) yields r(−D0,2(n)) =
1, n ∈ Z and hence ψ1(., n)/ψ2(., n) is a constant on Kg. �

One can use Lemma 5.4 to obtain an alternative proof of the fact that φ and ψ
given by (3.67)–(3.70) coincide with the expressions (3.22), (3.23) and satisfy the
Riccati and Jacobi equations (3.24) and (3.25), respectively. We shall use precisely
this strategy in the t-dependent context to be discussed in the next chapter.

Remark 5.5. In the special case where µj(n0) ∈ {E2j−1, E2j} for all 1 ≤ j ≤ g
the following are equivalent.
(i).

(5.21) µ̂j(n0 + n) = µ̂j(n0 − n)∗, 1 ≤ j ≤ g, n ∈ Z.
(ii).

(5.22) z(P, n0 + n) = −z(P ∗, n0 − n) mod (Lg), n ∈ Z.
(iii).

(5.23) a(n0 + n) = a(n0 − n+ 1), b(n0 + n) = b(n0 − n), n ∈ Z.
Next we derive an alternative and, to the best of our knowledge, novel θ-function

representation of b(n).

Corollary 5.6. b(n), n ∈ Z admits the representation

b(n) = −E0 + ã
θ(z(n− 1))θ(z(P0, n+ 1))

θ(z(n))θ(z(P0, n))
+ ã

θ(z(n))θ(z(P0, n− 1))
θ(z(n− 1))θ(z(P0, n))

.(5.24)

Proof. It suffices to combine (3.24), (3.67), (3.69) (all at P = P0), and (5.9).
�

The results of this chapter, with the exception of Corollary 5.6, are well-known
(they are contained, e.g., in Section 5 of [70] which is devoted to (stationary) θ-
function representations of ψ(.) and the coefficients (a, b) of L). Since they represent
a special case of the time-dependent findings of Chapter 6 we postpone further
references to the original literature to the next chapter.

Finally, for reasons of completeness, we also mention the following criterion for
{a(n)}n∈Z, {b(n)}n∈Z to be periodic of period N ∈ N.

Theorem 5.7. (See [58], Ch. 2.) A necessary and sufficient condition for
the g-gap sequences {a(n)}n∈Z, {b(n)}n∈Z in (3.18), (3.19) to be periodic of period
N ∈ N is that R2g+2(z) is of the form

(5.25) R2g+2(z)Q(z)2 = ∆(z)2 − 1,

where Q(.) and ∆(.) are polynomials. The period N is given by

(5.26) N = deg(Q) + g + 1.

Since we are not using Theorem 5.7 in our main text we defer its proof to
Appendix B.

This completes our treatment of stationary quasi-periodic finite-gap sequences
and we now turn to the t-dependent case.



CHAPTER 6

Quasi-Periodic Finite-Gap Solutions of the Toda
Hierarchy and the Time-Dependent

Baker-Akhiezer Function

In this chapter we continue the construction of g-gap sequences for the Toda
hierarchy and now treat the time-dependent case.

Our starting point will be a g-gap stationary solution (a(0), b(0)) of the type
(5.9), (5.10), that is,

a(0)(n) = ã[θ(z(n− 1))θ(z(n+ 1))/θ(z(n))2]1/2,(6.1)

b(0)(n) =
g∑

j=1

λj −
1
2

2g+1∑
m=0

Em −
g∑

j=1

cj(g)
∂

∂wj
ln
[

θ(w + z(n))
θ(w + z(n− 1))

] ∣∣∣∣∣
w=0

(6.2)

satisfying (3.18), (3.19),

a(0)(n)2 =
1
2

g∑
j=1

R2g+2(µ̂
(0)
j (n))1/2

g∏
k=1
k 6=j

[µ(0)
j (n)− µ

(0)
k (n)]−1

− 1
4
[b(0)(n)2 + b(0)(2)(n)] > 0,

(6.3)

b(0)(k)(n) =
g∑

j=1

µ
(0)
j (n)k − 1

2

2g+1∑
m=0

Ek
m, k ∈ N,

b(0)(n) = b(0)(1) =
g∑

j=1

µ
(0)
j (n)− 1

2

2g+1∑
m=0

Em,

(6.4)

where

(6.5) π̃(µ̂(0)
j (n)) = µ

(0)
j (n) ∈ [E2j−1, E2j ], 1 ≤ j ≤ g, n ∈ Z.

This g-gap stationary solution (a(0), b(0)) represents the initial condition for the
following Toda flow (cf. (2.13)),

(6.6) T̃Lr(a(t), b(t)) = 0, (a(t0), b(t0)) = (a(0), b(0))

for some r ∈ N0, whose explicit solution we seek below. Explicitly, (6.6) amounts
to (cf. (2.38), (2.39))

ȧ = −a[2(b+ + z)F̃+
r + G̃+

r+1 + G̃r+1], a(t0) = a(0),(6.7)

ḃ = −2[(b+ z)2F̃r + (b+ z)G̃r+1 + a2F̃+
r − (a−)2F̃−r ], b(t0) = b(0).(6.8)

From our treatment in Chapter 3 we know that (a(0), b(0)) is determined by
the band edges {Ej}0≤j≤2g+1 and the Dirichlet eigenvalues {µ̂(0)

j (n0)}1≤j≤g at a

35
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fixed point n0. Hence we will consider the following time evolution for the Dirichlet
eigenvalues µ̂j(n0, t)

d

dt
µj(n0, t) = −2F̃r(µj(n0, t), n0, t)

R
1/2
2g+2(µ̂j(n0, t))∏g

`=1
` 6=j

[µj(n0, t)− µ`(n0, t)]
,

µ̂j(n0, t0) = µ̂
(0)
j (n0), 1 ≤ j ≤ g, (n0, t) ∈ Z× R

(6.9)

(similar to those encountered in connection with the KdV hierarchy, see, e.g., [6],
[12], [13]). Here F̃r(z, n0, t) has to be defined using (2.34) (cf. (2.11)) and a(n0, t)2,
b(n0, t) have to be expressed in terms of µ̂j(n0, t) (this can be done by comparing
the coefficients in (4.40)). In order to stress the fact that the summation constants
c` in F̃r and Fg are different in general, we decided to indicate this by using the
notation c̃`, F̃r, G̃r+1, T̃Lr, etc.

The appearance of the function R
1/2
2g+2(.) in (6.9) indicates the natural way to

interpret this system as a vector field on the (complex) manifoldKg×· · ·×Kg = Kg
g .

Since we are interested in real-valued solutions (a(t), b(t)) of the Toda hierarchy,
we restrict this vector field to the submanifold ×g

j=1π̃
−1([E2j−1, E2j ]) which is iso-

morphic to the torus S1×· · ·×S1 = T g. Standard theory for differential equations
on C∞ manifolds now implies the existence of a unique solution {µ̂j(n0, t)}1≤j≤g

satisfying the initial condition µ̂j(n0, t0) = µ̂
(0)
j (n0). An inspection of (6.9) using

the charts (A.9), (A.10) confirms that the solution µ̂j(n, t) changes sheets whenever
it hits E2j−1 or E2j and its projection µj(n0, t) = π̃(µ̂j(n0, t)) remains trapped in
[E2j−1, E2j ] for all t ∈ R. Thus up to this point we have

(6.10) µ̂j(n0, .) ∈ C∞(R,Kg) and π̃(µ̂j(n0, t)) ∈ [E2j−1, E2j ], 1 ≤ j ≤ g, t ∈ R,

and using (6.10) we can define polynomials Fg(z, n, t), Gg+1(z, n, t) as in Chapter 3
(cf. (3.4), (3.5)).

We start with calculating the time derivative of Fg(z, n0, t). By virtue of (3.7)
and (6.9) we obtain
(6.11)
d

dt
Fg(z, n0, t)

∣∣
z=µj(n0,t)

= −2F̃r(µj(n0, t), n0, t)Gg+1(µj(n0, t), n0, t), 1 ≤ j ≤ g.

Since two polynomials of (at most) degree g− 1 coinciding at g points are equal we
infer

(6.12)
d

dt
Fg(z, n0, t) = 2[Fg(z, n0, t)G̃r+1(z, n0, t)− F̃r(z, n0, t)Gg+1(z, n0, t)],

provided we can show that the right-hand side of (6.12) is a polynomial of degree
at most g − 1. It suffices to prove the special homogeneous case where c̃0 = 1,
c̃` = 0, ` ≥ 1. Dividing (6.12) by R2g+2(z)1/2, using (4.40), (4.41), shows that our
assertion is equivalent to

− z−1
r∑

j=0

f̃j(n0, t)z−j [−zr+1 +
r∑

`=0

g̃r−`(n0, t)z` + f̃r+1(n0, t)]

−
r∑

`=0

f̃r−`(n0, t)z`[1− z−1
∞∑

j=0

g̃j(n0, t)z−j ] = O(z−2).(6.13)
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Since by inspection, the coefficient of zk for −1 ≤ k ≤ r on the left-hand side of
(6.13) turns out to be

f̃r−k − f̃r−k − [g̃r−(k+1)f̃0 + g̃r−(k+2)f̃1 + · · ·+ g̃0f̃r−(k+1)]

+ [f̃r−(k+1)g̃0 + f̃r−(k+2)g̃1 + · · ·+ f̃0g̃r−(k+1)] = 0,(6.14)

this proves (6.13) and hence (6.12).
To obtain the time derivative of Gg+1(z, n0, t) we use

(6.15) Gg+1(z, n0, t)2 − 4a(n0, t)2Fg(z, n0, t)Fg(z, n0 + 1, t) = R2g+2(z)

as in (3.8). Again, evaluating the t-derivative of (6.15) first at z = µj(n0, t), one
obtains from (6.11)

d

dt
Gg+1(z, n0, t) =4a(n0, t)2[Fg(z, n0, t)F̃r(z, n0 + 1, t)

− F̃r(z, n0, t)Fg(z, n0 + 1, t)](6.16)

for those t ∈ R such that µj(n0, t) 6∈ {E2j−1, E2j}, provided the right-hand side of
(6.16) is a polynomial in z of degree at most g − 1. Since the exceptional set is
discrete the identity will then follow for all t ∈ R by continuity. Again it suffices to
prove the special homogeneous case c̃0 = 1, c̃` = 0, ` ≥ 1. Thus we need to prove

Fg(z, n0, t)
R2g+2(z)1/2

F̃+
r (z, n0, t)−

F+
g (z, n0, t)

R2g+2(z)1/2
F̃r(z, n0, t)

= z−1
∞∑

j=0

f̃+
j (n0, t)z−j

r∑
`=0

f̃r−`(n0, t)z`(6.17)

− z−1
∞∑

j=0

f̃j(n0, t)z−j
r∑

`=0

f̃+
r−`(n0, t)z` = O(z−2)

using (4.40). By inspection, the coefficient of zk for −1 ≤ k ≤ r−1 on the left-hand
side of (6.17) indeed vanishes, proving (6.16).

Similarly, evaluating (d/dt)Fg(z, n0 + 1, t) at z = µj(n0 + 1, t) (the zeros of
Fg(z, n0 + 1, t)), we see that (6.12) also holds with n0 replaced by n0 + 1 and
finally that {µ̂j(n0 +1, t)}1≤j≤g satisfies (6.9) with initial condition µ̂j(n0 +1, t0) =
µ̂

(0)
j (n0 + 1). Proceeding inductively we obtain this result for all n ≥ n0 and with

a similar calculation (cf. Chapter 3) for all n ≤ n0.
Summarizing, we have constructed the set {µ̂j(n, t)}1≤j≤g for all (n, t) ∈ Z×R

such that
d

dt
µj(n, t) = −2F̃r(µj(n, t), n, t)

R2g+2(µ̂j(n, t))1/2∏g
`=1
` 6=j

[µj(n, t)− µ`(n, t)]
,

µ̂j(n, t0) = µ̂
(0)
j (n), 1 ≤ j ≤ g, (n, t) ∈ Z× R,

(6.18)

with
(6.19)
µ̂j(n, .) ∈ C∞(R,Kg) and π̃(µ̂j(n, t)) ∈ [E2j−1, E2j ], 1 ≤ j ≤ g, (n, t) ∈ Z× R.

As expected from the stationary g-gap outset in (6.1)–(6.5), the left-hand side
in (6.18) is t-independent for r = g, assuming the same summation constants c` =
c`(E), 1 ≤ ` ≤ g in F̃r and Fg (cf. Lemma 4.3).
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Furthermore, we have corresponding polynomials Fg(z, n, t) and Gg+1(z, n, t)
satisfying

d

dt
Fg(z, n, t) = 2[Fg(z, n, t)G̃r+1(z, n, t)− F̃r(z, n, t)Gg+1(z, n, t)],

(6.20)

d

dt
Gg+1(z, n, t) = 4a(n, t)2[Fg(z, n, t)F̃r(z, n+ 1, t)− F̃r(z, n, t)Fg(z, n+ 1, t)].

(6.21)

In order to see that (6.9) was indeed the correct choice one needs to calculate
ȧ and ḃ. Differentiating (6.15) involving (6.20), (6.21) and (3.16) yields (2.38).
Differentiating (3.16) using (6.20), (6.21) and (3.21) yields (2.39). Thus T̃Lr(a, b) =
0 and

(6.22)
d

dt
L(t)− [P̃2r+2(t), L(t)] = 0, t ∈ R.

In addition to the function φ(P, n, t)

φ(P, n, t) =
−Gg+1(π̃(P ), n, t) +R

1/2
2g+2(P )

2a(n, t)Fg(π̃(P ), n, t)

=
−2a(n, t)Fg(π̃(P ), n+ 1, t)

Gg+1(π̃(P ), n, t) +R
1/2
2g+2(P )

,

(6.23)

we now define the time-dependent BA-function ψ(P, n, n0, t, t0), meromorphic on
Kg\{∞+,∞−}, by

(6.24) ψ(P, n, n0, t, t0) =

exp
{∫ t

t0

ds[2a(n0, s)F̃r(z, n0, s)φ(P, n0, s) + G̃r+1(z, n0, s)]
}
×

×


∏n−1

m=n0
φ(P,m, t), n ≥ n0 + 1

1, n = n0∏n0−1
m=n φ(P,m, t)−1, n ≤ n0 − 1

.

Straightforward calculations then imply

a(n, t)φ(P, n, t) + a(n− 1, t)φ(P, n− 1, t)−1 = b(n, t) + π̃(P ), (n, t) ∈ Z× R,

(6.25)

d

dt
φ(P, n, t) = −2a(n, t)[F̃r(π̃(P ), n, t)φ(P, n, t)2 + F̃r(π̃(P ), n+ 1, t)]

+ 2[b(n+ 1, t) + π̃(P )]F̃r(π̃(P ), n+ 1, t)φ(P, n, t)

+ [G̃r+1(π̃(P ), n+ 1, t)− G̃r+1(π̃(P ), n, t)]φ(P, n, t), (n, t) ∈ Z× R

(6.26)

and similarly,

a(n, t)ψ(P, n+ 1, n0, t, t0) + a(n− 1, t)ψ(P, n− 1, n0, t, t0)

= [b(n, t) + π̃(P )]ψ(P, n, n0, t, t0), (n, n0, t, t0) ∈ Z2 × R2,
(6.27)
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d

dt
ψ(P, n, n0, t, t0) = 2a(t, n)F̃r(π̃(P ), n, t)ψ(P, n+ 1, n0, t, t0)

+ G̃r+1(π̃(P ), n, t)ψ(P, n, n0, t, t0), (n, n0, t, t0) ∈ Z2 × R2.
(6.28)

The analogs of (3.8) (for all n0 ∈ Z) and (3.28)–(3.31) then extend to the
present t-dependent situation.

Using (variants of) Lagrange’s interpolation formula and the trace formula
(3.19) for b, the flow (6.18) is easily seen to be linearized (straightened out) by
the Abel map (i.e., d

dt α̂P0
(Dµ̂(n,t)) = Ũr for some Ũr ∈ Rg) for r = 0, 1. Since

this approach gets fairly cumbersome with increasing r, we omit further details at
this point and postpone a proof of this fact until later (see Theorem 6.2) when
alternative and more effective tools are available.

In order to express φ(P, n, t) and ψ(P, n, n0, t, t0) in terms of the theta function
of Kg we need a bit of notation. Let ω(2)

∞±,q be the normalized Abelian dsk (i.e.,
with vanishing a-periods) with a single pole at ∞± of the form

(6.29) ω(2)
∞±,q = [ζ−2−q +O(1)] dζ near ∞±, q ∈ N0.

Given the summation constants c̃1, . . . , c̃r in F̃r, see (2.15), (2.19), (2.20), and
(2.40), we then define

(6.30) Ω̃(2)
r =

r∑
q=0

(q + 1)c̃r−q(ω(2)
∞+,q − ω(2)

∞−,q), c̃0 = 1.

Since the ω(2)
∞±,q were supposed to be normalized we have

(6.31)
∫

aj

Ω̃(2)
r = 0, 1 ≤ j ≤ g.

Moreover, writing

(6.32) ωj =

( ∞∑
m=0

dj,m(∞±)ζm

)
dζ = ±

( ∞∑
m=0

dj,m(∞+)ζm

)
dζ near ∞±,

relation (A.35) yields

(6.33) Ũ
(2)
r,j =

1
2πi

∫
bj

Ω̃(2)
r = 2

r∑
q=0

c̃r−qdj,q(∞+), 1 ≤ j ≤ g.

We also will have to employ the following slight generalization of Lemma 5.4.

Lemma 6.1. Let ψ(., n, t), (n, t) ∈ Z × R be meromorphic on Kg\{∞+,∞−}
with essential singularities at ∞± such that ψ̃(., n, t) defined by

(6.34) ψ̃(P, n, t) = ψ(P, n, t) exp
[
− (t− t0)

∫ P

P0

Ω̃(2)
r

]
is multivalued meromorphic on Kg and its divisor satisfies

(6.35) (ψ̃(., n, t)) ≥ −Dµ̂(n0,t0) + (n− n0)(D∞+ −D∞−).

Define a divisor D0(n, t) by

(6.36) (ψ̃(., n, t)) = D0(n, t)−Dµ̂(n0,t0) + (n− n0)(D∞+ −D∞−).

Then

(6.37) D0(n, t) ∈ σgKg, D0(n, t) > 0, deg(D0(n, t)) = g.
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Moreover, if D0(n, t) is nonspecial for all (n, t) ∈ Z× R, that is, if

(6.38) i(D0(n, t)) = 0, (n, t) ∈ Z× R

then ψ(., n, t) is unique up to a constant multiple (which may depend on n and t).

Since the proof is analogous to that of Lemma 5.4 we omit further details.
Given these preparations we obtain the following characterization of φ(P, n, t)

and ψ(P, n, n0, t, t0) in (6.23) and (6.24).

Theorem 6.2. Introduce

z(P, n, t) = ÂP0
(P )− α̂P0

(Dµ̂(n0,t0)) + (n− n0)U (3) + (t− t0)Ũ
(2)

r − Ξ̂P0
,(6.39)

z(n, t) = z(∞+, n, t).(6.40)

Then we have

φ(P, n, t) = C(n, t)
θ(z(P, n+ 1, t))
θ(z(P, n, t))

exp
(∫ P

P0

ω(3)
∞+,∞−

)
,(6.41)

ψ(P, n, n0, t, t0) = C(n, n0, t, t0)
θ(z(P, n, t))
θ(z(P, n0, t0))

×

× exp
[
(n− n0)

∫ P

P0

ω(3)
∞+,∞−

+ (t− t0)
∫ P

P0

Ω̃(2)
r

]
,

(6.42)

where C(n, t), C(n, n0, t, t0) are real-valued,

C(n, t) = C(n+ 1, n, t, t) =
[
θ(z(n− 1, t))
θ(z(n+ 1, t))

]1/2

,(6.43)

C(n, n0, t, t0) =
[
θ(z(n0, t0))θ(z(n0 − 1, t0))
θ(z(n, t))θ(z(n− 1, t))

]1/2

,(6.44)

and the sign of C(n, t) is opposite that of a(n, t), that is,

(6.45) sgn[C(n, t)] = − sgn[a(n, t)], (n, t) ∈ Z× R.

Moreover,

(6.46) α̂P0
(Dµ̂(n,t)) = α̂P0

(Dµ̂(n0,t0))− (n− n0)U (3) − (t− t0)Ũ
(2)

r mod (Lg)

and hence the flows (6.9) are linearized by the Abel map

(6.47)
d

dt
α̂P0

(Dµ̂(n,t)) = −Ũ (2)

r , (n, t) ∈ Z× R.

Proof. First of all note that (6.41) and (6.42) are well defined due to (3.43),
(3.44), (6.31), (6.33), and (A.27).

Denoting the right-hand side of (6.42) by Ψ(P, n, n0, t, t0), our goal is to prove
ψ = Ψ. By inspection, one verifies

(6.48) Ψ(P, n, n0, t, t0) = Ψ(P, n0, n0, t, t0)Ψ(P, n, n0, t, t).

Comparison of (3.23), (3.32), (3.67)–(3.69) and (6.23), (6.41)–(6.44) then yields

(6.49) ψ(P, n+ 1, n, t, t) = φ(P, n, t) = Ψ(P, n+ 1, n, t, t).
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Moreover,

(6.50) ψ(P, n, n0, t, t) =


∏n−1

m=n0
φ(P,m, t), n ≥ n0 + 1

1, n = n0∏n0−1
m=n φ(P,m, t)−1, n ≤ n0 − 1

 = Ψ(P, n, n0, t, t).

By (6.48) it remains to identify

(6.51) ψ(P, n0, n0, t, t0) = Ψ(P, n0, n0, t, t0).

This is a bit more involved. We start by noting that (6.23), (6.24), and (6.20) imply

ψ(P, n0, n0, t, t0) = exp
{∫ t

t0

ds[2a(n0, s)F̃r(z, n0, s)φ(P, n0, s) + G̃r+1(z, n0, s)]
}

= exp
{∫ t

t0

ds

[
F̃r(z, n0, s)

R2g+2(P )1/2−Gg+1(z, n0, s)
Fg(z, n0, s)

+ G̃r+1(z, n0, s)
]}

.

(6.52)

In order to spot the zeros and poles of ψ on Kg\{∞+,∞−} we need to expand the
integrand in (6.52) near its singularities (the zeros µj(n0, s) of Fg(z, n0, s)). Using
(6.18) one obtains

ψ(P, n0, n0, t, t0) = exp

{∫ t

t0

ds

[
d
dsµj(n0, s)

µj(n0, s)− π̃(P )
+O(1)

]}

=


[µj(n0, t)− π̃(P )]O(1) for P near µ̂j(n0, t) 6= µ̂j(n0, t0)
O(1) for P near µ̂j(n0, t) = µ̂j(n0, t0)
[µj(n0, t0)− π̂(P )]−1O(1) for P near µ̂j(n0, t0) 6= µ̂j(n0, t)

,

(6.53)

with O(1) 6= 0. Hence all zeros and all poles of ψ(P, n0, n0, t, t0) on Kg\{∞+,∞−}
are simple and the poles coincide with those of Ψ(P, n0, n0, t, t0). Next we need to
identify the essential singularities of ψ(P, n0, n0, t, t0) at ∞±. For this purpose we
use (6.25) and rewrite (6.52) in the form

ψ(P, n0, n0, t, t0) = exp

{∫ t

t0

ds

[
1
2

d
dsFg(z, n0, s)
Fg(z, n0, s)

+R2g+2(P )1/2 F̃r(z, n0, s)
Fg(z, n0, s)

]}

=
[
Fg(z, n0, t)
Fg(z, n0, t0)

]1/2

exp

{
R2g+2(P )1/2

∫ t

t0

ds
F̃r(z, n0, s)
Fg(z, n0, s)

}
.

(6.54)

We claim that
(6.55)

R2g+2(P )1/2F̃r(z, n, t)/Fg(z, n, t) = ∓
r∑

q=0

c̃r−qζ
−q−1 +O(1) for P near ∞±.

By (2.20), in order to prove (6.55), it suffices to prove the homogeneous case c̃0 = 1,
c̃q = 0, 1 ≤ q ≤ r. Using (4.19), we may rewrite (6.55) in the form

F̃r(z, n, t)/zr+1 = z−1
r∑

q=0

f̂r−q(n, t)zq−r

=
z→∞

−G(z, n, n, t) +O(z−r−1).

(6.56)
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Since

(6.57) G(z, n, n, t) = (δn, (H(t)− z)−1δn),

the Neumann expansion for (H(t)− z)−1 then shows that (6.56) is equivalent to

(6.58) z−1
r∑

q=0

f̂r−q(n, t)zq−r =
z→∞

z−1
r∑

q=0

(δn,H(t)qδn)z−q +O(z−r−2).

But (6.58) is proven in (2.21) of Lemma 2.1. Given (6.55) we can apply Lemma 6.1
to conclude (6.51) since Dµ̂(n,t) is nonspecial for all (n, t) ∈ Z × R by (6.10) and
Lemma A.2. This yields (6.41), (6.42), and (6.46). Equations (6.43)–(6.45) are
then proved as in Theorem 3.5 (i). �

For connections between complete integrability and linearizations on the Jaco-
bian of a curve under very general assumptions (i.e., for generalized Toda systems
in the sense of Lie Algebras) we refer, for instance, to [3], [4]. Finally, we conclude
with the θ-function representation for the t-dependent g-gap solutions of the Toda
hierarchy.

Theorem 6.3. The solutions {a(n, t)}(n,t)∈Z×R, {b(n, t)}(n,t)∈Z×R of the T̃Lr

equations (6.6) with g-gap initial conditions {a(0)(n)}n∈Z, {b(0)(n)}n∈Z in (6.1)–
(6.4) are given by

a(n, t)2 =
1
2

g∑
j=1

R2g+2(µ̂j(n, t))1/2

g∏
k=1
k 6=j

[µj(n, t)− µk(n, t)]−1

− 1
4
[b(n, t) + b(2)(n, t)] > 0,

(6.59)

b(k)(n, t) =
g∑

j=1

µj(n, t)k − 1
2

2g+1∑
m=0

Ek
m, k ∈ N,

b(n, t) =b(1)(n, t) =
g∑

j=1

µj(n, t)−
1
2

2g+1∑
m=0

Em,

(6.60)

where {µ̂j(n, t)}1≤j≤g solves (6.9). Moreover, we have

a(n, t) = ã[θ(z(n− 1, t))θ(z(n+ 1, t))/θ(z(n, t))2]1/2, (n, t) ∈ Z× R,(6.61)

b(n, t) =
g∑

j=1

λj −
1
2

2g+1∑
m=0

Em −
g∑

j=1

cj(g)
∂

∂wj
ln
[

θ(w + z(n, t))
θ(w + z(n− 1, t))

] ∣∣∣∣∣
w=0

,

(n, t) ∈ Z× R,

(6.62)

with ã < 0 introduced in (5.1), (5.2).

Proof. Equations (6.59) and (6.60) are obtained in precisely the same way as
(3.18) and (3.19) taking into account (6.23), (6.25), (6.26), and (6.15) (for n0 ∈ Z).
Expressions (6.61) and (6.62) then follow as in Theorem 5.2. �

Remark 6.4. (i). Since in the special case r = 0, that is, for the original Toda
lattice equations, U (2)

0 simplifies to

(6.63) U
(2)
0 = 2c(g)
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due to (6.32), (6.33), and (A.24), the expression for b(n, t) in (6.62) can be rewritten
in the familiar form
(6.64)

b(n, t) =
g∑

j=1

λj −
1
2

2g+1∑
m=0

Em − 1
2
d

dt
ln
[

θ(z(n, t))
θ(z(n− 1, t))

]
, (n, t) ∈ Z× R, r = 0.

(ii). Furthermore, expanding equation (6.28) around ∞± (still for r = 0) shows
that

(6.65)
∫ P

P0

Ω(2)
0 = ∓

[
1
ζ

+ b̃1 +O(ζ)
]

near ∞±, r = 0,

where b̃1 is defined in (5.3). Conversely, proving (6.28) as in the KdV case (by
expanding both sides in (6.28) around ∞± and using Lemma 6.1) turns out to be
equivalent to proving (6.65). However, since we are not aware of an independent
proof of (6.65), we chose a different strategy in the proof of Theorem 6.2.

Moreover, in analogy to Corollary 5.6, b(n, t) admits the alternative θ-function
representation which, to the best of our knowledge, has thus far not been noted in
the literature.

Corollary 6.5. b(n, t) admits the representation

b(n, t) =− E0 + ã
θ(z(n− 1, t))θ(z(P0, n+ 1, t))

θ(z(n, t))θ(z(P0, n, t))

+ ã
θ(z(n, t))θ(z(P0, n− 1, t))
θ(z(n− 1, t))θ(z(P0(n, t))

, (n, t) ∈ Z× R.(6.66)

Since the proof is identical to that of Corollary 5.6 we omit further details.
The θ-function representation of the BA-function ψ(., n, n0, t, t0) in (6.42) (ex-

cept for a determination of C(n, n0, t, t0), a minor point) can be found, for instance,
in [2], [25], [26], [58] in the special case, r = 0, that is, for the original Toda lat-
tice. Similarly, the θ-function representations for (a, b) in (6.61), (6.62) have first
been derived by Krichever [56], again in the case r = 0. This result is reproduced
(assuming periodicity of (a, b) with respect to n) with more details, for instance, in
[25], [26], [58], and, by somewhat different methods, derived in [2]. The periodic
case was originally treated by Date and Tanaka [19] (and is reproduced with more
details in [84], Ch. 4).

In accordance with the modern τ -function formulation of completely integrable
systems (see, e.g., [11], [81], [82], [85] and the references therein), the results of
this chapter clearly illustrate the possibility of simultaneously treating the entire
Toda hierarchy by introducing infinitely many time variables t = (t0, t1, t2, . . .) and
hence a(n, t), b(n, t), θ(n, t)), etc., where the r-th coordinate tr in t is associated
with the homogeneous TLr system.





CHAPTER 7

The Kac-van Moerbeke Hierarchy and its Relation
to the Toda Hierarchy

This chapter is devoted to the Kac-van Moerbeke hierarchy and its connection
with the Toda hierarchy. Using a commutation (sometimes also called a super-
symmetric) approach one can show that the Kac-van Moerbeke (KM) hierarchy
is a modified Toda hierarchy precisely in the way that the modified Korteweg-de
Vries (mKdV) hierarchy is related to the Korteweg-de vries (KdV) hierarchy or
more generally, the Drinfeld-Sokolov (DS) hierarchy is a modified version of the
Gel’fand-Dickey (GD) hierarchy. The connection between these hierarchies and
their modified counterparts is based on (suitable generalizations of) Miura-type
transformations which in turn are based on factorizations of differential (respec-
tively difference) expressions. The literature on this subject is too extensive to be
quoted here in full. The interested reader can consult, for instance, [36], [37], [40],
[41], [42], [84], Ch. 3, [87] and the references therein. In the present case of the
Toda and modified Toda, respectively Kac-van Moerbeke hierarchies, the (discrete)
analog of Miura’s transformation in connection with factorization methods was first
systematically employed by Adler [1] and further developed in [39]. In particular,
the approach presented in this chapter is essentially modeled after [39] where fur-
ther details on the TL and KM system can be found. For an alternative approach
to the modified Toda hierarchy we refer to [60], Ch. 4.

Let

(7.1) ρ(t) = {ρ(n, t)}n∈Z ∈ `∞R (Z), 0 6= ρ(n, .) ∈ C1(R), n ∈ Z

and define the “even” and “odd” parts of ρ(t) by

(7.2) ρe(n, t) = ρ(2n, t), ρo(n, t) = ρ(2n+ 1, t), (n, t) ∈ Z× R.

Next we consider the difference expressions in `∞(Z) (respectively the bounded
operators in `2(Z))

(7.3) A(t) = ρo(t)S+ + ρe(t), A(t)∗ = ρ−o (t)S− + ρe(t),

which enable us to define matrix-valued difference expressions (M(t), Q2g+2(t)) (the
Lax pair) in `∞(Z)⊗ C2 as follows,

M(t) =
(

0 A(t)∗

A(t) 0

)
, t ∈ R,

(7.4)

Q2g+2(t) =
(
P1,2g+2(t) 0

0 P2,2g+2(t)

)
= P1,2g+2(t)⊕ P2,2g+2(t), g ∈ N0, t ∈ R.

(7.5)

45
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Here Pk,2g+2(t), k = 1, 2 are defined as in (2.10) respectively (2.33), that is,

Pk,2g+2(t) = −Lk(t)g+1 +
g∑

j=0

[gk,j(t) + 2ak(t)fk,j(t)S+]Lk(t)g−j + fk,g+1(t),

(7.6)

Pk,2g+2(t)
∣∣∣
Ker(Lk(t)−z)

= 2ak(t)Fk,g(z, t)S+ +Gk,g+1(z, t), k = 1, 2

(7.7)

and {fk,g,j(n, t)}0≤j≤g, {gk,g+1,j(n, t)}0≤j≤g+1 and Fk,g(z, t), Gk,g+1(z, t) are de-
fined as in (2.11) and (2.34) with

a1(t) = ρe(t)ρo(t), b1(t) = −ρe(t)2 − ρ−o (t)2,(7.8)

a2(t) = ρ+
e (t)ρo(t), b2(t) = −ρe(t)2 − ρo(t)2,(7.9)

Lk(t) = ak(t)S+ + a−k (t)S− − bk(t), k = 1, 2.(7.10)

One verifies the factorization,

(7.11) L1(t) = A(t)∗A(t), L2(t) = A(t)A(t)∗.

The corresponding Lax equation for the KM system then reads

(7.12)
d

dt
M(t)− [Q2g+2(t),M(t)] = 0, t ∈ R

and as in the Toda context (2.12), varying g ∈ N0 yields the KM hierarchy which
we denote by

(7.13) KMg(ρ) = 0, g ∈ N0.

As in Chapter 2 (cf. (2.19)) we use the symbol “ˆ” to distinguish between inhomo-
geneous and homogeneous KM equations, that is,

(7.14) K̂Mg(ρ) := KMg(ρ)
∣∣
c`≡0, 1≤`≤g

,

with c` the summation constants of Chapter 2. In order to obtain explicit expres-
sions for the KM equations (7.13) we proceed as follows. First we note that

Ker(M(t)− w) = Ker(M(t)2 − w2)

= Ker(L1(t)− z)⊕Ker(L2(t)− z), w2 = z.
(7.15)

(We shall only use (7.15) in an algebraic sense as in (2.33). However, using the
methods in the proof of Theorems 2.1 and 2.3 of [41], (7.15) is easily seen to be
valid in a functional analytic sense as well.) Since
(7.16)

Ṁ − [Q2g+2,M ] =
(

0 Ȧ∗ − P1,2g+2A
∗ +A∗P2,2g+2

Ȧ− P2,2g+2A+AP1,2g+2 0

)
,

relations (7.15) and (7.3) yield after some computations,

ρ̇e = 2ρeρ
2
o(F

+
1,g − F2,g)− ρe(G1,g+1 −G2,g+1),

ρ̇o = −2ρo(ρ+
e )2(F+

1,g − F+
2,g) + ρo(G+

1,g+1 −G2,g+1), g ∈ N0.
(7.17)
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(Here “˙” = d/dt.) Given Fk,g, Gk,g+1 from Chapter 2 with (ak, bk), k = 1, 2 defined
in (7.8), (7.9), equations (7.17) yield the hierarchy of KM equations. In particular,
introducing

KMg(ρ) = (KMg(ρ)e, KMg(ρ)o)T

:=
(

ρ̇e − 2ρeρ
2
o(F

+
1,g − F2,g) + ρe(G1,g+1 −G2,g+1)

ρ̇o + 2ρo(ρ+
e )2(F+

1,g − F+
2,g)− ρo(G+

1,g+1 −G2,g+1)

)
,

(7.18)

one obtains the KM equations (7.13) by taking into account (7.2) in (7.18). Ex-
plicitly, identifying

(7.19) KMg(ρ)(n, t) =

{
KMg(ρ)e(n

2 , t), n even,
KMg(ρ)o(n−1

2 , t), n odd,

one infers from (2.40), (7.2), (7.13), (7.18), and (7.19),

KM0(ρ) = ρ̇− ρ[(ρ+)2 − (ρ−)2] = 0,(7.20)

KM1(ρ) = ρ̇− ρ[(ρ+)4 − (ρ−)4 + (ρ++)2(ρ+)2 + (ρ+)2ρ2 − ρ2(ρ−)2

− (ρ−)2(ρ−−)2] + c1(−ρ)[(ρ+)2 − (ρ−)2] = 0,
etc.

(7.21)

Remark 7.1. In analogy to Remark 2.3 one infers that ρe and ρo enter Fg,
Gg+1 quadratically so that the KM hierarchy (7.13) is invariant under the substi-
tution

(7.22) ρ(t) → ρε(t) = {ε(n)ρ(n, t)}n∈Z, ε(n) ∈ {+1,−1}, n ∈ Z.

This result should be compared with Lemma 8.1.

The Miura-type relation between the TL and KM hierarchies, alluded to at
the beginning of this chapter, is now obtained as follows. The connection between
Pk,2g+2(t), k = 1, 2 and Q2g+2(t) is clear from (7.5), the corresponding connection
between Lk(t), k = 1, 2 and M(t) is provided by the elementary observation

(7.23) M(t)2 =
(
A(t)∗A(t) 0

0 A(t)A(t)∗

)
= L1(t)⊕ L2(t), t ∈ R.

Moreover, recalling the notation employed in (2.13), (2.14), that is,

(7.24) TLg(a, b) = (TLg(a, b)1,TLg(a, b)2)T ,

one can verify that

(7.25) TLg(ak, bk) = WkKMg(ρ), k = 1, 2,

where Wk(t) denote the matrix-valued difference expressions

(7.26) W1(t) =
(

ρo(t) ρe(t)
−2ρe(t) −2ρ−o (t)S−

)
, W2(t) =

(
ρo(t)S+ ρ+

e (t)
−2ρe(t) −2ρo(t)

)
.

Relation (7.25) is the analog of Miura’s identity [67] between the KdV and mKdV
hierarchy (which extends to GD and DS systems, see, e.g., [36], [37], [40], [41],
[42] and the references therein). In particular, as systematically studied by Adler
[1], the identity (7.25) yields the implication

(7.27) KMg(ρ) = 0 ⇒ TLg(ak, bk) = 0, k = 1, 2
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(since KMg(ρ) = 0 ⇔ KMg(ρ) = 0), that is, given a solution ρ of the KMg equation
(7.13) (respectively (7.17)), one obtains two solutions, (a1, b1) and (a2, b2), of the
TLg equations (2.13) related to each other by the Miura-type transformations (7.8),
(7.9). As mentioned briefly in the Introduction, a connection between the KM and
Toda systems was known to Hénon in 1973. Moreover, transformations between
KM and Toda lattices were investigated in some detail by Wadati [87] (see also
[84]). Bäcklund transformations for the Toda hierarchy and connections with the
KM system based on factorization techniques were also studied by Knill [53], [54].

The main result in [39] describes a method to reverse the implication in (7.27),
that is, starting from a solution, say (a1, b1) of the TLg equation (2.13), one con-
structs a solution ρ of the KMg equation (7.17) and another TLg solution (a2, b2)
of (2.13) related to each other by the Miura-type transformation (7.8), (7.9). We
now recall this construction.

Theorem 7.2. [39] Assume (a1, b1) satisfies (2.8), a1(n, t) < 0, b1(n, t) < 0,
(n, t) ∈ Z × R, and T̃Lr(a1, b1) = 0 for some r ∈ N0. Suppose the associated
self-adjoint realization H1(t) in `2(Z) of L1(t) = a1(t)S+ + a−1 (t)S− − b1(t) is
nonnegative for some (and hence for all) t ∈ R, H1(t) ≥ 0, and 0 < ψ1,±(n, .) ∈
C1(R), n ∈ Z are positive weak solutions of

(7.28) H1(t)ψ1,±(t) = 0, ψ̇1,±(t) = P̃1,2r+2(t)ψ1,±(t), t ∈ R.

Define for (n, t) ∈ Z× R,

ψ1,σ(n, t) =
1− σ(t)

2
ψ1,−(n, t) +

1 + σ(t)
2

ψ1,+(n, t),(7.29)

ρe,σ(n, t) = −[−a1(n, t)ψ1,σ(n+ 1, t)/ψ1,σ(n, t)]1/2,(7.30)

ρo,σ(n, t) = [−a1(n, t)ψ1,σ(n, t)/ψ1,σ(n+ 1, t)]1/2,(7.31)

ρσ(n, t) =

{
ρe,σ(m, t), n = 2m
ρo,σ(m, t), n = 2m+ 1

,(7.32)

a2,σ(n, t) = ρe,σ(n+ 1, t)ρo,σ(n, t),(7.33)

b2,σ(n, t) = −ρe,σ(n, t)2 − ρo,σ(n, t)2,(7.34)

where σ : R → [−1, 1], σ ∈ C1(R). Then ρσ(t), a2,σ(t), b2,σ(t) ∈ `∞R (Z), t ∈ R,
ρσ(n, t) 6= 0, a2,σ(n, t) < 0, (n, t) ∈ Z× R and

K̃Mr(ρσ) = 0, T̃Lr(a2,σ, b2,σ) = 0

if and only if σ̇ = 0 or W (ψ1,−, ψ1,+) = 0.
(7.35)

The proof of Theorem 7.2, according to [39], can be reduced to identities of
the form

K̃Mr(ρσ)(2n, t) = −1
4
σ̇(t)ρe,σ(n, t)−1ψ1,σ(n, t)−2W (ψ1,−, ψ1,+),

t ∈ R,
(7.36)

K̃Mr(ρσ)(2n+ 1, t) =
1
4
σ̇(t)ρo,σ(n, t)−1ψ1,σ(n+ 1, t)−2W (ψ1,−, ψ1,+),

t ∈ R,
(7.37)
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and similarly,

(7.38) T̃Lr(a2,σ, b2,σ)(n, t) =
1
4
σ̇(t)W (ψ1,−, ψ1,+)×

×

(
ψ1,σ(n+ 1, t)−2

[
− ρo,σ(n,t)

ρe,σ(n+1,t) + ρe,σ(n+1,t)
ρo,σ(n,t)

]
2[ψ1,σ(n, t)−2 − ψ1,σ(n+ 1, t)−2]

)
, (n, t) ∈ Z× R.

(To be precise, Theorem 7.2 is proved in [39] in the case r = 0, i.e., for the original
Toda and KM system. However, as shown in [36] and [40] in the case of the
(m)KdV and GD, DS contexts, the proof directly extends to the entire hierarchy,
r ∈ N0.)

Since the cases σ = ±1 with ψ1,± the branches of the BA-function associated
with the finite-gap operator L1 will be the most important ones for us in the
following, we shall identify ψ1,±1 = ψ1,±, ρ±1 = ρ±, a2,±1 = a2,±, b2,±1 = b2,±,
L2,± = L2,±, H2,±1 = H2,±, etc. for notational convenience throughout the rest of
this exposition. Moreover, in the special case whereH1 is critical (cf. Remark 7.3 (ii)
below) and hence ψ1,+ = ψ1,− ≡ ψ1,0, we shall write, ρo, a2,0, b2,0, L2,0, H2,0, etc.

Theorem 7.2 has been used in [39] to derive the soliton solutions for the KM
system given the corresponding solitons for the Toda system. In our final Chapter 9
we shall use Theorem 7.2 to derive the main objective of this exposition, viz., the
algebro-geometric quasi-periodic finite-gap solutions of the KM hierarchy, given the
corresponding results of Chapters 5 and 6 for the Toda hierarchy.

We conclude this chapter with a series of remarks further illustrating Theo-
rem 7.2.

Remark 7.3. (i). Due to the Lax equation (2.12), H1(t) is well-known to be
unitarily equivalent to H1(0) for all t ∈ R. (Since H1(t) are bounded self-adjoint
operators strongly continuous with respect to t ∈ R, the Dyson expansion of the
associated unitary propagator converges in the uniform operator topology, see, e.g.,
Theorem X.69 in [78].) Moreover, the Wronskian W (ψ1,−, ψ1,+) is independent of
(n, t) ∈ Z × R. The existence of positive solutions ψ1,± satisfying (7.28) has been
investigated in [39] and [43]. In our application of Theorem 7.2 in Chapter 9, ψ1,±
will be the branches of the BA-function ψ(P ) and positivity of ψ1,± can be verified
directly.
(ii). Depending on whether or not H1(0) (and hence H1(t) for all t ∈ R, see [43])
is critical or subcritical, that is, whether or not H1(0)ψ = 0 has a unique positive
solution (up to constant multiples) or two linearly independent positive solutions,
Theorem 7.2 yields a unique solution, ρ0 (respectively a2,0, b2,0) or a one-parameter
family ρσ (respectively a2,σ, b2,σ) indexed by σ ∈ [−1, 1] (σ being t-independent) of
K̃Mr (respectively T̃Lr) solutions. Since H1(0) ≥ 0 implies the existence of at
least one weak positive solution ψ of H1(0)ψ = 0 (cf., e.g., [43] and the references
therein) this case distinction is exhaustive. In addition, (a1, b1) and ρσ, (a2,σ, b2,σ)
are all related by the Miura-type transformation (7.8), (7.9).
(iii). By Remark 2.3 and Lemma 4.1 we assumed a1 < 0 without loss of generality
in Theorem 7.2. The existence of weak solutions ψ1,± > 0 satisfying H1ψ1,± = 0
then necessarily yields b1 < 0.
(iv). If (a1, b1) are periodic (respectively quasi-periodic finite-gap in the sense of
Chapter 6) then ρσ and (a2,σ, b2,σ) are periodic (respectively quasi-periodic finite-
gap) if and only if σ = ±1 (or if H1(0) is critical). This will be the case in our
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final Chapter 9 where we construct the algebro-geometric quasi-periodic finite-gap
solutions of the KM hierarchy.

The stationary KM hierarchy is characterized by ρ̇ = 0 in (7.13) (respectively
(7.17)), or more precisely, by commuting matrix difference expressions of the type

(7.39) [Q2g+2,M ] = 0.

In the special case where L1 and L2 are isospectral in the sense that the cor-
responding Burchnall-Chaundy polynomials (2.49) coincide, the analogs of (2.48)
and (2.49) then read

Q2
2g+2 =

2g+1∏
m=0

(M − E1/2
m )(M + E1/2

m ) =
2g+1∏
m=0

(M2 − Em)(7.40)

and

y2 =
2g+1∏
m=0

(w − E1/2
m )(w + E1/2

m ) =
2g+1∏
m=0

(w2 − Em).(7.41)

We note that the curve (7.41) becomes singular if and only if Em = 0 for some
0 ≤ m ≤ 2g + 1. In the self-adjoint case where 0 ≤ E0 < E1 < · · · < E2g+1 this
happens if and only if E0 = 0 (i.e., if and only if H1 and hence H2 are critical).



CHAPTER 8

Spectral Theory for Finite-Gap Dirac-Type
Difference Operators

In this chapter we briefly study spectral properties of self-adjoint `2(Z) ⊗ C2

realizations associated with finite-gap Dirac-type difference expressions.
Assuming ρ ∈ `∞R (Z), ρ(n) 6= 0, n ∈ Z we start by introducing the general

matrix-valued difference expression M by

M =
(

0 A∗

A 0

)
, A = ρoS

+ + ρe, A∗ = ρ−o S
− + ρe,

ρe(n) = ρ(2n), ρo(n) = ρ(2n+ 1), n ∈ Z.
(8.1)

We denote by D the unique self-adjoint realization associated with M in `2(Z)⊗C2,

(8.2) Df = Mf, f ∈ D(D) = `2(Z)⊗ C2.

The analog of Lemma 4.1 then reads

Lemma 8.1. Let ρ ∈ `∞R (Z), ρ(n) 6= 0, n ∈ Z and introduce ρε ∈ `∞R (Z) by

(8.3) ρε = {ε(n)ρ(n)}n∈Z, ε(n) ∈ {+1,−1}, n ∈ Z.

Define Dε in `2(Z) ⊗ C2 as in (8.2) with M replaced by Mε =
(

0 A∗ε
Aε 0

)
and ρ by

ρε. Then D and Dε are unitarily equivalent, that is, there exists a unitary operator
Uε in `2(Z)⊗ C2 such that

(8.4) D = UεDεU
−1
ε .

Proof. Uε is explicitly represented by

(8.5) Uε =
(
U1,ε 0
0 U2,ε

)
, Uk,ε = (ε̃k(n)δm,n)m,n∈Z, k = 1, 2,

ε̃1(n+1)ε̃2(n) = ε(2n+1), ε̃1(n)ε̃2(n) = ε(2n), ε̃1(n)ε̃2(n−1) = ε(2n−1), n ∈ Z. �

Next, we summarize the spectral properties of H1, H2,σ and Dσ. Since in this
exposition we are interested in quasi-periodic finite-gap operators we shall restrict
ourselves to the case σ = ±1 (this includes the case where H1 (and hence H2,σ) is
critical and hence D+ = D− ≡ D0 as a limiting case). To fix our notation assume
a1, b1 ∈ `∞R (Z), a1(n) < 0, b1(n) < 0, n ∈ Z and define L1, H1 as in (4.1), (4.2).

51



52 8. SPECTRAL THEORY FOR FINITE-GAP DIRAC-TYPE DIFFERENCE OPERATORS

Assuming H1 ≥ 0 let ψ1 > 0 be a weak solution of L1ψ1 = 0 and define

ρe(n) = −[−a1(n)ψ1(n+ 1)/ψ1(n)]1/2,(8.6)

ρo(n) = [−a1(n)ψ1(n)/ψ1(n+ 1)]1/2,(8.7)

ρ(n) =

{
ρe(m), n = 2m
ρo(m), n = 2m+ 1

,(8.8)

a2(n) = ρe(n+ 1)ρo(n),(8.9)

b2(n) = −ρe(n)2 − ρo(n)2.(8.10)

Given (8.6)–(8.10) one defines L2, H2, A, M , and D as in (4.1), (4.2), (7.3), (8.1),
and (8.2).

Theorem 8.2. Suppose a1, b1 ∈ `∞R (Z) are g-gap sequences satisfying (3.18),
(3.19), and a1(n) < 0, b1(n) < 0, n ∈ Z. Define L1, H1 as in (4.1), (4.2), suppose
H1 ≥ 0, and let ψ1,±(n) = ψ1,±(0, n, n0) be the branches of the stationary BA-
function ψ1(Q0, n, n0), Q0 = (0, R2g+2(0)1/2) of L1 in (3.23) (respectively (3.68)).
Then

(8.11) ψ1,±(n) > 0, n ∈ Z
and we may define ρe,±, ρo,±, ρ±, a2,±, b2,±, L2,±, H2,±, A±, M±, and D± as
in (8.6)–(8.10), (4.1), (4.2), (7.3), (8.1), and (8.2). Then a2,±, b2,±, ρ± ∈ `∞R (Z),
a2±(n) < 0, ρ±(n) 6= 0, n ∈ Z and

σ(H1) = σ(H2,±) =
g⋃

j=0

[E2j , E2j+1], E0 ≥ 0,(8.12)

σ(D±) =
g+1⋃

j=−g−1
j 6=0

∑
j
,

∑
j

= [E1/2
2(j−1), E

1/2
2j−1],

∑
−j

= −
∑

j
, 1 ≤ j ≤ g + 1,

(8.13)

(8.14) σsc(H1) = σsc(H2,±) = σsc(D±) = σp(H1) = σp(H2,±) = σp(D±) = ∅.
In addition, H1, H2,±, and D± all have uniform spectral multiplicity two.

Proof. By Lemma 3.4 (i) and (iv), ψ1(P, n, n0) given by (3.68) satisfies

(8.15) ψ1(P, n, n0) > 0 for π̃(P ) ≤ E0.

Hence one infers a2,±, b2,±, ρ± ∈ `∞R (Z). Theorem 4.2, the spectral theorem, and
the identities

D2
± = H1 ⊕H2,±,(8.16)

σ3D±σ
−1
3 = −D±, σ3 =

(
1 0
0 −1

)
(8.17)

then prove (8.12)–(8.14). �

We note that the spectral gap (−E1/2
0 , E

1/2
0 ) of D± “closes” if and only if H1

is critical, that is, if and only if E0 = 0.
For σ ∈ (−1, 1) one can show in contrast to (8.14) that

(8.18) σp(H2,σ) = σp(Dσ) = {0}, σ ∈ (−1, 1).
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In fact, using identities of the type
(8.19)

(D − w)−1 =
(
w(H1 − w2)−1 A∗(H2 − w2)−1

A(H1 − w2)−1 w(H2 − w2)−1

)
, w2 ∈ C\{σ(H1) ∪ σ(H2)},

one can reduce the spectral analysis of general Dirac-type operators D to that of
H1 and H2. Moreover, noting that H1 and H2 are essentially isospectral, that is,

(8.20) σ(H1)\{0} = σ(H2)\{0}
and that H1|Ker(H1)⊥ and H2|Ker(H2)⊥ are unitarily equivalent, a complete spectral
analysis of D in terms of that of H1 and Ker(H2) can be given. Since here we are
mainly concerned with finite-gap operators Hk, k = 1, 2 and D, these considera-
tions are beyond the scope of this exposition. The interested reader may find an
exhaustive discussion of such topics, for instance, in [20], [36], [41], [42], [83].





CHAPTER 9

Quasi-Periodic Finite-Gap Solutions of the
Kac-van Moerbeke Hierarchy

In this final chapter we shall complete our main goal and construct the algebro-
geometric quasi-periodic finite-gap solutions of the Kac-van Moerbeke hierarchy.
Given the extensive preparations in Chapters 3–8, our final task will be relatively
straightforward.

We start with some notations. Let (a1, b1), a1(n) < 0, b1(n) < 0, n ∈
Z be the stationary g-gap solution (3.18), (3.19) and denote the corresponding
Dirichlet eigenvalues and divisor by {µ1,j(n)}1≤j≤g and Dµ̂

1
(n) etc. Given (a1, b1),

{µ̂j(n)}1≤j≤g we define L1, H1, φ1(P, n), ψ1(P, n, n0), z1(P, n), and z1(n) as in
(4.1), (4.2), (3.22), (3.23) (respectively (3.67)–(3.70)), (3.36), and (3.37)). Next,
identifying the branches ψ1,±(0, n, n0) of ψ1(Q0, n, n0), Q0 = (0, R1/2

2g+2(Q0)) with
ψ1,±(n) in Theorem 7.2, and noticing

(9.1) ψ1(P, n, n0) > 0, π̃(P ) ≤ E0

as a consequence of Lemma 3.4 (i), (iv) and Theorem 3.5 (i), enables one to con-
struct (a2,±, b2,±), ρ± as in Theorem 8.2. For convenience we list these formulas
below.

ρe,±(n) = −[−a1(n)ψ1,±(n+ 1)/ψ1,±(n)]1/2,

ρo,±(n) = [−a1(n)ψ1,±(n)/ψ1,±(n+ 1)]1/2,
(9.2)

ρ±(n) =

{
ρe,±(m), n = 2m
ρo,±(m), n = 2m+ 1

,(9.3)

a2,±(n) = ρe,±(n+ 1)ρo,±(n),(9.4)

b2,±(n) = −ρe,±(n)2 − ρo,±(n)2.(9.5)

Given (a2,±, b2,±), ρ± one then defines L2,±, H2,±, φ2,±(P, n), ψ2,±(P, n, n0), A±,
and finally M±, D± as in the context of Theorem 8.2 using (4.1), (4.2), (3.22),
(3.23) (respectively (3.67)–(3.70)), (7.3), and (8.1), (8.2). Moreover, defining

(9.6) φ1,±(n) = −ρe,±(n)/ρo,±(n), n ∈ Z,

one verifies

(9.7) a1φ1,± + (a−1 /φ
−
1,±) = b1, φ1,± > 0

and a comparison with the Riccati-type equation (3.24) then yields that

(9.8) φ1,±(n) = φ1,±(0, n)
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are the branches of φ1(Q0, n), Q0 = (0, R1/2
2g+2(Q0)). In particular, (3.23) implies

(9.9) ψ1,±(n) =


∏n−1

m=n0
φ1,±(n), n ≥ n0 + 1

1, n = n0∏n0−1
m=n φ1,±(n)−1, n ≤ n0 − 1

,

and

L1ψ1,± = 0, ψ1,± > 0(9.10)

since

ψ1,±(n) = ψ1,±(0, n, n0)(9.11)

are the branches of ψ1(Q0, n, n0), Q0 = (0, R1/2
2g+2(Q0)). Next, defining

φ2,±,∓(n) = −ρ0,±(n)/ρe,±(n+ 1), n ∈ Z(9.12)

and

ψ2,±,∓(n) =


∏n−1

m=n0
φ2,±,∓(n), n ≥ n0 + 1

1, n = n0∏n0−1
m=n φ2,±,∓(n)−1, n ≤ n0 − 1

,(9.13)

one verifies

(9.14) a2,±φ2,±,∓ + (a−2,±/φ2,±,∓) = b2,±

and

(9.15) L2,±ψ2,±,∓ = 0.

In order to derive the θ-function representation for (a2,±, b2,±) and especially
for ρ±, we first recall that for (a1, b1), φ1(Q0), ψ1(Q0) from Theorems 3.5 and 5.2,

a1(n) = ã[θ(z1(n+ 1))θ(z1(n− 1))/θ(z1(n))2]1/2,(9.16)

b1(n) =
g∑

j=1

λj −
1
2

2g+1∑
m=0

Em −
g∑

j=1

cj(g)
∂

∂wj
ln
[

θ(w + z1(n))
θ(w + z1(n− 1))

]∣∣∣∣
w=0

,(9.17)

φ1(Q0, n) =
[
θ(z1(n− 1))
θ(z1(n+ 1))

]1/2
θ(z1(Q0, n+ 1))
θ(z1(Q0, n))

exp

(∫ Q0

P0

ω(3)
∞+,∞−

)
,(9.18)

ψ1(Q0, n, n0) = C(n, n0)
θ(z1(Q0, n))
θ(z1(Q0, n0))

exp

[
(n− n0)

∫ Q0

P0

ω(3)
∞+,∞−

]
,

z1(P, n) = ÂP0
(P )− α̂P0

(Dµ̂
1
(n))− Ξ̂P0

, z1(n) = z1(∞+, n),

Q0 = (0, R1/2
2g+2(Q0)).

(9.19)

Here C(n, n0) is defined in (3.69), (3.70) and the square roots in (9.16), (9.18) and
hence in

(9.20) C(n) = C(n+ 1, n) =
[
θ(z1(n− 1))
θ(z1(n+ 1))

]1/2

are all positive (cf. (3.59), (3.71), (3.77), and ã < 0).
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In the following we explicitly need the branches φ1,±(z, n) of φ1(P, n). To fix
notations we abbreviate

A+
E0

(z) =
∫ Q

P0

ω,

∫ z

E0

ω(3)+
∞+,∞−

=
∫ Q

P0

ω(3)
∞+,∞−

< 0,

Q = (z,R2g+2(z)1/2) ∈ Π+, π̃(Q) = z ≤ E0,

(9.21)

where the path of integration from P0 to Q is along the lift of the straight line seg-
ment from E0 to z(≤ E0). (As in the proof of Lemma 3.4, whenever the integration
path meets the cycle bk we first move along bk until we hit the intersection point
with ak. Then we follow ak and return on the other side of bk before we continue
the straight line path. The contributions on bk cancel and the contribution from ak

is irrelevant in (9.24) below due to the Zg-periodicity of the Riemann theta function
in (A.27) and the normalization (3.43) of ω(3)

∞+,∞− .) Moreover, we use the notation

z1,±(z, n) = ±A+
E0

(z)− α̂P0
(Dµ̂

1
(n))− Ξ̂P0

,(9.22)

z1,±(n) = z1,±(−∞, n), z1,+(n) = z1(n)(9.23)

for the branches of z1(P, n), π̃(P ) = z ≤ E0. The branches φ1,±(z, n) of φ1(P, n)
then read explicitly,

φ1,±(z, n) =
[
θ(z1(n− 1))
θ(z1(n+ 1))

]1/2 θ(z1,±(z, n+ 1))
θ(z1,±(z, n))

e
±

R z
E0

ω(3)+
∞+,∞− .(9.24)

Together with (9.2), (9.12), and

φ1,±(z, n) = ψ1,±(z, n+ 1)/ψ1,±(z, n)(9.25)

this allows one to compute

ρe,±(n) = −[−a1(n)φ1,±(0, n)]1/2

= −
[
−ã

θ(z1(n− 1))θ(z1,±(0, n+ 1))
θ(z1(n))θ(z1,±(0, n))

]1/2

e
± 1

2

R 0
E0

ω(3)+
∞+,∞− ,

(9.26)

ρo,±(n) = [−a1(n)φ1,±(0, n)−1]1/2

=
[
−ã

θ(z1(n+ 1))θ(z1,±(0, n))
θ(z1(n))θ(z1,±(0, n+ 1))

]1/2

e
∓ 1

2

R 0
E0

ω(3)+
∞+,∞− ,

(9.27)

φ2,±,∓(n) = −ρo,±(n)/ρe,±(n+ 1)

=
[

θ(z1,±(0, n))
θ(z1,±(0, n+ 2))

]1/2
θ(z1(n+ 1))
θ(z1(n))

e
∓

R 0
E0

ω(3)+
∞+,∞− .

(9.28)

Next we define

z2,±(P, n) = ÂP0
(P )− α̂P0

(Dµ̂
2,±

(n))− Ξ̂P0
,(9.29)

z2,±(n) = z2,±(∞+, n),(9.30)

where
αP0

(Dµ̂
2,±

(n)) = αP0
(Dµ̂

1
(n))− ε±AP0

(Q0)−AP0
(∞+),

ε+ = −ε− = ±1 for Q0 ∈ Π±, Q0 = (0, R1/2
2g+2(Q0))

(9.31)
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describes the connection between the Dirichlet divisors Dµ̂
2,±

(n) of H2,± = A±A
∗
±

and Dµ̂
1
(n) of H1 = A∗±A±. (In the special case where H1 is critical and hence

E0 = 0, that is, P0 = Q0, one obtains µ̂2,+,j(n) = µ̂2,−,j(n) ≡ µ̂2,0,j(n), 1 ≤ j ≤ g
and the sign ambiguity in (9.31) vanishes.) The branches of z2,±(P, n) are then
denoted by

z2,ε,ε′(z, n) = ε′A+
E0

(z)− α̂P0
(Dµ̂

2,ε
(n))− Ξ̂P0

,(9.32)

z2,ε,ε′(n) = z2,ε,ε′(−∞, n), z2,ε,+(n) = z2,ε(n), ε, ε′ ∈ {+,−},(9.33)

and φ2,+,−, φ2,−,+ in (9.28) are seen to be branches of the following meromorphic
function φ2,±(P, n) on Kg,

(9.34) φ2,±(P, n) =
[
θ(z2,±(n− 1))
θ(z2,±(n+ 1))

]1/2
θ(z2,±(P, n+ 1))
θ(z2,±(P, n))

e
R P

P0
ω(3)
∞+,∞− ,

by noticing that

(9.35) z2,±,∓(0, n) = z1,+(n) = z1(n), z2,±,+(n− 1) = z2,±(n− 1) = z1,±(0, n).

In particular, we may rewrite and extend (9.28) in the form
(9.36)

φ2,ε,ε′(n) =
[
θ(z2,ε(n− 1))
θ(z2,ε(n+ 1))

]1/2
θ(z2,ε,−ε′(n+ 1))
θ(z2,ε,−ε′(n))

e
ε′

R 0
E0

ω(3)+
∞+,∞− , ε, ε′ ∈ {+,−}.

The divisor of φ2,±(P, n) thus reads

(9.37) (φ2,±(., n)) = Dµ̂
2,±

(n+1) −Dµ̂
2,±

(n) +D∞+ −D∞−

in analogy to that of φ1(P, n) (cf. (3.32))

(9.38) (φ1(., n)) = Dµ̂
1
(n+1) −Dµ̂

1
(n) +D∞+ −D∞− .

Given (9.36) respectively (9.26)–(9.33) we can now express (a2,±, b2,±) and ρ±
in terms of θ-functions as follows.

Theorem 9.1. Let (a1, b1) in (9.16), (9.17) be the g-gap sequences associated
with H1 = A∗±A±. Then the sequences (a2,±, b2,±) associated with H2,± = A±A

∗
±

are explicitly given by

a2,±(n) = ã[θ(z2,±(n+ 1))θ(z2,±(n− 1))/θ(z2,±(n))2]1/2,

(9.39)

b2,±(n) =
g∑

j=1

λj −
1
2

2g+1∑
m=0

Em −
g∑

j=1

cj(g)
∂

∂wj
ln
[

θ(w + z2,±(n))
θ(w + z2,±(n− 1))

]∣∣∣∣
w=0

.

(9.40)

In particular, H2,± are isospectral to H1 and hence (a2,±, b2,±) are g-gap sequences
associated with the same hyperelliptic curve Kg as (a1, b1) and with nonspecial
Dirichlet divisors Dµ̂

2,±
(n) satisfying

(9.41) µ2,±,j(n) = π̃(µ̂2,±,j(n)) ∈ [E2j−1, E2j ], 1 ≤ j ≤ g, n ∈ Z
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and

αP0
(Dµ̂

2,±
(n)) = αP0

(Dµ̂
1
(n))∓A+

E0
(0)−AP0

(∞+)

= αP0
(Dµ̂

1
(n0))− 2(n− n0)AP0

(∞+)∓A+
E0

(0)−AP0
(∞+).

(9.42)

Moreover, we have H2,+ = H2,−, a2,+ = a2,−, b2,+ = b2,−, µ̂2,+,j = µ̂2,−,j, 1 ≤ j ≤
g, etc. if and only if H1 is critical, that is, if and only if E0 = 0 (i.e., P0 = Q0).

Proof. Equation (9.39) is clear from (9.4), (9.26), (9.27), and (9.35). That
H2,± are isospectral to H1 has been proven in Theorem 8.2 and the nonspeciality of
Dµ̂

2,±
(n) (cf. Lemma A.2) together with (9.41) is a consequence of Lemma 3.4 (ii)

and the fact that

(9.43) i Im[ÂP0
(Q0)] = i Im[ÂP0

(∞+)] = 0 mod (Lg).

Equation (9.42) directly follows from (9.31) and (9.21). Equation (9.40) for b2,±
finally can be derived from an expansion of φ2,±(P, n) near P = ∞+ exactly as in
the proof of Theorem 5.2. �

Remark 9.2. Equations (9.31) respectively (9.42) illustrate the effect of com-
mutation (i.e., H1 = A∗±A± → H2,± = A±A

∗
±) as translations by ∓A+

E0
(0) −

AP0
(∞+) = −ε±AP0

(Q0) − AP0
(∞+), ε+ = −ε− = ±1 for Q ∈ Π± on the Jacobi

variety. This clearly resembles the differential operator case pioneered by Burch-
nall and Chaundy [16], [17] and put into the context of Bäcklund transformations
for the KdV equation in [28], [30], [37], [42] and discussed in connection with the
spectral theory of Hill’s equation in [63]–[65].

Depending on whether or notH1 (and henceH2,±) is critical, that is, whether or

not E0 = 0, the corresponding Dirac-type operator D± =
(

0 A∗±
A± 0

)
in Theorem 8.2

has a spectral gap containing 0 and hence altogether 2g + 1 spectral gaps (if H1,
H2,± are subcritical, that is, if E0 > 0) or precisely 2g spectral gaps (if H1, H2,±
are critical, i.e., if E0 = 0). Accordingly we call the corresponding sequence ρ±
(respectively ρ0) a (2g+ 1)-gap (respectively 2g-gap) sequence associated with D±
(respectively D0). The explicit θ-function characterization of ρ± (respectively ρ0)
then can be summarized as follows.

Theorem 9.3. The (2g + 1)-gap and 2g-gap sequences ρ± and ρ0 associated
with D± =

(
0 A∗±

A± 0

)
and D0 =

(
0 A∗0

A0 0

)
are given by

(9.44)

ρ±(n) =

{
ρe,±(m), n = 2m
ρo,±(m), n = 2m+ 1

, ρ0(n) =

{
ρe,0(m), n = 2m
ρo,0(m), n = 2m+ 1

, n ∈ Z,
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where

ρe,±(n) = −
[
−ã

θ(z1(n− 1))θ(z1,±(0, n+ 1))
θ(z1(n))θ(z1,±(0, n))

]1/2

e
± 1

2

R 0
E0

ω(3)+
∞+,∞−

= −
[
−ã

θ(z2,±(n))θ(z2,±,∓(0, n− 1))
θ(z2,±(n− 1))θ(z2,±,∓(0, n))

]1/2

e
± 1

2

R 0
E0

ω(3)+
∞+,∞− ,

(9.45)

ρo,±(n) =
[
−ã

θ(z1(n+ 1))θ(z1,±(0, n))
θ(z1(n))θ(z1,±(0, n+ 1))

]1/2

e
∓ 1

2

R 0
E0

ω(3)+
∞+,∞−

=
[
−ã

θ(z2,±(n− 1))θ(z2,±,∓(0, n+ 1))
θ(z2,±(n))θ(z2,±,∓(0, n))

]1/2

e
∓ 1

2

R 0
E0

ω(3)+
∞+,∞−

n ∈ Z

(9.46)

and ρe,0(n), ρo,0(n) are obtained from (9.45), (9.46) by taking E0 = 0.

Proof. It suffices to combine (9.3), (9.26), (9.27), and (9.35). �

Isospectral manifolds in connection with Toda flows (including non-Abelian
generalizations) have attracted a lot of interest (see, e.g., [9], [14], [33], [68], [69],
[70] and the references therein). In the present finite-gap case the situation is
analogous to the (m)KdV case and briefly summarized below.

Remark 9.4. For the fixed hyperelliptic curve Kg (cf. (3.1)), Lemma 3.1 shows
that all g-gap sequences (a, b) associated with the Jacobi operator H are parameter-
ized by the initial conditions

(9.47) µ̂j(n0) = (µj(n0), R2g+2(µ̂j(n0))1/2), µj(n0) ∈ [E2j−1, E2j ], 1 ≤ j ≤ g,

or equivalently, by the pairs

(9.48)
{(µj(n0), σj(n0))}1≤j≤g, µj(n0) ∈ [E2j−1, E2j ], σj(n0) = ± for µ̂j(n0) ∈ Π±,

1 ≤ j ≤ g.

(Here we omit σj(n0) in the special case where µj(n0) ∈ {E2j−1, E2j}.) With
this restriction in mind, (9.48) represents the product of g circles S1 when varying
µj(n0) (independently from µ`(n0), ` 6= j) in [E2j−1, E2j ], 1 ≤ j ≤ g. In other
words, the isospectral set of all g-gap sequences (a, b) associated with H can be
identified with the g-dimensional torus T g = ×g

j=1S
1. Theorem 5.2 then provides

a concrete realization of T g. By Theorem 9.3 the same applies to the set of all
(2g+1)-gap (respectively 2g-gap) sequences ρ associated with the Dirac-type operator
D. More precisely, assuming H1 (and hence H2,±) to be subcritical (and thus
0 ∈ R\σ(D±)), the isospectral set of all (2g + 1)-gap sequences ρ (in connection
with the nonsingular hyperelliptic curve K2g+1 of genus 2g+ 1, cf. (7.41)) is again
parameterized bijectively by the Dirichlet divisor Dµ̂

1
(n0) (respectively by the analog

of (9.48)) as is demonstrated in (9.42). In particular, ρ+ and ρ− in (9.44)–(9.46)
represent two independent (yet equivalent) concrete realizations of the isospectral
manifold T g of all (2g + 1)-gap sequences ρ associated with D. In the case where
H1 (and hence H2,±) is critical (i.e., E0 = 0 and thus 0 ∈ σ(D0)) the (fixed)
curve K2g+1 of (arithmetic) genus 2g + 1 (cf. (7.41)) is singular, yet Dµ̂

1
(n0) still



9. QUASI-PERIODIC SOLUTIONS OF THE KAC-VAN MOERBEKE HIERARCHY 61

parameterizes the corresponding isospectral set of 2g-gap sequences ρ in a one-to-
one and onto fashion. In particular, ρ0 in (9.44)–(9.46) then represents a concrete
realization of the isospectral torus T g of all 2g-gap sequences ρ associated with D.

Finally we briefly treat the t-dependent case. Our starting point is a solu-
tion (a1(t), b1(t)), a1(n, t) < 0, b1(n, t) < 0, (n, t) ∈ Z × R of the T̃Lr equations
(6.6) with g-gap initial conditions (a(0)

1 , b
(0)
1 ) at t = t0 and θ-function representa-

tion as described in Theorem 6.3. Next we note that as in (9.1) the t-dependent
BA-function ψ1(P, n, n0, t, t0) in (6.24), respectively (6.42), shares the positivity
condition

(9.49) ψ1(P, n, n0, t, t0) > 0, π̃(P ) ≤ E0

and by (6.27), (6.28) satisfies

L1(t)ψ1(P, t) = 0, t ∈ R,(9.50)
d

dt
ψ1(P, t) = P̃1,2r+2ψ1(P, t), r ∈ N0, t ∈ R.(9.51)

At this point one can follow the stationary considerations in (9.2)–(9.15), (9.21)–
(9.38) step by step. Especially, z1,ε(z, n), z2,ε,ε′(z, n) are now replaced by

z1,ε(z, n, t) = εA+
E0

(z)− α̂P0
(Dµ̂

1
(n,t))− Ξ̂P0

,

z1(n, t) = z1,+(−∞, n, t),
(9.52)

z2,ε,ε′(z, n, t) = ε′A+
E0

(z)− α̂P0
(Dµ̂

2,ε
(n,t))− Ξ̂P0

,

z2,ε(n, t) = z2,ε,+(−∞, n, t), ε, ε′ ∈ {+,−},
(9.53)

with (cf. (3.44), (6.33), (6.46))

α̂P0
(Dµ̂

2,±
(n,t)) = α̂P0

(Dµ̂
1
(n,t))∓A+

E0
(0)− ÂP0

(∞+)

= α̂P0
(Dµ̂

1
(n0,t0))− (n− n0)U (3) − (t− t0)Ũ

(2)

r ∓A+
E0

(0)− ÂP0
(∞+).

(9.54)

The divisors Dµ̂
2,±(n,t)

are all nonspecial, that is,

(9.55) i(Dµ̂
2,±

(n,t)) = 0, (n, t) ∈ Z× R

by exactly the same argument as in the proof of Theorem 9.1.
Introducing L1(t), H1(t), ρ±(t), A±(t), H2,±(t), M±(t), D±(t), a2,±(t), b2,±(t)

according to (7.3), (7.4), (7.8)–(7.11), (7.30)–(7.34), (8.1), (8.2) we may briefly
summarize our t-dependent results applying Theorem 7.2 as follows.
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Theorem 9.5. The θ-function representation of the g-gap solutions (a2,±(t),
b2,±(t)) of the T̃Lr equations read

a2,±(n, t) = ã[θ(z2,±(n+ 1, t))θ(z2,±(n− 1, t))/θ(z2,±(n, t))2]1/2,

(n, t) ∈ Z× R,

(9.56)

b2,±(n, t) =
g∑

j=1

λj −
1
2

2g+1∑
m=0

Em −
g∑

j=1

cj(g)
∂

∂wj
ln
[

θ(w + z2,±(n, t))
θ(w + z2,±(n− 1, t))

]∣∣∣∣
w=0

,

(n, t) ∈ Z× R.

(9.57)

Similarly, the (2g + 1)-gap and 2g-gap solutions ρ± and ρ0 of the K̃Mr equations
are given by

(9.58) ρ±(n, t) =

{
ρe,±(m, t), n = 2m
ρo,±(m, t), n = 2m+ 1

, ρ0(n, t) =

{
ρe,0(m, t), n = 2m
ρo,0(m, t), n = 2m+ 1

,

where

ρe,±(n, t) = −
[
−ã

θ(z1(n− 1, t))θ(z1,±(0, n+ 1, t))
θ(z1(n, t))θ(z1,±(0, n, t))

]1/2

e
± 1

2

R 0
E0

ω(3)+
∞+,∞−

= −
[
−ã

θ(z2,±(n, t))θ(z2,±,∓(0, n− 1, t))
θ(z2,±(n− 1, t))θ(z2,±,∓(0, n, t))

]1/2

e
± 1

2

R 0
E0

ω(3)+
∞+,∞− ,

(9.59)

ρo,±(n, t) =
[
−ã

θ(z1(n+ 1, t))θ(z1,±(0, n, t))
θ(z1(n, t))θ(z1,±(0, n+ 1, t))

]1/2

e
± 1

2

R 0
E0

ω(3)+
∞+,∞−

=
[
−ã

θ(z2,±(n− 1, t))θ(z2,±,∓(0, n+ 1, t))
θ(z2,±(n, t))θ(z2,±,∓(0, n, t))

]1/2

e
± 1

2

R 0
E0

ω(3)+
∞+,∞−

(9.60)

and ρe,0(n, t), ρo,0(n, t) are obtained from (9.59), (9.60) by taking E0 = 0.

We end up with a brief outlook at possible applications of the results of this
chapter. In many respects the construction of all real-valued algebro-geometric
quasi-periodic finite-gap solutions of the KM hierarchy is by no means the end of
the story but rather the beginning of the next chapter in view of possible appli-
cations of this material. For instance, in addition to the applications described in
[88], it appears tempting to transfer results on the Toda shock problem (see, e.g.,
[23], [45], [59], [86] and the references therein) to that of the KM system and to
search for connections between algorithms for eigenvalue computation of real ma-
trices with the Toda flows (see, e.g., [21], [24], [34] and the references therein).
Similarly the solution of certain discrete Peierls models for quasi-one-dimensional
conducting polymers in connection with finite-gap Toda solutions (see, e.g., [57],
[58] and the references therein and in Ch. 8 of [10]) and especially the phenomenon
of soliton excitations in conducting polymers (such as polyacetylen) and Fermion
number fractionization (see, e.g., the reviews [44], [75]), where the underlying
model Hamiltonians are related to the Dirac-type expression (7.4), offer a variety
of applications for finite-gap solutions of the KM hierarchy.



APPENDIX A

Hyperelliptic Curves of the Toda-Type and Theta
Functions

We briefly summarize our basic notation in connection with hyperelliptic Toda
curves and their theta functions as employed in Chapters 3, 5, 6, and 9. For
background information on this standard material we refer, for instance, to [31],
[32], [55], [74].

Consider the points

(A.1) {Em}0≤m≤2g+1 ⊂ R, E0 < E1 < · · · < E2g+1, g ∈ N0

and define the cut plane

(A.2) Π = C\
g⋃

j=0

[E2j , E2j+1]

with the holomorphic function

(A.3) R2g+2(.)1/2 :
{

Π → C
z 7→ [

∏2g+1
m=0 (z − Em)]1/2

on it. We extend R1/2
2g+2 to all of C by

(A.4) R2g+2(λ)1/2 = lim
ε↓0

R2g+2(λ+ iε)1/2, λ ∈ C\Π,

with the sign of the square root chosen according to
(A.5)

R2g+2(λ)1/2 =


−|R2g+2(λ)1/2|, λ ∈ (E2g+1,∞)
(−1)g+j+1|R2g+2(λ)1/2|, λ ∈ (E2j+1, E2j+2), 0 ≤ j ≤ g − 1
(−1)g|R2g+2(λ)1/2|, λ ∈ (−∞, E0)
(−1)g+j+1i|R2g+2(λ)1/2|, λ ∈ (E2j , E2j+1), 0 ≤ j ≤ g

.

Next we define the set

(A.6) M = {(z, σR2g+2(z)1/2)|z ∈ C, σ ∈ {−,+}} ∪ {∞+,∞−}
and

(A.7) B = {(Em, 0)}0≤m≤2g+1 ,

the set of branch points. M becomes a Riemann surface upon introducing the
charts (UP0 , ζP0) defined as follows:

P0 = (z0, σ0R2g+2(z0)1/2) or P0 = ∞±, P = (z, σR2g+2(z)1/2) ∈ UP0 ⊂M,

VP0 = ζP0(UP0) ⊂ C.

(A.8)

63
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P0 /∈ {B ∪ {∞+,∞−}}.

UP0 ={P ∈M
∣∣|z − z0| < C, σR2g+2(z)1/2 the branch obtained by straight line

analytic continuation starting from z0}, C = min
m
|z0 − Em|,

VP0 ={ζ ∈ C
∣∣|ζ| < C},

ζP0 :
{
UP0 → VP0

P 7→ z − z0
, ζ−1

P0
:
{
VP0 → UP0

ζ 7→ (z0 + ζ, σR2g+2(z0 + ζ)1/2)
.(A.9)

P0 = (Em0 , 0).

UP0 =
{
P ∈M

∣∣|z − Em0 | < Cm0

}
, Cm0 = min

m6=m0
|Em − Em0 |,

VP0 = {ζ ∈ C
∣∣|ζ| < C1/2

m0
},

ζP0 :
{
UP0 → VP0

P 7→ σ(z − Em0)
1/2 ,

(z − Em0)
1/2 = |(z − Em0)

1/2|e(i/2) arg(z−Em0 ),

arg(z − Em0) ∈

{
[0, 2π), m0 even
(−π, π], m0 odd

,

ζ−1
P0

:
{
VP0 → UP0

ζ 7→ (Em0 + ζ2, ζ[
∏

m6=m0
(Em0 − Em + ζ2)]1/2) , ∏

m6=m0

(Em0 − Em + ζ2)

1/2

= (−1)gi−m0−1
∣∣∣[ ∏

m6=m0

(Em0 − Em)
]1/2∣∣∣×

×
[
1 +

1
2
ζ2

∑
m6=m0

(Em0 − Em)−1 +O(ζ4)
]
.

(A.10)

P0 = ∞±.

UP0 = {P ∈M
∣∣|z| > C∞}, C∞ = max

m
|Em|, VP0 =

{
ζ ∈ C

∣∣|ζ| < C−1
∞
}
,

ζP0 :

 UP0 → VP0

P 7→ z−1

∞± 7→ 0
, ζ−1

P0
:


VP0 → UP0

ζ 7→ (ζ−1,±ζ−g−1[Πm(1− ζEm)]1/2)
0 7→ ∞±

,

[
Πm(1− ζEm)

]1/2

= −1 +
1
2
ζ
∑
m

Em + 0(ζ2).

(A.11)

It will also be useful to introduce the subsets Π± ⊂M (upper and lower sheets)

(A.12) Π± = {(z,±R2g+2(z)1/2) ∈M |z ∈ Π}

and the associated charts

(A.13) ζ± :
{

Π± → Π
P 7→ z

.

The topology introduced by the charts (A.9)–(A.11) is Hausdorff and second count-
able (finitely many of them cover M). In addition, Π± are connected (being home-
omorphic to Π) and so are their closures Π±. Moreover, since M = Π+ ∪ Π− and
Π+ and Π− have points in common, M is connected and (A.9)–(A.11) define a
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complex structure on M . We shall denote the resulting Riemann surface (curve)
by Kg. Topologically, Kg is a sphere with g handles and hence has genus g.

Next, consider the holomorphic sheet exchange map (involution)

(A.14) ∗ :


Kg → Kg

(z, σR2g+2(z)1/2) 7→ (z, σR2g+2(z)1/2)∗ = (z,−σR2g+2(z)1/2)
∞± 7→ ∞∗

± = ∞∓

and the two meromorphic projection maps
(A.15)

π̃ :


Kg → C ∪ {∞}
(z, σR2g+2(z)1/2) 7→ z

∞± 7→ ∞
, R

1/2
2g+2 :


Kg → C ∪ {∞}
(z, σR2g+2(z)1/2) 7→ σR2g+2(z)1/2.

∞± 7→ ∞

π̃ has poles of order 1 at∞± and two simple zeros at (0,±R2g+2(0)1/2) ifR2g+2(0) 6=
0 or a double zero at (0, 0) if R2g+2(0) = 0 (i.e., if 0 ∈ {Em}0≤m≤2g+1) and R1/2

2g+2

has poles of order g+ 1 at ∞± and 2g+ 2 simple zeros at (Em, 0), 0 ≤ m ≤ 2g+ 1.
Moreover,

(A.16) π̃(P ∗) = π̃(P ), R1/2
2g+2(P

∗) = −R1/2
2g+2(P ), P ∈ Kg.

Thus Kg is a two-sheeted ramified covering of the Riemann sphere C∞(∼= C∪{∞}),
Kg is compact (since π̃ is open and C∞ is compact), and Kg is hyperelliptic (since
it admits the meromorphic function π̃ of degree two).

Using our local charts one infers that for g ∈ N, dπ̃/R1/2
2g+2 is a holomorphic

differential on Kg with zeros of order g − 1 at ∞± and hence

(A.17) ηj =
π̃j−1dπ̃

R
1/2
2g+2

, 1 ≤ j ≤ g

form a basis for the space of holomorphic differentials on Kg.
Next we introduce a canonical homology basis {aj , bj}1≤j≤g for Kg as follows.

The cycle a` starts near E2`−1 on Π+ surrounds E2` counterclockwise thereby
changing to Π−, and returns to the starting point encircling E2`−1 changing sheets
again. The cycle b` surrounds E0, E2`−1 counterclockwise (once) on Π+. The cycles
are chosen so that their intersection matrix reads

(A.18) aj ◦ bk = δj,k, 1 ≤ j, k ≤ g.

Introducing the invertible matrix C in Cg,

C = (Cj,k)1≤j,k≤g, Cj,k =
∫

ak

ηj = 2
∫ E2k

E2k−1

zj−1 dz

R2g+2(z)1/2
∈ R,

c(k) = (c1(k), . . . , cg(k)), cj(k) = C−1
j,k ,

(A.19)

the normalized differentials ωj , 1 ≤ j ≤ g,

(A.20) ωj =
g∑

`=1

cj(`)η`,

∫
ak

ωj = δj,k, 1 ≤ j, k ≤ g

form a canonical basis for the space of holomorphic differentials on Kg. The matrix
τ in Cg of b-periods,

(A.21) τ = (τj,k)1≤j,k≤g, τj,k =
∫

bk

ωj
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satisfies

(A.22) τj,k = τk,j , 1 ≤ j, k ≤ g,

(A.23) τ = iT, T > 0.

In the charts (U∞± , ζ∞± ≡ ζ) induced by 1/π̃ near ∞± one infers

ω = ∓
g∑

j=1

c(j)
ζg−j dζ

[Πm(1− ζEm)]1/2

= ±
{
c(g) + ζ

[1
2
c(g)

2g+1∑
m=0

Em + c(g − 1)
]

+O(ζ2)
}
dζ.

(A.24)

Associated with the homology basis {aj , bj}1≤j≤g we also recall the canonical
dissection of Kg along its cycles yielding the simply connected interior K̂g of the
fundamental polygon ∂K̂g given by

(A.25) ∂K̂g = a1b1a
−1
1 b−1

1 a2b2a
−1
2 b−1

2 · · · a−1
g b−1

g .

The Riemann theta function associated with Kg is defined by

(A.26) θ(z) =
∑

n∈Zg

exp[2πi(n, z) + πi(n, τn)], z = (z1, . . . , zg) ∈ Cg,

where (u, v) =
∑g

j=1 ujvj denotes the scalar product in Cg. It has the fundamental
properties

θ(z1, . . . , zj−1,−zj , zj+1, . . . , zg) = θ(z),

θ(z +m+ τn) = exp[−2πi(n, z)− πi(n, τn)]θ(z), m, n ∈ Zg.
(A.27)

A divisor D on Kg is a map D : Kg → Z, where D(P ) 6= 0 for only finitely
many P ∈ Kg. The set of all divisors on Kg will be denoted by Div(Kg). With Lg

we denote the period lattice

(A.28) Lg := {z ∈ Cg|z = m+ τn, m, n ∈ Zg}
and the Jacobi variety J(Kg) is defined by

(A.29) J(Kg) = Cg/Lg.

The Abel maps AP0
(.) respectively αP0

(.) are defined by

AP0
:

{
Kg → J(Kg)
P 7→ AP0

(P ) =
∫ P

P0
ω mod (Lg)

,(A.30)

αP0
:

{
Div(Kg) → J(Kg)
D 7→ αP0

(D) =
∑

P∈Kg
D(P )AP0

(P )
,(A.31)

with P0 ∈ Kg a fixed base point. (In the main text we agree to fix P0 = (E0, 0) for
convenience.)

In connection with (A.25) we shall also need the maps

(A.32) ÂP0
:

{
K̂g → Cg

P 7→
∫ P

P0
ω

, α̂P0
:

{
Div(Kg) → Cg

D 7→
∑

P∈K̂g
D(P )ÂP0

(P )
,

with path of integration lying in K̂g.
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Let M(Kg) and M1(Kg) denote the set of meromorphic functions (0-forms)
and meromorphic differentials (1-forms) on Kg. The residue of a meromorphic
differential ν ∈M1(Kg) at a point Q0 ∈ Kg is defined by

(A.33) res
Q0

(ν) =
1

2πi

∫
γQ0

ν,

where γQ0 is a counterclockwise oriented smooth simple closed contour encircling
Q0 but no other pole of ν. Holomorphic differentials are also called (Abelian)
differentials of the first kind (dfk), (Abelian) differentials of the second kind (dsk)
ω(2) ∈ M1(Kg) are characterized by the property that all their residues vanish.
They are normalized, for instance, by demanding that all their a-periods vanish,
that is,

(A.34)
∫

aj

ω(2) = 0, 1 ≤ j ≤ g.

If ω(2)
P1,n is a dsk on Kg whose only pole is P1 ∈ K̂g with principal part ζ−n−2 dζ,

n ∈ N0 near P1 and ωj = (
∑∞

m=0 dj,m(P1)ζm) dζ near P1, then

(A.35)
∫

bj

ω
(2)
P1,n =

2πi
n+ 1

dj,n(P1).

Any meromorphic differential ω(3) on Kg not of the first or second kind is said
to be of the third kind (dtk). A dtk ω(3) ∈ M1(Kg) is usually normalized by the
vanishing of its a-periods, that is,

(A.36)
∫

aj

ω(3) = 0, 1 ≤ j ≤ g.

A normal dtk ω(3)
P1,P2

associated with two points P1, P2 ∈ K̂g, P1 6= P2 by definition
has simple poles at P1 and P2 with residues +1 at P1 and −1 at P2 and vanishing
a-periods. If ω(3)

P,Q is a normal dtk associated with P , Q ∈ K̂g, holomorphic on
Kg\{P,Q}, then

(A.37)
∫

bj

ω
(3)
P,Q = 2πi

∫ P

Q

ωj , 1 ≤ j ≤ g,

where the path from Q to P lies in K̂g (i.e., does not touch any of the cycles aj ,
bj).

We shall always assume (without loss of generality) that all poles of dsk’s and
dtk’s on Kg lie on K̂g (i.e., not on ∂K̂g).

For f ∈ M(Kg)\{0}, ω ∈ M1(Kg)\{0} the divisors of f and ω are denoted
by (f) and (ω), respectively. Two divisors D, E ∈ Div(Kg) are called equivalent,
denoted by D ∼ E , if and only if D − E = (f) for some f ∈ M(Kg)\{0}. The
divisor class [D] of D is then given by [D] = {E ∈ Div(Kg)|E ∼ D}. We recall that

(A.38) deg((f)) = 0, deg((ω)) = 2(g − 1), f ∈M(Kg)\{0}, ω ∈M1(Kg)\{0},

where the degree deg(D) of D is given by deg(D) =
∑

P∈Kg
D(P ). It is custom to

call (f) (respectively, (ω)) a principal (respectively, canonical) divisor.
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Introducing the complex linear spaces

L(D) = {f ∈M(Kg)|f = 0 or (f) ≥ D}, r(D) = dimC L(D),(A.39)

L1(D) = {ω ∈M1(Kg)|ω = 0 or (ω) ≥ D}, i(D) = dimC L1(D),(A.40)

(i(D) the index of specialty ofD) one infers that deg(D), r(D), and i(D) only depend
on the divisor class [D] of D. Moreover, we recall the following fundamental facts.

Theorem A.1. Let D ∈ Div(Kg), ω ∈M1(Kg)\{0}. Then
(i).

(A.41) i(D) = r(D − (ω)), g ∈ N0.

(ii) (Riemann-Roch theorem).

(A.42) r(−D) = deg(D) + i(D)− g + 1, g ∈ N0.

(iii) (Abel’s theorem). D ∈ Div(Kg), g ∈ N is principal if and only if

(A.43) deg(D) = 0 and αP0
(D) = 0.

(iv) (Jacobi’s inversion theorem). Assume g ∈ N, then αP0
: Div(Kg) → J(Kg) is

surjective.

For notational convenience we agree to abbreviate

(A.44) DQ :


Kg → {0, 1}

P 7→

{
1, P = Q

0, P 6= Q

and, for Q = (Q1, . . . , Qg) ∈ σgKg (σnKg the n-th symmetric power of Kg),

(A.45) DQ :


Kg → {0, 1, . . . , g}

P 7→

{
m if P occurs m times in {Q1, . . . , Qg}
0 if P /∈ {Q1, . . . , Qg}

.

Moreover, σnKg can be identified with the set of positive divisors 0 < D ∈ Div(Kg)
of degree n.

Lemma A.2. Let DQ ∈ σgKg, Q = (Q1, . . . , Qg). Then

(A.46) 1 ≤ i(DQ) = s(≤ g/2)

if and only if there are s pairs of the type (P, P ∗) ∈ {Q1, . . . , Qg} (this includes, of
course, branch points for which P = P ∗).

We emphasize that most results in this appendix immediately extend to the
case where {Em}0≤m≤2g+1 ⊂ C. (In this case τ is no longer purely imaginary as
stated in (A.23) but has a positive definite imaginary part.)



APPENDIX B

Periodic Jacobi Operators

Due to the extensive attention paid in the literature to the theory of periodic
Jacobi matrices (see, e.g., [2], [9], [19], [22], [51], [52], [62], [68]–[70]) we shall
now summarize the highlights of this special case. Throughout this appendix we
shall use (and extend) the notation established in Chapter 4 in connection with
(bounded) Jacobi operators.

In addition to the assumption a, b ∈ `∞R (Z), a(n) 6= 0, n ∈ Z in (4.1), (4.2) we
now add the periodicity condition

(B.1) a(n+N) = a(n), b(n+N) = b(n), n ∈ Z

for some N ∈ N. (In most formulas below we tacitly avoid the trivial case N = 1
(cf. Appendix C) but assume N ≥ 2 instead.) We agree to abbreviate

(B.2) A =
N∏

n=1

a(n) =
N∏

n=1

a(n0 + n), B =
N∑

n=1

b(n) =
N∑

n=1

b(n0 + n), n0 ∈ Z.

Given the fundamental system of solutions c(z, n, n0), s(z, n, n0) (see (4.16)) of
(4.6) one defines the fundamental matrix

Φ(z, n, n0) =
(

c(z, n, n0) s(z, n, n0)
c(z, n+ 1, n0) s(z, n+ 1, n0)

)

=


Un(z) · · ·Un0+1(z), n ≥ n0 + 1
1, n = n0

U−1
n+1(z) · · ·U−1

n0
(z), n ≤ n0 − 1

,

(B.3)

where

Um(z) =
1

a(m)

(
0 a(m)

−a(m− 1) z + b(m)

)
,

Um(z)−1 =
1

a(m− 1)

(
z + b(m) −a(m)
a(m− 1) 0

)
.

(B.4)

Since

(B.5) W (c(z, ., n0), s(z, ., n0)) = a(n0),

an arbitrary solution ψ(z) of (4.6) is of the type

(B.6) ψ(z, n) = ψ(z, n0)c(z, n, n0) + ψ(z, n0 + 1)s(z, n, n0),

or equivalently,

(B.7)
(

ψ(z, n)
ψ(z, n+ 1)

)
= Φ(z, n, n0)

(
ψ(z, n0)

ψ(z, n0 + 1)

)
.

69
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Moreover, one infers

det[Φ(z, n, n0)] =
a(n0)
a(n)

,(B.8)

Φ(z, n, n0) = Φ(z, n, n1)Φ(z, n1, n0),(B.9)

Φ(z, n, n0)−1 = Φ(z, n0, n).(B.10)

The monodromy matrix M(z, n) is then defined by

(B.11) M(z, n) = Φ(z, n+N,n)

and hence

(B.12) M(z, n) = Φ(z, n, n0)M(z, n0)Φ(z, n, n0)−1

and

(B.13) det[M(z, n)] = 1.

The Floquet discriminant ∆(z) defined by

(B.14) ∆(z) = Tr[M(z, n)]/2

is independent of n (cf. (B.12)) and the Floquet multipliers m±(z) (the eigenvalues
of M(z, n)) then read

(B.15) m±(z) = ∆(z)± [∆(z)2 − 1]1/2.

Again by (B.12) they are independent of n and satisfy

(B.16) m+(z)m−(z) = 1, m+(z) +m−(z) = 2∆(z).

Let {Ẽ`}0≤`≤2N−1 be the zeros of ∆(z)2 − 1 and write

∆(z)2 − 1 =
1

4A2

2N−1∏
`=0

(z − Ẽ`)(B.17)

and

∆(z)∓ 1 =
1

2A

N∏
j=1

(z − E±j ).(B.18)

The zeros {E±j }1≤j≤N turn out to be the eigenvalues of the following periodic
respectively antiperiodic Jacobi matrices H̃±

n0
in CN . More generally, define H̃θ

n0

in CN associated with the boundary conditions

(B.19) a(n0 +N)ψ(n0 +N) = eiθa(n0)ψ(n0), ψ(n0 +N + 1) = eiθψ(n0 + 1),
0 ≤ θ < 2π
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by

(B.20) H̃θ
n0

=



−b(n0+1) a(n0+1) 0 · · · 0 e−iθa(n0+N)

a(n0+1) −b(n0+2)
. . . 0

0
. . . . . .

...
...

. . . . . . . . . 0

0
. . . −b(n0+N−1) a(n0+N−1)

eiθa(n0+N) 0 · · · 0 a(n0+N−1) −b(n0+N)


,

0 ≤ θ < 2π.

One infers that H̃θ
n0

and H̃2π−θ
n0

are antiunitarily equivalent. The periodic respec-
tively antiperiodic Jacobi matrices H̃±

n0
alluded to above are then defined by

(B.21) H̃+
n0

= H̃0
n0
, H̃−

n0
= H̃π

n0
.

The eigenvalues of H̃θ
n0

are then given by

(B.22) (m+(z)− eiθ)(m−(z)− eiθ) = 0, that is, ∆(z) = cos(θ).

They are simple for θ ∈ (0, π) ∪ (π, 2π) and at most twice degenerate for θ = 0, π.
In the latter case one infers

(B.23) E±1 < E∓1 ≤ E∓2 < E±2 ≤ E±3 < · · · < E
(−1)N−1

N−1 ≤ E
(−1)N−1

N < E
(−1)N

N ,

sgn(A) = ±(−1)N ,

and {Ẽ`}0≤`≤2N−1 coincides with the corresponding sequence in (B.23). Another
way to express these facts is to invoke the theory of direct integral decompositions
(see, e.g., [79], Sect. XIII. 16)

(B.24) `2(Z) ∼=
∫ ⊕

[0,2π)

dθ

2π
`2((n0 + 1, n0 +N)), H ∼=

∫ ⊕

[0,2π)

dθ

2π
H̃θ

n0

and ∼= denotes unitary equivalence. In particular, the spectrum σ(H) of H is
characterized by

(B.25) σ(H) = {λ ∈ R
∣∣|∆(λ)| ≤ 1} =

N−1⋃
j=0

[Ẽ2j , Ẽ2j−1]

(see Theorem 4.2 for additional information).
Returning to the square root [∆(z)2 − 1]1/2 in (B.15), we shall consider it as a

fixed branch defined as follows,

[∆(λ)2 − 1]1/2 = − sgn(A)|[∆(λ)2 − 1]1/2|, λ > Ẽ2N−1,

[∆(λ)2 − 1]1/2 = lim
ε↓0

[∆(λ+ iε)2 − 1]1/2, λ ∈ R,(B.26)

assuming [∆(z)2 − 1]1/2 to be analytic in C\
⋃N−1

j=0 [Ẽ2j , Ẽ2j+1]. As a consequence
one obtains

(B.27) |m+(z)| ≤ 1, |m−(z)| ≥ 1

and the (normalized) Floquet functions ψ±(z, n, n0) in (4.17) then satisfy

(B.28) ψ±(z, n+N,n0) = m±(z)ψ±(z, n, n0)
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and (4.18). In addition, one infers (cf. (4.4), (4.17)–(4.19))

φ±(z, n0) = φ±(z, n0 +N) =
m±(z)− c(z, n0 +N,n0)

s(z, n0 +N,n0)

=
c(z, n0 +N + 1, n0)

m±(z)− s(z, n0 +N + 1, n0)
,

(B.29)

(B.30) W (ψ−(z, ., n0), ψ+(z, ., n0)) =
2a(n0)[∆(z)2 − 1]1/2

s(z, n0 +N,n0)
,

(B.31) G(z, n, n) =
s(z, n+N,n)

2a(n)[∆(z)2 − 1]1/2
=

∏N−1
j=1 [z − µj(n)]{∏2N−1
`=0 [z − Ẽ`]

}1/2
,

(B.32) ψ+(z, n, n0)ψ−(z, n, n0) =
a(n0)s(z, n+N,n)
a(n)s(z, n0 +N,n0)

=
N−1∏
j=1

[
z − µj(n)
z − µj(n0)

]
.

If all spectral gaps of H are “open”, that is, the spectra of H̃±
n0

are both simple,
we have

(B.33) g = N − 1,

[
2N−1∏
`=0

(z − Ẽ`)

]1/2

= R2g+2(z)1/2 = 2A[∆(z)2 − 1]1/2,

see (A.4), (A.5). In the case where some spectral gaps “close” we introduce the
index sets
(B.34)
J ′ = {1 ≤ j′ ≤ N − 1|Ẽ2j′−1 = Ẽ2j′}, J = {0, 1, . . . , 2N − 1}\{j′, j′ + 1|j′ ∈ J ′}

and define

(B.35) Q(z) =
1

2A

∏
j′∈J′

(z − Ẽ2j′−1), R2g+2(z) =
∏
j∈J

(z − Ẽj).

In order to establish the connection with the notation employed in the main text
and in Appendix A we agree to identify

(B.36) {Ẽj}j∈J and {Em}0≤m≤2g+1.

Then one infers

g = N − 1− |J ′| = N − 1− deg(Q) = (|J | − 2)/2,

[∆(z)2 − 1]1/2 = R2g+2(z)1/2Q(z),(B.37)

where |J |, |J ′| abbreviates the cardinality of J, J ′.
Next we shall give the

Proof of Theorem 5.7. First we claim that in the periodic case ω(3)
∞+,∞− is

explicitly given by

(B.38) ω(3)
∞+,∞−

=
sgn(A)∆′ dπ̃

NR
1/2
2g+2Q

=
sgn(A)∆′ dπ̃

N [∆2 − 1]1/2
.
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For a proof of (B.38) we only need to check that it is appropriately normalized,
that is, all its a-periods vanish. This is seen from∣∣∣∣∣

∫
aj

ω(3)
∞+,∞−

∣∣∣∣∣ = 2
N

∣∣∣∣∣
∫ E2j

E2j−1

dz∆′(z)
|[∆(z)2 − 1]1/2|

∣∣∣∣∣
=

2
N

∣∣ ln{∆(z) + [∆(z)2 − 1]1/2}
∣∣E2j

z=E2j−1

∣∣
= 0, 1 ≤ j ≤ g.

(B.39)

For the b-periods, one computes

∫
bj

ω(3)
∞+,∞−

=
2i
N

j∑
k=1

∣∣∣∣∣
∫ E2k+1

E2k

dz∆′(z)
[∆(z)2 − 1]1/2

∣∣∣∣∣ = 2i
N

j∑
k=1

∣∣ arcsin[∆(z)]
∣∣E2k+1

z=E2k

∣∣
= 2πi(j/N), 1 ≤ j ≤ g.

(B.40)

By (3.44) this implies

(B.41) 2NÂP0
(∞+) = 0 mod (Lg)

which completes the proof. �

Next, we indicate a systematic approach to high-energy expansions of c(z, n, n0)
and s(z, n, n0). First we note that (B.10) yields

s(z, n+ 1, n0) = a(n0)a(n)−1c(z, n0, n),

s(z, n, n0) = −a(n0)a(n)−1s(z, n0, n),

c(z, n, n0) = a(n0)a(n)−1s(z, n0 + 1, n),

c(z, n+ 1, n0) = −a(n0)a(n)−1c(z, n0 + 1, n)

(B.42)

and (B.7) implies

s(z, n, n0 + 1) = −a(n0 + 1)a(n0)−1c(z, n, n0),

c(z, n, n0 − 1) = −a(n0 − 1)a(n0)−1s(z, n, n0),

s(z, n, n0 − 1) = c(z, n, n0) + [b(n0) + z]a(n0)−1s(z, n, n0),

c(z, n, n0 + 1) = s(z, n, n0) + [b(n0 + 1) + z]a(n0)−1c(z, n, n0).

(B.43)

Next we define the Jacobi matrix Jn0(k) in Ck

(B.44) Jn0(k) =



−b(n0+1) a(n0+1) 0 · · · 0

a(n0+1) −b(n0+2)
. . . . . .

...

0
. . . . . . . . . 0

...
. . . . . . −b(n0+k−1) a(n0+k−1)

0 · · · 0 a(n0+k−1) −b(n0+k)


and introduce

(B.45) Pn0(n, k) =
1
n
{Tr[Jn0(k)

n]−
n−1∑
j=1

Pn0(j, k) Tr[Jn0(k)
n−j ]}.
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One then obtains

(B.46) s(z, n0 + k + 1, n0) =
det[z − Jn0(k)]∏k

n=1 a(n0 + n)
=
zk −

∑k
`=1 Pn0(`, k)z

k−`∏k
n=1 a(n0 + n)

, k ∈ N.

Explicitly, one computes

Tr[Jn0(k)] = −
n0+k∑

n=n0+1

b(n),

Tr[Jn0(k)
2] =

n0+k∑
n=n0+1

b(n)2 + 2
n0+k−1∑
n=n0+1

a(n)2,

Tr[Jn0(k)
3] = −

n0+k∑
n=n0+1

b(n)3 − 3
n0+k−1∑
n=n0+1

a(n)2[b(n) + b(n+ 1)],

etc.

(B.47)

Using (B.42) and (B.43) one can extend (B.46) to k ≤ −1 and to corresponding
results for c(z, n, n0). A direct calculation yields for k ∈ N

c(z, n0 + k + 1, n0) = − a(n0)zk−1∏k
n=1 a(n0 + n)

[
1 + z−1

k∑
n=2

b(n0 + n) +O(z−2)

]
,

c(z, n0 − k, n0) =
zk∏k

n=1 a(n0 − n)

[
1 + z−1

k−1∑
n=0

b(n0 − n) +O(z−2)

]
,

s(z, n0 + k + 1, n0) =
zk∏k

n=1 a(n0 + n)

[
1 + z−1

k∑
n=1

b(n0 + n) +O(z−2)

]
,

s(z, n0 − k, n0) = − a(n0)zk−1∏k
n=1 a(n0 − n)

[
1 + z−1

k−1∑
n=1

b(n0 − n) +O(z−2)

]
.

(B.48)

We emphasize that (B.42)–(B.48) hold for general (not necessarily periodic or finite-
gap) Jacobi operators. In the following we shall apply (B.48) to the periodic case.
Equations (B.15), (B.27) yield the expansion

m±(z) =
|z|→∞

(1∓ 1)∆(z)± 1
2∆(z)

+O(∆(z)−3)

=
|z|→∞

(zN/A)∓1[1 +O(z−1)]
(B.49)

and (B.29) and (B.48) then imply

(B.50) φ±(z, n) =
|z|→∞

[a(n)/z]±1

[
1∓ z−1b

(
n+1

n

)
+O(z−2)

]
.

The relation

(B.51) ψ±(z, n, n0) =


∏n−1

m=n0
φ±(z,m), n ≥ n0 + 1

1, n = n0∏n0−1
m=n φ±(z,m)−1, n ≤ n0 − 1
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then yields

ψ +
(−)

(z, n0 + k, n0) =

[
z−k

k−1∏
n=0

a(n0+n)

] +
(−)

1
1 −

(+)
z−1

k(k−1)∑
n=1(0)

b(n0+n) +O(z−2)

 ,
ψ +

(−)
(z, n0 − k, n0) =

[
z−k

k∏
n=1

a(n0−n)

] −
(+)

1
1−

(+)
z−1

k(k−1)∑
n=1(0)

b(n0−n) + 0(z−2)

 ,
k ∈ N.(B.52)

Expansions (B.50)–(B.52) also hold in the general case if ψ± are the solutions of
(4.6) which are in `2((0,±∞)).

These expansions can now be employed to explicitly compute ã, b̃1, in Lemma 5.1 (i).

Lemma B.1. In the periodic case one obtains

ã = −|A|1/N ,(B.53)

b̃1 = B/N,(B.54)

and

B = N

N−1∑
`=1

λ̃` −
N

2

2N−1∑
`=0

Ẽ`.(B.55)

Proof. Combining (B.28), (B.52), and (5.1) yields

m±(z, n0) = ψ±(z, n0 +N,n0) = (A/zN )±1[1∓ z−1B +O(z−2)]

= sgn(A)(−ã/z)±N [1∓ z−1Nb̃1 +O(z−2)]
(B.56)

and hence (B.53) (noting ã < 0) and (B.54). Combining (B.54) and (5.3) (account-
ing for the possibility of closing spectral gaps) then yields (B.55). �





APPENDIX C

Examples, g = 0, 1

In this Appendix we illustrate the two simplest examples in connection with
genus g = 0 and 1.

We start with g = 0:

Let N ∈ N be fixed and consider

(C.1) a(n) = a, b(n) = b, n ∈ Z.

One then verifies the following series of formulas,

φ±(z, n) = (2a)−1(z + b)± [(2a)−2(z + b)2 − 1]1/2,(C.2)

ψ±(z, n, n0) = {(2a)−1(z + b)± [(2a)−2(z + b)2 − 1]1/2}(n−n0),(C.3)

s(z, n, n0) = {{(2a)−1(z + b) + [(2a)−2(z + b)2 − 1]1/2}(n−n0)

− {(2a)−1(z + b)− [(2a)−2(z + b)2 − 1]1/2}(n−n0)}×

× {2[(2a)−2(z + b)2 − 1]1/2}−1,

(C.4)

c(z, n, n0) = −s(z, n− 1, n0),(C.5)

∆(z) =
1
2
{(2a)−1(z + b) + [(2a)−2(z + b)2 − 1]1/2}N

+
1
2
{(2a)−1(z + b)− [(2a)−2(z + b)2 − 1]1/2}N ,

(C.6)

m±(z) = {(2a)−1(z + b)± [(2a)−2(z + b)2 − 1]1/2}N ,(C.7)

A = aN , B = Nb,(C.8)

Ẽ0 = −2|a| − b, Ẽ2j+1 = Ẽ2j+2 = µj(n) = −2|a| cos(jπ/N)− b,

0 ≤ j ≤ N − 2, n ∈ Z, Ẽ2N−1 = 2|a| − b,
(C.9)

J ′ = {1, 2, . . . , N − 1}, J = {0, 2N − 1},(C.10)

E0 = −2|a| − b, E1 = 2|a| − b,

|a| = (E1 − E0)/4, b = −(E0 + E1)/2,
(C.11)

H = a(S+ + S−)− b, D(H) = `2(Z),(C.12)

σ(H) = [E0, E1] = [−2|a| − b, 2|a| − b],(C.13)

R2(z) = (z − E0)(z − E1),(C.14)

ã = −|a|, b̃1 = b.(C.15)

77



78 C. EXAMPLES, g = 0, 1

Concerning the t-dependence of the branches of the BA-function ψ in the simplest
case where r = 0, that is, for the original Toda system, one obtains

(C.16) ψ±(z, n, n0, t, t0) = {(2a)−1(z + b)± [(2a)−2(z + b)2 − 1]1/2}(n−n0)×

× exp[±(t− t0)R2(z)1/2].

Finally, assuming a1(n) = a < 0, b1(n) = b < 0, n ∈ Z and H1 ≥ 0, that is,
|b| ≥ 2|a|, one computes,

ρe,±(n) = −{1
2
|b| ± 1

2
[b2 − 4a2]1/2}1/2,

ρo,±(n) = −ρe,∓(n),
(C.17)

ρ±(n) =

{
−{ 1

2 |b| ±
1
2 [b2 − 4a2]1/2}1/2, n = 2m

{ 1
2 |b| ∓

1
2 [b2 − 4a2]1/2}1/2, n = 2m+ 1

,(C.18)

a2,±(n) = a, b2,±(n) = b,(C.19)
etc.

Next we turn to the case g = 1:

We suppose

(C.20) E0 < E1 < E2 < E3, R4(z) =
3∏

m=0

(z − Em)

and introduce the following notations.

k =
[
(E2 − E1)(E3 − E0)
(E3 − E1)(E2 − E0)

]1/2

∈ (0, 1),(C.21)

k′ =
[
(E3 − E2)(E1 − E0)
(E3 − E1)(E2 − E0)

]1/2

∈ (0, 1),(C.22)

such that k2 + k′
2 = 1,

(C.23) ū(z) =
[
(E3 − E1)(E0 − z)
(E3 − E0)(E1 − z)

]1/2

, C =
2

[(E3 − E1)(E2 − E0)]1/2
,

and Jacobi’s integral of the first

F (z, k) =
∫ z

0

dx

[(1− x2)(1− k2x2)]1/2
,(C.24)

second

E(z, k) =
∫ z

0

dx

[
1− x2

1− k2x2

]1/2

,(C.25)

and third kind

(C.26) Π(z, α2, k) =
∫ z

0

dx

(1− α2x2)[(1− x2)(1− k2x2)]1/2
, α2 ∈ R,

respectively. (We refer, e.g., to [18] for details on Jacobi elliptic integrals.) We
define

(C.27) K(k) = F (1, k), E(k) = E(1, k), Π(α2, k) = Π(1, α2, k)
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and note that all square roots are assumed to be positive for x ∈ (0, 1). We observe
that E(z, k) has a simple pole at ∞ while Π(z, α2, k) has simple poles at z = ±α−1.

Given these concepts we can now express the basic objects in connection with
the elliptic curve K1 in terms of the quantities (C.22)–(C.27). We list a series of
results below.

The Abelian dfk ω1 reads in the charts (Π±, z),

ω1 =
dz

±2CK(k)R4(z)1/2
(C.28)

and one computes

τ1,1 =
∫

b1

ω1 = iK(k′)/K(k).(C.29)

The Abel map AP0 reads

AP0(P ) = ±F (ū(z), k)
2K(k)

mod (L1), P = (z,±R4(z)1/2)(C.30)

and hence

AP0(∞+) =
F

((
E3−E1
E3−E0

)1/2

, k

)
2K(k)

mod (L1).(C.31)

The Riemann constant is base point independent and given by

(C.32) Ξ =
1− τ1,1

2
mod (L1).

Moreover, one computes

ω(3)
∞+,∞−

=
(z − λ1) dz
±R4(z)1/2

, λ1 = E0 +
E1 − E0

K(k)
Π
(
E2 − E1

E2 − E0
, k

)
,(C.33) ∫

b1

ω(3)
∞+,∞−

= 2πi

[
K(k)−1F

((
E3 − E1

E3 − E0

)1/2

, k

)
+ 1

]
,(C.34)

∫ P

P0

ω(3)
∞+,∞−

= ±C(E1 − E0)

{[
1−K(k)−1Π

(
E2 − E1

E2 − E0
, k

)]
F (ū(z), k)

−Π
(
ū(z),

E3 − E0

E3 − E1
, k

)}
, P = (z,±R4(z)1/2).

(C.35)

Restricting ourselves to the case r = 0 (i.e., the original Toda system) one obtains
for

(C.36) Ω(2)
0 = ω

(2)
∞+,0 − ω

(2)
∞−,0

(cf. (6.30)) the explicit relations

(C.37) 2πiU (2)
0,1 =

∫
b1

Ω(2)
0 = 4πic1(1) =

2πi
CK(k)

, r = 0,
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P0

Ω(2)
0 =

1
2
C(E2 − E0)

{
(E3 − E1)K(k)−1E(k)F (ū(z), k)

− (E3 − E1)E(ū(z), k)− (E3 − E0)
[
1− E3 − E0

E3 − E1
ū(z)2

]−1

×

× ū(z)[1− ū(z)2]1/2[1− k2ū(z)2]−1/2

}
,

r = 0, P = (z,±R4(z)1/2).

(C.38)

The relation

(C.39) AP0(µ̂1(n, t)) = AP0(µ̂1(n0, t0))− 2(n− n0)AP0(∞+)− 2(t− t0)c1(1)

then yields

µ1(n, t) =E1


1−
(

E2−E1
E2−E0

)
E0
E1

sn2
[
2K(k)δ1+2(n−n0)F

((
E3−E1
E3−E0

)1/2
,k
)
+2C−1(t−t0)

]ff
×

×


1−
(

E2−E1
E2−E0

)
sn2
[
2K(k)δ1+2(n−n0)F

((
E3−E1
E3−E0

)1/2
,k
)
+2C−1(t−t0)

]ff−1

,(C.40)

where we abbreviated

(C.41) AP0(µ̂1(n0, t0)) =
(
−δ1 +

τ1,1

2

)
mod (L1)

and

(C.42) sn(w) = z, w =
∫ z

0

dx

[(1− x2)(1− k2x2)]1/2
= F (z, k).

The corresponding sheet of µ̂1(n, t) can be read off the sign of sn
[
2K(k)δ1+...

]
.

Finally we recall that

(C.43) θ(z) = ϑ3(z) =
∑
n∈Z

exp[2πinz + πiτ1,1n
2].

The results (C.28)–(C.42) now enable one to express all objects like a1(n, t), b1(n, t),
a2,±(n, t), b2,±(n, t), ρ±(n, t), (for r = 0) in terms of the quantities (C.22)–(C.27),
(C.42), and (C.43). We omit further details at this point.
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Math. Phys. 151 (1993), 589–605.
54. O. Knill, Renormalization of random Jacobi operators, Commun. Math. Phys. 164 (1993),

195–215.

55. A. Krazer, Lehrbuch der Thetafunktionen, Chelsea Publ. Comp., New York, 1970.

56. I. M. Krichever, Algebraic curves and non-linear difference equations, Russian Math. Surv.
33:4 (1978), 255–256.

57. I. M. Krichever, The Peierls model , Funct. Anal. Appl. 16 (1982), 248–263.

58. I. M. Krichever, Nonlinear equations and elliptic curves, Revs. Sci. Tech. 23 (1983), 51–90.
59. T. Kriecherbauer, Forced lattice vibrations, Ph.D. Thesis, Courant Institute, NYU, 1994.
60. B. A. Kupershmidt, Discrete Lax equations and differential-difference calculus, Astérisque
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74. R. Narasimhan, Compact Riemann Surfaces, Birkhäuser, Basel, 1992.
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