LOCAL CONSERVATION LAWS AND THE HAMILTONIAN
FORMALISM FOR THE ABLOWITZ-LADIK HIERARCHY

FRITZ GESZTESY, HELGE HOLDEN, JOHANNA MICHOR, AND GERALD TESCHL

ABSTRACT. We derive a systematic and recursive approach to local conserva-
tion laws and the Hamiltonian formalism for the Ablowitz-Ladik (AL) hier-
archy. Our methods rely on a recursive approach to the AL hierarchy using
Laurent polynomials and on asymptotic expansions of the Green’s function of
the AL Lax operator, a five-diagonal finite difference operator.

1. INTRODUCTION

The principal aim of this paper is to provide a systematic and recursive approach
to local conservation laws and the Hamiltonian formalism for the Ablowitz—Ladik
(AL) hierarchy of integrable differential-difference equations.

Consider sequences {a(n,t), 3(n,t)}nez € (*(Z) satisfying some additional as-
sumptions to be specified later, parametrized by the deformation (time) parameter
t € R, that are solutions of the Ablowitz—Ladik equations

—ioy — (1 —af)(a™ +at) + 2« ~0 (1.1)
—ife+ (L—ap)(B~ +pF)—28) '
Here ¢* denote shifts, that is, ¢t(n) = c(n £ 1), n € Z. Then clearly
0y ot (nt)B(n,t) =0, Y _ a(n, )BT (n,t) =0. (1.2)
nez neZ

Indeed, one can show the existence of an infinite sequence {p; + }jen of polynomials
of a, 8 and certain shifts thereof, with the property that the lattice sum is time-
independent,

0 pj+(nt)=0, jeN. (1.3)
neL
This result is obtained by deriving local conservation laws of the type
Opjx + (ST 1) ;2 =0, jEN, (1.4)

for certain polynomials J; + of «, 3 and certain shifts thereof. The polynomials
Jj,+ will be constructed via an explicit recursion relation. For a detailed discussion
of these results we refer to Theorem 57 and Remarks 5.8 and
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The above analysis extends to the full Ablowitz—Ladik hierarchy as follows. The
pth equation, p = (p_,p;) € N§ (where Ny = NU{0}), in the AL hierarchy is given
by

_Zatp (gPJr ++ gp , ) + fp+—1,+ - p__—l,—) -0
_Zﬁtp + ﬁ(gp+ —+ + gp s ) hpf—l,— + h]?Jr—l,-'r

tg €R, b= (p—ap-i-) € Ng)
where fo 1, g+, and hy + are carefully designed polynomial expressions of «, 5 and
certain shifts thereof. Recursively, they are given by (2.5)—(2.12). On each level
in the recursion an arbitrary constant c¢ 4+ € C is introduced. In the homogeneous
case, where all these constants 2 { € N, are set equal to zero, a hat ~ is added in
the notation, that is, fg +,00,+, he +, etc., denote the corresponding homogeneous

ALyl §) = < (1.5)

quantities. The homogeneous coefﬁments fg +, 00,4+, hz + can also be expressed ex-
plicitly in terms of appropriate matrlx elements of powers of the AL Lax finite

difference expression L defined in , (13-5)) and the finite difference expressions
D and F in (3.14)), as described in Lemma The conserved densities p; + are
independent of the equation in the hierarchy Whlle the currents J, ; + depend on

p; thus one finds (cf. Theorem [5.7)
O pjx+ (ST =1 Jpj+ =0, t,€R, jEN, peNg. (1.6)

For a, B € £1(Z) it then follows that

i ijint =0, tp,ER, jEN, peN. (1.7)
P pez
By showing that p; + equals g; + up to a first-order difference expression (cf. Lemma
[4.4), and by investigating the time-dependence of v = 1 — a3, one concludes (cf.
Remark m that

dt Zln (n,tp)) =0, dt Zg]int)—O tp €ER, jEN, pGN (1.8)
P nez D pez
represent the two infinite sequences of AL conservation laws. Our approach to
is based on a careful analysis of asymptotic expansions of the Green’s function (as
the spectral parameter tends to zero and to infinity) for the operator realization L
in ¢2(Z) corresponding to the Lax difference expression L in (3.3), (3.5).
In addition, we provide a detailed study of the Hamiltonian formalism for the
AL hierarchy. In particular, the pth equation in the AL hierarchy can be written
s (cf. Theorem [6.5))

AL, (o, ) = (:igt > +DVH, =0, peN2, (1.9)

where the Hamiltonians #,, are given by

Pt p-
Hg = Z Cp+—€,+Hf,+ + Zcpf—[,—H&— + C£H07 p= (p—ap-‘r) € Nga (110)
(=1 =1

Ho = In(y(n)), = ngi +(n), p:€N. (1.11)

nez nEZ
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Here D = (1 —af) (° §). Furthermore, we show that any H, is conserved by the
Hamiltonian flows in (L.9) (cf. Theorem [6.6)), that is,
dH,
dt,

=0, preN;. (1.12)

Moreover, for general sequences «, § (i.e., not assuming that they satisfy an equa-
tion in the AL hierarchy), we show in Theorem that

{ﬁg» ﬁﬁ} =0, pre N(2)7 (1.13)

for a suitably defined Poisson bracket {-, -} (see (6.16)), that is, H, and H, are
in involution for all p,r € N3.

The Ablowitz-Ladik hierarchy has been extensively discussed in the completely
integrable system literature (cf., e.g., [B]-[0], [1], [2| Sect. 3.2.2], [7, Ch. 3], [12],
[13], [34], [36], [37], [38], [41], [45], [47], [48] and the references cited therein) and
in recent years especially due to its close connections with the theory of orthogo-
nal polynomials, a field that underwent a remarkable resurgency in recent years (cf.
[42], [43], [44] and the literature quoted therein). Rather than repeating some of the
AL hierarchy history and its relevance to the theory of orthogonal polynomials at
this place, we refer to the detailed introductions of [25], [26], [27] and the extensive
bibliography listed therein. Here we just mention references intimately connected
with the topics discussed in this paper: Infinitely many conservation laws are dis-
cussed, for instance, by Ablowitz and Ladik [4], Ablowitz, Prinari, and Trubatch
[, Ch. 3], Ding, Sun, and Xu [I4], Zhang and Chen [50], and Zhang, Ning, Bi,
and Chen [52]; the bi-Hamiltonian structure of the AL hierarchy is considered by
Ercolani and Lozano [I5], Hydon [30], and Lozano [33], multi-Hamiltonian struc-
tures for the defocusing AL hierarchy were studied by Gekhtman and Nenciu [I8],
Zeng and Rauch-Wojciechowski [49], and Zhang and Chen [51]; Poisson brackets
for orthogonal polynomials on the unit circle relevant to the case of the defocusing
AL hierarchy (where 8 = @) have been studied by Cantero and Simon [10], Killip
and Nenciu [3I], and Nenciu [39]; Lenard recursions and Hamiltonian structures
were discussed in Geng and Dai [19] and Geng, Dai, and Zhu [20].

Next we briefly describe the structure of this paper: Section [2]recalls the recursive
construction of the AL hierarchy as discussed in detail in [25] (see also [26], [27]). In
Section [3| we introduce the Lax pair for the AL hierarchy and prove its equivalence
with the corresponding zero-curvature formulation. These results are new. In
Section |4 we discuss the Green’s function of the Lax operator L and study its
asymptotic expansions as the spectral parameter tends to zero and infinity. As a
direct consequence of these asymptotic expansions, local conservation laws are then
derived in Section Bl Our final Section [6] then introduces the basics of variational
derivatives and provides a detailed derivation of the Hamiltonian formalism for the
AL hierarchy.

Finally, we emphasize that our recursive and systematic approach to local con-
servation laws of the Ablowitz—Ladik hierarchy appears to be new. Moreover, our
treatment of Poisson brackets and variational derivatives, and their connections
with the diagonal Green’s function of the underlying Lax operator, now puts the
AL hierarchy on precisely the same level as the Toda and KdV hierarchy with re-
spect to this particular aspect of the Hamiltonian formalism (cf. [22, Ch. 1], [23]
Ch. 1)).
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2. THE ABLOWITZ—LADIK HIERARCHY IN A NUTSHELL

In this section we summarize the construction of the Ablowitz—Ladik hierar-
chy employing a Laurent polynomial recursion formalism and derive the associ-
ated sequence of Ablowitz—Ladik zero-curvature pairs. Moreover, we discuss the
Burchnall-Chaundy Laurent polynomial in connection with the stationary Ablo-
witz—Ladik hierarchy and the underlying hyperelliptic curve. For a detailed treat-
ment of this material we refer to [23], [25].

We denote by CZ the set of complex-valued sequences indexed by Z.

Throughout this section we suppose the following hypothesis.

Hypothesis 2.1. In the stationary case we assume that «, B satisfy
a,BeCE  an)p(n) ¢ {0,1}, ne€Z. (2.1)
In the time-dependent case we assume that o, B satisfy
al-,t),8(-,t) eCE teR, a(n,-),B(n,-)eC*R), necz,

a(n,t)B(n,t) ¢ {0,1}, (n,t) € Z x R. (2:2)

We denote by S* the shift operators acting on complex-valued sequences f =
{f(n)}nez € C¥ according to

(S£f)(n) = f(n+1), neZ (2.3)
Moreover, we will frequently use the notation
fE=5%f, fecCk (2.4)

To construct the Ablowitz—Ladik hierarchy one typically introduces appropriate
zero-curvature pairs of 2 x 2 matrices, denoted by U(z) and V,(z), p € N§ (with
z € C\ {0} a certain spectral parameter to be discussed later), defined recursively
in the following. We take the shortest route to the construction of V,, and hence
to that of the Ablowitz Ladik hierarchy by starting from the recursion relation

* below.

Define sequences {fo.+ }rengs {9e,4 teen,, and {he + }ren, recursively by

9o+ = 30+, fo+ =—cora’, hoy =coB, (2.5)

9e+14 — Ypp1,+ = hy  + Bfey, £ €Ny, (2.6)

foor 4 = Jer —gerr,+ + 9041 1), €N, (2.7)

hepr4 =l + B(ges1,+ + 9pp1.4)s £ € No, (2.8)

and

go,— = co—, fo— =co—, ho_=—co_p7T, (2.9)

Got1,— — Gpyq, = hy— + Bf[ﬁ, ? € Ng, (2.10)

ferr,— = f,_+ a(ges1,— + ge_+1,—)a £ € Ny, (2.11)

by - =he— —B(ges1,- + 9,1, ), £ €N (2.12)

Here cg,+ € C are given constants. For later use we also introduce

f-1,2=h-14+=0. (2.13)
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Remark 2.2. The sequences {f¢+ }een,, {90+ Feeny, and {he 4 }een, can be com-
puted recursively as follows: Assume that f; 4, ge+, and he ; are known. Equation
(2.6)) is a first-order difference equation in ge+q 4 that can be solved directly and
yields a local lattice function that is determined up to a new constant denoted by
co+1,+ € C. Relations (2.7) and (2.8) then determine fy4q1 4+ and heyi 4+, etc. The
sequences { fe,— }eeny, {90,— Feeny, and {he_}een, are determined similarly.
Upon setting
vy=1-ap, (2.14)

one explicitly obtains

for =cor(=a®),  fie=cos(~ V+0€++ +(a)?B) + e1 4 (—a™),

Jo+ = 3C04+, G4 =cot(—atB)+Lery,

hot =co+B, hiy =co4(¥B87 —atB%) + 4B,

fo-=co—a, fi-= (704 - 0425+) +c1,-a

go,— = 3Co,—, g1,— = Co,—(—aﬁ+) +3c1,-,

ho,— =co—(=B%), hi—=co—(—~"BTT + a(ﬂ+)2) +e1,-(—=B7), ete
Here {c¢,+ }¢en denote summation Constants which naturally arise when solving the

difference equations for gy + in , - Subsequently7 it will also be useful to
work with the corresponding homogeneous coefficients fg +, §e,+, and h( +, defined

(2.15)

by the vanishing of all summation constants c; 4+ for k = 1,...,¢, and choosing
Co,+ = 17
fo,+ =—a’, fo,f =q, fz,i = fo,tlco1=1,¢; 1=0,j=1,...c,, LEN, (2.16)
Jot =3, 0o+ =Gotleos=1,c;1=04=1,..00 LEN, (2.17)
ho+ =B, ho—=—B", hit=hitlei=1,c,:=0j=1...0y (EN. (218

By induction one infers that

fox = Z lek,ifk,ia o+ = Zcéfk,igk,iy he+ = Z Céfk,iilk,i- (2.19)

In a slight abuse of notation we will occasionally stress the dependence of fy +, g +,
and hy+ on a, 8 by writing f + (e, 8), ge.+(a, 8), and he +(a, B).

One can show (cf. [25]) that all homogeneous elements fe 4, e+, and he 4
¢ € Ny, are polynomials in «a, 5, and some of their shifts.

Remark 2.3. As an efficient tool to distinguish between nonhomogeneous and
homogeneous quantities fo +, ge+, he+, and f[ +, Je+, hg +, respectively, we now
introduce the notion of degree as follows. Denote

(SHr, r=>o0,

(5 reo "€ Z, (2.20)

fO =801 f={f(W}nez eC* SV = {

and define
deg (a(r)) =r, deg (6(T)) =-r, rez. (2.21)
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This implies
deg (fe(rl) =C0+1+4r deg ( Az(r_)) =—{(+r, deg (Qg) ) = &/, (2.22)
deg (ﬁy}r) ={0—r, deg (ﬁy)_) =—¢—-1—r, (eNy, reZ.

Alternatively the homogeneous coefficients can be computed directly via the
following nonlinear recursion relations:

Lemma 2.4. The homogeneous quantities fz’i, 9o+, ]Alg’i are uniquely defined by
the following recursion relations:

. 1 N .
9o+ = §a f0,+ = —O[+, h0,+ = ﬁ7

1 l
Gie14 = Z fi—k+hi 4+ — Z§z+1fk,+§k,+7 (2.23)
k=0 k=1

fljrl,Jr = fi+— a(§l+1,+ + gl_Jrl,Jr)’
hovr4 = hy + BG4+ + 910 1)

and

N .
go,— = 57 fO,— = Q, hO,— = 7ﬁ+a

! I
G- =Y frokhe = G-k -Gk (2.24)
k=0 k=1 '

Jrr—=fi_ i — + 9542 ),

s

_Hta
iy =hi— =BG + G-

We also note the following useful result (cf. [25]): Assuming (2.1]), we find
9o+ — 9o =ahe +Bf,, € €Ny,
ge— —gp_ =ahy_+Bfe—, €Ny

Moreover, we record the following symmetries,

(2.25)

f@,:t(c(),:ta «, /8) = il’f,¥(co,3F7 ﬂa Oé), g@,:l:(co,:inavﬂ) = ge,iF(CO,3F7ﬂ7O‘)a le I\IO'

(2.26)
Next we define the 2 x 2 zero-curvature matrices

z o«

U(z) = (zﬂ 1> (2.27)
and

G,(z) —F,(2)

Vo(z) =il 2 2 , peNZ, (2.28)
p (Hp (2) —K,(2) =0

for appropriate Laurent polynomials F,(z), Gp(2), Hp(z), and K,(z) in the spectral
parameter z € C\ {0} to be determined shortly. By postulating the stationary zero-
curvature relation,

0=UV, -V, (2.29)

one concludes that (2.29)) is equivalent to the following relations
2(G, = Gp) +2BF, + aH, =0, (2.30)
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zBF, +aH, — K, + K, =0, (2.31)
—Fp+2F, +a(G, + K,) =0, (2.32)
28(G, + Kp) —zHp, + H, =0. (2.33)

In order to make the connection between the zero-curvature formalism and the
recursion relations (2.5)(2.12), we now define Laurent polynomials Fy,, G, Hp,

and K, p = (p—:p+) € NG, bﬁj 7

p— py—1

Fg(z) = Z JCIL—Z,—Z_Z + Z fp+—1—€,+zev (234)
=1 £=0
P P

GQ(Z) = ngf—f,—z_e + ng+—f,+zea (235)
=1 £=0
p——1 D+

Hy(z) = hp 12+ hp, 042", (2.36)
£=0 =1

p- P+
Kp(z) = ng__gy_z*e + ng+_g7+z€ =Gp(2) + Gp_,— — Gpy -+ (2.37)
=0 =1

The corresponding homogeneous quantities are defined by (£ € Ny)

~

£ -1
FO,:F(Z) =0, Fé,—(z) = Z —k,—z_ka F&_;,_(Z) = Z fe—l—k,-‘r'zka
k=0

k=1
R R ¢
GO,—(Z) = 07 GE,—(Z) = g@—k,—zika
k=1
R R ¢
Gor(z) =5, Goi(2)=> dr+7",
k=0
R ) 1 ) . (2.38)
Ho(2) =0, He (2)=> hiyn-z% Hyi(z)=> hisz",
k=0 k=1
~ ~ ¢
Ko (2)=15, Ko (2)=> ge-k-2"=GCe(2)+gu,
k=0

The stationary zero-curvature relation (2.29)), 0 = U Vo— V;‘U , is then equivalent
to B

—algpy++ 9 )t fpi-1+—fp -1 =0, (2.39)
5(9;+,+ + gp_,—) + h;+71,+ —hp_—1,-=0. (2.40)

Un this paper, a sum is interpreted as zero whenever the upper limit in the sum is strictly less
than its lower limit.
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Thus, varying p+ € Np, equations (2.39) and (2.40) give rise to the stationary
Ablowitz—Ladik (AL) hierarchy which we introduce as follows

—py+ + Gp_ ) T Soi—14 — So_ 1 - 2
s-AL 04,5:( o L St =757 1) =0, peNj;. (241

p(@f) 5(9p+,+ +gp_ )+ by 14 —hp_—1,- - o (241)
Explicitly (recalling v = 1 — af and taking p_ = p, for simplicity),

—C «
s-AL(,0)(a, B) = ( c(éo(;()),)b’ ) =0,

—y(co,—a~ +copa™) —c 1)a>
s-AL a,fB) = o ’ ’ =0,
(1,1)( B) ( v(co1 B +Co77ﬁ+) +C(1,1)5
—y(co 4™y T+ co,—a”"y — a(co 4t BT + co—a” BT)
—Bleo,—(a7)* + co(aF)?))
Y(co,~ BTy + o877 = Bleorat B 4 co—a™ 1)
—a(co+(B7)? + o~ (B1)%))
—(c1,—a” +erqpat) — ¢ 2)a>
+ T 2%) — 0, ete, 2.42
( Y(e1 48~ +c1,-B1) + )8 (2.42)
represent the first few equations of the stationary Ablowitz—Ladik hierarchy. Here
we introduced

s-AL22)(, B) =

cp = (cp_—+cp.+)/2, p+ €Np. (2.43)
By definition, the set of solutions of , with p ranging in NZ and ¢, 4+ € C,
¢ € Ny, represents the class of algebro-geometric Ablowitz-Ladik solutions.

Using , one can show (cf. [25]) that g, = g,_ _ up to a lattice constant
which can be set equal to zero without loss of generality. Thus, we will henceforth
assume that

Gpit = Ip_,—> (2.44)
which in turn implies that
K,=G, (2.45)
and hence renders V,, in traceless in the stationary context. (We note
that equations 7and cease to be valid in the time-dependent context,
though.)

Next we turn to the time-dependent Ablowitz—Ladik hierarchy. For that pur-
pose the coefficients o and 3 are now considered as functions of both the lattice
point and time. For each equation in the hierarchy, that is, for each p, we in-
troduce a deformation (time) parameter ¢, € R in «, 5, replacing a(n), 5(n) by

a(n,tp), B(n,tp). Moreover, the definitions ©27), @2-29), and [2:34)—(2.37) of U, Vo,
and Fp, Gp, Hp, Kp, respectively, still apply. Imposing the zero-curvature relation

Up, +UVy = V,fU =0, peNj, (2.46)

then results in the equations
oztgzi(ng +a(Gp+ K,) - F,), (
B, = —i(B(Gy + Kp) — Hy+ 27" H,y ), (2.48
=2(G, — Gp) +2BF, + aH,, (
(

= 2fF, +al, + K, — K,.

oS O I
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Varying p € Nj, the collection of evolution equations

—toy  — a(gp+,+ + 9, —) + fp e >
AL (o, )= .. r P ¥ P-—L=) =9
ol 6) (—zﬂtp BG4 Gy )~y 1y

tp €R, pe NG,

(2.51)

then defines the time-dependent Ablowitz—Ladik hierarchy. Explicitly, taking p_ =
p4 for simplicity,

_ _iatw,o) —C0,00) _
AL(O,O) (avﬁ) - <_iﬂt<o,o) 4 C(O,O)ﬁ) - 01

it ,, — V(o0 +eoaT) —capa
AL = [ tam ’ ’ N
a1 (a, B) <_13t(111) +y(co4+B8~ +co—B1) +can)p 0,
AL(2,2)(a7ﬁ)

—iovy o —Y(corat Ty T+ —aTyT —alco BT + o fT)
—Bleo~(a7)? +co+(a)?))

Bt + V(OB +co By = Bleo BT +co—a” fT)
—afco+(87)* +co-(8)?))

—y(c1,—a” +erpat) — ¢ 2)a>
+ T ’ ’ =0, etc., 2.52
< Y(e1,4B87 +c1,-BF) + b (2:52)

represent the first few equations of the time-dependent Ablowitz—Ladik hierarchy.
Here we recall the definition of ¢, in (2.43)).

By ([2.51), (2.6), and (2.10), the time derivative of v = 1 — a3 is given by
Yy =V (Gpst = G 1) = (Gpo = — 95 ) (2.53)
or alternatively, by

Y, = i’y(azing —aHy, + [F) — ZﬂFé), (2.54)

wsing @77 (50

Remark 2.5. (i) The special choices § = £@, ¢+ = 1 lead to the discrete
nonlinear Schrodinger hierarchy. In particular, choosing c¢(; 1) = —2 yields the
discrete nonlinear Schrédinger equation in its usual form (see, e.g., [7, Ch. 3] and
the references cited therein), with

—ioy — (1 F o) (e +at) +2a =0, (2.55)
the first nonlinear element of the hierarchy. The choice 8 = @ is called the defocus-
ing case, § = —a represents the focusing case of the discrete nonlinear Schrédinger
hierarchy.

(#4) The alternative choice § =@, ¢o+ = Fi, leads to the hierarchy of Schur flows.
In particular, choosing c(;,1) = 0 yields

ar— (1 —]a>)(at —a")=0 (2.56)

as the first nonlinear element of this hierarchy (cf. [9], [16], [17], [29], [35], [44)).
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3. LAX PAIRS FOR THE AL HIERARCHY

In this section we introduce Lax pairs for the AL hierarchy and prove the equiv-
alence of the zero-curvature and Lax representation. This result is new.

Throughout this section we suppose Hypothesw 23] We start by relating the
homogeneous coefficients fg +, o+, and hei to certain matrix elements of L,
where L will later be identified as the Lax difference expression associated with
the Ablowitz—Ladik hierarchy. For this purpose it is useful to introduce the stan-
dard basis {6, }mez in £2(Z) by

1, m=n
5771: 6mnn ; EZ, 6mn: ’ ’ 3.1
{0m.ntnez, m ; {0’ m# n. (3.1)
The scalar product in £2(Z), denoted by (-, -), is defined by
9)=>_ fn)g(n), f.g¢el). (3.2)
neZ

In the standard basis just defined, we introduce the difference expression L by

0 —a(0)p(=1) =B(=1)a(0) —a(1)p(0) p(0)p(1) O
L — p(=1)p(0)  B(=1)p(0) —B(0)a(l) B(0)p(1) 0 (3.3)
0 —a(2)p(1) —B(1)a(2) —a(3)p(2) p(2)p(3) :
0 p(W)p(2)  BL)p(2) —B(2)a(3) B(2)p(3) 0

= (= B)a(m + 1)dn
+ (/B(n - 1)p(n)60dd(n) - a(” + 1)p(n)6even(n))6m7n—1
+ (B(n)p<n + 1)50dd(n) - Oz(’I'L + 2);0<n + 1>6even(n))6m,n+1 (34)

+ ,O(n + 1) (7’L + 2)6even( )6m,n+2 + p(n - 1)p(n)60dd(n)6m,n*2)

m,neZ

= p_péeven ST~ + (ﬂ_p(seven - O4—~_I()6odd)5’_ - 604+

+ <5P+ 6even - 04++P+ 60dd)S+ + P+P++ 6Odd S++, (35)

where deven and do.qq denote the characteristic functions of the even and odd inte-
gers,

5even = Xaz> 5odd =1- 6even = Xozy1- (36)
In particular, terms of the form —g(n)a(n+1) represent the diagonal (n,n)-entries,
n € Z, in the infinite matrix . In addition, we used the abbreviation

p=7""=(1—-ap)? (3.7)
Next, we introduce the unitary operator Uz in £2(Z) by
Us = (6(0)0mn) (pnyezes €M) €{1, -1}, n€Z, (3.8)

and the sequence € = {(n)}nez € CZ by
e(n) =£&(n—1)&(n), n € Z. (3.9)
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Assuming «, 8 € £°°(Z), a straightforward computation then shows that
L.=U:LU:, (3.10)

where L. is associated with the sequences a. = «, B = 3, and p. = €p, and L
and L. are the bounded operator realizations of L and L. in ¢%(Z), respectively.
Moreover, the recursion formalism in f yields coeflicients which are poly-
nomials in «, 8 and some of their shifts and hence depends only quadratically on
p. As a result, the choice of square root of p(n), n € Z, in is immaterial when
introducing the AL hierarchy via the Lax equations .

The half-lattice (i.e., semi-infinite) version of L was recently rediscovered by
Cantero, Moral, and Veldzquez [II] in the special case where 8 = @ (see also
Simon [42], [43] who coined the term CMV matrix in this context). The matrix
representation of L~! is then obtained from that of L in by taking the formal
adjoint of L and subsequently exchanging o and

L7 = (= amB(n+ 1o + (a(n = 1)p(n)deven(n) (3.11)
= B(n + 1)p(n)d0dd (1)) 6.1
+ (@(n)p(n + 1)deven(n) — B(n + 2)p(n +1)80da (1)) G nt1
+ p(n+ D)p(n + 2)d0aa ()02 + (0 = 1)p(1)even (1)mn—2)
=p pooaaS™ + (" poad — B pleven)S” —af”
+ (ap™ Soad — BT PT Seven)ST 4+ pTpT T Seven ST (3.12)

L and L~ define bounded operators in ¢?(Z) if a and 3 are bounded sequences.
However, this is of no importance in the context of Lemma below as we only
apply the five-diagonal matrices L and L' to basis vectors of the type d,,.

Next, we discuss a useful factorization of L. For this purpose we introduce the
sequence of 2 x 2 matrices 0(n), n € Z, by

f(n) = (_a(”) p(”)> . nez, (3.13)

-1

m,n€”z

p(n)  B(n)
and two difference expressions D and E by their matrix representations in the

standard basis of 1%(Z)

D_ " 0(2n-2) " o(2n—1)

O 0(2n) , E= O 6(2n 1) , (3.14)
where
D(@2n—1,2n—-1) D(2n—1,2n)\ _
(T ) R (3.15)
E(2n,2n) E@2n,2n+1) \ _ :
<E(2n+1,2n) E@2n+1,2n+1) =0(2n+1), neZ
Then L can be factorized into
L=DEFE. (3.16)

Explicitly, D and E are given by
D = paeven ST — Oé+ 6Odd +ﬁ5even +,0+ 60dd S+; (317)



12 F. GESZTESY, H. HOLDEN, J. MICHOR, AND G. TESCHL

E = p0oad S~ + Bboda — & Seven + pT Geven ST, (3.18)

and their inverses are of the form
D™ = pbeven ST = BT Sodd + @ Oeven + pT oaa ST, (3.19)
E™' = poaa 5™ + aboad — B Seven + pT Geven ST (3.20)

The next result details the connections between L and the recursion coefficients
fe+, 9o+, and hy +.

Lemma 3.1. Letn € Z. Then the homogeneous coefficients {fgi}geNo, {Ge,+ }een,
and {he + }een, satisfy the following relations:

fos(n) = (8, EL'6,)00ven(n) 4 (8, L*D6,)00aa(n), £ € Ny,
fo—(n) = (8,, D7L76,)beven(n) + (0, LEE716,)00aa(n), £ € No,
Go+ =1/2, Gra(n)=(6,, LF6,), (€N, (3.21)
e (n) = (8, L' D8,)0even() + (8, EL 6,)00aa(n), £ € Ny,
he—(n) = (8, L E716,)0even (1) + (8, D7YL746,)00aa(n) £ € No.

Proof. Using (13.16)—(3.20|) we show that the sequences defined in (3.21]) satisfy the
recursion relations of Lemma, respectively relation (2.6). For n even,

go+(n) — Ge.s(n — 1) = (64, DEL*16,,) — (8—1, DEL* "6, _1)
= (D*6,, EL*"%6,)) — (D*6,,_1, EL*"'6,_1)
= B(n)(0n, EL*"16,) + p(n)(8p_1, EL*16,) (3.22)
+ a(n)(6p_1, EL*"16,_1) — p(n)(6,, EL* 716, _1)
= B(n) fe-1,+(n) + a(n)he-1,+(n = 1),
since (ELY)T = EL* by , . Moreover,
fo+(n) = (80, EL*8,) = (E*8,, L5,
= —a(n+1)(6,, L*6,) + p(n 4+ 1)(6ny1, L°5,)
+a(n+1)(Gpy1, L6ni1) — a(n +1)(6py1, L6011)
= ferr(n+1) —am+1)(ger(n+ 1)+ ger(n), (3:23)
he(n) = (8n, L*D6,) = B(n)(8n, L6,) + p(n) (6, L'6n—1)
+ B(n)(6n—-1, L 6n-1) — B(n)(0n—1, L 6p—1)
= h1, 4 (0= 1)+ B(n)(Ge 1 (n) + G4 (n = 1)),
that is, the coefficients satisfy . The remaining cases follow analogously. [

Finally, we derive an explicit expression for the Lax pair for the Ablowitz—Ladik
hierarchy, but first we need some notation. Let T' be a bounded operator in ¢?(Z).
Given the standard basis (3.1)) in ¢2(Z), we represent T by

T = (T(m,n)) T(m,n) = (6, T y), (m,n) € Z2. (3.24)

(m,n)ez?’

Actually, for our purpose below, it is sufficient that 7" is an N-diagonal matrix for
some N € N. Moreover, we introduce the upper and lower triangular parts T4 of
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T by
B ) T(m,n), £(n—-m)>0,
Ty = (T:I:(man))(mﬁn)ezzv T:t(ma TL) - {O, otherwise. (325)
Next, consider the finite difference expression P, defined by
, . B B ;
Py = Zcm et ( 4 = (L) —*ZCP7,(, 94— (L Z>7)_§Cde7
p € NG, (3.26)
with L given by (3.3) and @ denoting the doubly infinite diagonal matrix
Qu = ((_1)’65,6,[)&[62. (3.27)

Before we prove that (L, P,) is indeed the Lax pair for the Ablowitz-Ladik
hierarchy, we derive one more representation of P, in terms of L.

We denote by £o(Z) the set of complex-valued sequences of compact support. If R
denotes a finite difference expression, then 1 is called a weak solution of Ry = z1),
for some z € C, if the relation holds pointwise for each lattice point, that is, if
((R—2)¢)(n) =0 for all n € Z.

Lemma 3.2. Let ¢ € (§°(Z). Then the difference expression P, defined in (3.26)
acts on ¥ by B

p+—1

() ( pr,_z_ EL0)0) = 3 fyesoae 0 EL )
£ e L)) S g e (W) (LD)()
/=1 /=1
+%(9p ~() +9p, +(n ))w(n))%dd(n) (3.28)

+i< S by i ()DL ) ) + 2ttt (M(DT L))

=S 0o D)) =3 g ()T ()
/=1 /=1
1

- 5 (gpﬂ—(n) + gp+,+(n))’¢)(n)) §even(n)7 n € 2.

In addition, if u is a weak solution of Lu(z) = zu(z), then
(Pgu(z))(n)

= ( — iFB(z, n)(Eu(z))(n) + %’(Gg(z7 n) + Kg(z, n))u(z, n)) Joda(n)
+ <in(z,n)(D1u(z))(n) — %(Gg(z,n) + Kp(z,n))u(z,n)>5even(n),
nez, (3.29)

in the weak sense.
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Proof. We consider the case where n is even and use induction on p = (p—,py).
The case n odd is analogous. For p = (0,0), the formulas (3.28)) and (3.26) match.

Denoting by ﬁp the corresponding homogeneous operator where all summation

constants ¢, +, k =1,...,p4, vanish, we have to show that
= e o _ 1, .
iPy=iBf L —hy, 14D 'L+ §(gp+71,+L + Gp. 1)

1 (3.30)

2
where ﬁji correspond to the powers of L in (3.26)), ﬁji = 2((L*)4 —(L*7)4). This

can be done upon considering (8, ﬁpén) and making appropriate case distinctions

m=mn,m>n, and m < n.
Using (3.4), (3-1T), (3.16)(3-20), (325)), and Lemma[3.1] one verifies for instance
in the case m = n,

+ iﬁpi—lL_l - ﬁp771,7D—1 + (gpfflva_l +gp7ﬁ)a

(On, 0P 0,)
= (6,,iP}

p+—1

Léy) 4+ a(n+1)hy, —1,4+(n)

+ 5 (e (1) — aln + 1By, 1.4 (1)

= (5717 %((Leril)Jr - (Leril)*) (04++P+5n71 + aJrB(sn + 04+P5n+1 - P95n+2)>

- 1

+an+ Dy, 14 (1) + 5 (G, (2) = aln+ 1B, 1,4(1)

1 1
- _ia(n + 1)p(n) (8, LP* 100 1) + 504(71 +2)p(n 4+ 1)(8ny L7+ 641)

1 .
= 5P+ D)p(n+2)(6n, L7 10ng) + a(n + Dhy, 1,4.(n)

+ 2 (B, 4 (0) — aln + DBy, 1.4 ()

= —j(n + 1)p(n) (6, LP+ 16, _1)
—a(n+1)B8(n)gy, 1,4+ (n) + aln+ Dy, 11(n)
=0, (3.31)
since by Lemma [B.1
Jps+(n) = (6, LP* L3y,
hp, —1,4(n) = (8, LP*71D6,) = B(n)(8,, LP+718,) + p(n) (8n, LP+ 16, 1).
Similarly,
(80, iPy 8,)
1

= (6n,iPy  L7'6,) — a(n)hy_ 1 _(n) + g(ﬁp_,f(”) —a(n)B(n+1)g, —1,-(n))
= <5n, %((Llip_)-‘r — (L)) (pt e 2 + pT b1 — aBT O + 0<P5n+1)>

—a()hy 1)+ 5 (G~ (n) — 0()B(n+ 1)y 1 (m)
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= == V()G L7 8-2) = J0(0 = 1pln) (3 L5 1)
+ galmp(n+ Do L' 601) — aln)ly_ 1, ()
4580~ al)Bn+ D)y 1 ()

= a(n)p(n +1)(d,, L' P 6p41) — a(n)B(n + 1)gy_—1,—(n) — a(n)h,_—1,—(n)
=0, (3.32)
where we used Lemma and (2.12) at £ = p_ — 2 for the last equality. This

proves the case m = n. The remaining cases m > n and m < n are settled in a
similar fashion.

Equality (3.29) then follows from Lu(z) = zu(z) and (2.34)—(2.37). O

Next, we introduce the difference expression PJ by

Pl =03 et (L)) — (7))
=1 ‘ (3.33)
5o (L)) = (E1))2) = 56, Qu pEN;,

with LT = ED the difference expression associated with the transpose of the infinite
matrix (3.3) in the standard basis of ¢2(Z) and Qg denoting the doubly infinite
diagonal matrix in (3.27). Here we used

(My)" = (M), (M)T =(M")y (3.34)

for a finite difference expression M in the standard basis of £2(Z).
For later purpose in Section [5] we now mention the analog of Lemma [3.2] for the
difference expression P];'— without proof:

Lemma 3.3. Let x € (5°(Z). Then the difference expression PI;'— defined in ([3.33)
acts on x by B

p_—1

P00 =i = X e EHET) 00)
=0

=D e ()BT E T ()
£=1

3 g e M) + S e (LT ()
=1 =1
% (gp_,—(n) + 9p+,+(n))x(n)> Jodd(n) (3.35)

p+—1

=3 oo (MDLTY ()
£=0
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- 2 - —£— (ML) X)) =D gpy et (M)((LT) X)(n)
(=1 {=1

1

= 5 )+ Bt X)), 2

In addition, if x is a weak solution of LTv(z) = zv(2), then

(P;v(z)) (n)

=i (Hp(z, n)(E~(2))(n) — %(Gg(z,n) + Kp(z,n))v(z,n)>5odd(n)

+ i(Fp(z, n)(Dv(z))(n) — é(Gg(z, n) + KE(Z, n))v(z, n)) Jeven(n),
nez, (3.36)

in the weak sense.

Given these preliminaries, one can now prove the following result, the proof of
which is based on fairly tedious computations. We present them here in some detail
as these results have not appeared in print before.

Theorem 3.4. Assume Hypothesis . Then, for each p € N2, the pth stationary
Ablowitz—Ladik equation s-ALp(a, B) = 0 in (2.41) is equivalent to the vanishing of
the commutator of P, and L,

[Pp, L] = 0. (3.37)
In addition, the pth time-dependent Ablowitz—Ladik equation ALB(Q,B) =0 in
(2.51) is equivalent to the Lax commutator equations

Ly, (ty) — [Bplty), L(tp)] =0, t, €R. (3.38)

In particular, the pair of difference expressions (L,PE) represents the Lax pair
for the Ablowitz—Ladik hierarchy of nonlinear differential-difference evolution equa-
tions.

Proof. Let f € £y(Z). To curb the length of this proof we will only consider the
case n even. We apply formulas (3.28)) to compute the commutator ([P27 L]f)(n)
by rewriting D~'LY = EL~! and using (3.5)), (3.17), and (3.18)). This yields
i([Pp, LI f)(n)

P+
- (Zp_p(gp+f,+ - g;+ilq+)
(=1

p+—1

D D o e o R [ U
£=0

P+
+ <Zp(2ﬂg;+—€,+ - h;;+—€,+)
/=1
p+—1

Y (U e (6‘)2f1;14,+)>(ﬁf)(n— )
=0
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P+
+ —_
* <ZP+ (B(glbr—éﬁ- + gp+—f7+) o hp+_g,+)
(=1

p+—1

S ot e = BETEE - 6a+hp+u,+)) (L) + 1)

£=0

p++1
+ < Z (gp++1*5»+ _9;++1—é,+)
=2

P+
+ Z (04+ (5(9;D+—€,+ - 9;+_e,+) + hp+—€,+) - th;r_e,.:,_)
=1
p+—1
+ Z (ﬂ(a+)2hp+—l—€7+ - 5(P+)2 ;:71—@# - O‘+h;+1e,+)> (Lef)(n)
£=0
p_

DDV (P R R (s [0 A DI

p——£,—
=1

+ <§:P(ﬁ‘ (20, =BTy 0 ) ooy, )

{=1

S ph;_l_g,_)wf)(n )

P

) p——4,—
/=1
p_—1

-y p+hp1e,)<L-ff><n+ )
=0

p_
+ <Z (ﬁa+(gp7,g7, - g;__&_ + 04+hp77Z,7 + ﬁ+f[)+__e7_) - ﬁf;r__A_

(=1
— a+hp_74’7>
p_—1
+ Z (gpf,l,g), 9 10— — O‘h;,fke,f + a+hp1€7)> (L_Zf)(”)
£=0

1
+5 (ﬁp+ (99 —+o s+~ + g, ) f(n+1)
+B87p(9y —+9p. s+ G+ Gp ) f(n—1)
—0 P9 =+ 9yt~ Gpo— — Gpy ) [0 — 2)), (3.39)
where we added the terms
P+ P+
0== g, 1 (L) +D gy (L))
=1 =1

pr+1

=- Z 9;++17£,+(L€f>(n) + Zg;Jrfe,JrL(Lef)(n)a
=2

{=1
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0==2 st DTN 43 by gy (L)
==Y hy o (D) + oL )0 - 1))

+ Z By 1o (— @ (BN + p* (L) 0+ 1)), (3.40)

S e (T
(=1

p-—1

= (L +ng —e,-L
=0

e, @)
/=1

~Hn),
O:_ih;—*l,f(D_lL_£+1f)(n)+2h; e,—(EL éf)( )
{=1 =1
== Z By 1o (@D m) + oL ) - 1))

+ Z - ( —at (L7 ) (n) + p T (L) (n + 1)).

Next we apply the recursion relations - In addition, we also use

aThy e+ ﬁ+fp+——£,— =a’ (h;r_—l—z,— A (gp_—e,— +9p_—1,-))

+ B (fomrme- + (g gy —r-))

=9y o Gyt (3.41)
This implies,
i([Pp, L1 f)(n)
p+—1
= > 0 (Gt = G~ O Thy s = B hy iy ) (L0 =2)
=1
p+—1
+ Z (67/)(91;—@#79;;—8& a hy, ey =B ot)
=1

+ p(ﬁ_(gpir*lﬁ +g;+7 ¢ +) hii

- 0
—£, py—1—4,+ h+7f,+))(L f)(n_:l)
p+—1
+ Z (ﬁp"‘ (g;;—&-&- T 9yt a+hp+*1*4 + = B-"_f;;_ 1—¢ +)
(=1

0 (BGpe b+ Gy —04) + 1o — hpeot) ) (K )+ 1)

p+—1
- ( Z (ng_l_é"*' “Yp 14 T ah;;rflﬂr + ﬁa"‘(g;: e+ T 9pi—t +)
=1
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+
B ’pr+*1*@7+)
pt—1

+ Z at (6(_9147@# - g;+7£,+) + hP+*f,+ - h;_*_flfiﬂr)
=1

p+—1
+ Z Bat (gp, —o+ — 9;+—e,+ +ahy, 104+ 5+f;+_1—£,+)> (L' f)(n)
=0

pP—

+> o plgy =9y =B —a T, YL ) (n—2)
=1

+ > (Broy =9y e =By e Ty, )

+ 0(57(9;7_&_ + gp_;_e,_) + h;__z,_ - h;_1_e,_)> (Lief)(” -1)
p——1

+ 3 (8079 e =9yt — Ry =B,

=1
0T (BGp e+ 9y o) Fhy = hy —1men) )T+ D)

p——1

+ < > (gp—flfé-f Gy -~y )

{=1

p_
+ Z Blat (g o+ )= i)
=1

p_
+ Z Bat(gp —0,— — 9:,4,7 +athy, -+ 5+f:,7z,—)
=1

p_—1

T L (/MR e S St hpw,)) (L F)(n)
/=1

+p g0+ — 9o ) (LPH P =2)—p plahy "y +Bf, 4, )f(n—2)
+0(28 90,4 — ho ) (L) (n=1) +p((p7 )y 1 4 — (B7)fy 1) f(n—=1)
+ o (B(ad 4 + 90.4) — ho4) (LP* f)(n+1)

- P+ (B(a+hp+fl,+ + 6+fp++—1,+) - h;+—1,+)f(n +1)

+ (90,4 — 9o ) (LPH f)(n)

+ (91,4 — 914 —ahg , + Bat(goy —go.4) + T ho ) (LP*+ ) (n)
+(9p_—1,- =9y 1 —ah, = Bf_1-)f(n)

+ 8@ (9, v = o)+ o1 = [ 1) (1)

+at (BB fps—14 +ahy 1)+ hy 1 —hy g ) f(n)

— (B (g0, +90_) — Bf-1.— +aThyg )(L7" f)(n)

—(ahy 4+ Bfp. 1) (BT f(n+1)+ B pf(n—1)+p pf(n—2))

+ (8795 + 95— — B Fo) + (0 )2phs 2 ) (L= f)(n — 1)
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+ (ﬂ/fr (96 +90_ =B —aTho )+ P+ho_,—> (L7P= f)(n+1)
—ph, _y _f(n=1)=pFThy, 1 _f(n+1)
+ %(ﬁp* (99— +gp + 9~ + g, ) [(n+1)
+87p(9 —+ 9yt + 9o+ G ) f(n—1)
—p (9~ 9yt — 9o~ — Iy ) f(n - 2))
= % oot =9+ = —Gpr ) f(n—2)
+ (P(ﬁ_(gz;:# +9, ) —h, 1+ h;f—1,+>
+ ?(gpl,-k T 9 ,— — Gpyt+ — gp_ﬂ_))f(n -1
+ (5(a+(g;+,+ +9p )+ fpo1,— — f;l—lﬁr)
— @ (Bgp i + Gp ) — by 1 1)) ()

+ (,0+ (B(g;+,+ +9p —)—hp —1-+ h;+71,+)

Bp*
+T(gp+7++g;ﬂ, —gL)Jr—gpﬂ_))f(n—i—l), (3.42)
where we also used (2.25]).
Comparing coefficients finally shows that (3.38)) is equivalent to
(PP, =p p(C” +C), (3.43)
(p™ ), =p A+ap C7, (3.44)
(Bp")e, = p" B+ Bp*CT, (3.45)
(aB)i, = BAT + B, (3.46)
where
A= i(a(glbrr‘r + gpi,,f) - fp+—1,+ + f;,—l,—)’ (3'47)
B = l( - B(g;+,+ +Gp )t hy 1 — h;+—1,+)7 (3.48)
) _ _
C= 5Ot + 9~ Gyt — 9 -): (3.49)
In particular, (2.51]) implies (3.38)) since, by (2.53)),
1 _ _
Pty = 5Pt + 05— = Gyt — o) (3.50)

To prove the converse assertion (i.e., that (3.38) implies (2.51))), we argue as follows:
Rewriting (3.44) and (3.45)) using p = v/2 = (1 — af)'/? and (3.43) yields

2
1+ O‘f)% + %,Btg =A—aC,

2y
af
— 1+ —=)B, = B—BC.
2704753—&-( + 2v)ﬁtﬁ pC

(3.51)
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This linear system is uniquely solvable since its determinant equals v~' and the
solution reads

atE:A—%(ﬁA—kaB—k?yC),

5 (3.52)

B, =B — 5(5A+OZB +270).
Using (2.6) and ([2.10)) it is straightforward to check that BA+ aB +2yC = 0 which
shows that the converse assertion also holds. [l

The Ablowitz—Ladik Lax pair in the special defocusing case, where § = @, in
the finite-dimensional context, was recently discussed by Nenciu [38].

4. GREEN’S FUNCTIONS AND HIGH- AND LOW-ENERGY EXPANSIONS

In this section we discuss the Green’s function of an ¢?(Z)-realization of the
difference expression L and systematically derive high- and low-energy expansions
of solutions of an associated Riccati-type equation.

Throughout this section we make the following strengthened assumptions on the
coefficients o and (.

Hypothesis 4.1. Suppose that o, B satisfy
a,f€l®(Z), an)p(n)¢{0,1}, ne€Z. (4.1)
Given Hypothesis we introduce the ¢2(Z)-realization L of the difference ex-
pression L in by
Lf=Lf, fedom(L)="r*z), (4.2)

and similarly introduce the ¢?(Z)-realizations of the difference expression D, E,

D~! and E~! in (3.17)—(3.20) by

Df =Df, fe€dom(D)=(*2), (4.3)
Ef = Ef, fedom(E)=¢3(zZ), (4.4)
D7'f=D7'f, fedom(D7) = ¢*(z), (4.5)
E7'f=E7'f, fedom(E7") =3(2). (4.6)

The following elementary result shows that these ¢?(Z)-realizations are mean-
ingful; it will be used in the proof of Lemma [4.3] below.

Lemma 4.2. Assume Hypothesis . Then the operators lv), lv)’l,Ev, Eil, E, and
L= are bounded on 1 (Z). In addition, (i — z)71 is norm analytic with respect to
z in an open neighborhood of z = 0, and (z—z)_l =—z! (I—z_lz)_l 1s analytic

with respect to 1/z in an open neighborhood of 1/z = 0.
Proof. By Hypothesis p? =1—afB, and (3.17)-(3.20), one infers that D, E,

D=1, E=! are bounded operators on ¢?(Z) whose norms are bounded by
DI NEN DI EH] < 2l + lodleo + 18110
<201+ [lallse + 1Blloo)- (4.7)

Since by (3.16)),

v

L=DE, L'=E'D™, (4.8)
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the assertions of Lemma are evident (alternatively, one can of course invoke

and (E13)) e

To introduce the Green’s function of L, we need to digress a bit. Introducing
the transfer matrix T'(z, -) associated with L by

n)~t afn) 2 n o
)

()
, N even,

recalling that p = /2 = (1 — )1/ 2, one then verifies that (cf. (2.27))
T(ein) = Alz,n) 2 pln) U(zm)A(zin— 1)), 2 C\{0}, neZ. (410)

T(z,n) = z€C\{0}, neZ, (4.9)

Here we introduced

1/2
<Z0 1/2> n odd
A(z,n) = z e C\ {0}, neZ. (4.11)

0 1
, n even,
1 0

Next, we consider a fundamental system of solutions

Uo(z, )= @;ig ;) (4.12)
of
U()0(2) =¥4(z), ze€C\ (spec( yu{0}), (4.13)
with spec (E) denoting the spectrum of Land U given by (2.27] , such that
det(V_(2), T (z)) #0. (4.14)

The precise form of U4 will be chosen as a consequence of (4.20]) below. Introducing
in addition,

ui(zan) — n/2< - / 1) (1/)17:‘:(2,71))
(12Gm) =cs D A U EE) R
ze€C\ (spec(i) u{0}), n €z,
for some constants Cy € C\ {0}, and yield

up(2)\ _ (ux(z)
T(z) (v;::(z)) = (vi(z)> . (4.16)
Moreover, one can show (cf. [28]) that
Luy(2) = zus(z), LTvi(z) = zvs(2), (4.17)
Dvy(2) = us(z), FBus(z) = zv+(2), (4.18)

where

L=DE, L' =ED, (4.19)



CONSERVATION LAWS AND HAMILTONIANS FOR THE AL HIERARCHY 23

and hence LT represents the difference expression associated with the transpose of
the infinite matrix L (cf. (3.3))) in the standard basis of ¢2(Z). Next, we choose
U, (2) in such a manner (cf. again [28]), such that for all ng € Z,

(;LIEE: ;) € £%([ng, £00) NZ)?, 2z€C\ (spec( yu{0}). (4.20)

Since by hypothesis z € (C\spec([v/)7 (ug(z, - ),v4(z,-)) " and (u_(z, -),v_(2, -))"
are linearly independent since otherwise z would be an eigenvalue of L. This is of

course consistent with (4.14)) and (4.15)).

The Green’s function of L, the ¢%(Z)-realization of the Lax difference expression
L, is then of the form

G(z,n,n") = (6, (L — z)_lén/) (4.21)
-1
T de (40 us(z0)

w0 (10 Vo)

" v_(z,n)uy(z,n), n' <normn=n'even, ' €7,
v+(zn)u (z,n), n' >norn=n'odd,

1 (1=94(20)0 - 9-(20)

1z 94(2,0) ~ ¢_(2,0)

v_(z,n )uy(z,n), n’ <norn=n'even, ,

8 {v+( nYu_(z,n), n' >mnorn=n'odd, mn €L, (4.22)

zeC\ (spec( ) u{0}).

Introducing
¢+(z,n) = 32 iEZ n; zeC\ (spec( Ju{0}), neN, (4.23)
1,+ 9
then (4.13)) implies that ¢4 satisfy the Riccati-type equation
apLdpy — o1 + 2dx = 2P, (4.24)
and one introduces in addition,
2
=— 4.25
T 4:29)
o4 + o
_ ST 4.26
R (4.26)
204 0—
h=——"—T"—. 4.27
by — P (4.27)
Using the Riccati-type equation and its consequences,
(Q49L — d—0Z) — (¢4 — ¢) + 2(d4 — ) =0, (4.28)
(P4 0L +¢-07) — (o4 + ¢2) + 2(dy + ¢-) = 228, (4.29)
one then derives the identities
z(g7 —9) +2Bf+ah” =0, (4.30)

2Bf" +ab—g+g” =0, (4.31)
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—f4+2f" +alg+g7) =0, (4.32)
zB(g” +9)—zh+bh” =0, (4.33)
g>—fh=1. (4.34)

For the connection between f, g, and b and the Green’s function of L one finally
obtains

e < e+ - {7

g(z,n) = —22G(z,n,n) — 1, (4.35)

G(z,n,n—1), n even,

b(z,n) = =26(n)zG(z,n,n) — 2p(n)z {G(z n—1,n), nodd

illustrating the spectral theoretic content of §, g, and b.
We are particularly interested in the asymptotic expansion of ¢ in a neighbor-
hood of the points z = 0 and 1/z = 0 and turn to this topic next.

Lemma 4.3. Assume that o, 3 satisfy Hypothesis[£1l Then ¢+ have the following
convergent expansions with respect to 1/z around 1/z = 0 and with respect to z
around z = 0,

_ Zoio ¢]0’?+Zij7

¢x(2) = {2%1 - (4.36)
o ZOO:() ¢‘?7+zj7

¢£(2) = {Zg’il 2 o (4.37)

where

QSS?J,- = ﬂa ¢C1>?+ = 6773

J

= (%) — ) (652,1) 6%, JEN, (4.38)
=0
1 att
[e%e] _ oo +
-1,- = T oF $o,— = (a+)27 ’
[e3} O[++ 0 ++ d [e3} oo \+ -
Piq1,- = Tt Yi- +a ;)Gi)j_e,_(d)g,_) »J€No, (4.39)
1 a”
o _ 1 o __a
0+=5 PLe="_37
j+1
1= () )T +a" > (@9 )T, JEN, (4.40)
=0
(1),— = 7ﬁ+7

J
(;H,— =( 9,7)+ +at Z ¢?+17£,7(¢2,7)+a JjeN. (4.41)
=1
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Proof. Since

O+ = $7 (4.42)

combining Lemma (4.21)) and (4.35]) proves that ¢+ has a convergent expansion
with respect to z and 1/z in a neighborhood of z = 0 and 1/z = 0, respectively.

The explicit expansion coeflicients ¢7°, are then readily derived by making the
ansatz

2 o Yool ¢ =0 (4.43)

j=—1
Inserting (4.43) into the Riccati-type equation (4.24]) one finds
0=ag+¢r — % + 2(d+ — B) = (™ L (6% 1) + ¢i°1,i)22 +0(2), (4.44)

which yields the case distinction above and the formulas for ¢7% . The corre-
sponding expansion coefficients (b% 4 are obtained analogously by making the ansatz

o= % Xm0 #a’ =
For the record we list a few explicit expressions:
d)(o),o-l,- = /87
¢C1>?+ =B,
¢52 = (=B + 67 777),
. 1
—1,— = Tt
att
_ +
¢8?_ = W’Y )
o0 SO SN ++)2
(bl,f = (Oé+)3 (Oé « Y - (OZ ) )7
1
0
¢O,+ = 67
o
¢ = 2
o _ 7 —\2 —_—
27_’_—@((0[ ) -« ary )7
(1),— = 7/84»7
¢y =BT

¢§ = 7+ (a+(l6++)2 . 7++/8+++)7
¢277 _ ’Y+ ( _ (a+)2(6++)3
Loyt (2a+5++ﬁ+++ + a++(ﬁ+++)2 _ 7+++ﬁ++++)), etc.

Later on we will also need the convergent expansions of In(z + a™¢4(2)) with
respect to z and 1/z. We will separately provide all four expansions of In(z +
at¢i(z)) around 1/2 = 0 and z = 0 and repeatedly use the general formula

In (1 = ijzij) => o024, (4.45)
j=1 j=1
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where
14
g1 = Wi, 05 = Wj — Z —~Wj—¢0y, .7 > 23 (446)
J

and |z| as |z| — 0, respectively, 1/|z| as |z| — oo, are assumed to be sufficiently
small in (4.45]). We start by expanding ¢, around 1/z =0

In(z +at gy (2) = ln<z+a Z¢°° >

<1+oﬁ2¢°° -1 >

j()

(e Een)

ij+z 7 (4.47)
where )
Py =atei, Py =at (¢?o1,+ - f¢§°1e,+ﬂ2°+>7 j=2. (448)
=1
An expansion of ¢_ around 1/z = 0 yields

In(z+ate_(2)) =In z+a+z¢ )

where

e PN |
01,_:m¢1,_’ Pj— _a++7+ Z 05 _pp- |, §=>2. (4.50)

For the expansion of ¢4 around z = 0 one gets

In(z+at¢y(z)) =In (z +at Z qzﬁ?7+zj)
=0
OéJr «
=1In (a) +1n <1+a+(1+a+¢? z+az¢ +z7>
ln( ) + Zp 2, (4.51)
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where
o _ % + 40 EETNIRY
P1+ = ot ( ta ¢1,+)’ p2 —+ = a¢2 + 2(p1,+) )
1 (4.52)
p', <]+ Z QZS] f-‘rpf—i-) ] p(1J+p] 1,4+ JZ3
Finally, the expansion Of ¢_ around z = 0 is given by
oo
In(z+at¢_(z)) =In <z +at Z ¢5Q,_zj>
j=1
o .
=1In <’y+z +at Z q{)q,_z])
j=2
at & ;
=1In(z) +In(y") +1In (1 =+ F Zdj?-i-l,—zj)
j=1
= In(2) 4 In(y +ZpJ7 : (4.53)
where
0 at o )
P1— = ,F%ﬁ’ P ’y* T Z ¢g+1 (P2 j=z2.  (4.54)

Explicitly, the first expansion coefficients are given by
proy =a’ B,
p5oy = —3(a™B)? +yat BT,
P =3B —y(ratpTT — (a)?B7 B — aa®(57)?),

poo — —a+++ﬁ++ + (S+ _ I)ﬂ

1,7 Ol+ )

o _ - St 7T £
p17+ =« ﬂ + ( ) a ’
p(i_ _ fa+ﬂ++,
p%_ — %(a+ﬁ++)2 _ ’y++a+ﬂ+++,
p5- = —gzlatpr)?

+ ’7++( _ ’Y+++a+ﬁ++++ 4 (a+)26++6+++ 4 O¢+Oz++(ﬁ+++)2) ete.

(4.55)

The next result shows that g; + and £jpj7, , respectively g; — and +j pg{i, are
equal up to terms that are total differences, that is, are of the form (S* — I)d; 1
for some sequence dj+. The exact form of d; + will not be needed later. In the

proof we will heavily use the equations 7.

Lemma 4.4. Suppose Hypothesis holds. Then
Gj+ = —ip5% + (ST = Ddj 4 = jp‘f + (ST —Dejr, JEN, (4.56)
9j— = —ipg 4 + (ST = Ddj— = jp)_ + (ST = Dej—, jeN, (4.57)
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for some polynomials d;j +, ej+, 7 €N, in a and 5 and certain shifts thereof.

Proof. We consider the case for §; 4 first. Our aim is to show that

a T N T +_
dzln(z-i-a by) = 2zg+22+(5 DK + (ST -I)M, (4.58)

where i .
Y _1i
K=ol -a). =yl (459)
which implies by . Here - denotes d/dz.
Since 64, = (g + 1)/J.
d by ttatdy  Proat(g—jo—f) ft+atg—at
& ) = R, T i tatatat) statg—at
Next we treat the denominator of (4.60|) using (4.30)), (4.32),
F((2f + a¥g)? = (aF)?) = §((zF + aT9)* — (a)*(g* — Th))
= 2f? (zf +atg+atg+ (oﬁ)z%h)
= 22(f —atgt +atgt —at BT
= 2y T (4.61)

Expanding the numerator in (4.60) and applying ([¢.30), (4.32), and their derivatives
with respect to z as well as 2gg = fh + fh yields

(z1+atg—a®)( + o™ (i3 — fo - 1))

= (= + 2a" (3 — fo) + a"fg + 5(a")? (0 — o) — ot (F+ 2f + ™ §))

= D22 420 i 2f(a 5t — o~ 4 1)~ 2ato + <fa gt 42— )
+atfg+f(—atet — 2 +§7) +atf(=FTF - 25T g+ gt - 28+ 287)

+atf(z67F + 20— 267) — 20t (F+ 2+ aT9))

(4.60)

= L 4 oy = ot - 20 (4 4 +atp)). (162)
In summary,
i1m(z+oﬁ¢ )—i+(S+—I)M—L(f+z1‘-+a+') (4.63)
dz Y 2yt 8- '

We multiply the numerator on the right-hand side by —2 = —2(g? — fh) and use
again (4.30)), (4.32), and their derivatives:

207" (b — g°) (F + 2f + ot @)
=209 (F + 2f + o) — 201 fg® — 2207 fg* — (™)a(jb + 1H)
= ath(f+ 2f) + atfa(—2BTF — 20+ 207)
+§(—2BTFT — zg+ 2g7)(FF —aTg")
—atig® +fa(aTa + 2f — §1) — 2aTfa® + zfa(aTgT + 2 — §T)
+a a8 + 20 — 2g7) + aTfg(BTFT + 28T +g—gT + 28— 207)
= a (5 + 2f) + " fa(—2B7F — 29+ 2g") + 7T (—287 — 29+ 207)
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+at gt (BT + 2g — 2g7) + 2fP0 — v o + 2o
— 2yt g+ 28T (—atgt — 2+ 1) + 2ata(g - g7)
= ath(f + 2f) — 2a" BT (5 — ) — 2f(aTa+ - )6 — ")
— 2§t + 20 — vt e + 2ig — 2y i e+ 2 T et — 22T
= za"ffh — 2P (2B + 28— 2T — Lath) + 2fg(F+ 2f — g — T+ at§h)
+2y i @ —ah) v Te — e+ 2y T et
= 2 §(fb + §b — 208) + 2T FT (8 - §7) — v e — 2y i e+ it

=t §7) - T e - i e+ 2y T e (4.64)
Inserting this in (4.63) finally yields (4.58). The result for §; — is derived similarly
starting from ¢_ = (g — 1) /f. O

5. LOCAL CONSERVATION LAWS

Throughout this section (and with the only exception of Theorem |5.5) we make
the following assumption:

Hypothesis 5.1. Suppose that o, B: Z x R — C satisfy
sup (|a(n,t£)| + |B(n,t£)|) < 00,
(n.tp) ELXR (5.1)
Cl(?’l, ')7 b(n7 ) € Cl(R)v ne Za a(n,tg),@(n,tg) ¢ {07 1}7 (n7t£) €ZxR.
In accordance with the notation introduced in (4.2)—(4.6]) we denote the bounded

difference operator defined on ¢2(Z), generated by the finite difference expression
P, in (3.26)), by the symbol F,. Similarly, the bounded finite difference operator in

(?(Z) generated by P, in (3.33) is then denoted by F’J .

We start with the following existence result. B
Theorem 5.2. Assume Hypothesis and suppose a, 3 satisfy ALQ(a, B8) =0 for
some p € N§. In addition, let t, € R and z € C\ (spec([u/(tg)) U{0}). Then there

exist Weyl-Titchmarsh-type solutions uy = ui(z,n,tg) and v4 = vi(z,n,tg) such
that for all ny € Z,

(Zij E:;) € (*([ng, 00) N Z)%,  us(zm, -),ve(z,n, -) € C'(R),  (5.2)
and us+ and vy simultaneously satisfy the following equations in the weak sense
lul(tg)ui(z, tp) = zus(z, 1), (5.3)
Ui, (2, -5 tp) = Pyltp)us(z, -, ty), (5.4)
and
ET(tE)Ui(Z, Stp) = 2ve(2, ¢, tp), (5.5)
Vi, (2, 1) = 45; (tp)v (2, -, tp), (5.6)

respectively.
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Proof. Applying (Iu,(tg) — 21 )_1 to o (cf. (4.21)) yields the existence of Weyl-
Titchmarsh-type solutions @4+ of Lu = zu satisfying (5.2]). Next, using the Lax
commutator equation (3.38]) one computes

Z’Ijbi’tg = (Lfbi)tg = Ltgfbi + Lﬂ:t,tg = [Pg7 L]’LNL:t + L’LNL:|:¢2

5.7
= Zpgﬂi - LPBﬂ,i + Lai,tg ( )
and hence
(L — z[)(di’tg — Pgﬂi) =0. (5.8)
Thus, @4 satisfy
a:l:,tg — Pgﬂi = Cylg + Dytr. (5.9)

Introducing @+ = ctux, and choosing c+ such that c1 ;, = Cicy, one obtains
Ut p, — Pgui = Diux. (5.10)

Since uy € £?([ng, £00) NZ), ng € Z, and a, B satisfy Hypothesis (3.29) shows
that Ppus € (*([ng, +00) NZ). Moreover, since

us(z,m,tp) = du(ty)(L(ty) — 21) "' 00)(n) (5.11)
for n € [£1,00) N Z and some d+ € C1(R), the calculation
ui7t2 = d:t,tg(f/ - ZI)il(so — d:t (fx - zI)ilf/tg(Iv/ - 21)7150 (512)

also yields uy ¢, € ?%([ng, £00) N Z). But then Dy = 0 in (5.10) since uy ¢
02([ng, +00) N'Z). This proves (5.4).
Equations (5.2), (5.5), and (5.6) for v+ are proved similarly replacing L, P, by
LT,PI;'— and observing that (3.38)) implies
ng(tg) + [P;(tg),LT(tg)] =0, t,cR. (5.13)

O

For the remainder of this section we will always refer to the Weyl-Titchmarsh
solutions u4, v+ introduced in Theorem Given u4, v4, we now introduce

(1/}1,:|:(Z7 . 7tg)

Uy(z, -, t,) = Vo4 (2, 1)

) , ze€C\ (spec(f/(tg)) u{0}), ty €R, (5.14)
by (cf. ([#.15))
qpl,i(zan?tg) _ n/2 - / -1 ui(zvn7tg)
(7/12,1(2, n,t,,)) - D(tg)z < H p(n ’tp)>A(z7n) (vi(z,n,tp)> ’

n’=1

(5.15)
z € C\ (spec(L(ty)) U{0}), (n,t,) € Z x R,

with the choice of normalization

D(t,) = exp (; /0 gds (gp+’+(0, s) —gp_,—(0, s)))D(O)7 t, € R, (5.16)

for some constant D(0) € C\ {0}.
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Lemma 5.3. Assume Hypothesis and suppose «, 3 satisfy ALg(a,ﬂ) =0 for
some p € N§. In addition, let t, € R and z € C\ (Spec([u/(tg)) U {0}). Then
U (z, ~,t£) defined in (5.15) satisfy

Uz, ~,t£)\IfI(z, -,tg) =Uy(z, ~,tg), (5.17)
\Ij:t,tg(zv : vtg) = V£+(Z7 '7tg)\11:t(27 '7tp)' (518)

In addition, ¥_(z, +,tp) and U, (z, -,tg) are linearly independent.
Proof. Equation (5.17) is equivalent to

P14+ _ m/’fd: + 0“/)2_¢
(wz,J = (zﬁwli + %,J ' (5.19)

Using (4.11)) and (5.15)) one obtains
—1/2
: 1 b , nodd,
) z /Q’Ui

U+
) n even.
Ut

Inserting ((5.20)) into (5.19)), one finds that (5.19) is equivalent to (4.16]), thereby
(5.17]

(1) oL o0 o

n'=1

proving .
Equation (5.18]) is equivalent to
U1+, A Gphr,+ — Fpipo
TR ) = =7 =7 . 5.21
<¢2,i,tp ! Hp1,+ — Kptpo + (5:21)

We first consider the case when n is odd. Using (5.20)), the right-hand side of ({5.21)
reads

. Gpi/Jli—Fpi/Jzi) ) _ . Gouy — 2Fvy
B PYEE ) = iDz(nD/2 ' L PUE) (522
! (Hpqpl,:t - KB¢2,:I: v nl’_:ll p(n ) ngi — ZKQU:I: ( )

Equation ([5.20]) then implies

V1,44, _ n/2 . / 271/21&
(iz) =on ([ o) (i o
n -1/2 n —1/2
n/2 / z uivtg n/2 ’ z U4
+ Dz < 1:[1 p(n )) ( Z1/2Ui’1t£ ) + Dz <3tp 1/__[1 p(n )) < Zl/%i ) .

Next, one observes that

(0 TL o)) (TLotw)) =t ( TL o)) = S (T o60)

n’=1 n’=1

— 30, ( [T2)) =5 % i (5:24)

n’=1

Thus, (5.23) reads
n -1
D! —(”—”/2( ' ) (wl’i’tp> 5.25
: [Lotm) (i (5.25)
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() SN () ) e

n’=1

Combining (|5.22)) and ([5.26]) one finds that (5.21)) is equivalent to
1/ (0 D Gpus — zF,
’U,:I:,tg 4= Z tg(/) U+ 4 tp (U4 — _1£u:|: z Bvi ' (527>
Vi, ) 2 ~y(n') vt D \v+ 2 Hpuy — Kpvg

n’'=1

Using ([253), ([2:37), and (5.16) we find

n n

Z ’Ytg(n) — Z(I—S_)(gp+,+ _gpi’i)

=o)L
= i((gpy . +(n) = gp_.—(1n)) = (gp, +(0) — gp_.—(0)))
D,,
= i(Gy — Ky) — 2" (5.28)
From (3.29)), (3.36)), (5.4), and (5.6) one obtains (we recall that n is assumed to
be odd)
Ut g, [ —2Fpvt + 5(Gp + Kp)us
=i f ) (5.29)
CEN 2 Hpuy — §(G£+ Kg)vi

using (4.18)).
Inserting (5.28) into (5.27)), we see that it reduces to (5.29), thereby proving
(5.21) in the case when n is odd. The case with n even follows from analogous

computations.
Linear independence of V_(z, -,,) and W (z, -,1p) follows from

(J oty o) = iy ((TT sttt ) Aleon)

1/’2,—('3’71;15;) ¢27+(Z,7'L,t

n’=1

. <u(z,n,tp) u+(z,n,tp)),

v-(z,n,tp) vy (z,m, tp (5.30)

the fact that p(n,t,) # 0, det(A(z,n)) = (—=1)"*! and from
det ( (U_ (Zan7tg) ’U,+(Z,Tl7t2)

v_(z,n,tp)  vi(z,n,1p)

) ) #0, (n,1,) €ZxR, (5.31)

since by hypothesis z € C\ Spec(f/(tg)). O

In the following we will always refer to the solutions W4 introduced in (5.14)—
(15.16)).

The next result recalls the existence of a propagator W), associated with P,
(Below we denote by B(H) the Banach space of all bounded linear operators defined
on the Hilbert space H.)

Theorem 5.4. Assume Hypothesis and suppose a, B satisfy ALB(a, B) =0 for
some p € Ng. Then there is a propagator Wy(s,t) € B((*(Z)), (s,t) € R?, satisfying
(1) Wp(t,t) =1, teR, (5.32)
(i1) Wy(r,s)Wy(s,t) = Wy(r,t), (r,s,t) € R (5.33)

(i41) Wy (s,t) is jointly strongly continuous in (s,t) € R?, (5.34)
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such that for fired to € R, fo € (%(Z),

F(t) = Wy(t,to)fo, tER, (5.35)
satisfies
SO = BOFW), (o) = fo (5.36)
Moreover, L(t) is similar to L(s) for all (s,t) € R2,
L(s) = Wy(s, ) L(t)Wp(s,8) ", (s,t) € R (5.37)

This extends to appropriate functions of f/(t) and so, in particular, to its resolvent
(f)(t) - zI)_l, z€C\ U(E(t)), and hence also yields

o(L(s)) = o (L)), (st) € R (5.38)
Consequently, the spectrum of Iv/(t) is independent of t € R.

Proof. (5.32)—(5.36]) are standard results which follow, for instance, from Theorem
X.69 of [40] under even weaker hypotheses on «, 8. In particular, the propagator
Wy admits the norm convergent Dyson series

tr—
S

Wi (s.t) :I+Z/tdt1 /tl dt2-~-/ Lty By(t) By(ta) - By(ty), (5.39)

keNv$
(s,t) € R%

Fixing s € R and introducing the operator-valued function
K(t) = Wy(s,t)L{t)W,(s.t)", teR, (5.40)
one computes

K'(t)f = Wy(s, t)(L'(t) = [By(t), L(t)] ) Wp(s,t) ' f =0, teR, fel*(2),

(5.41)
using the Lax commutator equation ([3.38). Thus, K is independent of ¢ € R and
hence taking ¢ = s in (5.40) then yields K = L(s) and thus proves (5.37). O

Next we briefly recall the Ablowitz—Ladik initial value problem in a setting con-
venient for our purpose.

Theorem 5.5. Let to,, € R and suppose a0 BO) ¢ ¢9(Z) for some q € [1,00) U
{oo}. Then the pth Ablowitz-Ladik initial value problem

ALy(@.8) =0, (@), _,,, = (a©.5) .02

for some p € N2, has a unique, local, and smooth solution in time, that is, there
exists a To > 0 such that

a(-), B(+) € C*((top — To. to,p + To), L/(Z)). (5.43)

Proof. This follows from standard results in [8, Sect. 4.1]. More precisely, local
existence and uniqueness as well as smoothness of the solution of the initial value
problem (cf. ) follows from [8, Theorem 4.1.5] since fp,—1.+, gpo +,
and hy, 1+ depend polynomially on o, 3 and certain of their shifts, and the fact
that the Ablowitz—Ladik flows are autonomous. O
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For an analogous result in connection with the Toda hierarchy we refer to [24]
and [46, Sect. 12.2].

Remark 5.6. In the special defocusing case, where 8 = @ and hence f/(t), t e R,
is unitary, one obtains

sup la(n,t,)| <1 (5.44)
(’n,tg)ENX(to)ngo,t0,£+T0) -

usingy = 1—|a|? and v, = iv((gp%Jr—gg%Jr)—(gpﬂ,—g;fﬁ)) in (2.53)). A further
application of [8| Proposition 4.1.22] then yields a unique, global, and smooth
solution of the pth AL initial value problem . Moreover, the same argument
shows that if « satisfies Hypothesis and the pth AL equation ALE(Q,E) =0,
then « is actually smooth with respect to t, € R, that is,

a(n, ) € C°[R), neZ. (5.45)
Equation (5.18)), that is, ¥ ; = V,F Wy, implies that

(O I
dy, In = (ST = 1), In(¢1,+)

U1+
O, V1 +
o+ » 1,
=57 =D Y1+
= i(S* — 1)(Gy — Fyos). (5.46)

On the other hand, equation (5.17)), that is, UV} = ¥, yields

oy 1 (wh> = +
¢, In =0, In(z +a"¢1), (5.47)
v V1 + 2

and thus one concludes that
3t2 In(z + oﬁgbi) = i(S+ — I)(GE — Fggbi). (5.48)

Below we will refer to (5.48H) according to the upper or lower sign in (5.48).
Expanding (5.48H) in powers of z and 1/z then yields the following conserved
densities:

Theorem 5.7. Assume Hypothesis and suppose o, B satisfy ALB(a, B) =0 for
some p € N2. Then the following infinite sequences of local conservation laws hold:

Expansion of (5.484+) at 1/z = 0:

Jj—1 p+—1
0,03 =i(ST—1) (g = o = Y fp+—1—e,+¢?iz,+>v

£=0 £=0
i=1....p—, (5.49)

= pt—1
O, 5y = —i(ST — I)(Z fo—t 04+ D fp+—1—e,+¢§?iz,+>’
=1 £=0
Jjzp-+1, (5.50)
where p3°. and ¢3°, are given by (4.48) and (4.38).
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Ezxpansion of (5.48—) at 1/z = 0:

p+—1
O, p5° =i(ST 1) (gp_y, Z Fovemj— 07 = > fm_l_e,m;ie,_),
=0

=—1
j=1,...,p_, (5.51)

p+—1
O, p5 = —i(S (prf Piee— + Z foi—1-0407%, )
jzp-+1, (5.52)
where p3°_ and $3°_ are given by (4.50) and (4.39).
Ezxpansion of (5.484) at z = 0:

P— J
3@,0?,+ = i(S+ —1I) <9p+j,+ - Z ¢?+Z,+fp772,f - Z ¢2,+fp+1j+f,+)a

(=1 £=0
j=1,...,p4—1, (5.53)

pP— py—1
3t£,02+,+ = i(SJr - I) <90,+ - Z¢?+Z,+fp_ —4,— — Z ¢g+ep++1,+f£,+), (5-54)
=1 =0
p+—1
8153'0?7-‘:- = _i( <Z¢J+€ +fp7—€ -+ Z ¢J+e p++1, +f€ +>

Jj=zpy+1 (5.55)
where p9 , and ¢9 . are given by [@.52) and ([@.40).
Ezpansion of (5.48-) at z = 0:

J P—
3tBP?,_ =i(ST - 1) <9p+j,+ - Z¢2,_fp+—j+z—1,+ - Z ¢?+Z,—fp_€,>v
=1 =1

ji=1...,py, (5.56)

J P—
61‘/3/05‘),7 = _i(5+ - I) ( Z ¢2,7fp+*j+571,+ + Z ¢?+£,f;04,> )

L=j+1—py =1
jzpe 1l (5.57)

where p%_ and ¢Q7_ are given by (4.54) and (4.41]).
Proof. The proof consists of expanding (5.48H) in powers of z and 1/z and applying

(@47 (E59).
Expansion of (5.48+) at 1/z = 0: For the right-hand side of (5.484) one finds

p— P+
Fybs =) gp—t-2"+ ngeré
=1

p+—1

p—
- <pr—e,— + Z fos-1-t4% ) Zas
/=1

p+—1 p+—J—1
_ p . . S J
=go+2"t + E (9p+g,+ - E fp+]1£,+¢l,+)z
=0

Jj=0
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P Jj—1 p+—1
+ Z (91’—39— - prf—jH,—(bZoJr - Z fp+—1—é,+¢?j_g7+>z_
Jj=1 £=0 =0
00 pr—1 4
- Z (pr—f— ] 0,4+ + Z fp+—1 Z+¢j+g +) -, (558)

j=p-+1

Here we used that all positive powers vanish because of (5.48)). This yields the
following additional formulas:
Conservation laws derived from ¢4 at 1/z = 0:

p+—j—1
(S+ - 1) (gp+—j7+ - Z fp+—j—1—f,+¢zo+) = 07 ] = Oa ces P+ — 1)
(=0
(5 —1)gos = 0. (5.59)

Expansion of (5.48-) at 1/z = 0: The right-hand side of (5.48~) yields

P— P+
Gp — Fypo- = ngf—f,—zie + ng+—z,+25
=1 =0
p— p+—1
- (prf,z_é"' Z fp+1e,+2) Z 7
=1

£=0 j=-1
P+

p+—j—1
o0
<9p+ IRy fp+—j—1—e,+¢e,_)zj
1

j= 1=—1

p+—1
+ <gp+, Z fp+—1 2, +¢Z — fp——l —¢ 1 _)

p— - p+—1
15 DI (RVEE SFAVEET I P AII T
j=1

£=—1 =0
[e’e} pPy— 1 ‘
- Z (pré ¢34+ Z Joi—1-0405%0, )z_J. (5.60)
j=p—+1 Me=1

Conservation laws derived from ¢4 at 1/z = 0:

p+—j—1
(S+ 71) <gp+—j,+ - Z fp+—j—1—€,+¢zo—) :07 ] = 17"'ap+a (561)
(=—1
p+—1
Z(S+ - I) (gp+,+ - Z fp+71767+¢207 - fp_1,¢ml,>
=0
att
=0, In ( ) + O, In(y ). (5.62)
Oé

Expansion of (5.484+) at z = 0: For the right-hand side of (5.48H-) one finds

P— P——J
Gg - Fg¢+ = Z (gpj, - Z ¢Z,+fpj£,>z_j (5.63)
£=0

=1
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p+—1

D J
0 0 j
+ ) (9p+—j,+ = e fo b — Z¢e,+fp+—1—j+z,+>zj
§=0 =1 £=0
[eS) p— py—1
0 0 j
+ Z <90,+ij+ - Z¢j+é,+fp7—é7— - Z ¢j+ép++1,+f&+>zj'
=1 £=0

J=p+

Conservation laws derived from ¢4 at z = 0:

(S+ (gj, Z¢Z+fj f) _0 j:17"°7p*7 (564)
o
L) P SRR S VAR R (L BT
=1
Expansion of (5.48~) at z = 0: For the right-hand side of ((5.48) one finds

p——1 pP——J
Gp—Fpp-=go 2"+ > (gp_j,- - ¢2,_fp—j—z,—>z‘” (5.66)
=1

j=1

p_
9+ — Z ¢8,—fp7—&—

+Z<9p+ -+ Z¢Z—fp+ =14 — Zgb H_fp_g_)zj

Jj=1
oo j _
0 0 ;
S Sl (I DI SRPRTNS 7% W A B
J=p++1 “=j+1-py =1

Conservation laws derived from ¢_ at z = 0:

(St —TI)go_ =0, (5.67)

J
(st — (%, }:ﬁ,ﬂe)_o j=1,...,p- —1, (5.68)

(5= D) (g0 - 5 R tymt) = 00, (), (5.69
(=1
Combining these expansions with (4.47)—(4.53) finishes the proof. |

Remark 5.8. (i) There is a certain redundancy in the conservation laws (5.49)—

(5.57) as can be observed from Lemma[4.4] Equations (4.56)~(4.57) imply
- o 1 :
Pie = P-4 5(ST = Dldjr —ejp), JEN, (5.70)
1 :
Pl =—p)_+ 3(S+ —I)(d;_ —ej_), jeN. (5.71)

Thus one can, for instance, transfer ((5.49)—(5.50) into ((5.51)—(5.52).
.7, we recover the

(i4) In addition to the conservation laws listed in Theorem
familiar conservation law (cf. (2.53)))

Oy (1) = i(I = S7)(gpyt — 9p_—)s D EN3. (5.72)
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(iii) Another consequence of Theorem|[5.7/and Lemmal[4.4]is that for «, 3 satisfying
Hypothesis and a, B € C1(R,¢*(Z)), one has

d d . .
E Z ln(’y(n,tg)) = Oa E Zgj,i(na tg) = Oa JE Na p € N% (573)

P nez P nez

Remark 5.9. The infinite sequence of conservation laws has been studied in the
literature; we refer to [4], [, Ch. 3], [14], [50], and [52]. In particular, Zhang and
Chen [50] study local conservation laws for the full 4 x 4 Ablowitz—Ladik system in
a similar way to the one employed here. However, they only expand their equation
around a point that corresponds to 1/z = 0. The systematic derivation of infinite
sequences of conserved densities and currents (cf. the corresponding discussion in
the introduction) as presented in Theorem appears to be new.

The two local conservation laws coming from expansions around z = 0 are essen-
tially the same since the two conserved densities, p , and p{ , , differ by a first-order
difference expression (cf. Remark. A similar argument applies to the expansions
around 1/z = 0. That there are two independent sequences of conservation laws
is also clear from which yields that ), g +(n,t,) are time-independent.
One observes that the quantities g; +, j € N, are related to the expansions around
1/z =0, that is, to p3%, while g; _, j € N, are related to P?,i (cf. Lemma . In
addition to the two infinite sequences of polynomial conservation laws, there is a

logarithmic conservation law (cf. (5.72]) and (5.73)).

The first conservation laws explicitly read as follows:
p+ =p-=1:
ey P5 = —i(ST = D) (fo,— 0521 1+ + for05%), §>1, (5.74)
Oy P = —i(ST =D (fo— 0414 + ford)s), 7>1 (5.75)
For j = 1 this yields using
Otiray PTor = Oy yya B =i(ST = I)(—co—af + coyatB7),

a++)

Br iy 1y PT Zi%uﬂ)(—-a+++ﬁ++—+(5+-—I):ﬁj

+++ ++ ++.2
o+ a A+ Qo +_ Qo ) +>
- Z(S I) (CO-,JF O{+ ’y ’y CO,* (Oé+)2’y CO,+( (1+ '7 9

_ [
8t(lvl)p(l),-i- = at(l,l) (a B + (S+ - I)?) (5.76)
) a” T a"at a2
:’L(S+ —I) (00’77’7 ’}/—CO’+ 5 ’Y—Co’f (7) "y)’
o o o
8t(111)p(1]’7 = 5t(1,1)a+5++ =i(ST — I)(co,+a+5+ — co,,oz5++7+).

This shows in particular that we obtain two sets of conservation laws (one from ex-
panding near oo and the other from expanding near 0), where the first few equations
of each set explicitly read (py =p— =1):

j=1: at(m)oﬁﬁ =i(ST —I)(—co,—aB + co+atB7),
Oy, Bt =i(ST = I)(co4af —co,—a™ ),
j=2: 0O, ( — %(oﬁﬂ)z +’ya+[3’)
=i(ST —Dv(=co—aB™ —coqpaat(B7) + oy atBTT),

(5.77)
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sy (3(@BT)? —Fap™™) (5.78)
=i(ST —Dy(—coraB™ —co—aa(B)? + oy a™pTT).

Using Lemma one observes that one can replace in Theorem |5 . by

Jj,+ by suitably adjubtlng the right-hand sides in *

6. HAMILTONIAN FORMALISM, VARIATIONAL DERIVATIVES

We start this section by a short review of variational derivatives for discrete
systems. Consider the functional

G: 1(z)" - C,
— Z G (u(n), u™(n), u D (n), ..., u® (n), uP (n)) (6.1)

neZ

for some x € N and k € Ny, where G: Z x C** — C is C' with respect to the 2rx
complex-valued entries and where

+)\s i
W) = 6y, 50 — {g;u i s i 8 u € 62(Z)". (6.2)
u if s ,

For brevity we write
G(u(n)) = G (u(n), u™ (n),u =V (n),...,u® (), u="(n)). (6.3)

The functional G is Frechet-differentiable and one computes for any v € ¢1(Z)"
for the differential dG

(G)ulv) = G+ )] _,

9G (u(n)) 0G(u(n)) (11 9G(u(n))

9G (u(n)) 9G(u(n)) (-
I R = Wn))

> (20 | gy 20 | g 26Latr)

neZ

= ou Ou+1) Oul=1)
_k) 9G(u(n)) 9G (u(n))
. (=k) (k)
+---+ S RO + S Fu(—P) v(n)
oG
=3 Xt (6.0
nez

where we introduce the gradient and the variational derivative of G by

_6G

(VG)u Su (6.5)
oG oG oG oG oG
(=1) (+1) . (—k) (k) 2T
=00 T8 auen PO g Tt g T e
assuming

{G(u(n))}nez, {81;(1?)} . ez, j=1,... k. (6.6)
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To establish the connection with the Ablowitz—Ladik hierarchy we make the
following assumption for the remainder of this section.

Hypothesis 6.1. Suppose

a,B€MZ), a(n)B(n)¢{0,1}, n € Z. (6.7)
Next, let G be a functional of the type
G: 1>(Z)* - C,
G(a.8) =Y Gla(n),B(n),...,aln+ k), B(n+k),a(n - k), B(n - k)
nez
=Y Gla(n), B(n)), (6.8)
neZ

where G(«, ) is polynomial in «, 8 and some of their shifts. The gradient VG and
symplectic gradient VG of G are then defined by

(VG)a §g>
VG)a,p = = 6.9
o= ((35):) <§g (o)
and
(VsG)a,p =D(VG)ap =D (ggg;) , (6.10)

respectively. Here D is defined by

D:'y(ol (1)), vy=1-—ap. (6.11)
In addition, we introduce the bilinear form

Q: 0M2)? x (*(2)* - C,

Qu,v) =Y (D u)(n) - v(n). (6.12)

nez
One then concludes that

Q(Du,v) = Z u(n) -v(n) = Z (u1(n)vi(n) + uz(n)va(n))
nez nez (6.13)

= (u,V)2zy2, u,v € (N(Z)?,
where (-, -)p2(z)2 denotes the “real” inner product in ¢2(Z)?, that is,
(+, Vezqmye: C(Z)? x 2(Z)* — C,
(u,v)2(zy2 = O _u(n)-v(n) = Y (ur(n)vi(n) +us(n)va(n)). (6.14)

nez neZ
In addition, one obtains

(dG)a,5(v) = ((VG)a,p,v)e2(z)2 = UD(VG)a,p,v) = U(VsG)ap,v).  (6.15)
Given two functionals Gy, Go we define their Poisson bracket by

{G1,G2} = dG1(VG2) = Q(VG1,VGo)
= Q(DVG1,DVGs) = (VG1,DVGa) 22>

o (n) 5 (n)
=2 (66‘1 ) D <6Gz ) : (6.16)
o8 (n) (n)

neZ op
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Since (-, -) is a weakly non-degenerate closed 2-form, both the Jacobi identity

{{G1,G2},G3} + {{G2,G3}, G1} + {{F5,G1},G2} =0, (6.17)
as well as the Leibniz rule
{G1,G2G3} = {G1,G2}Gs + G2{G1, G}, (6.18)

hold as discussed in [32] Theorem 48.8].
If G is a smooth functional and (a, 8) develops according to a Hamiltonian flow
with Hamiltonian #, that is,

o oH
(B>t = (VsH)a,s =D(VH)as =D (%) ) (6.19)
then
= &3 Glatn), )
nez
88 (n) a(n) < (n) 52(n)

— da . — da . oo
~ 2 (%’(n)) (ﬂ(n))t 2\ ) P
={G,H}. (6.20)

Here, and in the remainder of this section, time-dependent equations such as ([6.20))
are viewed locally in time, that is, assumed to hold on some open t-interval T C R.
If a functional G is in involution with the Hamiltonian #, that is,

{G,H} =0, (6.21)
then it is conserved in the sense that

dg
— =0. 6.22
7 (6.22)

Next, we turn to the specifics of the AL hierarchy. We define
gAe,i = de,i(n)- (6.23)
neZ

Lemma 6.2. Assume Hypothesis and v € (*(Z). Then,

(dGex)s(v) = Mv(n) =40 (00, L' Mp(v)d,), L€N, (6.24)

neZ 5ﬁ neZ
> o 0g,+(n) _ o1
(dGr+)a(v) = = u(n) = > (00, L My (v)5,), LEN,  (6.25)
neZ a neZ
where
— _vat -,_ g +Ua -
Mlg(’l}) = —va'" + ((U 14 ﬁ 2p>6even+04 2p50dd)s
vtat vTat
+ ((vo - B even + a5 boda ) S* (6.26)
(v _va . +U++a++ - vrat i
(,072p_ +p 2p>5cvcn5 (P 2p++ +p 2p+ >5oddS )

Ma(v) - 7U+6 - ((U+p - aJr%)(sodd =+ ﬁigaeven) S™
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+5+ +g+
t+ o+ 0B B +
_((v pr -t )5odd—52pﬁaeven)s (6.27)
o vBT B L vttt L otpt Ly
(,0 20~ +p 2p)5evens (p 2+t +p 20 )50ddS .

Proof. We first consider the derlvatlve Wlth rebpect to 8. By a slight abuse of
notation we write L = L(f). Using (6.23)) and ( one finds

= d
(dGe2)sv = 2-G(B+ev)| _, = Z &Qz,i(ﬂ +ev)(n)]

nez
= — ev)F4s . .
n%( L(B+ ev) )6:0 (6.28)
Next, one considers
d ¢ . ¢ ¢
&L(ﬂ + €v)"[e=0 = 11_{% E(L(ﬁ +ev)’ = L(B)")
~ i 2((L(B+ e0) — LBHL()
+ L(B)(L(B + ev) — L(ﬁ))L(ﬂ)#2
+o LML ,3—|—ev (8))
= MpL(B)"™" + L(AYMpL(B) ™ + -+ + L(B) "' M5,  (6.29)
where
Mg = hm 1( L(B + ev) — L(B))
B v(n)a(n
_ ( —(m)a(n + 13+ (o0~ Vp(n) — Bn— 1) ) oaa(n)
v(n)o(n)
+a(n+ UTm)d‘mnm))ém’"’l
+ (ot + 1) - s LD 00 (6.30)
+a(n+2) v(n ;—p(licﬁq;— D) 5even(n))5m,n+1
v(n + 2)a(n + 2) v(n+ Da(n+1)
= (o DT E S el 2) S S deven (W)
v(in —1a(n —1) v(n)a(n)
- (o g = 0 Yoselonnca)
Similarly one obtains
L LB+ e0) ez (6.31)

de
= - (L(ﬁ)—lMﬁL(ﬁ)—’v’ + L(B) PMpL(B) " 4 - + L(ﬁ)—fMBL(ﬁ)—l).
Inserting the expression (6.29)) into (6.28)) one finds

~ d
(dgé7+)51) = Z ((5", &L(B + ev)f(sn>

nez

e=0
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-1
=> <5n, ZLkMgLélkén)
nez k=0
-1
= Z Z(én’ LkMﬁLéfl—k(sn)
k=0n€eZ
-1
=33 (0n, (L7 Mg + [LF Mg, L1 7H))5,)
k=0n€eZ
-1
=¥ ((5n, L Migb,) + (6n, [L¥ Mg, Lf—l—k](sn))
k=0n€eZ
-1
=0 (00, L7 Mpd,) + >t ([LF Mg, L1H))
nez k=0
=LY (60, L' Mj6y,). (6.32)
nez
Similarly, using (6.28)) and (6.31]), one concludes that
(AGr,—)pv = =LY (8n, L™ 7 Mpdy,). (6.33)

ne”Z

For the derivative with respect to a we set L = L(«) and replace Mg by

M, = lim 1(L(oz + ev) — L(w))

e—0 €
v(n)B(n)

= (= vl + DB+ (-

doad(n)

= (o0 + () = 2+ )" ()
= (B P D ) + (ol + 2ot + 1) (6:39)
+ant2) 0 D))
(D .
O
Lemma 6.3. Assume Hypothesis[5d} Then the following relations hold:
5?%* = %(ﬁ_l,+ —agey), LeN, (6.35)
09e- _ ! (f1_+ag;_), CeN. (6.36)

By
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Proof. We consider (6.35) first. By (3.21)) one concludes that
foo1.4+(n) — a(n)ge.+ (n)
= (8n, EL*16,)0cven(n) + (65, L*71D6,)00aa(n) — a(n)(6,, L5,,).
Thus one has to show that

S (0, L Mp0) = 30 /f((?;gl(f“,m i), (639)

neZ nez

since this implies (|6 , using . By (6.30] -7 and ( -, and assuming

v € €*(Z), one obtalns

> (0w, L M)

(6.37)

neZ
= Z ( - Ua n7 Le 16 ) + ’U_p((snv-[/—lénfl)aodd + 'Up—i_((sn»-[/_lénJrl)(sodd
nez
a %( B a+(5n7 Le_l(sn—l)(seven + P+(6n+17 Lz_l(sn—l)éeven)
v _
- %(ﬁ_ (6na Lz_l(;nfl)aodd + ,0_ (671; Le 1(Sn72)6odd)
vtat B B
- F( - a++(5na LZ 16n+1)5even + p++(5nv LZ 15n+1)6even)
vTat _ B
F(ﬂ((sn;Lg 16n41)00da + p(6p—1,L" 15n+1)5odd))
= Z ( - UOé+ (5na Lf?l(sn) + U,OjL (6n+17 Lfilén)éeven + U,UJr (5n7 Leildn-ﬂ—l)(sodd
neZ
- %((6717 ELé_lé‘nfl)(seven + ((Snw[/_lD(Snfl)éodd)
vra™ _
= gy (0 L7 D01 v + (B0 B 6151)0004) )
= (8, EL " 163)8even + v(6n, L1 D5,,)8,
( n n) even ( ny n) odd
nez
- 272((5n7ELe_15n71)6even + (&naLz_lDénfl)(sodd
+ (671—17 Lz_lD(Sn)(sodd + (6n—17ELé_16n)6even))
o (e _
- Z ( fZ 1,+ — agf,+) + %((671717 EL@ 1(srb)(seven (639)
nez

(B L DBy-1)doda = (G BL 00 1)desen = (B3, L1 D6,)50aa) )
where we used and
Gor = (0, L"'DES,)
= B(0n, L' D6y, )00aa + p(0n, L1 Dby, —1)60da
+ B(0n, EL'™6,)deven + p(6n—1, EL* ™6, )dcven
= Bfe-14 4 p(6ny L D8y 1)80aa + p(6n—1, EL'16,)00ven.  (6.40)
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Hence it remains to show that
(n—1, L6, )deven + (8, L™ Dby—1)doda
— (60 EL* " 6,-1)0even — (0n—1, L1 D6,,)d0qa = 0,
but this follows from (EL*)T = EL* respectively (L‘D)" = L*D by (3.13), (3.16).
In the case one similarly shows that

> (0, LT Mgdn) = =) W ((5n, D7 L8, deyen (1) (6.42)
nez nez

+ (O L™ ET10,) 8000 (1) + a4+ 1) (60, L165,)).

(6.41)

O
Lemma 6.4. Assume Hypothesis|6.1] Then the following relations hold:
6ge,+ s -
sa _;(hﬁfl7+ + ﬂgé,Jr)’ teN, (6.43)
80— _ f(m_l _ —Bgr,-), LEN. (6.44)
S y ’ 7

Proof. We consider (6.43) first. Using (6.25]), (6.34)), (3.17)), and (3.18)), and assum-

ing v € £*(Z) one obtains
> (60, L7 M 6y,)

ne”L
=3 (= 0B L1 80) = 0 plFn, L 60 1)even — 0 (s L 041 )Beven
neZ
- % (ﬂi (6717 Leilén—l)éodd + pf (57“ L£715n—2)50dd)
- ;jﬁ( - a+(5na Leilén—l)éeven + P+ (6n+17 LZ?l(sn—l)é‘even)
0
vt Bt ++ -1 ++ -1
- 2P+ ( -« (57“ L 5n+1)6even +p (6717 L 6n+2)6even)
vt Bt -1 -1
Y= (B(Ony L 100 41)00ad + p(6n—1, L 5n+1)5odd))
= Z ( - U+ ((671’ Lé_lD(sn)(seven + (5717 ELe_l(sn)éodd)
neZ
B % ((8n, EL8-1)beven + (0, L' D8n1)d0aa)
vtpt -1 -1
- 2P+ ((671; L D5n+1)6even + (571’ EL 5n+1)6odd)>
(N ~
- Z g (he"1 4 + B30 4)s (6.45)
nez
since by ,

20‘;7’[_—174,- + 2.@(_,4- = p(((gn, LZilDén—l)éodd + (57” ELeilfsn—l)deven
+ (5n—la LeilDan)dodd + (671—1’ ELeilén)(seven)-
The result (6.44]) follows similarly. O

(6.46)
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Next, we introduce the Hamiltonians

~ ~ 1 .

Ho = Z In(y(n)), Hpyt = — ngi,i(n)a px €N, (6.47)
ne” P+ nez
P+ - p- =N .

HB = Z Cp+7f,+HZ,+ + Zcpfff,fHé,f + CBHO7 p= (p*7p+) € Ng (648)
=1 =1

(We recall that ¢, = (cp,— +¢p,+)/2.)
Theorem 6.5. Assume Hypothesis[6.1] Then the following relations hold:

AL,(a, B) = (‘Zgﬂ +DVH, =0, peNZ (6.49)
—iB,, P p
Proof. This follows directly from Lemmas [6.3] and
~ 1 o a ~ 1 . o
(VHe4)a = ;( - 595,+ - h€_17+), (VHi4)p = ;( —age+ + f£—1,+)7

~ 1 . - ~ 1 . Al
(VHL—)Q = ;( - ﬂgl,— + hf—l,—), (VHL—)[? = ;( — gy — ff—l,—)’ (6.50)
£eN,

together with (2.19). O

Theorem 6.6. Assume Hypothesis and suppose that o, 5 satisfy ALB(a, B)=0

for some p € NZ. Then,
dH,

=0 Ng. 6.51
dtB I ﬁ E 0 ( )
Proof. From Lemma and Theorem one obtains
dgy
Wret (S —1)Jp, x, s €N, (6.52)
dt, ’

for some J,, +, r+ € Ng, which are polynomials in o and 3 and certain shifts
thereof. Using definition (6.48) of H,, the result (6.51]) follows in the homogeneous

case and then by linearity in the general case. (Il
Theorem 6.7. Assume Hypothesis and let p,r € N2. Then,
{Hp, Hr} =0, (6.53)

that is, Hp and H, are in involution for all p,r € NZ.
Proof. By Theorem there exists 7> 0 such that the initial value problem

where o, (0 satisfy Hypothesis has unique, local, and smooth solutions
a(t), B(t) satisfying Hypothesis for each ¢ € [0,7). For this solution we know

that J
Eﬂg(t) = {Hz(t),Hg(t)} =0. (6.55)
P
Next, let t | 0. Then

0= {Hz(t)aHg(t)} tj(: {'HE(O),HE(O)} = {H£7 Hg”(a,g):(a(o),g(o))' (6-56)
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Since a(®,3) are arbitrary coefficients satisfying Hypothesis one concludes
(16.53]). O
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