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ABSTRACT 
The present paper reviews some paradigmatic 
applications of modeling and simulation in the context 
of exhaled breath analysis, which has emerged as a 
promising tool for collecting non-invasive and 
continuous information on the metabolic and 
physiological state of an individual. In particular, it is 
illustrated how real-time breath profiles of volatile 
organic compounds (as obtained, e.g., by PTR-(TOF)-
MS) can be used to extract in vivo estimates of 
endogenous quantities that are difficult to access by 
conventional analytical approaches based on blood, 
urine, or tissue. Typical examples include the 
determination of production and metabolism rates, as 
well as tracking the tissue accumulation of exogenously 
administered trace gases (e.g., volatile anesthetics).  
 
Keywords: exhaled breath analysis, volatile organic 
compounds (VOCs), physiological modeling, 
pulmonary gas exchange  
 
1. INTRODUCTION 
Due to its broad scope and applicability, breath gas 
analysis holds great promise as a versatile framework 
for general bio-monitoring applications (Amann and 
Smith 2005).  
 Volatile organic compounds (VOCs) in exhaled 
breath represent a unique biochemical probe in the 
sense that they can provide both non-invasive and 
continuous information on the metabolic and 
physiological state of an individual. Apart from 
diagnostics and therapy control, this information might 
fruitfully be used for dynamic assessments of normal 
physiological function (e.g., during exercise stress tests, 
in an intra-operative setting, or in a sleep lab (King et 
al. 2009; Schubert et al. 2012; King et al. 2012a)), 
pharmacodynamics (drug testing (Beauchamp et al. 
2010)), or for quantifying body burden in response to 
environmental exposure (e.g., in occupational health).  

However, quantitative modeling approaches for 
exploiting this potential remain challenging due to the 
multifaceted impact of physiological parameters (such 
as cardiac output or breathing patterns) as well as due to 

the sparse and often conflicting data regarding potential 
biochemical sources or sinks of VOCs in the human 
body. Within this framework, a primary goal of our 
investigations is to clarify the behavior of several 
prototypic breath trace gases by providing phenomeno-
logical reference data as well as mechanistic modeling. 
The present paper reviews some paradigmatic 
applications in this context, discussing models for the 
endogenous VOC isoprene (a tentative biomarker for 
oxidative stress and lipid metabolism disorders) and the 
exogenously administered volatile anesthetic agent 
sevoflurane. 

 
2. EXPERIMENTAL METHODS 
The range of measurement techniques employed for 
breath gas analytical investigations is extremely diverse 
and each method comes with its specific strengths and 
weaknesses. Here, the main focus is on direct mass 
spectrometry, particularly proton transfer reaction mass 
spectrometry (PTR-MS) (Lindinger et al. 1998). A 
major hallmark of PTR-MS is its real-time capability, 
allowing for concentration measurements of VOCs with 
a sampling frequency of more than 1 Hz (i.e., on a 
breath-by-breath resolution). 
 The possibility of generating high frequency data 
can be viewed as an essential requirement for relating 
short-term variations of breath VOC concentrations to 
quick metabolic and physiological changes (e.g., in 
blood or ventilatory flow). An experimental setup for 
the parallel recording of real-time PTR-MS trace gas 
profiles as well as hemodynamic and respiratory 
parameters is shown in Figure 1 (King et al. 2009; King 
et al. 2010b). 
 This instrumentation provides an excellent 
opportunity to model/simulate the blood-gas kinetics 
and systemic distribution of specific VOCs within the 
human body, and to validate such simulations by 
adequately designed experimental regimes, e.g., by 
measuring concentration levels during workload 
segments on an ergometer (see Figure 1) or by looking 
at the concentration changes during sleep (with different 
sleep-related events giving rise to different VOC breath 
patterns (King et al. 2012a)). 



Cmeasured=CA = !b:airCa =
Cv

!b:air +
!VA / !Qc

(1)

 

 
Figure 1: Experimental setup used for obtaining VOC 
profiles in conjunction with a number of physiological 
parameters. Items in italic correspond to measurable 
variables. Right panel: typical smoothed profiles of end-
tidal isoprene and acetone concentrations in response to 
the following workload regime: 7 min resting, 15 min 
ergometer challenge at 75 Watts, 3 min resting, 15 min 
at 75 Watts, 12 min resting, 5 min at 75 Watts, 5 min 
resting. Data correspond to one single volunteer. 
 
3. MODELING BREATH VOC PROFILES 
In classical pulmonary inert gas elimination theory the 
relationship between the blood concentrations of VOCs 
and their respective concentrations in the gaseous phase 
is captured by the well-known equation due to Farhi 
(1967), viz., 
 

 
where the subscripts A, a, and v denote alveolar, 
arterial, and mixed-venous concentrations, respectively, 
and λ is the substance-specific blood:air partition 
coefficient describing the diffusion equilibrium at the 
alveolar-capillary interface according to Henry's law. 
The influence of respiratory and hemodynamic 
variables is captured by the ratio between alveolar 
ventilation !VA and cardiac output !Qc . 

 
3.1. Isoprene modeling 
While the Farhi equation represents the starting point 
for any quantitative modeling approach in exhaled 
breath analysis, it turns out that this simple formulation 
is generally inadequate for explaining the observed 
dynamic behavior of breath VOCs in response to 
relatively quick physiological transitions. 
  Indeed, as can be seen in Figure 1 the profiles of 
isoprene and acetone considerably depart from the trend 
predicted by Equation (1). More specifically, at the 
onset of exercise the ventilation-perfusion ratio 
increases drastically and hence, other factors being 
equal, a more or less pronounced drop in the respective 
breath concentrations could be expected (such a drop 
can in fact be observed for some endogenous breath 
VOCs, e.g., butane and methane, see (King et al. 
2010b) and Figure 6, respectively). As we shall 
illustrate in the following, in the case of isoprene this 
discrepancy can be explained by reference to a 
peripheral (extra-hepatic) production of the compound, 
which is realized by complementing the basic Farhi 

model with two systemic compartments, affecting the 
time evolution of the mixed-venous concentration 
according to their fractional perfusion. 
 To this end, it is instructive to note that exercise 
bouts at constant workload interrupted by breaks of 
variable duration lead to markedly different heights of 
the characteristic breath isoprene concentration peak at 
the onset of pedaling, despite an almost identical 
behavior of cardiac output and alveolar ventilation 
throughout all workload segments (see Figure 1). This 
appears to exclude pulmonary gas exchange as a 
primary cause for the peak-shaped dynamics and points 
towards a substance-specific wash-out from an isoprene 
buffer tissue within the human body. In order to further 
investigate this hypothesis we additionally performed a 
series of one-legged ergometer experiments, showing 
that a switch of the working leg after a short break 
following an ergometer exercise segment results in an 
immediate recovery of the initial peak height, whereas 
continuing the exercise with the same leg leads to a 
wash-out effect similar to the two-legged case (King et 
al. 2010a).  
 From the phenomenological findings outlined 
above we concluded that a major part of isoprene 
variability during exercise phases can be ascribed to an 
increased fractional perfusion of the working skeletal 
muscles, eventually leading to higher isoprene levels in 
mixed venous blood at the onset of physical activity. 
This idea has subsequently been incorporated into a 
physiologically based compartment model (King et al. 
2010a; Koc et al. 2011), describing the distribution of 
isoprene in various functional units of the organism, see 
Figure 2. By writing down the mass balance relations 
for each compartment such model structures can 
directly be expressed as a set of ordinary differential 
equations with smooth right hand side g, 
 
!x(t) = g(x(t),u(t),!), x(t0 ) = x0    (2) 

 
where the state vector x contains the molecular 
concentrations of the investigated trace gas within the 
tissue compartments introduced; u stands for external 
inputs (blood/respiratory flows, temperature, etc.) that 
can be modified by experimentation; θ  lumps together 
an ensemble of constant, unknown model parameters 
(including, e.g., kinetic constants such as endogenous 
production or metabolization rates). The latter have to 
be estimated from the available process data (possibly 
together with some components of the initial conditions 
x0), which are linked to the system dynamics via the 
scalar measurement equation 
 
y(t) = h(x(t),!).      (3)

      
Here, h is some smooth function defining the 
observable model output (i.e., the measurable breath 
concentration). 
 The proposed model can be calibrated based on the 
physiological data derived from the setup in Figure 1. 



More specifically, the unknown (and volunteer-specific) 
model parameters and initial equilibrium concentrations 
are determined by standard least-squares procedures, 
implementing a multiple shooting routine in Matlab. 
 

 
Figure 2: Schematic representation of the model 
structure used for describing the dynamics of isoprene 
concentrations in various parts of the human body. The 
latter is divided into three distinct functional units: 
alveolar/end-capillary compartment (gas exchange), 
richly perfused tissue (metabolism and production) and 
peripheral (muscle) tissue (storage, metabolism and 
production). Fractional blood flow to the periphery is 
denoted by qper, while kpr and kmet represent constant 
production and (linear) metabolism rates, respectively. 
Dashed boundaries indicate a diffusion equilibrium as 
determined by the respective blood:air and blood:tissue 
partition coefficients. Subscripts denote as follows: I-
inhaled; A-alveolar; c'-end-capillary; rpt-richly perfused 
tissue; per-peripheral tissue; b-blood.  
 
  This iterative method can be seen as a 
generalization of the Gauss–Newton algorithm, 
designed to avoid divergence issues of the latter due to 
large residuals. For further details as well as 
convergence and stability properties we refer to (Peifer 
and Timmer 2007) and references therein. Figure 3 
summarizes the results of these calculations. 
 The physiological mechanism revealed by this 
simulation is as follows: at rest the peripheral (muscle) 
compartment is characterized by high isoprene 
concentrations resulting from extra-hepatic production 
at a constant rate. However, due to the relatively small 
fractional perfusion of these tissues, the mixed venous 
concentration is mainly governed by the lower isoprene 
content of the venous blood returning from the richly 
perfused tissue group. At the start of exercise, the 
fractional perfusion qper to the periphery drastically 

increases. Consequently, isoprene is washed out from 
the peripheral compartment and the mixed venous 
concentration becomes dominated by peripheral venous 
return. The isoprene concentration peak visible in breath 
can thus be interpreted as a direct consequence of the 
associated rise in mixed venous blood concentrations. 

Two important findings emerge from this modeling 
analysis. Firstly, it is suggested that the working skeletal 
muscles act as an active production site of isoprene in 
the human body. While such a hypothesis contrasts 
previous work postulating a purely hepatic origin of this 
compound, recent investigations observing a pro-
nounced reduction of breath and blood isoprene levels 
in late stage Duchenne muscle dystrophy patients 
support this novel viewpoint (King et al. 2012b). In 
particular, the latter study is a good example how 
mechanistic modeling ultimately allows for designing 
theory-driven experiments.  

Furthermore, the proposed model can serve as a 
quantitative tool for estimating relevant endogenous 
parameters governing isoprene dynamics (such as 
production or metabolism rates) on the basis of exhaled 
breath, hence allowing for the non-invasive extraction 
of patient-specific metabolic information. Indeed, the 
relative standard deviations of the estimated parameters 
as determined by residual bootstrapping usually range 
below 10%, thus demonstrating that the unknown model 
quantities are reasonably identifiable within the present 
experimental scenario (King et al. 2010a).  
 

 
Figure 3: First panel: simulation of individual breath 
isoprene behavior during exercise conditions, compare 
Figure 1; second panel: predicted concentrations in 
mixed venous blood and venous blood returning from 
the peripheral (muscle) and richly perfused tissue 
groups. 
 
3.2. Anesthetic monitoring 
It has recently been demonstrated that PTR-MS allows 
for acquiring breath concentration profiles of 
inhalational (e.g., sevoflurane) as well as intravenous 
(e.g., propofol) anesthetic agents in real-time. By 
coupling these profiles with physiological modeling 
concepts and signal processing tools, non-invasive on-
line schemes for continuously monitoring certain key 
quantities during anesthesia might be derived. Examples 



include the estimation of agent concentrations in blood 
or the central nervous system (i.e., the target sites), or 
tracking major hemodynamic variables such as cardiac 
output.  

For this purpose, a simple compartmental 
description for capturing the tissue accumulation of 
sevoflurane during inhalation anesthesia has been 
developed (King et al. 2011b). The model is largely 
analogous to the one in Figure 2, except that a brain 
compartment has been added and the peripheral tissue 
compartment has been replaced by adipose tissue, 
which represents a large storage volume for lipophilic 
compounds such as sevoflurane. Additionally, due to 
the fact that sevoflurane is not produced endogenously 
and only poorly metabolized, all production and 
metabolism rates have been set to zero. Using standard 
literature values for the involved physiological 
parameters, the resulting model predictions are in good 
agreement with published in vivo concentration profiles, 
see Figure 4. 

 

 
Figure 4: Simulation of sevoflurane profiles in inspired/ 
end-tidal air, arterial blood, and jugular venous blood 
during administration of approx. 3% sevoflurane over 
25 min. Discrete points reflect sample means associated 
with pooled data from 11 patients as measured by 
Nakamura et al. (1999). 
 
 Going beyond the direct problem of simulating the 
time evolution of breath sevoflurane levels given a 
number of physiological parameters, it is intriguing to 
ask whether one can also solve the related inverse 
problem, e.g., whether one can reconstruct (possibly in 
real-time) physiological quantities such as cardiac 
output or tissue (particularly brain) sevoflurane 
concentrations on the basis of sevoflurane dynamics 
observed in exhaled breath. Note, that this represents a 
question of considerable clinical relevance, as the 
former quantities are reflective of both the patient’s 
hemodynamic status as well as his anesthetic/amnestic 
response, however, they are not easily accessible during 
the perioperative period. In the following we will 
present a proof-of-concept how the problem stated 
above can be approached by employing nonlinear 
filtering techniques. The limiting factor here is that due 
to the lack of adequate in vivo data the reconstruction is 

based on simulated rather than measured breath 
sevoflurane data.  
 In a first step, by employing zero-order hold 
sampling and introducing Gaussian, white, zero-mean 
noise sequences wk, ϑk, and vk the sevoflurane dynamics 
given by Equations (2) and (3) can be discretized as 

 

 
 
Here, the time-varying parameter θ reflects cardiac 
output and yk is the measurable breath sevoflurane 
concentration. The aim is to sequentially reconstruct x 
(i.e., the non-accessible compartmental concentrations) 
and θ from the stacked observations Yk = (yk,…,y1), 
which in this case, as mentioned before, have been 
generated by simulating the original deterministic 
system (2) and (3) and adding Gaussian noise with fixed 
variance).

 
Sequential state and parameter reconstruction can 

be achieved by virtue of a marginalized particle filtering 
scheme as introduced in (Schön et al. 2005). Briefly, 
starting from Gaussian prior densities p(x0) and p(θ0) 
encapsulating the available information on the initial 
compartment concentrations and the initial cardiac 
output, respectively, this framework allows for the 
recursive approximation of the posterior probability 
p(xk, Θk |Yk), which embodies all accessible information 
on xk and the parameter sequence Θk = (θk,…,θ0) up to 
time k. For the purpose of computing this density, it is 
instructive to note that, conditional on Θk, the 
discretized equations above represent a linear Gaussian 
system. Consequently, we may decompose 

 
p(xk ,!k |Yk ) = p(xk |!k ,Yk )p(!k |Yk )   (4) 

 
where the first factor can be determined analytically by 
means of the standard Kalman filter formulae. 
Simultaneously, particle filtering is employed for 
producing m samples (particle trajectories) Θk,i = 
(θk,i,…,θ0,i), i = 1,…,m following p(Θk|Yk), thus 
allowing for a (point mass) approximation of the second 
factor in Equation (4). 

 Combining these two mechanisms we end up with 
a bank of m Kalman filters running in parallel, each one 
associated with a single particle trajectory Θk,i. When 
proceeding from time k-1 to time k, first the time update 
of each Kalman filter is performed. The resulting a 
priori estimates are subsequently used to update each 
particle trajectory according to the standard sampling 
importance resampling scheme fundamental to particle 
filtering (Gordon et al. 1993). In a last step, the 
measurement update for each Kalman filter is 
performed using the previously updated particle 
trajectory. Finally, the arithmetic mean of all a 
posteriori estimates (conditional means) derived from 

xk =Gk!1 "k!1( )xk!1 + fk!1 +wk!1

"k = "k!1 +! k!1

yk = Hkxk + dk + vk



the m separate Kalman filters constitutes a minimum 
mean square error estimate of the compartment 
concentrations xk, and similarly for θk. For further 
technical details the interested reader is referred to 
(King et al. 2011b). 

The applicability of this filtering scheme within the 
anesthetic monitoring framework introduced above is 
demonstrated in Figure 5. Here, the mean and standard 
deviation of the prior distribution p(θ0) reflecting the 
initial knowledge about the current cardiac output is set 
to 8 L/min and 3 L/min, respectively (corresponding to 
a poor initial guess with relatively large uncertainty). 
The resulting state and parameter estimates calculated 
as described above provide a reasonable reconstruction 
of their simulated counterparts. In particular, incidences 
such as abrupt drops in cardiac output are recognized 
within a delay time that is sufficiently small for 
enabling intra-operative interventions. 

 

 
Figure 5: Simulated (solid black lines) and recovered 
(solid red lines) profiles of the breath sevoflurane 
concentration, cardiac output and brain concentration, 
using a marginalized particle filter with size m = 300. 
Dash-dotted lines represent the profiles of the inhaled 
sevoflurane concentration and alveolar ventilation used 
for the simulation of breath sevoflurane data. 
 
4. OUTLOOK AND CONCLUSIONS 
While the above approaches demonstrate that coupling 
the high-frequency information obtainable from breath 
gas analytical techniques with well-established tools 
from parameter identification and signal processing 
potentially allows for (continuous) estimation and 
monitoring of endogenous processes, we are well aware 
of the fact that several aspects have to be investigated 
more deeply before such methodologies can become 
clinically relevant (e.g., as a part of automated 
anesthesia delivery systems in the case of sevoflurane). 
 The primary building block for a successful 
implementation is the availability of reliable 
physiological models for the endogenous distribution of 
the volatile compounds under study. Consequently, 
additional experimental efforts, data gathering and 

modeling attempts (accounting for potential substance-
specific confounding factors, e.g., time-varying 
metabolization patterns, compartmental sequestration, 
etc.) are required in order to extend the validity of 
simple models such as the ones presented above over a 
sufficiently wide range of possible dynamics.  
 Another important contribution towards 
generalizing such modeling results is the increased 
availability of analytical techniques allowing for 
parallel real-time measurements of distinct substance 
classes within the same experimental regime. A proto-
typic method in this regard time-of-flight mass 
spectrometry coupled with chemical ionization, as 
realized for instance in PTR-TOF (Herbig et al. 2009). 
Briefly, such devices obviate the usual trade-off 
between sampling frequency and the number of trace 
gases that can be monitored simultaneously and offer 
very detailed spectral information in every sampling 
instant. Typical results are shown in Figure 6. 
 

 
Figure 6: Profiles of breath acetone, methane, isoprene 
during a similar exercise scenario as in Figure 1. Data 
correspond to one single volunteer and are obtained by 
chemical ionization TOF mass spectrometry using O2

+ 
primary ions. The second panel shows the TOF 
spectrum at 27 min. In the ideal (non-overlapping) case, 
each peak in the spectrum corresponds to one VOC, 
which may be identified a priori using pure gas 
standards. The concentration at a specific time instant is 
roughly proportional to the associated area under curve. 
Note that distinct VOCs can show a rather different 
behavior in response to the same physiological stimulus. 
While methane obeys the dynamics predicted by 
Equation (1), substance-specific factors like peripheral 
wash-out (isoprene) or airway gas exchange (acetone, 
cf. (King et al. 2012c; King et al. 2011a)) may lead to 
characteristic deviations from that trend.   
 
 As a concluding remark, the development of 
quantitative formulations relating breath concentrations 
of trace gases to their underlying systemic levels clearly 
lags behind the enormous analytical progress in exhaled 
breath analysis. In this sense, the approaches presented 
in this paper are also intended to further strengthen the 



role of mathematical modeling and simulation as core 
techniques in breath gas analytical investigations. 
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